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Summary9

Mathematical models provide a rational basis to inform how, where and when to control disease. Assuming10

an accurate spatially-explicit simulation model can be fitted to spread data, it is straightforward to use it to test11

the performance of a range of management strategies. However, the typical complexity of simulation models12

and the vast set of possible controls mean that only a small subset of all possible strategies can ever be tested.13

An alternative approach – optimal control theory – allows the very best control to be identified unambiguously.14

However, the complexity of the underpinning mathematics means that disease models used to identify this15

optimum must be very simple. We highlight two frameworks for bridging the gap between detailed epidemic16

simulations and optimal control theory: open-loop and model predictive control. Both these frameworks17

approximate a simulation model with a simpler model more amenable to mathematical analysis. Using an18

illustrative example model we show the benefits of using feedback control, in which the approximation and19

control are updated as the epidemic progresses. Our work illustrates a new methodology to allow the insights20

of optimal control theory to inform practical disease management strategies, with the potential for application21

to diseases of plants, animals and humans.22

1 Introduction23

Mathematical modelling plays an increasingly important role in informing policy and management decisions24

concerning invading diseases [1, 2]. However, model-based identification of effective and cost-efficient controls25

can be difficult, particularly when models include highly detailed representations of disease transmission26

processes. There is a variety of mathematical tools for designing optimal strategies, but no standard for putting27

the results frommathematicallymotivated simplifications into practice. An open question is how to incorporate28

enough realism into a model to allow accurate predictions of the impact of control measures, whilst ensuring29

that the truly optimal strategy can still be identified [3]. In this paper we identify the difficulties – as well as30
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potential solutions – in achieving a practically useful optimal strategy, highlighting the potential roles of open31

loop and model predictive control by way of a simple example.32

Realistic landscape-scale modelling33

The optimisation of epidemic interventions involves determining the management strategy that minimises34

impacts of disease. This minimisation can be difficult when resources are limited and there are economic costs35

associated with both control measures and disease. Methods that simulate the expected course of an epidemic36

and explicitly model effects of interventions allow us to quantify the potential impact of a given strategy [4].37

These simulation models accurately capture the dynamics of the real system and so have become important38

tools in designing intervention strategies to inform policy decisions. Examples include vaccination policies for39

human papillomavirus in the UK [5, 6], livestock culling policies for foot-and-mouth disease [7, 8] including40

post-hoc vaccination optimisation [9, 10], and optimal host removal radii for tree diseases of citrus [11–13] and41

sudden oak death [14].42

Various complexities of disease dynamics, for example spatial heterogeneities and inherent individual43

differences in susceptibility and pathogen transmission (risk structure), have been shown to be important44

determinants of patterns and rates of epidemic spread [15–17]. To ensure accurate epidemic predictions, these45

factors must be included in simulation models designed to aid decision making. However, inclusion of these46

factors typically results in highly complex models with many possible control measures, making optimisation47

computationally infeasible when interventions can be combined, and particularly when control measures can48

also vary over time, in space or according to disease risk [18]. For most simulation models the only viable49

option is then to use the model to evaluate a small subset of plausible strategies that remain fixed during the50

epidemic, potentially scanning over a single parameter such as a culling radius. We shall refer to this approach51

as ‘Strategy Testing’. Using this approach makes it difficult to have high confidence in the best-performing52

strategy, since with no framework for choosing it, the set of strategies under test is likely to be biased. Further53

to this, as the set to test cannot span the entire space of control options, it is unlikely that the true optimumwill54

be found.55

Optimal control of epidemiological models56

Manymathematical techniques exist for characterising the true optimal control for adisease, such as equilibrium57

or final size analysis, depending on the system being analysed [15]. We here focus on optimising time-varying58

control of dynamical systems, for which optimal control theory (OCT) is widely used [19]. The controls59

considered in this paper are mathematical representations of possible disease interventions. By analysing a set60

of equations describing the disease dynamics, OCT can mathematically characterise the optimal control and61

provide insight into the underlying dynamics, without the repeated simulation required to optimise simulation62

models. However, because of the underlying mathematical complexity, little progress can be made with OCT63

unless the underpinning models for disease spread are highly simplified. Early work in OCT focussed on64

optimal levels of vaccination and treatment [20], with extensions to consider further interventions including65

quarantine, screening, and health-promotion campaigns appearing later [21]. Disease models can also be66

coupled with economic effects [22–24], and within OCT this has been used to balance multiple costs, such as67

surveillance and control [25], or prophylactic versus reactive treatment [26].68
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Theoptimal strategies identifiedbyOCTcanbevery complex, often specifying controls that switch strategies69

at specific times during the course of an epidemic. The added complexity of these switching controls can70

significantly improve disease management when tested on a spatially explicit model, but can perform poorly71

if the exact time of the switch is not known [27], for example when parameters are not known precisely. This72

demonstrates that numerical results from OCT are not always directly applicable to the real world because73

of additional complexities in real systems. It is also unclear however, how insight from OCT alone could74

be translated into practical advice. To move towards robust strategies that could be used practically, more75

recent work has focussed on including additional features and heterogeneities into the models used in OCT,76

in particular spatial dynamics. Space is usually only included to a limited extent, for example by using77

metapopulation models (e.g. [28, 29]), or partial differential equations (e.g. [30]) to optimise spatial strategies,78

so whether the heterogeneities added are sufficient to identify robust and practical control strategies remains79

an open question.80

Moving towards practical control81

Despite finding the mathematically optimal control strategy, major simplifications to the system as modelled82

are required to allow progress to be made using OCT. It is therefore often unclear how these strategies would83

perform if adopted by policy makers. On the other hand, models with sufficient realism to inform policy84

directly are often impossible to fully optimise. Therefore, a framework is needed to couple the results of OCT85

with the realism required in policy making and in simulation type models. The question is then how should86

we make practical use of OCT?87

In §2 we describe two methods from control systems engineering for applying OCT results, and compare88

these versus Strategy Testing using a simple illustrative model in §3. We seek to answer how, under current89

computational constraints, results fromOCTcanbeappliedwhilstmaintaining the realismrequired forpractical90

application.91

2 Applying optimal control to realistic systems92

Outside of epidemiology, OCT has had wider use on approximate models of complex systems. A recent study93

reviews the use of OCT for agent-based models (ABMs) [31], a type of model that simulates the individual94

behaviour of autonomous agents. An et al. [31] suggest the use of a model that approximates the dynamics95

of the ABM, designed to be simple enough to allow mathematical analysis of the optimal control. A suitable96

approximate model is chosen and fitted either to real data, or to synthetic data from the ABM. The OCT results97

from the approximating model are then mapped onto the ABM to be tested: a process referred to as ‘lifting’,98

which could equally well apply to the detailed epidemic simulation models considered in this paper. We99

now describe two possible frameworks from control systems engineering for making use of this control lifting100

approach.101

Open-loop control102

The firstmethod is the simplest application of control lifting, and the framework implicitly suggested byAn et al.103

[31]. Control is optimised on the approximate model once using the initial conditions of the simulation model,104
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and this control is lifted to the simulator and used for the full simulation run time (figure 1). Crucially, any time105

variation in this control is fixed at the very start of the simulation, and so does not incorporate any feedback. It106

is therefore referred to as ‘open-loop’ control, as it is fully specified by the simulation initial conditions and the107

trajectory predicted by the approximate model. Use in epidemiology is uncommon, although Clarke et al. [32]108

use OCT in an approximate model to find optimal levels of Chlamydia screening and contact tracing which are109

then mapped onto a network simulation.110

Model predictive control111

Open-loop control requires the approximate model to remain accurate over a long time scale. Since simulation112

models typically include many heterogeneities that must be omitted from the approximate model, systematic113

deviations between the simulation and approximate predicted trajectories for disease progress are highly likely.114

Model predictive control (MPC) is an optimisation technique incorporating system feedback [33, 34]. At regular115

update times the values of the state variables in the approximate model are reset to match the conditions in the116

simulation at that time. The control is then re-optimised and the new control strategy is used going forward in117

the simulation to the next update time. This corresponds to a series of open-loop problems solved at regular118

update steps (figure 1). Model predictive control can therefore take into account perturbations in the disease119

progress trajectory caused by heterogeneities omitted from the approximate model.120

Model predictive control has had some use within the epidemiological literature, the majority being for121

control of drug applications for single individuals rather than control of epidemics at the population level.122

Examples include finding management strategies for HIV that are robust to measurement noise and modelling123

errors [35, 36], and control of insulin delivery in patients with diabetes [37]. These studies highlight the benefits124

of MPC for robust control, i.e. control that remains effective despite system perturbations. However, only one125

study concentrates on epidemic management [38], and that does not explicitly test the feedback control on126

simulations.127

3 Optimising strategies on an illustrative network model128

Methods129

Todemonstrate open-loop andMPC for epidemicmanagementweuse a stochastic SIRnetworkmodel including130

host demography and risk structure. The model is deliberately kept simple to show how the underpinning131

idea is broadly applicable across human, animal and plant diseases. Whilst the model and its parameters are132

arbitrary we use it to represent a scenario in which a simulation model has already been fitted to a real disease133

system; the network model is therefore used here as a proxy for a potentially very detailed simulation model.134

Simulation Model135

In our model, infection spreads stochastically across a network of nodes that are clustered into three distinct136

regions (figure 2a). Each node contains a host population stratified into high and low risk groups. The infection137

can spread between individuals within nodes and between connected nodes. The net rate of infection of risk138
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Figure 1: Open-loop and model predictive control (MPC). The model hierarchy is shown, with optimised
controls from the approximate model directly lifted to the simulation model. The real system is in green, the
models and fitting processes are in blue, and the control framework is in orange. Without the orange dashed
feedback loop, this is open-loop control. MPC resets the state of the approximate model at regular update
steps, before re-optimising and lifting controls to the simulation model until the next update time.

group r in node i is given by:139

Sr
i

∑
j

σi j

(
ρrH IH

j + ρrLIL
j

)
, (1)140

where S and I are numbers of susceptible and infected hosts respectively, subscripts identify the node, and141

superscripts specify high (H) or low (L) risk group. The sum is over all connected nodes including the focal142

node itself, with pairwise connectivities given by σi j , and risk structure given by ρ. Full details of the model143

are given in the supplementary material. Although not limited to these applications, the model in Equation 1144

could represent cropor livestockdiseases spreading through farms, or sexually transmitted infections spreading145

through towns, cities or countries.146

Mass vaccination is the only intervention we consider, with the potential to target based on both risk group147

and region but randomised across host infection status (i.e. susceptibles cannot be preferentially vaccinated).148

Logistical and economic constraints are included through a maximum total vaccination rate (ηmax) that can be149

divided between risk groups and regions. Within each group susceptibles are vaccinated at rate: f ηmaxS/N ,150

where f is the proportion of control allocated to that group, and N is the total group population.151

Optimal allocation of the vaccination resources minimises an objective function J representing the disease152

burden of the epidemic across all infected hosts over the simulation time (T): J �
∫ T

t�0 I(t)dt. In common with153

the particular control we consider and the risk and spatial structures, this simple choice of objective function154

was made merely to illustrate our methods, but the framework generalises immediately to more complex155

settings.156

Approximate Models157

Exhaustive optimisation of control using the simulation model, across space, risk group and time, is clearly158

infeasible. We consider two different deterministic approximate models of the simulator to assess the best level159
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Figure 2: (a) shows the network used for the illustrative simulation model, including region labels. The
epidemic is seeded in the red node in region A, and can spread between connected nodes (grey lines). In (b)
the control allocation is shown for a single space based MPC run, with the corresponding open-loop allocation
indicated by the black dotted line. (c) shows the total number of infected individuals under a single run of
space based open-loop control. Control is based on the prediction of the approximate model starting from the
initial conditions. (d) shows the number of infected individuals in the simulation and space based approximate
model corresponding to theMPC control carried out in (b). Here the prediction is reset to match the simulation
at every update step (0.5 time units) and the control is re-optimised. By taking account of differences in the
number of infected individuals compared with those predicted at the initial time, MPC gives better predictions
of the simulation state as well as improved control when compared to open-loop control (note different y axis
scales).

of approximation. The first model is purely risk structured, factoring out all spatial information and leaving160

one high risk and one low risk population group. The second approximate model is more complex, in as161

much as it is also risk structured, but additionally includes a first approximation to the host spatial structure by162

dividing the host population into three large regions. Spatial dynamics are included between but not within163

the three regions, maintaining enough simplicity to obtain optimal control results. This could represent, for164

example, optimising control at the country level, but not at the regional level. We will refer to this model as165

the spatial approximate model. A single set of parameters is fitted for each model to data from an ensemble166

of simulation model runs. We then test which of the two approximate models is the more useful for control167

optimisation. Full details of the approximate models, fitting and optimisation procedures are given in the168

supplementary material.169
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Control Scenarios170

We test six different control scenarios, which compare Strategy Testing (scenarios 1 and 2) with open-loop and171

MPC applied to both of our approximate models (scenarios 3 to 6):172

1. ‘High’: exclusively vaccinate high risk individuals173

2. ‘Split’: partition control resources between high and low risk groups based on an optimisation performed174

in advance175

3. ‘Risk OL’: open-loop control on the risk based approximate model176

4. ‘Risk MPC’: MPC on the risk based approximate model177

5. ‘Space OL’: open-loop control on the spatial approximate model178

6. ‘Space MPC’: MPC on the spatial approximate model179

The optimal constant allocation for the ‘Split’ strategy was found by selecting the proportionate allocation to180

each risk group which minimised the mean disease cost in a set of simulation realisations. (supplementary181

material text and figure S8). Figures 2c and 2d illustrate the open-loop andMPC strategies, showing the model182

resetting at regular intervals in MPC.183

Results184

The risk based optimisation results in a strategy that initially vaccinates high risk individuals, before switching185

priorities and treating the more populous low risk group almost exclusively (figure 2b). This same switch is186

seen in the optimal controls from the spatial approximate model, but a number of spatial switches are also seen187

(figure S9). The spatial strategies are therefore much more complex than the risk based controls. Comparing188

disease costs shows that incorporating greater realism, through a more complex approximate model as well189

as by using MPC, allows for improved management of the epidemic (figures 3 and S10). Of the constant190

‘user-defined’ strategies, splitting control between risk groups is more effective than just vaccinating the high191

risk group. The optimal allocation to the high risk group is 63% of vaccination resources, with the rest used192

to vaccinate low risk individuals. Using the risk-based approximate model gives an improvement over either193

of these strategies, although there is little difference between open-loop and MPC (see below). Adding space194

into the approximate model improves control further, leading to the smallest epidemic costs when the MPC195

framework is used.196

The illustrative model demonstrates the management improvements that can be achieved by combining197

OCTwith both open-loop andMPC. The key results of the OCT analyses are the control switching times. Using198

the switching controls from either approximate model with open-loop control gives lower epidemic costs than199

the naively chosen ‘user-defined’ strategies. Feedback allows the MPC controllers to re-evaluate the timing of200

these switches during the epidemic, and potentially include additional switches, to match the exact trajectory201

of the current realisation (figures 2b–d).202

In the risk based strategies there is little difference between open-loop andMPC. This is because the precise203

timing of the switch from high to low risk group vaccination does not significantly affect the epidemic cost204

(supplementary figure S11). The timings of disease introduction into regions B and C are highly variable205
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Figure 3: Results of different control optimisation schemes on the example simulation model. Spatial MPC
performs best, showing an improvement over both open-loop and user-defined strategies.

between simulation runs (supplementary figure S2). The potential for additional switches in the spatial206

approximate model gives more flexibility for the MPC controller to respond to this variability, and so spatial207

MPC shows a significant improvement over open-loop. Extending the objective to include a cost associated208

with switching strategy would allow a more detailed assessment of the practicality of implementing these209

complex strategies, although to provide a simple demonstration of our key ideas we have not pursued this210

here.211

In the spatial case, open-loop performs worse than MPC as it is unable to adapt to perturbations in the212

dynamics. The control must then rely on the model predicted spread, necessarily an approximation to the213

actual trajectory. The performance of the control is closely linked to the accuracy of this approximation,214

raising the important issue of choosing the approximate model. In our example, spatial dynamics are clearly215

important because of the timing of spread between regions, and so the more informed controls of the spatial216

model outperform the risk based strategies.217

4 Discussion and outstanding questions218

Our results show that the choice of approximate model affects the performance of both open-loop and MPC219

strategies. Here we have found a suitable approximate model in an ad hoc manner, but a key challenge for the220

future is to develop a more formal method for choosing the most appropriate approximate model. A more221

accurate model will give better predictions, and hence control that is closer to the true optimum, but this must222

be balanced with added complexity and optimisation constraints. One difficulty in doing this is that it is not223

always clear where the boundary of mathematical or computational feasibility is, and so how complex the224

model can be made in practice. It is also difficult to mathematically determine, in a systematic way, which225

aspects of the dynamics are important to capture accurately. This key issue must be considered though, since226

the implications relate directly to applications in the real world.227

Practical disease control requires surveys of the real system to assess the state of the epidemic. Both open-228

loop and MPC optimise control using predictions of the future dynamics, making them both feed-forward229

controllers. The approximate model underlying these frameworks allows more informed decisions between230
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surveys, resulting in control that is closer to the true optimum. Accurate predictions can avoid continuous231

or very frequent surveys which may be expensive or logistically challenging. The repeated updates of MPC232

improve these predictions but will each require surveillance of the real system, so the frequency of updates233

must be chosen so as to balance improved knowledge of the system with any surveillance constraints.234

In addition to this feed-forward control, MPC incorporates a feedback loop not included in open-loop235

strategies. The feedback mechanism, included through the update steps, allows for control that copes better236

with uncertainty, i.e. it is more robust. As shown by [35], MPC can still successfully control a system when237

measurements of that system are inaccurate, or the parameters in the simple approximate model are incorrect.238

In our case this allowed it to perform better on the complex simulationmodel, where additional heterogeneities239

were present. Open-loop strategies are not robust to these perturbations so may not perform well in practice.240

For certain systems and parameters the open-loop strategy may in fact perform worse than naive constant241

control [28]. We also see this for certain parameter sets in the illustrative model. It would be easy to dismiss242

the OCT results as not useful for policy, but our results show that by using feedback, these results can still be243

beneficial.244

In this paper we have focussed on a top-down approach, finding robust, practically-applicable strategies by245

making use of OCT to optimise simulation models. Equally, many studies analyse dynamical systems using246

OCT without simulation models. These studies rarely consider practical application of the resulting optimal247

controls, and so may benefit from a framework for testing the results. With this bottom-up approach, a system248

for testing the results on realistic systems is vital to ensure that these results are robust to additional realism.249

Using an MPC framework as considered here could be one way in which OCT researchers could demonstrate250

the potential impact of their work to a wider audience.251

We have assumed throughout that an accurate simulation model of the real system in question can be252

built, and that a single set of parameters can be fitted for the chosen deterministic approximate model. In253

reality there may be considerable uncertainty in parameters for the simulator so fitting a single deterministic254

model may be challenging. A question for future study would be how to handle these uncertainties, perhaps255

also incorporating improved knowledge of parameters as the simulation proceeds [39]. A final challenge256

for optimal control more generally relates to the choice of objective function. The strategies found by OCT257

are highly dependent on the exact form of the objective function, and so more research is needed into how258

to quantify the balancing of very different costs, for example treatment costs and disease burden [28]. In259

human disease, cost-effectiveness analyses are usually based on quality adjusted life years (QALYs) [40], and260

a maximum economic cost per QALY gained. A similar concept could perhaps be used for plant and animal261

diseases, including calculations of yield losses [41] as well as effects on welfare, biodiversity and tourism for262

example [42].263

5 Conclusions264

Simulation models that capture the complex dynamics and uncertainties necessary for informing policy have265

significant limitationswhendesigning optimal time-dependentmanagement strategies. Optimal control theory266

is a powerful mathematical approach for characterising these interventions, but results have proved difficult to267

translate into effectivepolicy advice. Increased focusonhowoptimal control canbeusedand translated topolicy268

makers would allow for more robust decisions on disease management, incorporating greater epidemiological269
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understanding.270

Lifting of controls from OCT to realistic simulations as in [31] goes some way to addressing this problem,271

but the differences in model structure between the simulation and approximate models is likely to limit the272

practical performance of the control measures. In this paper we show that incorporating feedback can alleviate273

this problem and help lead to robust and practical control strategies. Whilst these techniques may be able274

to transfer optimal control results to more realistic simulations and so to practical application, it does raise275

the issue of communicability of results. With complex feedback strategies between two models, one complex276

in structure and the other mathematically complex, the overall result is no longer simple to explain. How277

applicable these strategies can ever be, will then be determined by the reliability of, and trust in, the simulation278

model, and its ability to establish the benefit of a more complex intervention strategy.279

Overall, there is clearly a benefit to policy and management decisions from making use of OCT results. We280

suggest that potential policies, including OCT results, can and should be tested on realistic simulations, and281

that MPC is an effective platform for practical applications of OCT.282
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