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Abstract

Current models of decision-making more often than not ignore the level of difficulty of

choices or treat it only informally. Yet, difficulty has been shown to affect human decision

quality. We propose instance complexity (IC), a measure of computational resource

requirements, as a generalisable framework to quantify difficulty of a choice based on a

small number of properties of the choice. The main advantage of IC compared to other

measures of difficulty is fourfold. Firstly, it is based on the theory of computation, a

rigorous mathematical framework. Secondly, our measure captures complexity that is

intrinsic to a decision task, that is, it does not depend on a particular solution strategy

or algorithm. Thirdly, it does not require knowledge of a decision-maker’s attitudes or

preferences. And lastly, it allows computation of difficulty of a decision task ex-ante,

that is, without solving the decision task. We tested the relation between IC and (i)

decision quality and (ii) effort exerted in a decision using two variants of the 0-1 knapsack

problem, a canonical and ubiquitous computational problem. We show that participants

exerted more effort on instances with higher IC but that decision quality was lower in

those instances. Together, our results suggest that IC can be used as a general framework

to measure the inherent complexity of decision tasks and to quantify computational

resource requirements of choices. The latter is particularly relevant for models of resource

allocation in the brain (meta-decision-making/cognitive control). Our results also suggest

that existing models of decision-making that are based on optimisation (rationality) as

well as models such as the Bayesian Brain Hypothesis, are computationally implausible.
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Introduction 1

Most theories of decision-making ignore the difficulty of making a decision [1–3]. They 2

assume that the decision-maker is always able to identify the best option—whether 3

it is a choice between two flavours of ice cream or a choice of investment option for 4

a retirement portfolio from thousands of available options. This is the case not only 5

for rational choice theories of decision-making [4–6], but also for theories of bounded 6

rationality [7–9] and theories of computational rationality [10,11]. All of those theories 7

assume, implicitly or explicitly, that an observed choice is the outcome of a (possibly 8

constrained) optimisation problem. 9

Where decision difficulty has been taken into account, it has been done either 10

informally or in a highly domain-specific way. An example of the former are approaches 11

based on heuristics [12,13]. In this line of research, it is proposed that decision-makers 12

use simple rules or procedures as ‘short cuts’ to overcome various forms of cognitive 13

limitations. These approaches do not usually demonstrate, however, if and in what ways 14

the proposed heuristics overcome various cognitive limits. 15

Other work on decision difficulty is domain-specific and cannot necessarily be gen- 16

eralised. For example, it has been shown that the ability of human participants to 17

find the optimal solution to the set cover and maximum coverage problems can be 18

predicted from a set of mathematical properties of the graph representations of the 19

problem instances [14]. Similarly, human performance in the 0-1 knapsack problem has 20

been shown to vary according to a complexity measure based on the Sahni algorithm [15]. 21

It is not obvious if and how the characterisation of difficulty could be transferred to 22

other domains. 23

An important related question is how decision-makers detect the difficulty of decision 24

tasks. This is important, in particular, for the allocation of limited cognitive resources 25

during the decision-making process [1, 16]. It has been suggested that decision-makers 26

learn the features of decision tasks that make them difficult and choose their strategy 27

accordingly [17–19]. However, it is an open question whether there is a set of features 28

that makes decision tasks difficult and why. Detecting this set of features might be 29

as hard as, or indeed require, solving these problems, and exceed the computational 30

resources available to people. 31
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We propose that computational complexity theory (CCT) provides a general the- 32

oretical framework that lends itself to characterising difficulty of decisions. CCT is a 33

branch of computing theory that studies the computational resource requirements for 34

solving a task [20–22]. Traditionally, CCT has been used to characterise complexity of 35

computational problems. An example of a computational problem is sorting of an array. 36

Other well-studied computational problems include the travelling salesman problem, the 37

subset sum problem or the satisfiability problem. An instance of a problem is a particu- 38

lar case of the problem, for example, a particular array of numbers to be sorted. The 39

traditional way of defining the computational complexity of problems is only of limited 40

use for the study of decision-making for various reasons. Firstly, the approach measures 41

the complexity of problems by studying how efficiently problems can be solved as they 42

increase in size. This is done by considering how computational resource requirements 43

scale, in the worst case, given the input size of the problem. Using the example of array 44

sorting, problem complexity is concerned with the growth of computational resource 45

requirements (e.g., number of computational steps, memory), in the worst case, as a 46

function of the size of the initial array. Secondly, it ignores the fact that instances of 47

a problem with a fixed input size can vary vastly in terms of computational resource 48

requirements. For example, sorting an array that is already in the desired order will 49

tend to take less time than sorting an array that isn’t. 50

We propose that instance complexity theory (IC), a related framework, is more 51

useful for characterising difficulty of decisions. The aim of instance complexity is the 52

characterisation of the computational complexity of individual instances of a problem, 53

based on an instance’s properties. For example, in the case of array sorting, it would be 54

based on properties of the input array. IC theory achieves this aim without reference 55

to a particular algorithm or model of computation [23–25]. Thus, it is considered to 56

characterise the inherent computational complexity of instances. Moreover, IC has been 57

shown to be applicable to a wide range of problems including the hamiltonian circuit 58

problem [23], the graph colouring problem [23], the travelling salesman problem [26], 59

the knapsack decision problem [27], and the K-SAT problems (boolean satisfiability 60

problems) [23,24,28]. These results suggest that the theory is general. 61

Here, we use IC to characterise the computational complexity of instances of the 0-1 62

knapsack decision problem. The problem involves selecting a subset from n items with 63
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which to fill a knapsack (rucksack) with a specified weight capacity c and a target profit 64

p. Each item has a weight w and a value v. The aim is to decide if there is a subset A of 65

the items for which (1) the sum of weights (
∑

i∈A wi) is lower or equal to the capacity c 66

and (2) the sum of values (
∑

i∈A vi) yields a target profit p (see S1 Appendix). 67

The knapsack problem is ubiquitous in everyday life. It is present in problems 68

involving choice of stimuli to attend to, budgeting and time management, portfolio 69

optimisation, intellectual discovery as well as in industrial applications such as the cargo 70

business [29–31]. The problem can also be used to model the symptoms of certain mental 71

disorders such as attention-deficit/hyperactivity disorder [31]. Additionally, the knapsack 72

problem has been widely studied. Not only does there exist a wide range of algorithms 73

to solve the knapsack problem and its extensions. The computational complexity of the 74

problem has been investigated extensively [27,29]. 75

To apply IC to the knapsack problem, we exploit an important mathematical and 76

statistical property of the problem. When sampling a random instance, the probability 77

that the correct answer to the instance is ‘yes’ (henceforth solvable) can be calculated 78

based on a small set of characteristics of the instance itself [27]. This solvability probability 79

exhibits a phase transition, that is, an abrupt shift between 0 and 1 within a narrow range 80

of instance parameters [27]. This boundary separates instances of the problem into two 81

regions: an under-constrained region where the constraints are lenient, and thus many 82

solutions are likely to exist, and an over-constrained region where the constraints are 83

stringent, and thus the existence of a solution is unlikely. Instances in the proximity of 84

this boundary have substantially higher computational complexity than instances further 85

away from it (Fig 1a). This means that there is a mapping from instance characteristics 86

to computational complexity of the instance. We use this mapping as a basis to define 87

IC for the knapsack problem. 88

In the present study, we tested whether IC thus defined predicts both effort exerted 89

and decision quality in an instance. To this end, we conducted an experiment in which 90

twenty participants each completed two variants of the 0-1 knapsack problem, the 91

decision and the optimisation variant. The optimisation variant differs from the former 92

in that the aim is to maximise the value of the items in the knapsack given a capacity 93

constraint (see S1 Appendix). The two tasks are representatives, respectively, of the two 94

main classes of computational problems, decision problems and optimisation problems. 95
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Fig 1. Instance Complexity and performance in the Knapsack Decision
Task. (a) Computer performance and the phase transition. Probability of an
instance being solvable as a function of the natural logarithm of the normalised profit to
normalised capacity ratio (left axis), and compute time proxy (number of propagations
using the Gecode solver) to solve an instance (right axis). The values correspond to the
knapsack decision problem with 6 items. (b) Instance sampling for the
behavioural experiment. Each point is an instance sampled as a function of the
number of propagations and the natural logarithm of the normalised profit to
normalised capacity ratio. Equal number of instances were sampled from each of the
four regions: (i) overconstrained region, (ii) underconstrained region, and high IC region
with a compute time proxy (iii) higher than the median of those instances within the
high IC region and (iv) lower than the median of those instances within the high IC
region. (c) Human performance by region in the Knapsack Decision Task.
Mean computational performance and standard errors. Note: ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01; NS: not significant.

Computer Image by Marcin Wichary (https://commons.wikimedia.org/wiki/File:Tatung-einstein-computer.png),
‘Tatung-einstein-computer’, Creative Commons Attribution 2.0 Generic license
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We predicted that performance would be lower in those instances with high IC in both 96

variants. Moreover, we anticipated effort exerted to be positively correlated with IC. 97

Results 98

Knapsack Decision Task 99

Task structure In this task, participants (n = 20) were asked to solve a number of 100

instances of the (0-1) knapsack decision problem. In each trial, they were shown a set 101

of items with different values and weights as well as a capacity constraint and a target 102

profit. Participants had to decide whether there exists a subset of those items for which 103

(1) the sum of weights is lower or equal to the capacity constraint and (2) the sum of 104

values yields at least the target profit (Fig 2a; see Methods). 105

Fig 2. Knapsack Tasks. (a) Knapsack Decision Task. Initially, participants saw
a set of items of different values and weights. The green circle at the centre of the
screen indicated the time remaining in this stage of the trial. This stage lasted 3
seconds. Then, both capacity constraint and target profit were shown at the centre of
the screen. Participants had to decide whether there exists a subset of the items for
which (1) the sum of weights is lower or equal to the capacity constraint and (2) the
sum of values yields at least the target profit. This stage lasted 22 seconds. Finally,
participants had 2 seconds to make either a ‘YES’ or ‘NO’ response using the keyboard.
A fixation cross was shown during the inter-trial interval (5 seconds). (b) Knapsack
Optimisation Task. Participants saw a set of items of different values and weights
together with a capacity constraint shown at the centre of the screen. The green circle
at the centre of the screen indicated the time remaining in this stage of the trial.
Participants had to find the subset of items with the highest total value subject to the
capacity constraint. This stage lasted 60 seconds. Participants selected items by clicking
on them and had the option of submitting their solution before the time limit was
reached. After the time limit was reached or they submitted their solution a fixation
cross was shown for 10 seconds before the next trial started.

Instances It has been shown that computational complexity of instances in the 0-1 106

knapsack decision problem can be characterised in terms of a set of instance properties [27]. 107
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These properties characterise the probability that an instance is solvable, that is, that 108

there exists a subset of items with total weight below the capacity constraint and total 109

value above the target profit. The solvability probability exhibits a phase transition [27], 110

which can be characterised in terms of the ratio of the normalised capacity constraint 111

(capacity constraint normalised by sum of all items weights) and the normalised target 112

profit (target profit normalised by sum of all item values). IC is then defined to be higher 113

the closer the instance is to the phase transition (see S1 Appendix for more information). 114

We made use of this property to select instances with high and low IC (see Methods and 115

S3 Appendix for more information). All instances in the experiment had 6 items. 116

Summary statistics We excluded a total of 13 trials (from 8 participants) in which 117

no response was made. Mean computational performance, measured by the percentage 118

of trials in which a correct response was made, was 83.1% (min = 0.56, max = 0.9, 119

SD = 0.08). On average, participants chose the ‘YES’ option in 48.1% of trials 120

(min = 0.32, max = 0.60, SD = 0.06). Performance did not vary during the course of 121

the task (P = 0.196, main effect of trial number on performance, generalised logistic 122

mixed model (GLMM); S1 Table Model 1), suggesting that neither experience with the 123

task nor mental fatigue affected task performance. 124

The effect of instance complexity on performance In order to test whether 125

participants’ ability to solve an instance was affected by its instance complexity (IC), 126

we compared performance on instances in the phase transition (high IC) with instances 127

outside the phase transition (low IC). Performance was significantly lower on instances in 128

the phase transition (P < 0.001, main effect of phase transition proximity on performance, 129

GLMM; Fig 3a; S1 Table Model 2). This suggests that IC affected participants’ ability to 130

solve an instance. We further tested this relationship using a continuous parameterisation 131

of IC (see S4 Appendix). We found that this measure captures the negative effect of IC 132

on human computational performance (P < 0.001, main effect of continuous measure of 133

IC, GLMM; S4 Appendix). 134

Effect of solvability and tightness of constraints We hypothesised that perfor- 135

mance would be affected by solvability of an instance, that is, whether the answer to the 136

decision problem was ‘yes’ or ‘no’. In order to conclude that an instance is not solvable, 137
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Fig 3. Relation between instance complexity and computational
performance in the Knapsack Decision Task. (a) Performance on instances
of high and low complexity. Mean computational performance of instances grouped
by IC. Black lines represent the standard error of the means (SEM). (b) Relation
between performance and number of solutions in the Knapsack Decision
Task. Mean computational performance and standard error by number of solutions.
The number of solutions is defined as the number of item combinations that satisfy both
capacity and profit constraints. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; NS: not significant.

every possible subset of items needs to be explored in order to determine that none of 138

the subsets satisfies the constraints. Conversely, in case of solvable instances, finding a 139

single subset of items is sufficient to determine that the instance is solvable. Such a set 140

may be identified without exploring the full search space and, additionally, there may be 141

more than one such subset. We investigated the effect of solvability and found that the 142

IC was still significant when controlling for solvability (P < 0.001, main effect of phase 143

transition on performance, GLMM; S1 Table Model 3), but that there was no significant 144

effect of solvability on performance (P = 0.355 main effect of solvability on performance, 145

P = 0.796 interaction effect of phase transition and solvability on performance, GLMM; 146

S1 Table Model 3). 147

For solvable instances, the tightness of the constraints of an instance can be studied 148

further by analysing the number of subsets of items that satisfy the constraints (Fig 3b,1c). 149

We found that for solvable instances, the probability of reaching the correct solution 150

increases as the number of subsets that satisfy the constraints increases (P = 0.001, main 151

effect of number of subsets on computational performance; GLMM; S1 Table Model 8). 152
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This suggests that participants were more likely to find a solution when there were more 153

possible solutions available. Moreover, this probability increased faster if the instance 154

was in the phase transition (P < 0.001, interaction effect of phase transition and number 155

of subsets on computational performance; GLMM; S1 Table Model 8). Furthermore, we 156

found that the mean number of solutions of solvable instances with high IC was lower 157

than for those with a low IC (P < 0.001, unpaired t-test). 158

We also hypothesised that performance would be affected by the tightness of the 159

profit and capacity constraints. We tested whether performance on instances in the over- 160

constrained region was different to performance on instances in the under-constrained 161

region (both of which are outside the phase transition region and thus have low IC). We 162

found no significant difference in performance between the two regions (P = 0.355, main 163

effect of region, GLMM; S1 Table Model 7; Fig 1c), but confirmed a significant difference 164

in performance between the phase transition region and each of the other two regions 165

(P < 0.001, difference in performance between regions, GLMM; S1 Table Model 6). 166

Algorithm-specific complexity measures and performance So far, we have used 167

instance complexity measures that are independent of any particular solution algorithm 168

or strategy. That is, we have characterised instance complexity purely in terms of a small 169

set of instance properties. We now investigate whether participants’ performance was 170

related to the computational resource requirements of two generic solution algorithms. 171

In particular, we tested whether human performance was related to the number of 172

computational operations these algorithms needed to perform in order to solve an 173

instance. 174

To perform this test, we considered two widely-used, generic solution algorithms, 175

Gecode [32] and Minisat+ [33, 34]. Gecode is a constraint-based solver that uses a 176

constraint propagation technique with different search methods, such as branch-and- 177

bound. Minisat+, on the other hand, transforms the problem into a sequence of 178

satisfiability problems that are then solved using constraint propagation and backtracking. 179

For each of these solvers, we chose an output variable that indicates the difficulty for the 180

algorithm to find a solution and whose value is highly correlated with computational 181

time. For Minisat+ we used the number of decisions and for Gecode we used the number 182

of propagations. Both metrics measure the search effort the respective solver had to make 183
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to find the solution, which is related to the number of computational steps performed 184

and thus to computational time (see S2 Appendix). We did not use computational time 185

directly because for small size instances, like the ones used in this study, computational 186

time is highly confounded by time spent on reading in the instance, which is not the 187

case for the other variables we considered. 188

We found that performance in the instances was negatively related to the number 189

of propagations the Gecode algorithm used (P < 0.001, main effect of number of 190

propagations, GLMM; S1 Table Model 4). The relation between performance and the 191

Minisat+ decisions measure was not significant (P = 0.395, main effect of number of 192

decisions, GLMM; S1 Table Model 5). This finding might provide insights into which 193

approach participants used to solve the instances (see Discussion). 194

Knapsack Optimisation Task 195

Task structure After solving the Knapsack Decision Task, participants were asked 196

to solve a number of instances of the (0-1) knapsack optimisation problem. In each 197

trial, they were shown a set of items with different weights and values as well as a 198

capacity constraint. Participants had to find the subset of items that maximises total 199

value subject to the capacity constraint. This means that while in the knapsack decision 200

problem, participants only needed to determine whether a solution exists, in the knapsack 201

optimisation problem, they also needed to determine the nature of the solutions (items 202

in the optimal knapsack; Fig 2b). 203

Instances To generate instances for the task, a sampling process similar to the one 204

for the Knapsack Decision Task was used (see the Methods section and S3 Appendix for 205

more information). The IC of the optimisation instances was defined according to the 206

IC of the corresponding decision problem at the solution (see S1 Appendix). 207

Summary statistics We excluded 2 trials (from 2 participant) because solutions were 208

submitted after less than 1 second into the task. In the analysis of submission times, 3 209

participants were excluded because they never submitted a solution before the time-out, 210

suggesting that they did not understand the submission instructions. 211

We first analysed participants’ ability to find the optimal solution of an instance. 212
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We define computational performance as a dichotomous variable that is equal to 1 if the 213

participant obtained a value equal to the maximum value obtainable in the instance, 214

and 0 otherwise. Mean computational performance was 83.2% (min = 0.67, max = 0.94, 215

SD = 0.08). Participants spent 43.5 seconds on average on an instance (min = 27.4, 216

max = 60.0, SD = 8.9). Participants were allowed to select any set of items, irrespective 217

of the capacity constraint, which implied that they had to ensure that their candidate 218

solution met the capacity constraint. The capacity constraint was only violated in 3% of 219

instances. Performance did not change throughout the task (P = 0.683, main effect of 220

trial number on performance, GLMM; S2 Table Model 1), nor did the time spent per 221

instance (P = 0.483, main effect of trial number on time, linear mixed model (LMM); 222

S3 Table Model 1), suggesting that neither experience nor mental fatigue affected task 223

performance. 224

The relation between instance complexity and performance We hypothesised 225

that computational performance in instances in the phase transition would be lower 226

than in instances outside the phase transition. We found that mean computational 227

performance was lower in those instances whose solutions have a corresponding decision 228

problem in the phase transition, relative to those instances whose solutions have a 229

corresponding decision problem outside the phase transition(P < 0.001, main effect of 230

phase transition proximity, GLMM; Fig 4a; S2 Table Model 2). 231

So far, we have defined computational performance as a dichotomous variable. We 232

now look at a finer-grained measure. To this end, we define item performance as the 233

minimum number of item replacements that are necessary to change a candidate solution 234

to the optimal solution. This includes both the removal of items that are not in the 235

optimal solution and the addition of items that are in the optimal solution (but not 236

part of the candidate solution). The higher the value of this measure, the further away 237

the candidate solution is from the optimum. We found that item performance thus 238

defined was lower, on average, in instances with high IC relative to instances with low 239

IC (P < 0.001, main effect of phase transition, LMM; S4 Table Model 2). 240

Another way of defining performance is in terms of value obtained in an instance. 241

We define economic performance as the ratio of the total value of items in the submitted 242

solution to the total value of items in the optimal solution. We found that economic 243
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Fig 4. Relation between computational complexity and performance in the
Knapsack Optimisation Task. (a) Relation between instance complexity
and computational performance. Mean computational performance and standard
error of the means (SEM) in the knapsack optimisation task according to IC of the
corresponding knapsack decision instance. (b) Relation between instance
complexity and effort exerted on an instance. Mean time spent (and SEM) in
the Knapsack Optimisation Task according to IC of the corresponding knapsack
decision instance. (c) Sahni-k Complexity and Performance. Mean
computational performance and SEM. (d) Sahni-k Complexity and Effort.
Average time spent and SEM. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; NS: not significant.

performance was lower in instances with high IC relative to instances with low IC 244

(P < 0.001, main effect of phase transition, LMM; S4 Table Model 1). 245

Relation of performance in Knapsack Decision Task and Knapsack Optimi- 246

sation Tasks The Knapsack Decision Task and the Knapsack Optimisation Task are 247

based on two fundamentally different types of computational problems. The former is a 248
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decision problem with a yes/no answer and a member of the problem complexity class 249

NP-complete. The latter is an optimisation or search problem with the goal to find the 250

maximal value of the value obtainable under the capacity constraint. It is a member of 251

the complexity class NP-hard. The knapsack optimisation problem can be considered 252

as a problem in which the decision-maker has to solve a sequence of knapsack decision 253

problems, starting with the empty set and continuing to the point where there does not 254

exist another admissible subset of items with a higher total value than the current one. 255

We therefore hypothesised that participants’ performance in the two tasks would 256

be related and that participants who performed better in the Knapsack Decision Task 257

would also perform better in the Knapsack Optimisation Task. We found a positive and 258

significant correlation between computational performance in the two tasks (Pearson 259

Correlation = 0.49, P = 0.027, d.f. = 18; Fig 5). This result is even stronger if we exclude 260

one participant with performance in the Knapsack Decision Task significantly below the 261

performance of any other participant (Pearson Correlation = 0.67, P = 0.002, d.f. = 262

17). These findings suggests that the two tasks draw on similar cognitive capacities. 263

Fig 5. Relation of performance in the Knapsack Optimisation and
Knapsack Decision Tasks. The overall performance of the decision and optimisation
tasks by participant, defined as the mean computational performance.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/405449doi: bioRxiv preprint 

https://doi.org/10.1101/405449
http://creativecommons.org/licenses/by/4.0/


The relation between instance complexity and effort The Knapsack Optimisa- 264

tion Task also allowed us to investigate effort exerted on an instance. While we could 265

not measure effort directly, we considered the time spent on each instance as a proxy. As 266

we did not incorporate any direct opportunity costs to time in our experimental setting, 267

clock time does not capture this aspect of effort. However, clock time increases in the 268

number of computations performed, as well as the time required for each computation. 269

This justifies using time spent on each instance as a measure of effort. Participants 270

spent more time in instances with high instance complexity relative to those outside of 271

the phase transition (P < 0.001, main effect of phase transition proximity, LMM; Fig 4b; 272

S3 Table Model 2). This effect was also present when controlling for computational 273

performance (P = 0.037, main effect of phase transition proximity, LMM; S3 Table 274

Model 6). 275

Next, we analysed the relation between effort exerted in an instance and performance 276

in the instance. We found a negative relation between effort and the probability of finding 277

the solution (P < 0.001, main effect of time, GLMM; S2 Table Model 7). However, 278

when we account for instance complexity, the effect of effort on performance is no longer 279

significant (P = 0.905, main effect of time; P = 0.352, interaction effect of time and 280

phase transition, GLMM; S2 Table Model 3). Taken together with previous results, it 281

appears that the relation between effort and computational performance is moderated by 282

instance complexity. The fact that the probability of finding the optimal solution is lower 283

when participants spend more effort may have been caused by participants spending 284

more effort on instances with a high IC. This, however, suggests that participants are 285

somehow able to adjust their level of effort in response to instance complexity, which we 286

will return to in the Discussion. 287

In order to further examine the relationship between optimisation instances, effort 288

and IC, we examined the amount of time people spent after each click at each selection 289

of items before doing the next click. After each click participants were faced with 290

the question: “Is there another set of items with a higher profit that still satisfies the 291

weight capacity constraint?” We found that participants spent more time at those stages 292

in which there were fewer options that yielded a more valuable solution, whilst still 293

satisfying the capacity constraint (P < 0.001, main effect of the number of more valuable 294

solutions, LMM; S5 Table). 295
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Relation between algorithm-specific complexity measures, effort and perfor- 296

mance We next examined a set of alternative complexity measures based on the 297

generic solution algorithms Gecode and Minisat+. We found qualitatively similar results 298

to those of the knapsack decision problem, with higher instance difficulty, according to 299

Gecode propagations associated with lower average performance (P < 0.001, main effect 300

of number of propagations, GLMM; S2 Table Model 4). For the Minisat+ number of 301

decisions this effect was not significant (P = 0.157, main effect of number of decisions, 302

GLMM; S2 Table Model 5). 303

We also examined whether these complexity measures were related to the time spent 304

on each of the instances. We found that, in line with previous results, instances with 305

higher Gecode propagations were associated with higher levels of effort (P < 0.001, main 306

effect of number of propagations, LMM; S3 Table Model 3). We found a similar relation 307

for the Minisat+ decision measure (P = 0.001, main effect of number of decisions, LMM; 308

S3 Table Model 4). 309

We also analysed the relation between computational performance and Sahni-k, 310

another measure of instance complexity. Sahni-k is proportional to both the number of 311

computations and the amount of memory required to solve an instance of the Knapsack 312

Optimisation Task. This metric has previously been shown to be associated with 313

performance in the Knapsack Optimisation Task [15,30]. We found a negative relation 314

between Sahni-k and computational performance (P < 0.001, main effect of Sahni-k, 315

GLMM; Fig 4c; S2 Table Model 6) and a positive relation between Sahni-k and effort 316

(P = 0.001, main effect of Sahni-k, LMM; Fig 4d; S3 Table Model 5), confirming the 317

findings of a previous study [15]. However, when controlling for IC, the effect of Sahni-k 318

on effort is no longer significant (P = 0.580, main effect of Sahni-k, LMM; S3 Table 319

Model 7), in line with results reported above. 320

Relation between performance in knapsack tasks and cognitive 321

function 322

Finally, we investigated the relation between performance in two knapsack tasks and 323

various aspects of cognitive function. In particular, we used tests aimed at assessing 324

mental arithmetic, working memory, episodic memory, strategy use as well as processing 325
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and psychomotor speed. Correlations between performance in these tasks and the 326

knapsack tasks were all non-significant (see Methods and S6 Table for details). 327

Discussion 328

Current models of decision-making more often than not ignore the level of difficulty 329

of problems or treat it only informally [1–3]. We propose a generalisable framework 330

to quantify difficulty of a decision task based on the decision’s inherent complexity. 331

The framework is based on instance complexity (IC) theory, a branch of computational 332

complexity theory, that relates properties of instances of a computational problem to 333

computational resource requirements. We tested the effect of IC on decision quality 334

in two variants of a canonical task, the decision and optimisation variants of the 0-1 335

knapsack problem. We also examined effort exerted in the optimisation variant of the 336

0-1 knapsack problem. We found that IC negatively affects decision quality in both 337

tasks. Moreover, we found that more effort was exerted on instances with higher IC. 338

The aim of IC theory is to characterise the relation between the number of computa- 339

tional resources (time) required by an algorithm to solve an instance, and properties of 340

the instance. It has been shown for several decision problems (most of them NP-complete) 341

that the probability of an instance having a particular solution (yes/no) can be expressed 342

in terms of an order parameter that is based on a small number of instance properties. 343

Moreover, this probability exhibits a phase transition, that is, there exists a narrow range 344

of values of the order parameter within which the probability of a yes answer changes 345

from close to 0 to close to 1 [23–27,35]. It has been conjectured that solvability of all 346

NP-complete problems exhibits such a phase transition in terms of an order parameter 347

and that the hard instances, in terms of compute time, of those problems lie in the 348

proximity of the phase transition [23]. It was recently shown that a similar link between 349

hardness of instances and a phase transition in solvability exists for the 0-1 knapsack 350

problem [27]. We exploited this link in the present study. 351

What makes decisions hard? In the context of decision tasks, it is not entirely 352

understood what makes particular instances hard to solve and why hardness peaks 353

around the phase transition of solvability. One suggestion has been that hardness, 354
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that is, compute time, is mainly a function of the tightness of the constraints of an 355

instance [23,24]. The 0-1 knapsack problem has two constraints, a profit and a weight 356

constraint, that operate in opposite directions. An increase of the weight constraint 357

increases the number of solutions (more subsets of items meet the constraint), ceteris 358

paribus, whereas an increase in the profit constraint decreases the number of solutions, 359

ceteris paribus. For instances with low IC, constraints are either loose or tight. In 360

case the constraints are loose, instances are solvable and many subsets of items satisfy 361

the constraints, making it easy to find one possible solution. If, on the other hand, 362

constraints are tight, there generally does not exist a subset of items that satisfies the 363

constraints, making it easy to conclude that there is no possible solution. Instances 364

with high IC have constraints that are tight enough so that only a few subsets satisfy 365

both constraints, yet they are loose enough to allow, sometimes, a number of possible 366

solutions. We found that solvable instances with high IC had a lower number of solutions 367

than those with low IC. Moreover, we found that as the number of solutions increased, 368

participants’ performance in instances with high IC increased more than in those with low 369

IC. These findings suggest that the number of solutions is a key determinant of instance 370

difficulty. Future research should examine more closely the mathematical structure of 371

IC by analysing its relation with the number of solutions. 372

Complexity and behaviour Our work provides a step towards understanding the 373

effects of computational complexity on behaviour by providing a measure of decision 374

difficulty. We have shown that IC affects behaviour through task performance. Yet, it 375

could also have an impact on behaviour in other ways. For instance, attitudes towards 376

complexity could affect behaviour. Complexity avoidance could lead people to avoid 377

situations that involve solving difficult tasks, whereas complexity seeking could lead 378

to situations in which people seek tasks that require a high amount of effort to be 379

solved [36]. Another way that complexity could be related to behaviour is through 380

its effect on confidence. In the case of the Knapsack Optimisation Task it is still an 381

open question how participants chose when to submit their answer. The IC level could 382

influence the confidence on having found the solution, and in turn this confidence could 383

play a role in the decision of when to submit an answer. We leave it to future work to 384

explore the effects of attitudes towards or preferences for complexity in decision-making, 385
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as well as the relation between IC, confidence and behaviour. 386

Which algorithms did participants use? In addition to analysing IC as a measure 387

of complexity, we investigated other complexity measures that are related more explicitly 388

to the number of computational steps (time) required by an electronic computer to 389

solve an instance. We found that one of the two algorithm-specific complexity measures 390

we considered correlated with both human performance and effort exerted. This is 391

probably related to the main features of each of the algorithms. It is unlikely that 392

humans reformulate the problem as a boolean satisfiability problem in order to reach 393

a solution (MiniSat+). It is more likely that they compute directly on the problem 394

itself as a directed search based on the constraints (Gecode). These results suggest that 395

the computational mechanisms that humans use might be similar in nature to those 396

of particular computer algorithms, a notion that should be explored in more detail by 397

future research. 398

The relation between decision and optimisation tasks Although the knapsack 399

optimisation and decision problems are two fundamentally different types of computa- 400

tional problems, they are related to each other at a theoretical level. Specifically, the 401

optimisation problem can be solved by the iterative solution of a series of corresponding 402

decision problems. Based on this link, we defined IC for the optimisation problem and 403

found a lower performance on instances with higher IC, thus mirroring the decision 404

problem results. This is further evidence in support of our theoretical framework. We 405

also found that participants who performed better in the decision task tended to perform 406

better in the optimisation task. The latter finding suggests that individual constraints 407

that affected performance were active in both tasks. 408

The relation between IC and effort exerted One interesting finding is that effort 409

exerted on an instance was adjusted according to IC. This result is perplexing. In order 410

to know which resources a computer algorithm needs to solve an instance, it is necessary 411

for the algorithm to find the solution. That is, a computer algorithm can only compute 412

resource requirements of an instance ex post. In contrast, we found that participants 413

adjusted their effort to IC even without being able to find the solution at all. This 414

result is consistent with the findings of a previous study that used a different measure of 415
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instance complexity [15]. 416

It is an open question which mechanisms participants used to adjust effort. It has 417

recently been suggested that the brain allocates resources to tasks according to the 418

expected benefits and expected costs, in particular cognitive resource requirements, 419

related to the task [16,37–39]. These accounts also suggest that decision-makers learn 420

to estimate costs and benefits of a task based on a set of task features [17–19]. These 421

accounts, however, do not specify what these features might be. In fact, selection of these 422

features might be in itself an NP-hard problem. It is conceivable that decision-makers 423

use IC to estimate the expected costs of performing a task. This would require that 424

decision-makers can somehow detect IC [1]. Future research should investigate possible 425

mechanisms of detecting IC. 426

Performance in the knapsack tasks and basic cognitive abilities Individual 427

differences in performance in the knapsack tasks were independent of individual dif- 428

ferences in the set of core cognitive abilities including attention, working memory and 429

mental arithmetic. One possible explanation for the lack of correlation is that these 430

cognitive abilities play only a minor role in solving computationally hard problems 431

and that those problems instead require another cognitive ability that is not captured 432

by any of the tests we administered. Another possible explanation is that we did not 433

measure the active cognitive constraint that drove differences in individual performance. 434

One candidate for such a constraint is memory [40, 41]. It is, of course, also possible 435

that our study did not have sufficient statistical power to detect individual differences. 436

Further research is needed in order to incorporate the full spectrum of cognitive resource 437

limitations and link them to performance and effort in decision tasks [1]. 438

Properties of real-world instances Our results are based on a particular sampling 439

distribution. Specifically we used a uniform distribution to sample the knapsack in- 440

stances. It is still an open question whether this method is generalisable to other sample 441

distributions and, specially, to those distributions that are important ecologically, that is, 442

that are encountered in everyday life. Characterising the latter distributions of instances 443

is an open research question in computer science [42]. Further research would be required 444

to characterise the probability distribution of knapsack instances found outside of the 445
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laboratory setting. 446

Furthermore, in our study, the task involved finding the optimal solution. However, 447

finding the exact solution might not always be required in the real-world. In many 448

cases finding an approximate solution might suffice. However, for many NP-complete 449

and NP-hard problems, approximating the solution is as hard as finding the optimal 450

solution [20,43]. It is still an open theoretical question whether IC can be extended to 451

approximation problems. Future research should investigate whether the results found in 452

this study, for both humans and computers, can be extended to approximation instances. 453

The Church-Turing thesis A core notion in the theory of computation is the Church- 454

Turing thesis. The thesis states that the universal Turing machine is a general model 455

of computation, which implies that any input/output operation that can be performed 456

by a human computer, can also be performed by the universal Turing machine [44–46]. 457

Our findings support a related notion: that an algorithm that requires a larger number 458

of computational resources (time) on a universal Turing machine (here, an electronic 459

computer) also requires relatively more computational resources in the human brain. 460

Thus, our findings strongly suggest that computational tasks have inherent complexity, 461

that is, the amount of computational resources required to solve them is independent of 462

the particular computational model used. The framework we present in this paper is a 463

candidate for the quantification of inherent complexity of decision tasks. 464

Implications for decision theory and public policy Many theories of decision- 465

making (including meta-decision-making) assume that people optimise [4–7, 9–11, 16, 466

18,38,47]. Our results are consistent with previous results that show that this is often 467

not the case [7,48]. We show that performance is dependent on task complexity, thus 468

corroborating previous studies that highlight the relevance of incorporating cognitive 469

resource requirements and limitations into decision theory [1, 15, 49]. In addition, 470

our approach allows for a generalisable and formal quantification of those resource 471

requirements in decision and optimisation tasks. 472

In a broader context, the present study might help to identify the limits of human 473

cognition and decision-making. This is crucial for the design of policies that wish to 474

improve the quality of decisions such as financial investments, selection of insurance 475
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contracts, among many others. In those cases where the task is too demanding, mech- 476

anisms could be designed to help people improve the quality of their decisions. This 477

could be done, for instance, through software applications that take advantage of the 478

computational power of electronic computers. Finally, our results advocate for closer 479

collaboration between decision scientists and computer scientists. Not only can decision 480

sciences be informed by computation theory, as done in this study, but research on 481

humans could motivate the development of new theories and algorithms. 482

Methods 483

Ethics statement 484

The experimental protocol was approved by the University of Melbourne Human Research 485

Ethics Committee (Ethics ID 1749616). Written informed consent was obtained from all 486

participants prior to commencement of the experimental sessions. Experiments were 487

performed in accordance with all relevant guidelines and regulations. 488

Participants 489

Twenty human volunteers recruited from the general population took part in the study 490

(14 female, 6 male; age range = 18-31 years, mean age = 22.0 years). Inclusion criteria 491

were based on age (minimum = 18 years, maximum = 40 years). 492

Knapsack Decision Task 493

Task structure In this task, participants were asked to solve a number of instances 494

of the (0-1) knapsack decision problem. In each trial, they were shown a set of items 495

with different values and weights as well as a capacity constraint and a target profit. 496

Participants had to decide whether there exists a subset of those items for which (1) the 497

sum of weights is lower or equal to the capacity constraint and (2) the sum of values 498

yields at least the target profit. 499

Each trial had four stages. In the first stage (3 s), only the items were presented. 500

Item values, in dollars, were displayed using dollar bills and weights, in grams, were 501

shown inside a black weight symbol. The larger the value of an item, the larger the dollar 502
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bill was in size. Similarly, the larger the weight of an item, the larger its weight symbol 503

was in size. At the centre of the screen, a green circle indicated the time remaining in 504

this stage. In the second stage (22 s), target profit and capacity constraint were added 505

to the screen inside the green timer circle. In the third stage (2 s), participants saw a 506

‘YES’ or ‘NO’ buttons on the screen, in addition to the timer circle, and made a response 507

using the keyboard (Fig 2a). A fixation cross was then shown (5 s) before the start of 508

the next trial. 509

Each participant completed 72 trials (3 blocks of 24 trials with a rest period of 60 510

s between blocks). Each trial presented a different instance of the knapsack decision 511

problem. The order of instances was randomised for each participant. 512

Instances All instances in the experiment had 6 items. Instances varied in their 513

computational complexity. It has been shown that computational complexity of instances 514

in the 0-1 knapsack decision problem can be characterised in terms of a set of instance 515

properties [27] (Fig 1a). In particular, IC can be characterised in terms of the ratio of 516

the normalised capacity constraint (capacity constraint normalised by sum of all items 517

weights) and the normalised target profit (target profit normalised by sum of all item 518

values) (see S1 Appendix for more information). We made use of this property to select 519

instances for the task (see S3 Appendix for more information). 520

We selected the normalised capacity bin of [0.40−0.45] and chose the normalised profit 521

bins that corresponded to the under-constrained (0.35-0.4), phase transition (0.6-0.65) 522

and over-constrained (0.85-0.9) regions. We then randomly selected 18 instances from 523

the under-constrained bin and 18 from the over-constrained bin. Finally, we sampled 18 524

solvable instances and 18 non-solvable instances from the phase transition bin (0.4-0.45). 525

Throughout we ensured that no weight/value combinations were sampled twice. In order 526

to also ensure enough variability between instances in the phase transition we added 527

an additional constraint in the sampling from each bin. We forced half of the instances 528

selected in each bin in the phase transition to be easier than the median according to an 529

algorithm specific ex-post complexity measure (Gecode propagations parameter) and the 530

other half to be harder than the median (Fig 1b). The order of presentation of instances 531

in the task was randomised for each participant. 532
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Knapsack Optimisation Task 533

Task structure In this task, participants were asked to solve a number of instances of 534

the (0-1) knapsack optimisation problem. In each trial, they were shown a set of items 535

with different weights and values as well as a capacity constraint. Participants had to 536

find the subset of items that maximises total value subject to the capacity constraint. 537

This means that while in the knapsack decision problem, participants only needed to 538

determine whether a solution exists, in the knapsack optimisation problem, they also 539

needed to determine the nature of the solutions (items in the optimal knapsack). 540

The task had two stages. In the first stage (60 s), the items were presented together 541

with the capacity constraint and the timing indicator. Items were presented like in the 542

Knapsack Decision Task. During this stage, participants were able to add and remove 543

items to/from the knapsack by clicking on the items. An item added to the knapsack was 544

indicated by a light around it (Fig 2b). Participants submitted their solution by pressing 545

the button ‘D’ on the keyboard before the time limit was reached. If participants did not 546

submit within the time limit, the items selected at the end of the trial were automatically 547

submitted as the solution. Participants were then shown a fixation cross (10 s) before 548

the start of the next trial. 549

Each participant completed 18 trials (2 blocks of 9 trials with a rest period of 60 s 550

between blocks). Each trial presented a different instance of the knapsack optimisation 551

problem. The order of the instances was randomised for each participant. 552

Instances To generate instances for the task, a sampling process similar to the one 553

for the Knapsack Decision Task was used (see S3 Appendix for more information). 554

We selected the same normalised capacity bin as for the Knapsack Decision Task (0.4- 555

0.45) and selected the normalised profit of the solution such that the corresponding 556

decision problem (see S1 Appendix) lied in the phase transition (0.6-0.65) or in the 557

over-constrained region (0.85-0.9). Again, we forced half of the instances selected in each 558

of the bins in the phase transition to be easier than the median, according to the Gecode 559

propagations measure, and the other half to be harder than the median. We sampled a 560

total of 18 instances, 12 in the phase transition and 6 out of the phase transition. The 561

order of presentation of instances in the task was randomised for each participant. 562
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Mental arithmetic task 563

In this task, participants were presented with 33 mental arithmetic problems [50]. The 564

first three trials were considered test trials and thus were not included in the analysis. 565

They were given 13 seconds to solve each problem. The task involved addition and 566

division of numbers, as well as questions in which they were asked to round to the nearest 567

integer the result of an addition or division operation. 568

Basic cognitive function tasks 569

In addition, we also tested participants’ performance on four aspects of cognitive 570

function that we considered relevant for the knapsack tasks, namely, working memory, 571

episodic memory, strategy use as well as processing and psychomotor speed. To do 572

so, we administered the Reaction Time (RTI), Paired Associates Learning (PAL), 573

Spatial Working Memory (SWM) and Spatial Span (SSP) tasks from the Cambridge 574

Neuropsychological Test Automated Battery (CANTAB) [51]. 575

Procedure 576

After reading the plain language statement and providing informed consent, participants 577

were instructed in each of the tasks and completed a practice session for each task. 578

Participants first solved the CANTAB RTI task, followed by the Knapsack Decision 579

Task. Then they completed the CANTAB RTI task again, followed by the Knapsack 580

Optimisation Task. Subsequently, they completed the other CANTAB tasks, in the 581

following order: PAL, SWM and SSP. Finally, they performed the mental arithmetic task 582

and completed a set of demographic and debriefing questionnaires. Each experimental 583

session lasted around two hours. 584

The Knapsack Decision Task, Knapsack Optimisation Task and mental arithmetic 585

task were programmed in Unity3D [52] and administered on a laptop. The CANTAB 586

tasks were administered on a tablet. 587

Participants received a show-up fee of AUD $10 and additional monetary compensation 588

based on performance. They earned AUD $0.7 for each correct answer in the Knapsack 589

Decision Task and AUD $1 for each correct answer in the Knapsack Optimisation Task. 590
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Statistical Analysis 591

The R programming language was used to analyse the behavioural data. Python (version 592

3.6) was used to sample instances and run the simulations. 593

All of the generalised logistic mixed models (GLMM) and linear mixed models (LMM) 594

included random effects on intercept for participants. Their p-values were calculated 595

using a two-tailed Wald test. All statistical analyses were done in R [53] and mixed 596

models were estimated using the R package lme4 [54]. 597

Data and Code Availability 598

The raw behavioural data, the data analysis code and the computational simulations are 599

all available from the Open Science Framework. 600

The Knapsack Decision Task, Knapsack Optimisation Task and mental arithmetic 601

task were programmed in Unity3D [52] and are available as well from the Open Science 602

Framework. 603

DOI:10.17605/OSF.IO/T2JV7 604
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