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Abstract

Current models of decision-making more often than not ignore the level of difficulty of
choices or treat it only informally. Yet, difficulty has been shown to affect human decision
quality. We propose instance complexity (IC), a measure of computational resource
requirements, as a generalisable framework to quantify difficulty of a choice based on a
small number of properties of the choice. The main advantage of IC compared to other
measures of difficulty is fourfold. Firstly, it is based on the theory of computation, a
rigorous mathematical framework. Secondly, our measure captures complexity that is
intrinsic to a decision task, that is, it does not depend on a particular solution strategy
or algorithm. Thirdly, it does not require knowledge of a decision-maker’s attitudes or
preferences. And lastly, it allows computation of difficulty of a decision task ex-ante,
that is, without solving the decision task. We tested the relation between IC and (i)
decision quality and (ii) effort exerted in a decision using two variants of the 0-1 knapsack
problem, a canonical and ubiquitous computational problem. We show that participants
exerted more effort on instances with higher IC but that decision quality was lower in
those instances. Together, our results suggest that IC can be used as a general framework
to measure the inherent complexity of decision tasks and to quantify computational
resource requirements of choices. The latter is particularly relevant for models of resource
allocation in the brain (meta-decision-making/cognitive control). Our results also suggest
that existing models of decision-making that are based on optimisation (rationality) as

well as models such as the Bayesian Brain Hypothesis, are computationally implausible.
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Introduction )

Most theories of decision-making ignore the difficulty of making a decision [113]. They -
assume that the decision-maker is always able to identify the best option—whether 3
it is a choice between two flavours of ice cream or a choice of investment option for
a retirement portfolio from thousands of available options. This is the case not only s
for rational choice theories of decision-making [416], but also for theories of bounded s
rationality [7H9] and theories of computational rationality [10,11]. All of those theories 7
assume, implicitly or explicitly, that an observed choice is the outcome of a (possibly s
constrained) optimisation problem. 0

Where decision difficulty has been taken into account, it has been done either 1o
informally or in a highly domain-specific way. An example of the former are approaches u
based on heuristics [12,/13]. In this line of research, it is proposed that decision-makers 1
use simple rules or procedures as ‘short cuts’ to overcome various forms of cognitive 13
limitations. These approaches do not usually demonstrate, however, if and in what ways 1
the proposed heuristics overcome various cognitive limits. 15

Other work on decision difficulty is domain-specific and cannot necessarily be gen- 1
eralised. For example, it has been shown that the ability of human participants to 1
find the optimal solution to the set cover and maximum coverage problems can be 1
predicted from a set of mathematical properties of the graph representations of the 19
problem instances [14]. Similarly, human performance in the 0-1 knapsack problem has 2
been shown to vary according to a complexity measure based on the Sahni algorithm [15]. =
It is not obvious if and how the characterisation of difficulty could be transferred to =2
other domains. 2

An important related question is how decision-makers detect the difficulty of decision 2
tasks. This is important, in particular, for the allocation of limited cognitive resources 25
during the decision-making process [1},/16]. It has been suggested that decision-makers 2
learn the features of decision tasks that make them difficult and choose their strategy 2
accordingly [17H19]. However, it is an open question whether there is a set of features 2
that makes decision tasks difficult and why. Detecting this set of features might be 2
as hard as, or indeed require, solving these problems, and exceed the computational s

resources available to people. 31
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We propose that computational complexity theory (CCT) provides a general the- =
oretical framework that lends itself to characterising difficulty of decisions. CCT isa =
branch of computing theory that studies the computational resource requirements for s
solving a task [20H22|. Traditionally, CCT has been used to characterise complexity of 3
computational problems. An example of a computational problem is sorting of an array. s
Other well-studied computational problems include the travelling salesman problem, the
subset sum problem or the satisfiability problem. An instance of a problem is a particu- s
lar case of the problem, for example, a particular array of numbers to be sorted. The 39
traditional way of defining the computational complexity of problems is only of limited
use for the study of decision-making for various reasons. Firstly, the approach measures
the complexity of problems by studying how efficiently problems can be solved as they «
increase in size. This is done by considering how computational resource requirements
scale, in the worst case, given the input size of the problem. Using the example of array
sorting, problem complexity is concerned with the growth of computational resource
requirements (e.g., number of computational steps, memory), in the worst case, as a
function of the size of the initial array. Secondly, it ignores the fact that instances of  «
a problem with a fixed input size can vary vastly in terms of computational resource s
requirements. For example, sorting an array that is already in the desired order will 4
tend to take less time than sorting an array that isn’t. 50

We propose that instance complexity theory (IC), a related framework, is more =
useful for characterising difficulty of decisions. The aim of instance complexity is the s
characterisation of the computational complexity of individual instances of a problem, s3
based on an instance’s properties. For example, in the case of array sorting, it would be s
based on properties of the input array. IC theory achieves this aim without reference ss
to a particular algorithm or model of computation [23-25]. Thus, it is considered to s
characterise the inherent computational complexity of instances. Moreover, IC has been s
shown to be applicable to a wide range of problems including the hamiltonian circuit ss
problem [23], the graph colouring problem [23], the travelling salesman problem [26], s
the knapsack decision problem [27], and the K-SAT problems (boolean satisfiability e
problems) [23[[24L|28]. These results suggest that the theory is general. 61

Here, we use IC to characterise the computational complexity of instances of the 0-1 e

knapsack decision problem. The problem involves selecting a subset from n items with e
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which to fill a knapsack (rucksack) with a specified weight capacity ¢ and a target profit
p. Each item has a weight w and a value v. The aim is to decide if there is a subset A of s
the items for which (1) the sum of weights (>, , w;) is lower or equal to the capacity ¢
and (2) the sum of values (3, 4 v;) yields a target profit p (see|S1 Appendix]). 6

The knapsack problem is ubiquitous in everyday life. It is present in problems e
involving choice of stimuli to attend to, budgeting and time management, portfolio e
optimisation, intellectual discovery as well as in industrial applications such as the cargo
business [29H31]. The problem can also be used to model the symptoms of certain mental =
disorders such as attention-deficit /hyperactivity disorder [31]. Additionally, the knapsack
problem has been widely studied. Not only does there exist a wide range of algorithms
to solve the knapsack problem and its extensions. The computational complexity of the
problem has been investigated extensively [27,[29]. 75

To apply IC to the knapsack problem, we exploit an important mathematical and
statistical property of the problem. When sampling a random instance, the probability
that the correct answer to the instance is ‘yes’ (henceforth solvable) can be calculated 7
based on a small set of characteristics of the instance itself |27]. This solvability probability
exhibits a phase transition, that is, an abrupt shift between 0 and 1 within a narrow range s
of instance parameters [27]. This boundary separates instances of the problem into two &
regions: an under-constrained region where the constraints are lenient, and thus many s
solutions are likely to exist, and an over-constrained region where the constraints are s
stringent, and thus the existence of a solution is unlikely. Instances in the proximity of &
this boundary have substantially higher computational complexity than instances further s
away from it (Fig ) This means that there is a mapping from instance characteristics s
to computational complexity of the instance. We use this mapping as a basis to define &
IC for the knapsack problem. 8

In the present study, we tested whether IC thus defined predicts both effort exerted s
and decision quality in an instance. To this end, we conducted an experiment in which  «
twenty participants each completed two variants of the 0-1 knapsack problem, the
decision and the optimisation variant. The optimisation variant differs from the former o«
in that the aim is to maximise the value of the items in the knapsack given a capacity

constraint (see|S1 Appendix)). The two tasks are representatives, respectively, of the two o

main classes of computational problems, decision problems and optimisation problems. o
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Fig 1. Instance Complexity and performance in the Knapsack Decision

Task. (a) Computer perform

ance and the phase transition. Probability of an

instance being solvable as a function of the natural logarithm of the normalised profit to
normalised capacity ratio (left axis), and compute time proxy (number of propagations

using the Gecode solver) to solve

an instance (right axis). The values correspond to the

knapsack decision problem with 6 items. (b) Instance sampling for the
behavioural experiment. Each point is an instance sampled as a function of the

number of propagations and the
normalised capacity ratio. Equal

natural logarithm of the normalised profit to
number of instances were sampled from each of the

four regions: (i) overconstrained region, (ii) underconstrained region, and high IC region
with a compute time proxy (iii) higher than the median of those instances within the
high IC region and (iv) lower than the median of those instances within the high IC
region. (c) Human performance by region in the Knapsack Decision Task.
Mean computational performance and standard errors. Note: *p<0.1; **p<0.05;

P p<0.01; NS: not significant.
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Computer Image by Marcin Wichary (https://commons.wikimedia.org/wiki/File:Tatung-einstein-computer.png),
‘Tatung-einstein-computer’, Creative Commons Attribution 2.0 Generic license
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We predicted that performance would be lower in those instances with high IC in both o

variants. Moreover, we anticipated effort exerted to be positively correlated with IC. o7
Results o
Knapsack Decision Task %

Task structure In this task, participants (n = 20) were asked to solve a number of 100
instances of the (0-1) knapsack decision problem. In each trial, they were shown a set 1
of items with different values and weights as well as a capacity constraint and a target 1
profit. Participants had to decide whether there exists a subset of those items for which 103
(1) the sum of weights is lower or equal to the capacity constraint and (2) the sum of 10

values yields at least the target profit (Fig ; see Methods). 105

Fig 2. Knapsack Tasks. (a) Knapsack Decision Task. Initially, participants saw
a set of items of different values and weights. The green circle at the centre of the
screen indicated the time remaining in this stage of the trial. This stage lasted 3
seconds. Then, both capacity constraint and target profit were shown at the centre of
the screen. Participants had to decide whether there exists a subset of the items for
which (1) the sum of weights is lower or equal to the capacity constraint and (2) the
sum of values yields at least the target profit. This stage lasted 22 seconds. Finally,
participants had 2 seconds to make either a ‘YES’ or ‘NO’ response using the keyboard.
A fixation cross was shown during the inter-trial interval (5 seconds). (b) Knapsack
Optimisation Task. Participants saw a set of items of different values and weights
together with a capacity constraint shown at the centre of the screen. The green circle
at the centre of the screen indicated the time remaining in this stage of the trial.
Participants had to find the subset of items with the highest total value subject to the
capacity constraint. This stage lasted 60 seconds. Participants selected items by clicking
on them and had the option of submitting their solution before the time limit was
reached. After the time limit was reached or they submitted their solution a fixation
cross was shown for 10 seconds before the next trial started.

(@ (b)

Ss 3s 22s 2s 10s Self-Paced
(max 60s)

Instances It has been shown that computational complexity of instances in the 0-1 106

knapsack decision problem can be characterised in terms of a set of instance properties . 107
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These properties characterise the probability that an instance is solvable, that is, that 10
there exists a subset of items with total weight below the capacity constraint and total 109
value above the target profit. The solvability probability exhibits a phase transition [27], 110
which can be characterised in terms of the ratio of the normalised capacity constraint in
(capacity constraint normalised by sum of all items weights) and the normalised target 1
profit (target profit normalised by sum of all item values). IC is then defined to be higher w3
the closer the instance is to the phase transition (see for more information). s

We made use of this property to select instances with high and low IC (see Methods and 15

S3 Appendix| for more information). All instances in the experiment had 6 items. 116

Summary statistics We excluded a total of 13 trials (from 8 participants) in which 17
no response was made. Mean computational performance, measured by the percentage s
of trials in which a correct response was made, was 83.1% (min = 0.56, max = 0.9, 1o
SD = 0.08). On average, participants chose the ‘YES’ option in 48.1% of trials 1o
(min = 0.32, max = 0.60, SD = 0.06). Performance did not vary during the course of 1
the task (P = 0.196, main effect of trial number on performance, generalised logistic 12
mixed model (GLMM); Model 1), suggesting that neither experience with the 12

task nor mental fatigue affected task performance. 124

The effect of instance complexity on performance In order to test whether 1
participants’ ability to solve an instance was affected by its instance complexity (IC), 1
we compared performance on instances in the phase transition (high IC) with instances 1
outside the phase transition (low IC). Performance was significantly lower on instances in s
the phase transition (P < 0.001, main effect of phase transition proximity on performance, 12
GLMM; Fig ; Model 2). This suggests that IC affected participants’ ability to 1
solve an instance. We further tested this relationship using a continuous parameterisation 1
of IC (see . We found that this measure captures the negative effect of IC 1

on human computational performance (P < 0.001, main effect of continuous measure of 13

1C, GLMM; [S4 Appendixl). 134

Effect of solvability and tightness of constraints We hypothesised that perfor- 13
mance would be affected by solvability of an instance, that is, whether the answer to the 13

decision problem was ‘yes’ or ‘no’. In order to conclude that an instance is not solvable, 13
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Fig 3. Relation between instance complexity and computational
performance in the Knapsack Decision Task. (a) Performance on instances
of high and low complexity. Mean computational performance of instances grouped
by IC. Black lines represent the standard error of the means (SEM). (b) Relation
between performance and number of solutions in the Knapsack Decision
Task. Mean computational performance and standard error by number of solutions.
The number of solutions is defined as the number of item combinations that satisfy both
capacity and profit constraints. Note: *p<0.1; **p<0.05; ***p<0.01; NS: not significant.
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every possible subset of items needs to be explored in order to determine that none of 13
the subsets satisfies the constraints. Conversely, in case of solvable instances, finding a 13
single subset of items is sufficient to determine that the instance is solvable. Such a set 10
may be identified without exploring the full search space and, additionally, there may be 1
more than one such subset. We investigated the effect of solvability and found that the 1
IC was still significant when controlling for solvability (P < 0.001, main effect of phase 143
transition on performance, GLMM,; Model 3), but that there was no significant 1
effect of solvability on performance (P = 0.355 main effect of solvability on performance, 1ss
P = 0.796 interaction effect of phase transition and solvability on performance, GLMM; 14
Model 3). v

For solvable instances, the tightness of the constraints of an instance can be studied 14
further by analysing the number of subsets of items that satisfy the constraints (Fig ) 149
We found that for solvable instances, the probability of reaching the correct solution s
increases as the number of subsets that satisfy the constraints increases (P = 0.001, main 1

effect of number of subsets on computational performance; GLMM; [S1 Table] Model 8). 15
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This suggests that participants were more likely to find a solution when there were more 1s3
possible solutions available. Moreover, this probability increased faster if the instance 1ss
was in the phase transition (P < 0.001, interaction effect of phase transition and number s
of subsets on computational performance; GLMM; Model 8). Furthermore, we 156
found that the mean number of solutions of solvable instances with high IC was lower s
than for those with a low IC (P < 0.001, unpaired t-test). 158

We also hypothesised that performance would be affected by the tightness of the s
profit and capacity constraints. We tested whether performance on instances in the over- 10
constrained region was different to performance on instances in the under-constrained e
region (both of which are outside the phase transition region and thus have low IC). We 1
found no significant difference in performance between the two regions (P = 0.355, main 163
effect of region, GLMM,; Model 7; Fig ), but confirmed a significant difference 164
in performance between the phase transition region and each of the other two regions 1

(P < 0.001, difference in performance between regions, GLMM; [S1 Table] Model 6). 166

Algorithm-specific complexity measures and performance So far, we have used 167
instance complexity measures that are independent of any particular solution algorithm 168
or strategy. That is, we have characterised instance complexity purely in terms of a small 160
set of instance properties. We now investigate whether participants’ performance was 1o
related to the computational resource requirements of two generic solution algorithms.
In particular, we tested whether human performance was related to the number of 1
computational operations these algorithms needed to perform in order to solve an 13
instance. 174

To perform this test, we considered two widely-used, generic solution algorithms, s
Gecode [32] and Minisat™ [33]/34]. Gecode is a constraint-based solver that uses a 17
constraint propagation technique with different search methods, such as branch-and- 7
bound. Minisat™, on the other hand, transforms the problem into a sequence of s
satisfiability problems that are then solved using constraint propagation and backtracking. 1
For each of these solvers, we chose an output variable that indicates the difficulty for the 1
algorithm to find a solution and whose value is highly correlated with computational 1a
time. For Minisat™ we used the number of decisions and for Gecode we used the number 1

of propagations. Both metrics measure the search effort the respective solver had to make 183

10
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to find the solution, which is related to the number of computational steps performed 1s
and thus to computational time (see . We did not use computational time 1ss
directly because for small size instances, like the ones used in this study, computational 1ss
time is highly confounded by time spent on reading in the instance, which is not the 1
case for the other variables we considered. 188

We found that performance in the instances was negatively related to the number s
of propagations the Gecode algorithm used (P < 0.001, main effect of number of 1
propagations, GLMM,; Model 4). The relation between performance and the ia
Minisat™ decisions measure was not significant (P = 0.395, main effect of number of 10
decisions, GLMM; Model 5). This finding might provide insights into which 1

approach participants used to solve the instances (see Discussion). 104

Knapsack Optimisation Task 105

Task structure After solving the Knapsack Decision Task, participants were asked 10
to solve a number of instances of the (0-1) knapsack optimisation problem. In each 1
trial, they were shown a set of items with different weights and values as well as a 1
capacity constraint. Participants had to find the subset of items that maximises total 19
value subject to the capacity constraint. This means that while in the knapsack decision 200
problem, participants only needed to determine whether a solution exists, in the knapsack 20
optimisation problem, they also needed to determine the nature of the solutions (items 20

in the optimal knapsack; Fig ) 203

Instances To generate instances for the task, a sampling process similar to the one 20
for the Knapsack Decision Task was used (see the Methods section and [S3 Appendix| for s
more information). The IC of the optimisation instances was defined according to the

IC of the corresponding decision problem at the solution (see [S1 Appendix]). 207

Summary statistics We excluded 2 trials (from 2 participant) because solutions were 20
submitted after less than 1 second into the task. In the analysis of submission times, 3 209
participants were excluded because they never submitted a solution before the time-out, 210
suggesting that they did not understand the submission instructions. am

We first analysed participants’ ability to find the optimal solution of an instance. 2o

11
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We define computational performance as a dichotomous variable that is equal to 1 if the 23
participant obtained a value equal to the maximum value obtainable in the instance, 2.
and 0 otherwise. Mean computational performance was 83.2% (min = 0.67, max = 0.94, 25
SD = 0.08). Participants spent 43.5 seconds on average on an instance (min = 27.4, s
max = 60.0, SD = 8.9). Participants were allowed to select any set of items, irrespective v
of the capacity constraint, which implied that they had to ensure that their candidate 2.
solution met the capacity constraint. The capacity constraint was only violated in 3% of 21
instances. Performance did not change throughout the task (P = 0.683, main effect of 20
trial number on performance, GLMM; Model 1), nor did the time spent per 2z
instance (P = 0.483, main effect of trial number on time, linear mixed model (LMM); 2
Model 1), suggesting that neither experience nor mental fatigue affected task 22

performance. 24

The relation between instance complexity and performance We hypothesised s
that computational performance in instances in the phase transition would be lower 2
than in instances outside the phase transition. We found that mean computational 2
performance was lower in those instances whose solutions have a corresponding decision 22
problem in the phase transition, relative to those instances whose solutions have a 29
corresponding decision problem outside the phase transition(P < 0.001, main effect of 23
phase transition proximity, GLMM; Fig ; Model 2). 231

So far, we have defined computational performance as a dichotomous variable. We 23
now look at a finer-grained measure. To this end, we define item performance as the 2z
minimum number of item replacements that are necessary to change a candidate solution 23
to the optimal solution. This includes both the removal of items that are not in the 23
optimal solution and the addition of items that are in the optimal solution (but not 2
part of the candidate solution). The higher the value of this measure, the further away ox
the candidate solution is from the optimum. We found that item performance thus 2
defined was lower, on average, in instances with high IC relative to instances with low 23
IC (P < 0.001, main effect of phase transition, LMM; Model 2). 240

Another way of defining performance is in terms of value obtained in an instance. 2a
We define economic performance as the ratio of the total value of items in the submitted 2o

solution to the total value of items in the optimal solution. We found that economic s

12
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Fig 4. Relation between computational complexity and performance in the
Knapsack Optimisation Task. (a) Relation between instance complexity
and computational performance. Mean computational performance and standard
error of the means (SEM) in the knapsack optimisation task according to IC of the
corresponding knapsack decision instance. (b) Relation between instance
complexity and effort exerted on an instance. Mean time spent (and SEM) in
the Knapsack Optimisation Task according to IC of the corresponding knapsack
decision instance. (¢) Sahni-k Complexity and Performance. Mean
computational performance and SEM. (d) Sahni-k Complexity and Effort.
Average time spent and SEM. Note: *p<0.1; **p<0.05; ***p<0.01; NS: not significant.
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performance was lower in instances with high IC relative to instances with low IC  2u

(P < 0.001, main effect of phase transition, LMM; [S4 Table] Model 1). 245

Relation of performance in Knapsack Decision Task and Knapsack Optimi- 2s
sation Tasks The Knapsack Decision Task and the Knapsack Optimisation Task are 2

based on two fundamentally different types of computational problems. The former is a s
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decision problem with a yes/no answer and a member of the problem complexity class 20
NP-complete. The latter is an optimisation or search problem with the goal to find the 250
maximal value of the value obtainable under the capacity constraint. It is a member of 2
the complexity class NP-hard. The knapsack optimisation problem can be considered s
as a problem in which the decision-maker has to solve a sequence of knapsack decision 253
problems, starting with the empty set and continuing to the point where there does not s
exist another admissible subset of items with a higher total value than the current one. 255

We therefore hypothesised that participants’ performance in the two tasks would  2s6
be related and that participants who performed better in the Knapsack Decision Task 2
would also perform better in the Knapsack Optimisation Task. We found a positive and 258
significant correlation between computational performance in the two tasks (Pearson s
Correlation = 0.49, P = 0.027, d.f. = 18; Figl5)). This result is even stronger if we exclude 20
one participant with performance in the Knapsack Decision Task significantly below the 2
performance of any other participant (Pearson Correlation = 0.67, P = 0.002, d.f. =

17). These findings suggests that the two tasks draw on similar cognitive capacities. 263
Fig 5. Relation of performance in the Knapsack Optimisation and

Knapsack Decision Tasks. The overall performance of the decision and optimisation
tasks by participant, defined as the mean computational performance.
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The relation between instance complexity and effort The Knapsack Optimisa- 26
tion Task also allowed us to investigate effort exerted on an instance. While we could s
not measure effort directly, we considered the time spent on each instance as a proxy. As s
we did not incorporate any direct opportunity costs to time in our experimental setting, o
clock time does not capture this aspect of effort. However, clock time increases in the s
number of computations performed, as well as the time required for each computation. 2o
This justifies using time spent on each instance as a measure of effort. Participants o
spent more time in instances with high instance complexity relative to those outside of n
the phase transition (P < 0.001, main effect of phase transition proximity, LMM; Fig ; 2
Model 2). This effect was also present when controlling for computational 2
performance (P = 0.037, main effect of phase transition proximity, LMM; 274
Model 6). 275

Next, we analysed the relation between effort exerted in an instance and performance 2
in the instance. We found a negative relation between effort and the probability of finding 2
the solution (P < 0.001, main effect of time, GLMM,; Model 7). However, o
when we account for instance complexity, the effect of effort on performance is no longer 2
significant (P = 0.905, main effect of time; P = 0.352, interaction effect of time and 2o
phase transition, GLMM; Model 3). Taken together with previous results, it 2
appears that the relation between effort and computational performance is moderated by 2
instance complexity. The fact that the probability of finding the optimal solution is lower 283
when participants spend more effort may have been caused by participants spending  2s
more effort on instances with a high IC. This, however, suggests that participants are 2ss
somehow able to adjust their level of effort in response to instance complexity, which we 285
will return to in the Discussion. 287

In order to further examine the relationship between optimisation instances, effort s
and IC, we examined the amount of time people spent after each click at each selection  2s
of items before doing the next click. After each click participants were faced with 20
the question: “Is there another set of items with a higher profit that still satisfies the 2a
weight capacity constraint?” We found that participants spent more time at those stages 20
in which there were fewer options that yielded a more valuable solution, whilst still 203

satisfying the capacity constraint (P < 0.001, main effect of the number of more valuable s

solutions, LMM; [S5 Table]). 205
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Relation between algorithm-specific complexity measures, effort and perfor- 20
mance We next examined a set of alternative complexity measures based on the 20
generic solution algorithms Gecode and Minisat®. We found qualitatively similar results 20
to those of the knapsack decision problem, with higher instance difficulty, according to 2
Gecode propagations associated with lower average performance (P < 0.001, main effect 30
of number of propagations, GLMM; Model 4). For the Minisat™ number of sn
decisions this effect was not significant (P = 0.157, main effect of number of decisions, 30
GLMM; Model 5). 303

We also examined whether these complexity measures were related to the time spent 30
on each of the instances. We found that, in line with previous results, instances with 305
higher Gecode propagations were associated with higher levels of effort (P < 0.001, main 30
effect of number of propagations, LMM,; Model 3). We found a similar relation o
for the Minisat™ decision measure (P = 0.001, main effect of number of decisions, LMM; 30
Model 4). 300

We also analysed the relation between computational performance and Sahni-k, 3w
another measure of instance complexity. Sahni-k is proportional to both the number of su
computations and the amount of memory required to solve an instance of the Knapsack s
Optimisation Task. This metric has previously been shown to be associated with s
performance in the Knapsack Optimisation Task [15,[30]. We found a negative relation 3.
between Sahni-k and computational performance (P < 0.001, main effect of Sahni-k, s
GLMM; Fig ; Model 6) and a positive relation between Sahni-k and effort s
(P = 0.001, main effect of Sahni-k, LMM; Fig [4d; Model 5), confirming the s
findings of a previous study [15]. However, when controlling for IC, the effect of Sahni-k s
on effort is no longer significant (P = 0.580, main effect of Sahni-k, LMM; 310

Model 7), in line with results reported above. 320

Relation between performance in knapsack tasks and cognitive

function 322

Finally, we investigated the relation between performance in two knapsack tasks and s
various aspects of cognitive function. In particular, we used tests aimed at assessing s

mental arithmetic, working memory, episodic memory, strategy use as well as processing s
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and psychomotor speed. Correlations between performance in these tasks and the s

knapsack tasks were all non-significant (see Methods and [S6 Table| for details). 527

Discussion -

Current models of decision-making more often than not ignore the level of difficulty 32
of problems or treat it only informally |1H3]. We propose a generalisable framework s
to quantify difficulty of a decision task based on the decision’s inherent complexity. sa
The framework is based on instance complexity (IC) theory, a branch of computational s
complexity theory, that relates properties of instances of a computational problem to 3
computational resource requirements. We tested the effect of IC on decision quality s
in two variants of a canonical task, the decision and optimisation variants of the 0-1 33
knapsack problem. We also examined effort exerted in the optimisation variant of the s
0-1 knapsack problem. We found that IC negatively affects decision quality in both 33
tasks. Moreover, we found that more effort was exerted on instances with higher IC. 338

The aim of IC theory is to characterise the relation between the number of computa- 33
tional resources (time) required by an algorithm to solve an instance, and properties of 0
the instance. It has been shown for several decision problems (most of them NP-complete) sa
that the probability of an instance having a particular solution (yes/no) can be expressed s
in terms of an order parameter that is based on a small number of instance properties. s
Moreover, this probability exhibits a phase transition, that is, there exists a narrow range 34
of values of the order parameter within which the probability of a yes answer changes s
from close to 0 to close to 1 [23H271[35]. It has been conjectured that solvability of all s
NP-complete problems exhibits such a phase transition in terms of an order parameter s
and that the hard instances, in terms of compute time, of those problems lie in the s
proximity of the phase transition [23]. It was recently shown that a similar link between s
hardness of instances and a phase transition in solvability exists for the 0-1 knapsack ss0

problem [27]. We exploited this link in the present study. 351

What makes decisions hard? In the context of decision tasks, it is not entirely ss
understood what makes particular instances hard to solve and why hardness peaks s

around the phase transition of solvability. One suggestion has been that hardness, s
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that is, compute time, is mainly a function of the tightness of the constraints of an  sss
instance [23}/24]. The 0-1 knapsack problem has two constraints, a profit and a weight 35
constraint, that operate in opposite directions. An increase of the weight constraint ss
increases the number of solutions (more subsets of items meet the constraint), ceteris s
paribus, whereas an increase in the profit constraint decreases the number of solutions, sse
ceteris paribus. For instances with low IC, constraints are either loose or tight. In 0
case the constraints are loose, instances are solvable and many subsets of items satisfy sa
the constraints, making it easy to find one possible solution. If, on the other hand, s
constraints are tight, there generally does not exist a subset of items that satisfies the s
constraints, making it easy to conclude that there is no possible solution. Instances s
with high IC have constraints that are tight enough so that only a few subsets satisfy e
both constraints, yet they are loose enough to allow, sometimes, a number of possible 366
solutions. We found that solvable instances with high IC had a lower number of solutions s
than those with low IC. Moreover, we found that as the number of solutions increased, s
participants’ performance in instances with high IC increased more than in those with low 360
IC. These findings suggest that the number of solutions is a key determinant of instance sn
difficulty. Future research should examine more closely the mathematical structure of sn

IC by analysing its relation with the number of solutions. a2

Complexity and behaviour Our work provides a step towards understanding the s
effects of computational complexity on behaviour by providing a measure of decision s
difficulty. We have shown that IC affects behaviour through task performance. Yet, it s
could also have an impact on behaviour in other ways. For instance, attitudes towards s
complexity could affect behaviour. Complexity avoidance could lead people to avoid s~
situations that involve solving difficult tasks, whereas complexity seeking could lead s
to situations in which people seek tasks that require a high amount of effort to be sn
solved [36]. Another way that complexity could be related to behaviour is through ss
its effect on confidence. In the case of the Knapsack Optimisation Task it is still an s
open question how participants chose when to submit their answer. The IC level could s
influence the confidence on having found the solution, and in turn this confidence could 383
play a role in the decision of when to submit an answer. We leave it to future work to s

explore the effects of attitudes towards or preferences for complexity in decision-making, sss
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as well as the relation between IC, confidence and behaviour. 386

Which algorithms did participants use? In addition to analysing IC as a measure s
of complexity, we investigated other complexity measures that are related more explicitly — sss
to the number of computational steps (time) required by an electronic computer to  sso
solve an instance. We found that one of the two algorithm-specific complexity measures o0
we considered correlated with both human performance and effort exerted. This is s
probably related to the main features of each of the algorithms. It is unlikely that 3o
humans reformulate the problem as a boolean satisfiability problem in order to reach s
a solution (MiniSat™). It is more likely that they compute directly on the problem s
itself as a directed search based on the constraints (Gecode). These results suggest that s
the computational mechanisms that humans use might be similar in nature to those 39
of particular computer algorithms, a notion that should be explored in more detail by 30

future research. 308

The relation between decision and optimisation tasks Although the knapsack 30
optimisation and decision problems are two fundamentally different types of computa- 00
tional problems, they are related to each other at a theoretical level. Specifically, the sn
optimisation problem can be solved by the iterative solution of a series of corresponding s
decision problems. Based on this link, we defined IC for the optimisation problem and
found a lower performance on instances with higher IC, thus mirroring the decision 404
problem results. This is further evidence in support of our theoretical framework. We 405
also found that participants who performed better in the decision task tended to perform a0
better in the optimisation task. The latter finding suggests that individual constraints o

that affected performance were active in both tasks. 408

The relation between IC and effort exerted One interesting finding is that effort 400
exerted on an instance was adjusted according to IC. This result is perplexing. In order o
to know which resources a computer algorithm needs to solve an instance, it is necessary an
for the algorithm to find the solution. That is, a computer algorithm can only compute a2
resource requirements of an instance ex post. In contrast, we found that participants as
adjusted their effort to IC even without being able to find the solution at all. This 4.

result is consistent with the findings of a previous study that used a different measure of a1
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instance complexity [15]. a6

It is an open question which mechanisms participants used to adjust effort. It has
recently been suggested that the brain allocates resources to tasks according to the s
expected benefits and expected costs, in particular cognitive resource requirements, o
related to the task [16,/37H39]. These accounts also suggest that decision-makers learn  «o
to estimate costs and benefits of a task based on a set of task features [17-19]. These =
accounts, however, do not specify what these features might be. In fact, selection of these 4
features might be in itself an NP-hard problem. It is conceivable that decision-makers 4
use IC to estimate the expected costs of performing a task. This would require that s
decision-makers can somehow detect IC [1]. Future research should investigate possible s

mechanisms of detecting IC. 426

Performance in the knapsack tasks and basic cognitive abilities Individual s
differences in performance in the knapsack tasks were independent of individual dif- s
ferences in the set of core cognitive abilities including attention, working memory and
mental arithmetic. One possible explanation for the lack of correlation is that these s
cognitive abilities play only a minor role in solving computationally hard problems
and that those problems instead require another cognitive ability that is not captured s
by any of the tests we administered. Another possible explanation is that we did not s
measure the active cognitive constraint that drove differences in individual performance. 4
One candidate for such a constraint is memory [40,41]. It is, of course, also possible 4
that our study did not have sufficient statistical power to detect individual differences. 4
Further research is needed in order to incorporate the full spectrum of cognitive resource s

limitations and link them to performance and effort in decision tasks [1]. 438

Properties of real-world instances Our results are based on a particular sampling 43
distribution. Specifically we used a uniform distribution to sample the knapsack in- o
stances. It is still an open question whether this method is generalisable to other sample 4
distributions and, specially, to those distributions that are important ecologically, that is, a4
that are encountered in everyday life. Characterising the latter distributions of instances s
is an open research question in computer science [42]. Further research would be required s

to characterise the probability distribution of knapsack instances found outside of the s
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laboratory setting. 446

Furthermore, in our study, the task involved finding the optimal solution. However, s
finding the exact solution might not always be required in the real-world. In many s
cases finding an approximate solution might suffice. However, for many NP-complete o
and NP-hard problems, approximating the solution is as hard as finding the optimal s
solution [20,43]. It is still an open theoretical question whether IC can be extended to
approximation problems. Future research should investigate whether the results found in 4

this study, for both humans and computers, can be extended to approximation instances. s

The Church-Turing thesis A core notion in the theory of computation is the Church- s
Turing thesis. The thesis states that the universal Turing machine is a general model s
of computation, which implies that any input/output operation that can be performed s
by a human computer, can also be performed by the universal Turing machine [44-46]. s
Our findings support a related notion: that an algorithm that requires a larger number s
of computational resources (time) on a universal Turing machine (here, an electronic s
computer) also requires relatively more computational resources in the human brain. o
Thus, our findings strongly suggest that computational tasks have inherent complexity,
that is, the amount of computational resources required to solve them is independent of 4
the particular computational model used. The framework we present in this paper is a s

candidate for the quantification of inherent complexity of decision tasks. a6

Implications for decision theory and public policy Many theories of decision- s
making (including meta-decision-making) assume that people optimise [4H7,9H11L|{16, 4
18l|38}/47]. Our results are consistent with previous results that show that this is often 4
not the case [7,48]. We show that performance is dependent on task complexity, thus s
corroborating previous studies that highlight the relevance of incorporating cognitive o
resource requirements and limitations into decision theory [1,15,/49]. In addition, o
our approach allows for a generalisable and formal quantification of those resource
requirements in decision and optimisation tasks. an2

In a broader context, the present study might help to identify the limits of human 4
cognition and decision-making. This is crucial for the design of policies that wish to s

improve the quality of decisions such as financial investments, selection of insurance s
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contracts, among many others. In those cases where the task is too demanding, mech- 47
anisms could be designed to help people improve the quality of their decisions. This 4
could be done, for instance, through software applications that take advantage of the s
computational power of electronic computers. Finally, our results advocate for closer o
collaboration between decision scientists and computer scientists. Not only can decision s
sciences be informed by computation theory, as done in this study, but research on

humans could motivate the development of new theories and algorithms. 482

Methods w3

Ethics statement 484

The experimental protocol was approved by the University of Melbourne Human Research 45
Ethics Committee (Ethics ID 1749616). Written informed consent was obtained from all s
participants prior to commencement of the experimental sessions. Experiments were s

performed in accordance with all relevant guidelines and regulations. as8

Participants 469

Twenty human volunteers recruited from the general population took part in the study 0
(14 female, 6 male; age range = 18-31 years, mean age = 22.0 years). Inclusion criteria

were based on age (minimum = 18 years, maximum = 40 years). 492

Knapsack Decision Task 103

Task structure In this task, participants were asked to solve a number of instances s
of the (0-1) knapsack decision problem. In each trial, they were shown a set of items 45
with different values and weights as well as a capacity constraint and a target profit. e
Participants had to decide whether there exists a subset of those items for which (1) the 4o
sum of weights is lower or equal to the capacity constraint and (2) the sum of values s
yields at least the target profit. 499

Each trial had four stages. In the first stage (3 s), only the items were presented. s
Item values, in dollars, were displayed using dollar bills and weights, in grams, were so

shown inside a black weight symbol. The larger the value of an item, the larger the dollar  so
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bill was in size. Similarly, the larger the weight of an item, the larger its weight symbol s
was in size. At the centre of the screen, a green circle indicated the time remaining in  sos
this stage. In the second stage (22 s), target profit and capacity constraint were added  sos
to the screen inside the green timer circle. In the third stage (2 s), participants saw a s
‘YES’ or ‘NO’ buttons on the screen, in addition to the timer circle, and made a response  sor
using the keyboard (Fig[2h). A fixation cross was then shown (5 s) before the start of s
the next trial. 500

Each participant completed 72 trials (3 blocks of 24 trials with a rest period of 60 s
s between blocks). Each trial presented a different instance of the knapsack decision su

problem. The order of instances was randomised for each participant. 512

Instances All instances in the experiment had 6 items. Instances varied in their s
computational complexity. It has been shown that computational complexity of instances s
in the 0-1 knapsack decision problem can be characterised in terms of a set of instance sis
properties |27] (Fig ) In particular, IC can be characterised in terms of the ratio of s
the normalised capacity constraint (capacity constraint normalised by sum of all items  siv

weights) and the normalised target profit (target profit normalised by sum of all item s

values) (see(S1 Appendix] for more information). We made use of this property to select s
instances for the task (see[S3 Appendix| for more information). 520

We selected the normalised capacity bin of [0.40—0.45] and chose the normalised profit sz
bins that corresponded to the under-constrained (0.35-0.4), phase transition (0.6-0.65) s
and over-constrained (0.85-0.9) regions. We then randomly selected 18 instances from s
the under-constrained bin and 18 from the over-constrained bin. Finally, we sampled 18 s
solvable instances and 18 non-solvable instances from the phase transition bin (0.4-0.45). s
Throughout we ensured that no weight/value combinations were sampled twice. In order s
to also ensure enough variability between instances in the phase transition we added s
an additional constraint in the sampling from each bin. We forced half of the instances s
selected in each bin in the phase transition to be easier than the median according to an s
algorithm specific ex-post complexity measure (Gecode propagations parameter) and the s
other half to be harder than the median (Fig ) The order of presentation of instances su

in the task was randomised for each participant. 532
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Knapsack Optimisation Task 53

Task structure In this task, participants were asked to solve a number of instances of s
the (0-1) knapsack optimisation problem. In each trial, they were shown a set of items s
with different weights and values as well as a capacity constraint. Participants had to s
find the subset of items that maximises total value subject to the capacity constraint. s
This means that while in the knapsack decision problem, participants only needed to s
determine whether a solution exists, in the knapsack optimisation problem, they also s
needed to determine the nature of the solutions (items in the optimal knapsack). 540

The task had two stages. In the first stage (60 s), the items were presented together sa
with the capacity constraint and the timing indicator. Items were presented like in the s«
Knapsack Decision Task. During this stage, participants were able to add and remove s
items to/from the knapsack by clicking on the items. An item added to the knapsack was s
indicated by a light around it (Fig ) Participants submitted their solution by pressing s
the button ‘D’ on the keyboard before the time limit was reached. If participants did not s
submit within the time limit, the items selected at the end of the trial were automatically  sa
submitted as the solution. Participants were then shown a fixation cross (10 s) before s
the start of the next trial. 549

Each participant completed 18 trials (2 blocks of 9 trials with a rest period of 60 s sso
between blocks). Each trial presented a different instance of the knapsack optimisation ss

problem. The order of the instances was randomised for each participant. 552

Instances To generate instances for the task, a sampling process similar to the one ss3
for the Knapsack Decision Task was used (see for more information). ss
We selected the same normalised capacity bin as for the Knapsack Decision Task (0.4-  ss
0.45) and selected the normalised profit of the solution such that the corresponding ss
decision problem (see lied in the phase transition (0.6-0.65) or in the ss
over-constrained region (0.85-0.9). Again, we forced half of the instances selected in each  sss
of the bins in the phase transition to be easier than the median, according to the Gecode sso
propagations measure, and the other half to be harder than the median. We sampled a s
total of 18 instances, 12 in the phase transition and 6 out of the phase transition. The sa

order of presentation of instances in the task was randomised for each participant. 562
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Mental arithmetic task 563

In this task, participants were presented with 33 mental arithmetic problems [50]. The se
first three trials were considered test trials and thus were not included in the analysis. ses
They were given 13 seconds to solve each problem. The task involved addition and s
division of numbers, as well as questions in which they were asked to round to the nearest ser

integer the result of an addition or division operation. 568

Basic cognitive function tasks 569

In addition, we also tested participants’ performance on four aspects of cognitive sn
function that we considered relevant for the knapsack tasks, namely, working memory, sn
episodic memory, strategy use as well as processing and psychomotor speed. To do s»
so, we administered the Reaction Time (RTI), Paired Associates Learning (PAL), s
Spatial Working Memory (SWM) and Spatial Span (SSP) tasks from the Cambridge s
Neuropsychological Test Automated Battery (CANTAB) [51]. 575

Procedure 576

After reading the plain language statement and providing informed consent, participants s
were instructed in each of the tasks and completed a practice session for each task. s
Participants first solved the CANTAB RTT task, followed by the Knapsack Decision s
Task. Then they completed the CANTAB RTT task again, followed by the Knapsack ss
Optimisation Task. Subsequently, they completed the other CANTAB tasks, in the sa
following order: PAL, SWM and SSP. Finally, they performed the mental arithmetic task s
and completed a set of demographic and debriefing questionnaires. Each experimental  ss3
session lasted around two hours. 584

The Knapsack Decision Task, Knapsack Optimisation Task and mental arithmetic  sss
task were programmed in Unity3D [52] and administered on a laptop. The CANTAB  ss
tasks were administered on a tablet. 587

Participants received a show-up fee of AUD $10 and additional monetary compensation s
based on performance. They earned AUD $0.7 for each correct answer in the Knapsack  ss

Decision Task and AUD $1 for each correct answer in the Knapsack Optimisation Task. se
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Statistical Analysis 501

The R programming language was used to analyse the behavioural data. Python (version s
3.6) was used to sample instances and run the simulations. 593

All of the generalised logistic mixed models (GLMM) and linear mixed models (LMM) 5o
included random effects on intercept for participants. Their p-values were calculated s
using a two-tailed Wald test. All statistical analyses were done in R [53] and mixed sos

models were estimated using the R package lmed [54]. 507

Data and Code Availability 58

The raw behavioural data, the data analysis code and the computational simulations are s
all available from the Open Science Framework. 600
The Knapsack Decision Task, Knapsack Optimisation Task and mental arithmetic en

task were programmed in Unity3D [52] and are available as well from the Open Science o0

Framework. 603
DOI:10.17605/0SF.10/T2JV7 60¢
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