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Abstract 12 

Knowledge about the dynamics of cytoskeletal proteins is key to understanding numerous 13 

active cellular processes. However, quantifying cytoskeletal dynamics is challenging. Current 14 

tracking algorithms often require human supervision and are less accurate than manual 15 

analysis, which on the other hand is time-consuming and prone to unconscious bias. We 16 

here developed and trained KymoButler, a deep neural network to trace dynamic processes 17 

in kymographs, which are graphical representations of spatial position over time. We 18 

demonstrate that KymoButler performs at least as well as manual tracking and outperforms 19 

currently available automated tracking packages. Additionally, we successfully applied 20 

KymoButler to a variety of different kymograph tracing problems. Finally, the network was 21 

packaged in a web-based "one-click" software for use by the wider scientific community. Our 22 

approach significantly speeds up data analysis, avoids unconscious bias, and represents a 23 

step towards the widespread adaptation of Artificial Intelligence techniques in biological data 24 

analysis. 25 
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Introduction 27 

In eukaryotic cells, biopolymers such as microtubules and actin filaments (F-actin) provide 28 

structural support and enable essential cellular functions including intracellular transport 1,2, 29 

cell motility 3, and cell division 4,5.  30 

Both microtubules and F-actin are polar filaments with a +end and a –end which differ in 31 

their chemical and dynamical properties. Microtubules, for example, exhibit a mostly stable -32 

end, while the +end undergoes rapid cycles of growth and shrinkage 6. Measurements of 33 

microtubule dynamics are usually performed by genetically expressing fluorescent proteins 34 

that preferentially bind to the filament ends, such as the +End-Binding protein 1 (EB1) 7,8. 35 

These fluorescent proteins (particles) are recorded using time-lapse fluorescence 36 

microscopy and tracked with a variety of approaches.  37 

Since actin and microtubules can only grow along their own axis, it is possible to visualise 38 

and simplify filament end tracking by using kymographs 9,10 - 2D images generated by 39 

stacking the intensity profile along a given line, e.g. the F-actin or microtubule axis, for each 40 

time point of a movie. Thus, kymographs are length-time images showing labelled filament 41 

ends as lines (Fig. 1). They are not limited to tracking cytoskeletal filaments but have been 42 

widely employed to visualise biological processes across different length scales, ranging 43 

from single molecule to cell tracking 11,12.  44 

Kymographs provide an elegant solution to the visualisation and quantification of particle 45 

dynamics. In contrast to most currently available tracking software, which faces the difficult 46 

computational problem of identifying corresponding particles in different frames, a 47 

kymograph visualises this problem, and only requires the tracing of lines in an image, a 48 

much simpler task for humans and machines alike. These lines then represent the track of a 49 

filament, or any other process, so that measuring the lines’ lengths and slopes allows to 50 

calculate the average velocities and growth periods of a cytoskeletal filament, respectively. 51 
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Conventional kymograph tracing or particle tracking algorithms produce acceptable results 52 

when applied to images with a high signal-to-noise ratio (SNR), but are exceedingly error-53 

prone at lower SNRs 10,13. While immunocytochemical stains may result in high quality 54 

images with high SNR, live-cell imaging as required for the investigation of dynamic 55 

processes usually suffers from autofluorescence, limited light exposure, and the low labelling 56 

densities required to keep the cells undamaged. The resulting lower quality images often 57 

require cumbersome manual error corrections, leading to similar time commitments as an 58 

exclusively manual analysis. Thus, the problem of automatically, and reliably, tracking 59 

dynamic processes in live cells is still largely unresolved, and any automation in kymograph 60 

tracing that preserves the accuracy of manual annotation would represent a significant 61 

improvement in the experimental workflow. 62 

In recent years, Artificial Intelligence (AI), and particularly Deep Neural Networks, have been 63 

very successfully introduced to data processing in biology 14,15. AI-based image analysis has 64 

several advantages over other approaches: it is less biased than human users, takes a 65 

shorter time to analyse immense datasets, and most importantly, comes closer to human 66 

performance than conventional tracking algorithms 14. Most AI approaches to image analysis 67 

utilise Fully Convolutional Deep Neural Networks (FCNs) that were shown to excel at object 68 

detection in images 16-18. A convolutional neural network is able to use a multitude of hidden 69 

layers to apply kernels of all shapes and sizes to images, filtering the information from the 70 

background. This ability should, in theory, enable an FCN to trace biopolymer dynamics in 71 

low SNR kymographs with unmatched precision. 72 

Here we developed a stand-alone software, ‘KymoButler’, which is based on an FCN, to 73 

automatically and reliably extract biopolymer dynamics from kymographs. Whilst we trained 74 

the FCN on microtubule +end growth dynamics using manually traced kymographs of EB1-75 

GFP in neurons, the KymoButler software performs well on kymograph data of cytoskeletal 76 

filaments in other cells, including EB3-GFP traces from mitotic HeLa cells and actin speckles 77 
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in Aplysia neuronal growth cones. Finally, the KymoButler outperforms conventional 78 

automated tracking and, quite remarkably, several cases of manual tracing. 79 

Results 80 

Generation of training data, neural net training, and validation 81 

Microtubules constitute a prevalent fraction of the filaments contained in growing neuronal 82 

axons 19. To generate kymographs capturing microtubule filament dynamics, we cultured 83 

neurons dissociated from Drosophila melanogaster larvae, expressing EB1-GFP under the 84 

endogenous eb1 promoter, and tracked the dynamics of EB1 puncta in 520 axons (Fig. 1A). 85 

In this model system, EB1-GFP puncta move in the axon either towards the cell body 86 

(retrograde) or away from the cell body (anterograde). We generated kymographs by 87 

manually tracing the axon and stacking the intensity profile along the axon for each frame 88 

into one image (Fig. 1B-C). In these kymographs, individual EB1-GFP trajectories are 89 

visually distinguishable as bright lines. We traced these trajectories by hand and colour-90 

coded them by directionality (anterograde or retrograde, Fig. 1D), creating a dataset of input 91 

images (the raw kymographs) and labels (the traces). 92 

We then used these pairs of input-label images to train an FCN to separate pixels belonging 93 

to an EB1-GFP trace from background pixels. We built a custom neural network based on 94 

Google’s “inception” architecture, the Tracer FCN 17 (Methods and Figure 1–figure 95 

supplement 1). Additionally, we designed a much faster, shallower FCN that only takes a 96 

10% of the evaluation time of the Tracer FCN while maintaining similar levels of performance 97 

in our system (Figure 1–figure supplement 2). Both FCNs take the input kymograph and 98 

decompose it into several images, called feature-maps, through numerous convolution and 99 

deconvolution steps. The final output is an image of the same size as the input image, in 100 

which each pixel value corresponds to the probability p of this pixel being part of the 101 

foreground (part of a trace). The nets were trained to recognise traces going from the left to 102 
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the right. Applying them to the original and the vertical mirror image allows to distinguish 103 

between anterograde and retrograde traces, respectively. 104 

We split our dataset into a validation set and a training set, by randomly selecting two 105 

biological repeats with a total of 33 (~6%) kymographs as validation data. The training 106 

dataset was used to iteratively change the FCN parameters to match the FCN output to the 107 

manually traced lines (see Methods). This was done by minimising loss (a function that 108 

quantifies the difference between the desired image and the FCN output) through stochastic 109 

gradient descent and changing the network’s parameters accordingly. The training of the 110 

FCN stops when changing the parameters does not lead to any further decrease of the loss 111 

(Figure 1–figure supplement 2). The validation data set was simultaneously used to 112 

quantify how the FCN performed using a previously unseen dataset.  113 

Trained FCNs assign the probability of being part of a trace to each pixel in the input image 114 

(Fig. 1F). To convert these probability maps into tracks and compare them to the manual 115 

data, we introduced a threshold value t: any pixel that had a larger value than t was 116 

classified as being part of a track. The resulting binary image was then iteratively thinned so 117 

that only traces with a width of one pixel remained, which was subsequently overlaid on the 118 

manual data for comparison (Fig. 1G). The trained Tracer FCN showed a precise overlay 119 

with the manual annotation in the validation data (see Fig. 1H-I). Often, the Tracer FCN 120 

surpassed the accuracy of manual labelling, as it was able to recognise previously 121 

unlabelled traces that were erroneously omitted.  122 

Next, we quantified the effect that the threshold value t had on the output of the network by 123 

introducing a similarity score that accounts for the differences between the output of the 124 

Tracer FCN and the manual labels (Fig. 1J). A score of 1 would indicate a perfect overlay, 125 

while a score of 0 would indicate no matches. For small t (0.01) we observed frequent 126 

artefacts, for example the linking of parallel tracks. For high t (0.5) the predicted tracks were 127 

too short. An optimum threshold was found around t=0.2 (Fig. 1J), which was therefore used 128 
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throughout this paper unless stated otherwise. The maximum similarity score we achieved 129 

was ~0.7. As the KymoButler tends to outperform and detect more traces than identified by 130 

the manual labelling (where faint or short traces are often missed), similarity was low (<1) 131 

even when automated detection was close to an optimum. These results indicated that a 132 

trained FCN is able to automate the kymograph tracing process, significantly reducing 133 

research workload and avoiding biased data analysis. 134 

The KymoButler software package 135 

We packaged the trained FCNs into two easy-to-use interfaces for quick and fully automated 136 

kymograph analysis: (1) a browser-based app with the shallow FCN (Figure 1–figure 137 

supplement 1) to quickly drag & drop individual kymographs in order to analyse them 138 

(http://kymobutler.deepmirror.ai) and (2) a simple command line python script to be used 139 

offline with the full Tracer FCN (https://github.com/MaxJakobs/KymoButler). While the Tracer 140 

FCN is preferable to precisely analyse large or more complex data sets, the web based 141 

shallow version can be used to quickly assess the feasibility of the approach with a given 142 

kymograph. In both cases, the user first has to generate a kymograph for their specific 143 

problem, with any available kymograph generator (for example the Multi Kymograph Fiji 144 

plugin (https://imagej.net), the KymographTracker package 9, or the KymographClear Fiji 145 

plugin 10). The software then applies the FCN to the image twice (once to the original and 146 

once to the vertical mirror image), thresholds the result, applies iterative thinning, generates 147 

an overlay of predicted tracks onto the kymograph, and finally extracts and classifies each 148 

connected line as a single trace (Fig. 2). In the software, the user can freely define the 149 

threshold parameter t, the probability above which a pixel is considered to be part of a trace. 150 

After the computation, which takes approximately 5-10 seconds on a conventional computer 151 

(Tracer FCN on a CPU), the KymoButler generates several files including an overlay image 152 

highlighting all the tracks found in different colours, and a CSV file per kymograph, 153 

containing all track coordinates and track directionality for post-processing. 154 
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KymoButler outperforms conventional tracking software 155 

To assess the performance of KymoButler, we compared it to manual kymograph tracing 156 

and to the plusTipTracker package, which was explicitly written for tracking EB1-GFP puncta 157 

13. In conventional tracking algorithms such as the plusTipTracker, individual features are 158 

first detected through local thresholding and then linked with each other between frames. We 159 

compared the average track velocities (start-to-end velocity) and track lengths of EB1-GFP 160 

puncta of our validation data set (33 previously ‘unseen’ kymographs, Fig. 3) for all the three 161 

approaches. There was no significant difference between the average velocities 162 

(KymoButler: 4.6 ±  1.0 𝜇𝑚/𝑚𝑖𝑛 , Manual: 4.3 ±  0.9 𝜇𝑚/𝑚𝑖𝑛 , plusTipTracker: 4.8 ±163 

1.4 𝜇𝑚/𝑚𝑖𝑛, one way ANOVA, p=0.16, Fig. 3A). However, when plotting the velocities 164 

calculated by the two algorithms against manually determined data in a 2D scatter plot, 97% 165 

(32/33) of the velocities calculated by KymoButler fell within the standard deviation of the 166 

manual data (±0.9 𝜇𝑚/𝑚𝑖𝑛), while this was only the case for 73% (24/33) of the velocities 167 

calculated by plusTipTracker (Fig. 3B). 168 

The average track lengths revealed by manual tracing, KymoButler, and plusTipTracker 169 

differed significantly (Fig. 3C, p<10-23, one way ANOVA). A post-hoc analysis showed no 170 

differences between KymoButler and manual analysis (25 ±  5 𝑠𝑒𝑐 and 23 ±  4 𝑠𝑒𝑐, p=0.16, 171 

Tukey-Kramer test). However, the plusTipTracker analysis significantly underestimated the 172 

track times by about twofold (12 ±  2 𝑠𝑒𝑐, p<10-9, Tukey-Kramer test) (Fig. 3C). Additionally, 173 

in 85% (28/33) of kymographs analysed with KymoButler, the average lengths of the traces 174 

were within the standard deviation of the manual data (± 5 𝑠𝑒𝑐), but only 1 out of the 33 175 

axons analysed with plusTipTracker fell within the same region (Fig. 3D).  176 

We noticed that for one kymograph the manual tracing resulted in much larger average EB1-177 

GFP track lengths than calculated by both KymoButler and plusTipTracker (dot 2 in Fig. 3D). 178 

Revisiting the manual data revealed that several short tracks were unlabelled incorrectly 179 

(black box in Fig. 3F). Additionally, some tracks were erroneously drawn too long, while 180 
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KymoButler broke them rightly into several shorter ones (red box in Fig. 3F), indicating that 181 

KymoButler performs better than manual labelling on most kymographs.  182 

KymoButler can be easily extended to other biological systems 183 

We finally tested the capability of the KymoButler software to analyse kymographs 184 

generated from different cell types and different cytoskeletal components. Note that we did 185 

not retrain the Tracer FCN for these applications. First, we analysed time lapse movies of 186 

EB3-GFP dynamics in interphase HeLa cells (Fig. 4A). After only changing the threshold 187 

parameter to t=0.1, KymoButler predicted puncta trajectories as well as it did for Drosophila 188 

melanogaster axon EB1-GFP. When comparing manually extracted traces with KymoButler 189 

results of raw kymograph images, we did not find any significant differences between 190 

average EB3-GFP microtubule growth velocities (Wilcoxon rank sum test, p=0.98) and 191 

average growth times (Wilcoxon rank sum test, p=0.61) (Fig. 4B). 192 

Remarkably, KymoButler was even able to quantify actin speckle velocities in Aplysia growth 193 

cones. Average retrograde actin flow velocities showed no significant difference between 194 

manual labelling and KymoButler analysis even though the network was only trained on 195 

EB1-GFP puncta in axons (Wilcoxon rank sum test, p=0.08) (Fig. 4D).  196 

Discussion 197 

In this work, we used deep learning to optimise automated tracking of dynamic, fluorescently 198 

labelled proteins in a noisy cellular environment. Fully convolutional neural networks (Tracer 199 

FCNs) are nowadays widely applied for image recognition. Since tracking is a priori a visual 200 

problem, we built an FCN for identifying traces in kymographs. We deployed our network in 201 

two independent stand-alone software packages that take generic kymographs and output 202 

all traces found in the image in a matter of seconds. Remarkably, the network not only 203 

outperforms current particle tracking software and, in some cases, even manual tracking, but 204 
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it also performs just as well on kymographs of different dynamic processes, such as 205 

fluorescence speckle microscopy. 206 

Our KymoButler software has only one adjustable parameter: t, the threshold at which a 207 

pixel is recognised as being part of a track. For our validation data, the best value for t was 208 

0.2. This threshold generally depends on the SNR of the image. If the SNR is low, the FCN 209 

is “less confident” about a given pixel, so that the threshold has to be smaller. More noisy 210 

data, such as the HeLa cell EB3-GFP data or actin speckles shown in Figure 4, produced 211 

good results with a smaller threshold value (t=0.1). Hence, the correct threshold has to be 212 

chosen based on each biological application and imaging conditions. 213 

Available automated kymograph analysis software was not suitable for tracing EB1-GFP 214 

puncta in axons, mainly because these packages were susceptible to noise. The 215 

KymographDirect package, for example, applies a global threshold to individual kymographs 216 

to extract traces, thus being very prone to variations in background intensity and requiring 217 

manual screening 10. Most other currently available packages require manual track tracing or 218 

linking, defeating the purpose of a fully automated analysis 9,20. An alternative approach 219 

quantifies kymograph velocities through 2D autocorrelation, however, the analysis is limited 220 

as trace lengths cannot be measured 21.  221 

The current gold standard for automated tracking of microtubule dynamics is the 222 

plusTipTracker package. When we compared KymoButler with manual and plusTipTracker 223 

data, it performed at least as well as manual tracking, and much better than the 224 

plusTipTracker. The mismatch between the plusTipTracker and manual traces is likely 225 

because (1) “long” tracks have a tendency of being split into several shorter ones, since the 226 

probability of linking errors increases with track length (Supplementary Movie 1), and (2) 227 

“short” tracks are sometimes incorrectly linked due to background fluctuations 228 

(Supplementary Movie 2). The first issue results in too short track lengths, and the second 229 

causes inflated velocity measurements. 230 
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We propose that manual tracking is inferior to the KymoButler as it suffers from 231 

inconsistency, bias, and is overall laborious. While the KymoButler analyses each 232 

kymograph in the same way, manual tracing performance varies from one kymograph to the 233 

next as well as between users. In our dataset, we frequently overestimated trace lengths, so 234 

that the manual annotation yielded slightly larger track lengths than the KymoButler. In 235 

future, KymoButler could be trained on a larger dataset traced by multiple researchers to 236 

remove other inconsistencies that may be present in the dataset, thus further improving the 237 

KymoButler’s performance.  238 

Additionally, KymoButler was able to analyse kymographs from different dynamic processes 239 

such as retrograde actin flow in neuronal growth cones. This result highlights that particle 240 

tracking does not depend on the precise nature of the particle, e.g. actin or EB1, but on the 241 

task of tracing a line in an image, which should be the same for any dynamic process that 242 

can be represented this way. 243 

Future work will expand our approach to 2D or even 3D tracking problems. In this paper, we 244 

drew 1D lines in 2D movies, extracted 2D (space and time) images (kymographs), and finally 245 

traced 2D lines in those images. A similar, albeit computationally heavier, approach could 246 

stack the frames of a 2D/3D movie on top of each other to generate a 3D/4D image (2D 247 

space and time, or 3D space and time). The 2D/3D lines in those images can then be traced 248 

by hand and a more complex FCN trained to recognise them. This approach could yield 249 

human-like performance in higher dimensional automated tracking. 250 

  251 
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online Methods 252 

Fly Stocks 253 

The following stocks were used for expressing fluorescently tagged EB1: eb1-gfp 22 and 254 

uas:eb1-gfp 23. To include different genetic backgrounds in our training data we also co-255 

expressed two RNAi constructs: uas:wh-RNAi (Bloom# 35573) and uas:dhcRNAi (Bloom# 256 

36698) of which the latter is known to cause a severe phenotype on EB1-GFP dynamics 24. 257 

All uas constructs were driven by elav-gal4 (Bloom# 458) and transgenic lines generated 258 

through standard balancer crossing procedures. 259 

D. melanogaster neuronal culture and EB1-GFP live imaging 260 

Primary cell cultures were prepared similar as to 25. Third instar larvae were selected, and 261 

their central nervous systems dissected. Subsequently, the tissue was dissociated in Hank’s 262 

Balanced Salt Solution (HBSS) supplemented with Dispase (Roche 049404942078001) and 263 

Collagenase (Worthington Biochem. LS004214). The cells were plated in 30μl droplets of 264 

Schneider’s Medium (Thermo Fisher 21720024) supplemented with insulin (2 μg/ml Sigma 265 

I0516) and fetal bovine serum (1:4 Thermo Fisher Scientific A3160801). We plated the drops 266 

in ibidi glass-bottom μDishes (cat num 81158) and covered them with 25mm coverslips 267 

(VWR) to create small culture chambers. The glass bottom dishes were previously coated 268 

with Concanavalin A (5μg/ml, 1.5h at 37°C). The culture chambers were subsequently put at 269 

26°C for 1.5h so that the cells settle on the coated surface of the dish. Then the chambers 270 

were flipped to remove debris from the surface and left for 24 hours before imaging. 271 

Live imaging movies were acquired on a Leica DMI8 inverted microscope at 63x 272 

magnification and 26°C (oil immersion, NA=1.4). To reduce autofluorescence the culture 273 

medium was replaced with Live Imaging Solution (Thermo Fisher A14291DJ). For EB1-GFP 274 
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imaging, an image was taken every 2 seconds for 70-150 frames depending on sample 275 

bleaching rate. We imaged 520 axons from 26 different dishes.  276 

We also treated the cells with Latrunculin B (10 μM) and Ciliobrevin A (100 μM). Both drugs 277 

are known to perturb microtubule dynamics so that including movies acquired with these 278 

treatments would again make our FCN more robust 24,26. In both cases the cells were first 279 

allowed to attach to the coated glass for 1.5h post dissection before replacing the culture 280 

medium with culture medium supplemented with Latrunculin B or Ciliobrevin A. 281 

Aplysia neuronal culture and actin fluorescence speckle microscopy 282 

Aplysia bag cell neurons were isolated and cultured as previously described in 27. Neurons 283 

were then injected with alexa-568 labelled G-actin (Molecular Probes) at low levels, 284 

appropriate for fluorescence speckle microscopy 28. The growth cone in Fig. 4B was imaged 285 

on a spinning disk confocal microscope at 2 Hz sampling rate. 286 

HeLa Cell culture and imaging 287 

A HeLa stable cell line expressing LifeAct-GFP and EB3-mRFP 29, was maintained in 288 

Dulbecco’s Modified Eagles Medium (DMEM GlutaMAX; Gibco) supplemented with 10% 289 

FBS and 50 U/ml penicillin and 50 μg/ml streptomycin (Invitrogen) at 37 C under 5% CO2. 290 

Cells were imaged using an UltraView Vox (Perkin Elmer) spinning disc confocal microscope 291 

with a 63X (NA 1.4) oil objective equipped with temperature and CO2 controlling 292 

environmental chambers and images were acquired using a Hamamatsu ImagEM camera 293 

and Volocity software at a rate of 2 Hz (Perkin Elmer). 294 

Kymograph generation and FCN training 295 

The 520 neuronal axons were first traced by hand with the KymographTracker plugin for ICY 296 

(http://icy.bioimageanalysis.org, 9). We randomly choose two biological repeats (2x dishes, 297 
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33 axons, ~6%) as a validation data set, i.e. we did only use 489 axons as training data. 298 

Subsequently we generated kymographs with the KymographTracker plugin and traced 299 

EB1-GFP lines in those images by hand, using the same plugin. The traces were then 300 

plotted in two images: one for retrograde tracks and one for anterograde tracks. We also 301 

generated kymographs with a custom Mathematica script to obtain two slightly different 302 

kymographs per axon. We then reflected each kymograph and the corresponding trace 303 

images along the vertical (y) axis and stretched them along the x-axis to 0.5, 0.75, 1.25, and 304 

1.5 their original length eventually resulting in a total number of 10,400 kymographs and their 305 

respective manually traced images (two per kymograph). Hence our training/validation data 306 

set comprises 9740/660 kymographs and their respective trace images. 307 

We decided to design a Fully Convolutional Neural Network (FCN) to recognise the antero- 308 

and retrograde lines in our noisy kymographs. An FCN does not exhibit any fully connected 309 

layers, i.e. layers whose parameter number depends on the dimension of the input image, 310 

but only calculates several parallel and consecutive image convolutions and/or 311 

deconvolutions with trainable parameters. As the number of these parameters does not 312 

depend on the size of the input image, kymographs do not have to be resized before 313 

application of the FCN. 314 

We used Mathematica (http://wolfram.com) to both generate and train our FCN. Even though 315 

the network is fully convolutional, the Mathematica training algorithm needed all input 316 

images to have the same dimensions. Thus, we divided each kymograph into tiles of 80x80 317 

pixels so that one training “unit” comprised one input image and two output images, showing 318 

anterograde and retrograde traces. To make training more efficient, we decided to only train 319 

one network to recognise anterograde (left to right) tracks so that each of these sets was 320 

again split into an input tile with the anterograde tracks and the vertically reflected input + 321 

retrograde tile. The total number of tile pairs thus became 149,488 for the training data and 322 

9740 for the validation data. In this way the final network would have to be called twice: once 323 
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on the original kymograph and once on the reflected one to detect both antero- and 324 

retrograde traces. 325 

Our approach to the precise architecture of the final Tracer FCN was purely empirical 326 

comprising the following building blocks: (i) a convolutional layer with arbitrary kernel size 327 

and number of output channels followed by a batch normalisation layer and a ‘leaky’ ramp 328 

(leayReLU) activation function (𝑙𝑒𝑎𝑦𝑅𝑒𝐿𝑢(𝑥): = 𝑚𝑎𝑥(𝑥, 0) − 0.1 𝑚𝑎𝑥(−𝑥, 0)), (ii) a dropout 329 

layer that randomly sets 10% of all input values to zero during training to prevent ‘overfitting’ 330 

of the input data, (iii) a deconvolutional layer with arbitrary kernel size and number of output 331 

channels to sharpen the input images again followed by a batch normalisation layer and a 332 

leayReLu layer, (iv) a pooling layer with kernel size three to replace a given pixel with the 333 

maximum value in its neighbourhood. The batch normalisation layer is useful to stabilize the 334 

training procedure as it rescales inputs to the activation function (leayReLu) so that they 335 

have zero mean and unit variance. The leayReLu prevents so-called dead ReLu’s by 336 

applying a small gradient to values below 0. These building blocks were previously used for 337 

image recognition tasks in Google’s inception architecture 17. 338 

The architectures we settled on is shown in Figure 1–figure supplement 1. Six connected 339 

“Trace Block” layers are used to denoise the image and highlight individual traces. The 340 

precise architecture of these Blocks is again shown in Figure 1–figure supplement 1. This 341 

block architecture allows a lot of flexibility with the choice of operation, for example the 342 

convolving kernel size, throughout training and evaluation. A major feature of the Trace 343 

Block architecture is the inclusion of deconvolutions. Without explicitly computing 344 

deconvolutions in each block, as for example in the shallow FCN in Figure 1–figure 345 

supplement 1, the final image is more blurred, and one is unable to segment individual 346 

traces as efficiently. In the final step of both architectures all channels are projected on only 347 

two and a softmax layer is applied so that the sum over those channels is one for each pixel. 348 

The two channels can be interpreted as the probability of a given pixel to be part of the 349 

background or a trace. 350 
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To train the FCN we quantified the difference between the FCN output 𝑜 and the desired 351 

target output 𝑡 through a cross entropy loss layer (𝐶𝐸𝑙𝑜𝑠𝑠(𝑡, 𝑜) = −(𝑡 ⋅ 𝑙𝑛(𝑜) + (1 − 𝑡) ⋅352 

𝑙𝑛(1 − 𝑜) ). Here 𝑡 can be either 1 (background) or 2 (trace). For Example: The untrained 353 

FCN will give 0.5 as the probability of each pixel to be part of the background as it has no 354 

preference yet. The corresponding loss for a pixel that should be part of the background 355 

(index=1) would be: 𝐶𝐸𝑙𝑜𝑠𝑠(0.5,1) = 0.69. During training this value might be updated to 0.9 356 

decreasing the loss to 𝐶𝐸𝑙𝑜𝑠𝑠(0.9,1) = 0.11.  357 

We trained the FCN through stochastic gradient descent. Here we first randomly subdivided 358 

all training tile pairs into batches of 50. For each batch we then calculated the average cross 359 

entropy loss and the gradient of this loss in all tuneable parameters, e.g. the kernel entries in 360 

the convolutions. We then updated all the parameters 𝜎 in the network according to 𝜎′ = 𝜎 −361 

𝜂𝜕𝜎𝐶𝐸𝑙𝑜𝑠𝑠(𝑡, 𝑜). Here 𝜕𝜎 denotes the partial derivative with respect to all parameters of the 362 

FCN and 𝜂 is the learning rate, i.e. the multiplier giving absolute value of the shift in 𝜎 at a 363 

given step. Note that 𝜂 is not fixed but is dynamically updated through the ADAM algorithm 364 

30. This was repeated for all batches until the whole training dataset was visited by the 365 

algorithm constituting one round. The FCN was trained until no decrease in the validation 366 

data loss was observed anymore (5 Rounds). Every 10 minutes, the average loss was 367 

calculated for the validation dataset to obtain a readout on how the FCN performs on 368 

previously “unseen” data. 369 

FCN performance evaluation 370 

The direct output of both FCNs was an 80x80x2 tensor that assigns each pixel the 371 

probability of being part of a trace (index=2) or the background (index=1). In order to 372 

reconstitute traces from the FCN output we introduced a threshold value t for the second 373 

index, above which we would consider a pixel being part of a trace. The training set 374 

comprises many more background pixels than foreground pixels so that the FCN exhibits 375 

small probabilities around traces, therefore the cut-off has to be chosen generally as an 376 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/405183doi: bioRxiv preprint 

https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

unintuitively small value (t<0.5). The thresholded output images were iteratively thinned until 377 

they depicted lines of only one pixel wide. 378 

To compare the FCN output with the manual annotation for the validation data we defined a 379 

similarity score as a function of the threshold as follows: (i) Both the anterograde and the 380 

retrograde trace probability map are calculated with the FCN and thresholded and dilated by 381 

one pixel. (ii) Both dilated binary predictions (0=background, 1=trace) are multiplied with the 382 

respective binary manual trace images and in the resulting image the total number of 383 

pixels=1 counted (𝑜𝑣𝑙𝑝, a measure of the overlap between the prediction and the manual 384 

annotation). (iii) We also calculated the total number of pixels=1 in the manual traced image 385 

(𝑁𝑚) and the prediction (𝑁𝑝). (iv) The similarity score 𝑠 was then given by: 386 

 387 

 388 

In short: The similarity score measures the overlapping pixels in the prediction and the 389 

manual annotation and divides them by the absolute number of pixels being part of a trace in 390 

the manual annotation (𝑜𝑣𝑙𝑝/𝑁𝑚). The result is divided by a factor measuring the difference 391 

in pixels that are part of a trace between prediction and manual labelling to penalise large 392 

discrepancies in total number of predicted pixels (1 + |𝑁𝑚 − 𝑁𝑝|/𝑁𝑚). Since the prediction 393 

rarely overlaps completely with the manual annotation and frequently finds more objects that 394 

were previously labelled, a ‘good’ score lies at around 0.7. 395 

KymoButler software  396 

The KymoButler software first applies either the deep Tracer FCN or the shallow FCN to a 397 

given kymograph and its vertical reflection. The resulting foreground probability map is then 398 
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thresholded with the parameter t and thinned iteratively so that each trace is only one pixel 399 

wide at any point. The thinned traces are then pruned by three pixels so that short branches 400 

are deleted. Subsequently, each trace is segmented and selected only if it contains more 401 

than 5 pixels and is at least 3 frames long. This step removes noise from the result. In the 402 

final step, pixels that lie in the same row of the kymograph are averaged over so that the 403 

resulting track has only one entry per frame. 404 

  405 

Comparison between KymoButler and plusTipTracker 406 

We used the plusTipTracker version 1.1.4 for MATLAB 2014a (mathworks.com) to analyse 407 

the axons from our validation dataset (33 axons). In each movie we first selected a region of 408 

interest comprising the axon and omitting very bright artefacts. To run the software, we first 409 

varied the detection parameters to find those that result in similar total track numbers as the 410 

manual kymograph tracing approach. We settled on the following detection parameters: 𝜎1 =411 

1, 𝜎2 = 4, 𝐾 = 8 . For tracking we chose: 𝑚𝑖𝑛𝑇𝑟𝑎𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ = 3, 𝑚𝑎𝑥𝐺𝑎𝑝 = 2, 412 

𝑚𝑖𝑛𝑆𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑 = 5, 𝑚𝑎𝑥𝑆𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑 = 15, 𝑚𝑎𝑥𝐹𝑤𝐴𝑛𝑔𝑙𝑒 = 30, 𝑚𝑎𝑥𝐵𝑤𝐴𝑛𝑔𝑙𝑒 = 10, 𝑠ℎ𝑟𝑖𝑛𝑘𝑉 =413 

0, and 𝑟𝐹𝑙𝑢𝑐 = 1.5. Note that we set the shrinkage velocity to zero so that the plusTipTracker 414 

does not try to calculate microtubule shrinkage events.  415 

In order to compare the plusTipTracker to the KymoButler we wrote a short Mathematica 416 

script that calculates the predicted tracks for the same 33 axons with the Tracer FCN and 417 

exports them in a MATLAB friendly format. As with the plusTipTracker we ignored all traces 418 

with track lengths below 3 frames. All subsequent data plotting and analysis was done in 419 

MATLAB. 420 

  421 
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Software 422 

Quick and easy cloud platform (Shallow FCN only): http://www.kymobutler.deepmirror.ai  423 

GitHub with the command line interface (full Tracer FCN): 424 

https://github.com/MaxJakobs/KymoButler  425 
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Figure legends 516 

 517 

Figure 1: Generation of kymographs showing microtubule EB1-GFP dynamics and 518 

subsequent training of the Tracer FCN. (A) Fluorescence time-lapse images of a 519 

drosophila neuron expressing EB1-GFP. A single EB1-GFP punctum is shown in four 520 

consecutive frames (arrows). (B) Hand-drawn line along the axon building up each pixel row 521 

of the kymograph. (C) Example kymograph obtained from the line shown in (B). Arrow: track 522 

resulting from the EB1-GFP comet shown in (A). (D) Individual EB1-GFP traces were traced 523 

by hand, distinguished by directionality (blue = anterograde, red = retrograde), and overlaid 524 

on the kymograph. (E) Example output of the Tracer FCN applied to validation data (see 525 

methods). An 80x80 pixel subimage from the kymograph shown in (D) (box) is fed to the 526 

Tracer FCN. (F) The heat maps show the predicted probability p for each pixel being part of 527 

a trace (top: anterograde traces, bottom: retrograde traces). (G) Tracer FCN prediction: 528 

pixels were considered to be part of a track when t>0.2, and iterative thinning was applied to 529 

generate traces. (H) Hand-traced (manual) images for both directions. (I) the prediction 530 

(orange) was overlaid with the manual annotation (blue); co-localised pixels appear pink. 531 

The FCN fully recapitulated the hand-traced data and even recognised traces that were 532 

omitted by mistake in hand tracings, even though it had never ‘seen’ this image during 533 

training. (J) The performance of the Tracer FCN when applied to the whole validation data 534 

set in terms of a manual to Tracer FCN similarity score (see methods) plotted as a function 535 

of probability cut-offs t. The insets highlight the scores of the anterograde predictions of the 536 

kymograph shown in (E). A maximum in similarity is achieved at t=0.2. For larger p cut-off 537 

values the network tends to return shorter traces than the manual labelling; for smaller t 538 

tracks become incorrectly linked (left inset). Scale bars: 2 μm (horizontal), 25 sec (vertical). 539 

 540 
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Figure 1–figure supplement 1: FCN architecture. Left: An input 80x80 pixel image is first 541 

fed into 2 consecutive Tracer Blocks that each output 110 80x80 images (feature maps). Then 542 

a Dropout Layer deletes (randomly) 10% of all pixels in all feature maps (only during training). 543 

The result is again computed through four Tracer Blocks. Subsequently, the resulting 110 544 

feature maps are projected on two with a 1x1 convolution, the result transposed and a softmax 545 

operation applied so that the two entries in each pixel of the 80x80 matrix sum up to 1. The 546 

result then comprises two 80x80 images: one whose pixel values give the probability of being 547 

part of the foreground (prob fg) and one whose pixel values give the probability of being part 548 

of the background (prob bg). Only convolution and deconvolution operations are used, hence 549 

the network does not depend on the input image size and can be applied to images that are 550 

not 80x80 pixels large. Right Top: One Tracer Block comprises six parallel net chains. (1) the 551 

identity convolution 1x1 with 10 output maps. (2) a 1x1 convolution followed by a 3x3 552 

convolution with 20 output maps. (3) a 1x1 convolution followed by a 5x5 convolution with 20 553 

output maps. (4) a 1x1 convolution followed by a 9x9 convolution with 20 output maps. (5) a 554 

1x1 convolution followed by a 3x3 deconvolution with 20 output maps. (6) a 3x3 max pooling 555 

operation followed by a 1x1 convolution with 20 output maps. The resulting feature maps are 556 

catenated along the first dimension to generate 110 feature maps as an output of the block. 557 

Right Bottom: As this net can be computationally demanding for web form applications and 558 

hence expensive to maintain we also designed a shallower FCN: This net does not comprise 559 

any parallel blocks and only evaluates one 3x3 convolution followed by a 5x5 convolution and 560 

a 3x3 deconvolution. 561 

 562 

Figure 1–figure supplement 2: Loss Curves for training and validation data. Top: 563 

Validation and batch Loss curves for the Tracer FCN. The FCN was trained for 5 Rounds, i.e. 564 

full dataset visitations. 50 input tiles were summed to one batch and the loss calculated on 565 

each batch (orange). Additionally, the loss on the validation data set was calculated every 10 566 

minutes (blue dots and curve). The loss reaches a plateau after ~4 Rounds. Bottom: The Batch 567 
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loss of the Tracer FCN (blue, same data as in the orange curve above) and the batch loss for 568 

the shallow FCN from Fig. S2.  569 

 570 

Figure 2: The KymoButler package - an automated software for kymograph analysis. 571 

(A) The software is first presented with a kymograph image input of any format. (B) 572 

Subsequently, the Tracer FCN is applied to the image twice (once to the original and once to 573 

the vertical reflection) resulting in two heat maps that assign each pixel the probability of 574 

being part of an antero- or retrograde trace (top two panels). Then the software binarizes the 575 

resulting images with a user-given threshold t (here t=0.2). The binary images are then 576 

thinned iteratively, and each line gets segmented as one track (blue and red lines, bottom 577 

two panels). (C) The software then generates multiple output files: an overlay of the 578 

segmented tracks with the original image (shown, each colour represents a distinct track) 579 

and a CSV file per kymograph, with every trace’s coordinates. Scale bars: 2 μm (horizontal), 580 

25 sec (vertical). 581 

 582 

Figure 3: KymoButler microtubule dynamics analysis outperforms conventional 583 

tracking algorithms. (A) Average EB1-GFP velocities per axon were similar for manual 584 

tracing, the KymoButler, and plusTipTracker package (p=0.17 ANOVA). Each dot represents 585 

one axon and the boxplots show the median and the upper and lower quantiles. (B) 2D 586 

scatterplot of the average velocities calculated with KymoButler (green dots) and 587 

plusTipTracker (magenta dots) against the average velocities calculated via manual tracing. 588 

Black lines indicate a deviation of ±0.9𝜇𝑚/𝑠𝑒𝑐 from the identity line, corresponding to the 589 

standard deviation of the manually traced velocities. (C) Boxplots of the average track 590 

lengths, i.e. the time during which EB1-GFP puncta were visible, calculated with manual 591 

tracing, KymoButler, and the plusTipTracker. The average track length was approximately 592 

half as long when the plusTipTracker package is used, compared to the manual tracing and 593 
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KymoButler (p<10-9, Tukey-Kramer test), which yielded similar results. (D) 2D scatter plot of 594 

the average track lengths calculated with the KymoButler (green dots) and plusTipTracker 595 

(magenta dots) against the average track lengths calculated via manual tracing. Black lines 596 

again indicate the standard deviation of the manual data. (E) Kymograph of data point 1 597 

labelled in (D) with overlaid manually labelled traces and the predicted traces of KymoButler 598 

(each colour represents one segmented track). There is an excellent correspondence 599 

between the tracks obtained by both approaches. (F) Kymograph of data point 2 labelled in 600 

(D) with overlaid traces. KymoButler breaks up several tracks more accurately than the 601 

manual tracking (red box, long trace in the centre, red arrow) and adds several shorter 602 

tracks that were incorrectly omitted in the manual approach (black box, black arrow). Only 603 

tracks longer than 2 frames were included in the analysis. (G) Zoom into the red box shown 604 

in (F). Scale bars: 2μm (horizontal), 25 sec (vertical). 605 

 606 

Figure 4: KymoButler efficiently analyses particle tracks in other biological systems. 607 

(A-B) Analysis of EB3-GFP in HeLa cells. (A) A kymograph was extracted from an 608 

interphase HeLa cell expressing EB3-GFP and subsequently analysed by hand and with 609 

KymoButler. The heatmap represents the probability map generated by KymoButler, the blue 610 

lines correspond to the hand traced EB3-GFP lines, and the coloured lines represent the 611 

traces recognised by KymoButler. The threshold t was set to 0.1. Scale bars: 5μm 612 

(horizontal), 10 sec (vertical) (B) Average EB3-GFP velocities and growth times obtained by 613 

manual tracing and KymoButler analysis. No significant differences were found (Wilcoxon 614 

rank sum test, p=0.98 velocities, growth times p=0.61). (C-D) Analysis of actin speckle 615 

dynamics in Aplysia growth cones. (C) Kymograph of fluorescently labelled G-actin, and 616 

analysed traces with t=0.1. Scale bars: 5μm (horizontal), 20 sec (vertical). (D) Average actin 617 

speckle velocities are similar for manual and KymoButler analysis (test, p=0.08). Tracks less 618 

than 6 frames long were omitted from the analysis.  619 
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Movie legends 620 

 621 

Mov. S1: Example of an erroneously shortened EB1-GFP track. The particle is detected 622 

in the lower right corner in frame 1 (small red circle). The particle is then tracked for 7 623 

consecutive frames (red line). While the particle does not disappear after frame 7 but rather 624 

becomes a bit fainter in frame 8 to re-appear in frame 9 in the upper left corner of the movie, 625 

the trace is finished after frame 7. The movie was generated with the plusTipTracker after 626 

detection. 627 

 628 

Mov. S2: Example of an erroneously linked EB1-GFP track. The particle is detected in the 629 

lower right corner in frame 4 (small red circle). In frame 5, the particle moves slightly to the left 630 

and gets correctly linked. However, in frame 6, a particle appearing in the upper left corner 631 

becomes incorrectly linked to the track, increasing the estimated average velocity of the 632 

particle to ~15 µm/min, about three-fold larger than the average velocity of EB1-GFP puncta 633 

(5 µm/min, Fig. 3).  634 
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Figures 635 

 636 

Figure 1 637 

  638 
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 639 

Figure 1–figure supplement 1 640 

  641 
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 642 

Figure 1–figure supplement 2 643 

  644 
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 645 

Figure 2 646 

  647 
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 648 

Figure 3  649 
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 650 

Figure 4 651 

 652 
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