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Abstract 

 

Cell-based phenotypic screening is a commonly used approach to discover biological pathways, 

novel drug targets, chemical probes and high-quality hit-to-lead molecules. Many hits identified 

from high-throughput screening campaign are ruled out through a series of follow-up potency, 

selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no 

cytotoxicity for a more in-depth downstream evaluation influence the future direction of 

projects, so cytotoxicity profiling of the screening libraries at early stage is essential for 

increasing the likelihood of candidate success. In this study, we analyzed results from a cell-

based cytotoxicity screening campaign, comprising nearly 10,000 compounds in NCATS 

annotated libraries, and over 100,000 compounds in a diversity library, evaluated in four 

“normal” cell lines (HEK 293, NIH 3T3, CRL-7250 and HaCat) and a cancer cell line (KB 3-1, a 

HeLa subline) with overall screening outcomes, hit rates, pan-activity and selectivity. For the 

annotated library, we also examined the primary targets and mechanistic pathways regularly 

associated with cell death. To our knowledge, this is the first study to use high-throughput 

screening to profile large libraries for cytotoxicity in both normal and cancer cell lines. In 

summary, the results generated here constitutes a valuable resource for the scientific 

community and provides insight on identifying cytotoxic compounds with particular 

mechanisms of action, and prioritizing compounds with suitable cytotoxicity profile for further 

evaluation.   
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Introduction 

 

The development of new chemical probes enables therapeutic target validation, hypothesis 

testing, and new insight into the biological role of genes and proteins (1). At the NIH National 

Center for Advancing Translational Sciences (NCATS), the development of small molecule 

probes for the scientific community allows understanding of rare and neglected diseases, novel 

targets, and enables basic biological understanding of the “undrugged” genome. This is 

accomplished through a team science approach that begins with assay development and 

automated quantitative high-throughput screening (qHTS) with a small molecule library to 

identify active hits (2). One or more chemotypes that emerge in a qHTS campaign progress to 

medicinal chemistry to develop a small molecule probe with strong biochemical and/or cell-

based activity, specificity, and optimized properties to enable use in in vivo models. To 

accommodate unbiased qHTS discovery for medicinal chemistry, large libraries of small 

molecules are created and curated, containing molecules that capture diverse chemical space 

that are ideally synthetically tractable. These large libraries of small molecules are generally 

referred to diversity libraries or collections (3).  

 

A second significant discovery strategy utilizes libraries of annotated small molecules. 

Annotated libraries contain drugs, probes and tool molecules with one or more known 

mechanisms of action (4). They have emerged as information-rich databases to integrate both 

biological and chemical data. These can be screened in (primarily) cell or organism-based assays 

to identify targets relevant to a phenotype, or for potential drug repurposing (5). While 

compounds in a diversity library are expected to demonstrate weak biological activity, 

annotated libraries by definition are medicinal chemistry-optimized products with known 

activity and in many cases, known mechanism of actions. Both diversity collection and 

annotated library screening are important components of the NCATS Chemical Genomics 

Center (NCGC) program (6). 
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Throughout a qHTS campaign, the activities of hits are confirmed in a re-test, and a number of 

orthogonal and counter-assays are performed to confirm that the observed modulatory activity 

of is on-target. This also to ensure that compounds demonstrating artefactual activity in an 

assay are triaged. For example, biochemical and cell-based assays that utilize firefly luciferase 

(fLuc) are sensitive to compounds that modulate luciferase activity (7). To ensure this is not the 

case, the screening libraries at NCATS are profiled for inhibitory activity of fLuc, allowing 

compounds that interfere with luciferase to be automatically triaged from hit lists without the 

need for additional screening. In one study it was shown that ~5% of compounds in a qHTS 

library inhibit fLuc (8). Perhaps the most notorious example of the need to perform counter-

assays is the drug ataluren (PTC124) approved for treatment of patients with Duchenne 

muscular dystrophy, that may have been discovered due to fLuc inhibition rather than on-

target activity (9). 

 

A resurgence in cell-based screening, both target-based and phenotypic, means that an 

increasing number of cell-based qHTS campaigns are performed. Yet the profiling of libraries 

against cell-based assay read-outs is rarely reported, and only one report of assessing 

compound cytotoxicity across a library of 1,408 compounds appears in the literature (10). A 

significant collection of disease-agnostic annotated small molecules exist in libraries at NCATS, 

including a collection of drugs approved by American, European and Japanese therapeutic 

regulatory agencies (the NCATS Pharmaceutical Collection, NPC (11)), and many small 

molecules reported as tools, probes, or clinical/pre-clinical candidates. Understandably, a 

significant proportion of these molecules arose from oncology programs, and a portion of 

NCATS’ collaborations are oncology-related phenotypic screens. We were motivated to profile 

the activity of our annotated libraries for two reasons: first, to allow scientists to have a 

reference dataset for discerning compounds whose activity is selective for cancer cell lines 

versus a set of non-cancer “normal” cell lines; and second, to enable scientists to discriminate 

promiscuous/cytotoxic compounds when reviewing data from cell-based/phenotypic assays 

and provide valuable input for prioritizing compounds for further evaluation.  
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To this end, we assessed the cytotoxicity of NCATS annotated libraries of nearly 10,000 

compounds against four “normal” cell lines (HEK 293, NIH 3T3, CRL-7250 and HaCat) and a 

cancer cell line (KB 3-1, a HeLa subline), and examined the hit rates and mechanistic pathways 

regularly associated with cell death. Furthermore, we assessed that activity of a diversity library 

(>100,000 compounds) against two “normal” cell lines (HEK 293 and NIH 3T3), assessed hit rate, 

and compared active compounds against a cancer cell line (KB 3-1). This study provides insight 

into the extent of cell-based killing activity in annotated and diversity libraries, and the 

importance of confirming that active compounds in phenotypic screens are not cytotoxic.  

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2018. ; https://doi.org/10.1101/404665doi: bioRxiv preprint 

https://doi.org/10.1101/404665
http://creativecommons.org/licenses/by/4.0/


 

Results 

 

Profiling of an annotated library 

 

Annotated libraries were profiled for cell viability by performing a primary screen against four 

normal cell lines using CellTiter-Glo (CTG) as the assay read-out (screening assay protocol 

displayed in Table 1). Three of the cell lines are immortalized (HEK 293, NIH 3T3 and HaCat), 

while CRL-7250 is a primary cell line. A total of 9,893 compounds were tested in either an 8-pt 

concentration-response ranging from 0.6 nM to 46 µM (1:5 dilution) or an 11-pt concentration-

response ranging from 0.8 nM to 46 µM (1:3 dilution) according to different compound plating 

mechanisms.  

 

Variation of sensitivity was observed across all four cell lines at both time-points (48 and 72 hr, 

Table 2). The HEK 293 cell line was more sensitive to compound treatment (Figure 1a), with 

41% of compounds eliciting a dose-response cell killing effect (16% high-quality actives, 25% 

low-quality actives), while the three remaining cell lines demonstrated reduced sensitivity (7.9 

– 10.6% high-quality actives, 14.2-18.1% low-quality actives), where the high-quality actives 

were defined as compounds in curve classes 1 and 2 with efficacy higher than 50% and EC50 

values less than 10 µM. Comparison of compounds active against the four cell lines (Figure 1b, 

Venn diagram) revealed 853 compounds active only against HEK 293 cells (consistent with its 

greater sensitivity to compounds). 574 compounds demonstrated pan-activity against all four 

cell lines, which corresponds to a consensus hit rate of 5.8% for the entire annotated library. 

 

Comparison of the AUC (Area Under the dose-response Curve) values of each compound using 

unbiased hierarchical clustering across four cell lines revealed some cross-correlation of 

activity, with the HEK 293 cells clustering away from the other cell lines (Figure 2a). Given the 

long-term intention of utilizing profiling data to make comparisons with activity against cancer 

cell lines, we also tested the library against KB 3-1 human adenocarcinoma cells (KB 3-1 cells are 

a HeLa sub-clone). Intriguingly, the KB 3-1 cell line did not demonstrate remarkably different 

sensitivity compared to the normal cells, but surprisingly its sensitivity clustered close with the 
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NIH 3T3 murine fibroblast line. The pair-wise AUC correlation with R
2
 for all actives among five 

cell lines were calculated and shown in Figure 2b, the R
2
 ranges from 0.31 to 0.77. NIH 3T3 and 

KB 3-1 showed the strongest correlation with R
2
 = 0.77. Violin plots of the distribution of 

sensitivity to compounds across the libraries reinforce that the majority of compounds were 

not cytotoxic in cell lines (Figure 2c, pink area), while focused plots of only high-quality actives 

(curve class 1 or 2, Figure 2c, cyan area) show that only a small number of compounds are 

highly cytotoxic (AUC < −300) against cell lines. 

 

One strength of annotated compound libraries is the ability to integrate compound mechanism 

of action (MOA) and targets into downstream analysis. Each compound that met the criteria for 

high-quality active in each cell line were aggregated by mechanism of action. The treemap 

shown in Figure 3 contains 1 box for each MOA containing three or more compounds.  The size 

of each box is representative of the number of compounds with that MOA. The MOAs with the 

most compounds were antibacterial agents and PI3 Kinase inhibitors with 42 compounds 

present in each.  We also assessed average AUC for each MOA which is represented in Figure 3 

by the color gradient for each box.  Kinesin like Spindle Protein (KIF11) inhibitors and 

proteasome inhibitors had the lowest average AUC of all MOAs. 

 

There were several instances where multiple molecules with the same target were screened. To 

examine which MOAs were enriched among molecules active against cell lines, the proportion 

of active drugs to total drugs for each MOA target were used to derive an enrichment ratio 

(Figure 4a, where 1 = 100% active, 0 = none active). All clusters of MOA targets with at least five 

compounds presented in the annotated library were included in the enrichment analysis. The 

top five target clusters that resulted in consensus cell killing against the normal cell lines were 

proteasome, heat shock protein 90 (HSP90), anaplastic lymphoma kinase (ALK), mammalian 

target of rapamycin (mTOR), and cyclin-dependent kinase (CDK), with the enrichment ratio 

greater than 50%. To examine the significance of the association between consensus activity 

outcomes with the primary MOA, Fisher’s exact test was applied on the entire data set and the 

statistical significance was reported in Supplementary Table 1. Eight out of eleven highly 
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enriched MOA clusters have P-value < 0.05, and seven clusters with P-value < 0.001, indicating 

that compounds with similar activity profiles as determined in normal cell line screens tend to 

share similar annotated MOAs. These highly enriched MOAs (along with many other targets 

shown in Figure 4a) are generally associated with anti-cancer cell killing by targeting essential 

cellular processes. For example, nine of ten proteasome inhibitors tested resulted in acute 

cytotoxicity across all four cell lines (see proteasome inhibitor delanzomib, Figure 4b). As a 

reference point, the cancer cell line KB 3-1 did not demonstrate hypersensitivity compared with 

the normal cell lines, this is also consistent to the results we discussed in the heatmap 

clustering analysis (Figure 2a). The global cytotoxicity of proteasome inhibitors is displayed by 

radar plot (Figure 4c), and is extended to other mechanisms of actions (Supplementary Figure 

1).  

 

As outlined, one use of cell profiling data for mechanistically-annotated screening libraries is to 

enable the identification of targeted agents selectively killing cancer cells. Two such examples 

of selective killing are displayed in Figures 4d and e. First, the dual specificity tyrosine 

phosphorylation regulated kinase 1A and 1B (DYRK1A and DYR1B) inhibitor TC-S7004 

demonstrated complete killing of KB 3-1 cells (EC50 = 3.2 µM), with no effect on any of the four 

normal cell lines. Second, the potent and selective BMP receptor inhibitor LDN-212854 

demonstrated complete killing of KB 3-1 cells (EC50 = 4.1 µM), and partial killing of one normal 

line (HEK 293, EC50 = 16.4 µM).  

 

Profiling of a diversity library 

 

The diversity library was profiled for cell viability by performing a primary screen against HEK 

293 and NIH 3T3 cell lines, using CTG as the assay read-out (screening assay protocol displayed 

in Table 1). A total of 102,726 compounds were tested in a 4-pt dose response manner at varied 

concentrations with nearly 80% of the compounds tested at 115, 58, 12 and 2.3 µM. 30.0% and 

34.6% of the library was cytotoxic to cell lines NIH 3T3 and HEK 293 respectively, with 1.2% of 

the library classified as high-quality actives in each of the cell lines (Fig 5 a, b). Of these high-
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quality actives, there were 285 compounds overlapped and shared similar activity in both NIH 

3T3 and HEK 293 (Fig 5 c).  

 

After cherry-picking 588 hits based on their potency, maximal response and structural features, 

confirmation of activity was performed in 12 dose-point testing for most of the compounds 

against HEK 293, NIH 3T3, along with an orthogonal test against the KB 3-1 cell line. The final 

concentration of the compounds in the 5 µl assay volume ranged from 0.3 nM to 46 µM. To 

analyze the data, we generated a heat map with hierarchical clustering analysis (dendrogram) 

of compound activities based on their activity outcomes, which shows that NIH 3T3 clusters 

away from HEK 293 and KB 3-1 (Fig 5d).  

 

The Promega CTG reagent utilizes an engineered version of firefly luciferase to measure ATP 

concentrations. As such, we tested compounds that appeared cytotoxic against recombinant 

fLuc in a biochemical assay to triage any compounds that were inhibiting fLuc rather than 

reducing cell viability. A number of compounds inhibited fLuc, and two examples from a novel 

fLuc inhibitor chemotype are shown in Figures 6a and 6b. In both cases, the compounds 

appeared equally active against all three cell lines in the CTG assay and demonstrated potent 

fLuc inhibition. The Promega CTG reagent contains a proprietary engineered fluc that claims to 

be resistant to inhibition compared with wild-type fLuc (12). This indeed appears to be the case, 

as a counter-assay testing hits in cell-free media with CTG and ATP added as substrate 

demonstrated at least a 10-fold lower sensitivity to inhibition that overlaid with the primary 

assay data in the presence of cell lines. Bright-field microscopy of cells grown in the presence of 

NCGC00413522 and NCGC00413607 (Figure 6c) demonstrated unaffected cell growth at 48 hr 

at concentrations suggested to be cytotoxic by CTG dose-response data (DMSO and 500 nM 

bortezomib as negative and positive control respectively). 

 

Moreover, comparing the AUC values of high-quality actives in the three cell lines, we found 

that they moderately correlated: NIH 3T3 vs HEK 293, R
2
 = 0.77; NIH 3T3 vs KB 3-1, R

2
 = 0.59; KB 

3-1 vs HEK 293, R
2
 = 0.61 (Fig 7 a, b, c). Sixty-one of the top-ranking hits were active across all 
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cell lines (pan-active), whereas others were more selective toward a specific cell line or cell 

lines. If only taking the pan-actives that showed strong cytotoxicity against all three cell lines in 

the analysis, it was clearly shown that most of the compounds have very good EC50 agreement 

with low standard deviation, except for few outlier compounds that showed differential cell 

killing effect in three cell lines (Fig 7d). These outlier compounds had greater cell killing against 

two normal cell lines (HEK 293 and NIH 3T3) although the selectivity window to the cancer cell 

line KB-3-1 was not significant, individual dose-response curves were shown in Supplementary 

Fig 2. Among these five compounds, NCGC00420512, NCGC00420455 and NCGC00420435 

belonged to the same structural chemotype with a tetrahydropyrazolo-pyrimidine core.  To 

examine if the observed selectivity is a chemotype-specific outcome, we further analyzed the 

screening data through substructure search and found 172 compounds sharing the same 

tetrahydropyrazolo-pyrimidine scaffold presented in our diverse library, but none of the 

remaining 169 compounds showed similar differential cell killing effect, indicating that the 

selectivity is irrelevant to the specific structural features.  

 

The remaining 56 pan-actives were cytotoxic across all three cell lines lacking any selectivity 

toward either normal or cancer lines. Representatives of the top-ranking pan-actives were 

shown in Figure 7e. Through structural clustering analysis of the pan-actives, we identified 

three enriched clusters based on their structural similarity using MACCS fingerprint and 

Tanimoto coefficient (Table 3). The most significant enriched scaffolds are in Clusters 1 and 2. 

Members in Cluster 1 shared the same pyrimidine-quinuclidine core, with comparable EC50 

values across all three cell lines ranging from 7 to 12 µM, except one compound 

NCGC00421344 which was > 10-fold more potent in HEK 293 cell than the other two cell lines. 

Cluster 2 had the spiro structural feature and it was the most cytotoxic cluster among all four 

clusters discussed in Table 3. Compounds in this cluster showed almost identical activity across 

three cell lines, with EC50 values ranging from 0.5 to 3 µM for most of the compounds. For 

example, NCGC00419015 was the most cytotoxic agent in Cluster 2 with EC50 values for HEK 

293, NIH 3T3 and KB 3-1 being 0.51, 0.72 and 0.64 µM, respectively. Furthermore, Cluster 3 

with tetrahydro-imidazo-diazepine core was a less enriched cluster but also showed on-
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selective clusters in which compounds were lacking selectivity against a specific cell line. We 

also ran the pan-actives against multiple toxicity datasets including Bursi Mutagenicity dataset 

(13) (4,337 compounds with mutagenicity data) and National Toxicology Program dataset (14) 

(503 structures with carcinogenicity data for male/female mouse and male/female rat), but 

found no overlapping structures which indicated that the chemotypes identified from our 

diverse library profiling are new additions to the well-known toxic collections.  

 

Discussion 

 

Here, we describe our effort to profile the cytotoxicity of two distinct libraries: 1. our annotated 

libraries (nearly 10,000 compounds of known MOAs or therapeutic indications) against four 

“normal” cell lines (HEK 293, NIH 3T3, CRL-7250 and HaCat) and a cancer cell line (KB 3-1, a 

HeLa sub-line); and 2. a diversity library (>100,000 compounds) against two “normal” cell lines 

(HEK 293 and NIH 3T3) and a cancer cell line (KB 3-1, a HeLa sub-line). The assays were all 

performed in quantitative HTS format. Hit rates and mechanistic pathways regularly associated 

with cell death are described. As one might reasonably anticipate, annotated (or mechanistic) 

libraries containing small molecules developed against targets or known to possess phenotypic 

activity have a high hit rate (10-20%) against the cell lines, especially for many annotated 

molecules were developed against oncology targets.  

 

The large diversity collection revealed a low rate of cytotoxicity, and this is consistent with the 

fact that the majority are not optimized against targets, but reinforces the need to confirm 

toxicity of such compounds through counter-assays as part of screening for compound 

prioritization and triage. In our case, this profiling data is now used at NCATS to allow for rapid 

cross-referencing of active compounds in a screen against our dataset of general cytotoxicity in 

normal cell lines. To facilitate the use of these data by the broader research community, we 

have also made a significant amount of this data available through PubChem. 

 

What is a “normal” cell line, and what are their limitations? The four “normal” cell lines used in 

this study were selected for a number of reasons. HEK 293 and NIH 3T3 cell lines are very 
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commonly employed in the scientific literature as control, normal, or comparator cell lines, 

along with conventional research uses.  A common criticism of these lines is how normal they 

are given their capacity for uncontrolled cell growth. The HEK 293 cell line is one of the most 

utilized tool cell lines. It is a neuronal lineage line, generated in 1973 from embryonic kidney 

cells from an aborted fetus immortalized by transformation with adenovirus (15). The NIH 3T3 

murine fibroblast cell line was generated in 1962 from Swiss albino mouse embryo, and 

spontaneously immortalized after multiple passages (16).  The HaCat human keratinocyte cell 

line spontaneously immortalized in culture and was first reported in 1988 (17). All three of the 

aforementioned immortalized cell lines are adherent, and all are non-diploid despite being non-

cancer non-tumorigenic cells. The CRL-7250 cell line differs from the others in that it is a 

primary, non-immortalized fibroblast cell line generated from human foreskin (18). The HEK 

293 cell line demonstrated greater sensitivity than the other three “normal” cell lines in the 

annotated library screen.  

 

One potential use for normal cell line profiling data is to enable the identification of compounds 

selectively active against cancer cell lines based on their target biology. A well-known example 

are inhibitors of MAPK/ERK kinase (MEK), that elicit acute cell killing in cells harboring somatic 

activating mutations of Ras, but not in cells expressing wild-type Ras (such as the “normal” cells 

discussed here (19)). As a proof-of-concept comparison, we tested the KB 3-1 adenocarcinoma 

cells against the annotated libraries. KB 3-1 cells are a sub-clone of HeLa cells (20), originally 

called KB squamous cell carcinoma before it was identified as a HeLa contaminant (21) and has 

subsequently been studied and acknowledged as such. KB cells do not possess activating Ras 

mutations, but selective activity was seen by a DYRK1A/B inhibitor that killed KB 3-1 cells 

without affecting the normal cells, demonstrating the utility. This profiling data has already 

been applied to analysis of multiple oncology-related screens across NCATS. 

 

Perhaps the key result (reassuring from a screening perspective) from cytotoxicity profiling of 

>100,000 diversity library compounds was the very low rate of cytotoxicity observed, though 

some chemotype-related activity was observed. Cell lines like HEK 293 (along with cell lines 
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such as Chinese hamster ovary, CHO, cell line) are commonly used to engineer reporter cell 

lines for cell target-based and high-content assays, and the relative insensitivity to diversity 

libraries supports their utilization. The only prior study we have identified (also from NCATS but 

not involving any of the current authors) tested 1,408 compounds against thirteen cell lines, 

including a number of cancer cell lines along with HEK 293 and NIH 3T3 cells (10). While the 

compound number was relatively modest in scale, the normal HEK 293 and NIH 3T3 cells were 

reported to be among the least sensitive, supporting the basis for utilization of normal cell lines 

rather than cancer cell lines for designing cell-based assays for discovery screening.  

 

The data reported here is made available through PubChem, and it is hoped this data acts as a 

general guide for normal cell line sensitivity to killing and assists in guiding others in the design 

of counter-assays for high-throughput screening of cell-based assays. 
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Methods 

 

Profiling annotated/diversity libraries and cherry-picked compounds. HEK 293, NIH 3T3, CRL-

7250, HACAT and KB 3-1 cells were seeded into white 1536-well plates using a Multidrop Combi 

peristaltic dispenser (ThermoFisher, Waltham, MA) at a density of 250, 400, 500, 500, 500 

cells/well in 5 μL of medium respectively. A pintool (Kalypsys) was used to transfer 23 nL of 

compound solution to the 1536-well assay plates. After 48 or 72 hr incubation at 37 °C, 5% CO 

and 85% humidity, 2.5 μL of CellTiter-Glo (Promega) was dispensed into each well using a 

dispenser (Aspect Automation, St. Paul, MN) with solenoid valves (Lee Valves, Westbrook CT). 

Plates were left at room temperature for 10 min before imaging the ATP-coupled luminescence 

using a ViewLux microplate imager (PerkinElmer, Waltham, MA).  

 

Luciferase assay protocol.  Assays determining firefly luciferase inhibition were performed as 

previously described (22). Briefly, 3 μL of luciferase substrate solution (10 μM ATP, 10 μM D- 

Luciferin, 10 mM Mg-Acetate, 0.01 % Tween-20, 0.05 % BSA, 50 mM Tris Acetate, pH 7.6, in 

final 4 μL volume) was dispensed into each well of white, solid bottom, 1536-well plates using a 

dispenser. A pintool (Kalypsis) was used to transfer 23 nL of compound solution to the assay 

plates. Following a 15 minute incubation at room temperature protected from light, 1 μL of 

purified luciferase enzyme solution was added to a final concentration of 10 nM Photinus 

pyralis luciferase (Sigma). Luminescence was detected by a Viewlux (Perkin-Elmer, Waltham, 

MA) by using a 10 s exposure time and 2X binning.  

 

Data analysis and clustering of compounds by activity outcomes. To determine compound 

activity in the qHTS assay, the concentration-response data for each sample was plotted and 

modeled by a four parameter logistic fit yielding IC50 and efficacy (maximal response) values as 

previously described (23). Raw plate reads for each titration point were first normalized relative 

to positive control (2 mM Bortezomib, 0% activity, full inhibition) and DMSO only wells (basal, 

100% activity). Data normalization and curve fitting were performed using in-house informatics 

tools. Compounds were designated as Class 1–4 according to the type of concentration–

response curve (CRC) observed. In brief, Class 1.1 and 1.2 were the highest-confidence 
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complete CRCs containing upper and lower asymptotes with efficacies ≥ 80% and < 80%, 

respectively. Class 2.1 and 2.2 were incomplete CRCs having only one asymptote with efficacy ≥ 

80% and < 80%, respectively. Class 3 CRCs showed activity at only the highest concentration or 

were poorly fit. Class 4 CRCs were inactive having a curve-fit of insufficient efficacy or lacking a 

fit altogether.  

 

Compounds were further clustered hierarchically using TIBCO Spotfire 6.0.0 (Spotfire Inc., 

Cambridge, MA. https://spotfire.tibco.com/) based on their activity outcomes from the primary 

or follow up screen across different cell lines. Compound AUCs calculated based on the qHTS 

data analysis and curve fittings were utilized for clustering. In the heatmap, darker color 

indicates compounds that are more potent and efficacious, i.e. high-quality actives, and lighter 

color indicates less potent and efficacious compounds. If a compound didn’t show any activity 

in an assay, it was highlighted as white in the heatmap.  

 

Statistical analysis. In order to determine whether the hits predominantly identified from the 

specific therapeutic categories were over-represented in the chemical library, an enrichment 

analysis was implemented against the drug library. 9,893 compounds in the annotated library 

were broken down to different therapeutic categories based on their primary mechanisms of 

action and pharmaceutical indications, the enrichment was calculated from the following 

formula: E = a/n, given a is the number of actives and n is the total number of drugs in each 

therapeutic category. Fisher’s exact tested was used as a measure of the consensus cytotoxicity 

potential of compounds in each MOA; all calculations were performed in R statistical computing 

software (https://www.r-project.org/).  
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Table 1. CellTiter-Glo assay protocol 

 

Step Value Description 

1 Cell Addition 5 µL Cells in culture medium 

2 Compound Addition 23 nL Dilution series 

3 Incubation 48 hr or 72 hr 37 °C, 5% CO2, 85% RH 

4 CellTiter-Glo Reagent 

Addition 

2.5 µL CellTiter-Glo Reagent Addition 

5 Incubation 10 – 15 mins Room temperature 

6 Detection Luminescence ViewLux, 1 sec exposure 

    

Notes 

1 

Cells were cultured in Dulbecco's Modified Eagle Medium (DMEM; Life Technologies) 

supplemented with 10% fetal bovine serum (FBS; HyClone), 100 U/ml penicillin and 100 

μg/ml streptomycin. 

2 Pintool transfer 

3 37 °C, 5% CO2, 85% RH incubator incubation for 48 hr or 72 hr treatment conditions 

4 CellTiter-Glo (Promega) reagent quantifies cellular ATP levels as a proxy for viability 
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Table 2. Summary table of qHTS screen against the annotated library in normal cell lines. 

 

Cell line Activity category 
Number of compounds 

48 hours 72 hours 

HEK 293 

High-quality actives* 1588 1820 

Low-quality actives* 2504 2600 

Inactives* 5801 5473 

NIH 3T3 

High-quality actives 1055 1020 

Low-quality actives 1788 1637 

Inactives 7050 7236 

CRL-7250 

High-quality actives 783 1146 

Low-quality actives 1408 1814 

Inactives 7702 6933 

HaCat 

High-quality actives 1050 887 

Low-quality actives 1624 1511 

Inactives 7219 7495 

Total number of compounds in Annotated library 9893 9893 

*High-quality active: compounds in class -1.1, -1.2, -2.1, -2.2, -2.3, and -2.4, maximum response 

≤ -50%, and EC50 value ≤ 10 μM; inactives: compounds in curve class 4; low-quality actives: 

others. 
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Table 3. Representative clustered hits identified from qHTS against diversity chemical library. 

 

 
 
 

Cluster Sample ID Structure EC50 HEK 293 
(µM)

EC50 NIH 3T3 
(µM)

EC50 KB 3-1 
(µM)

Avg. EC50

(µM) SD

Cluster 1: 
pyrimidine-
quinuclidine

NCGC00395730 7.91 7.91 7.05 7.62 0.50

NCGC00394559 8.87 7.05 7.05 7.65 1.05

NCGC00421344 0.11 11.17 12.53 7.94 6.81

NCGC00421062 8.87 7.91 7.91 8.23 0.56

NCGC00395320 8.87 8.87 11.17 9.64 1.33

NCGC00395322 8.87 8.87 11.17 9.64 1.33

Cluster 2: spiro NCGC00419015 0.51 0.72 0.64 0.63 0.11

NCGC00418983 1.02 1.62 1.29 1.31 0.30

NCGC00418997 1.15 2.29 1.62 1.68 0.57

NCGC00419003 1.82 2.29 2.04 2.05 0.24

NCGC00418995 2.57 5.12 4.56 4.08 1.34

NCGC00419005 8.11 11.46 12.86 10.81 2.44

Cluster 3: 
tetrahydro-
imidazo-
diazepine

NCGC00409420 4.56 5.12 4.56 4.75 0.32

NCGC00409515 5.74 7.23 7.23 6.74 0.86

NCGC00409536 10.22 11.46 10.22 10.63 0.72
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Supplementary Table 1. Fisher's exact test for enriched MOA clusters. 
 

MOA Cluster 

Number of 

actives in 

each MOA 

Total 

number 

of actives 

Total number 

of compounds 

in each MOA 

Total number of 

compounds with 

MOA 

P-value 

Proteasome 9 344 10 2165 5.08E-07 

hsp 90 15 344 19 2165 1.67E-09 

ALK 4 344 7 2165 1.47E-02 

mTOR 14 344 25 2165 4.26E-06 

CDK 15 344 30 2165 1.22E-05 

PI3K 23 344 49 2165 2.30E-07 

HDAC 12 344 27 2165 3.86E-04 

DNA Top 14 344 35 2165 4.78E-04 

Aurora Kinase 6 344 24 2165 1.69E-01 

EGFR 5 344 32 2165 5.92E-01 

Tubulin 5 344 40 2165 7.86E-01 
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Figure legends 

 

Figure 1. a) Pie chart distribution of high-quality actives (orange), low-quality actives (yellow), 

and inactives (green) identified from the annotated compound library qHTS against the four 

normal cell lines for 48 hr incubation condition. High-quality actives: compounds in class -1.1, -

1.2, -2.1, -2.2, -2.3, and -2.4, maximum response ≤ -50%, and EC50 value ≤ 10 μM. Inactives: 

compounds in curve class 4; low-quality actives: others. b) Compound overlapping Venn 

diagram for HEK 293, HaCat, NIH 3T3, and CRL-7250 cell lines. Number of high-quality actives in 

each cell line and number of compounds overlapped were calculated. 

 

Figure 2. a) The comparison of AUC values of each compound in four normal cell lines and KB 3-

1 human adenocarcinoma cells. In the heat map each row corresponds to a compound and 

each column to a cell line. Darker red color indicates more potent and efficacious compound. b) 

Pair-wise R
2
 correlation matrix among five cell lines. Only high-quality actives were included in 

this analysis and the Pearson correlation was based on AUC values. c) Split violin plot showing 

the distribution of AUC values for all compounds screened and high-quality actives across four 

normal cell lines. The lines within each distribution area represent the 0.25, 0.5 and 0.75 

quantiles. 

 

Figure 3. A treemap representation of the mechanisms of action (MOA) of all high-quality 

actives from the annotated library compounds screened. Box size represents the total number 

of compounds representing each MOA (bigger box size indicates more compounds present in 

the high-quality actives). Color represents the average AUC from the cytotoxicity screen in four 

normal cell lines (darker red indicates a lower AUC meaning a more potent and efficacious hits). 

1 = Lineage specific differentiation; 2 = RNA polymerase; 3 = Immuno-suppressant. 

 

Figure 4. a) Enrichment analysis of active agents in each drug category. Enrichment ratio = the 

number of actives/the total number of drugs in each drug category. b) Dose-response curves 

for delanzomib, a representative proteasome inhibitor, in cytotoxicity screens. c) A radar plot 
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displaying Log AC50 of all active proteasome inhibitors in four normal cell lines. d) Dose-

response curves for TC-S7004, a potent and selective DYRK1A/B inhibitor, in cytotoxicity 

screens, including KB 3-1 cells. e) Does-response curves for LDN-212854, an ALK2 inhibitor, in 

cytotoxicity screens, including KB 3-1 cells. 

 

Figure 5. a-b) Pie chart distribution of high-quality actives (orange), low-quality actives (yellow), 

and inactives (green) identified from the qHTS against diversity collection compound library in 

NIH 3T3 and HEK 293 cell line, respectively. c) Compound overlapping Venn diagram for NIH 

3T3 and HEK 293 cell lines. Number of high-quality actives in each cell line was calculated and 

number of compounds overlapped were labeled. d) The comparison of AUC values of 588 

cherry-picked compounds in HEK 293, NIH 3T3 and KB 3-1 cell lines. In the heat map each row 

corresponds to a compound and a column to a cell line. Darker red color indicates more potent 

and efficacious compound.  

 

Figure 6. a-b) Dose-response curves for NCGC00413522 and NCGC00413607 in cytotoxicity 

screens, luciferase inhibition assay and CellTiter-Glo luciferase assay. c) Representative bright 

field images of HEK293 cells after 48 hr treatment.  

 

Figure 7. a-c) Activity correlation plot between HEK 293, NIH 3T3 and KB 3-1 cell lines. Only 

high-quality actives were included in this analysis and the correlation was based on AUC values. 

d) Log EC50 distribution of the pan-active compounds in all three cell line screens. Error bars 

represent the standard deviation of Log EC50. e) Dose-response curves for representative 

compounds in diversity library showing pan-activity across three cell lines. 

 

Supplementary Figure 1. Radar plots displaying the Log AC50 for each compound in four normal 

cell lines. Radar plots are separated by MOAs that were overrepresented in the high-quality 

actives compounds such as HDAC, PI3K, HSP90, Proteasome, CDK, ALK, mTOR, EGFR, Tubulin, 

Aurora, and Topoisomerase. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2018. ; https://doi.org/10.1101/404665doi: bioRxiv preprint 

https://doi.org/10.1101/404665
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 2. Dose-response curves for representative compounds in diversity 

library screen showing differential cell killing effect across three cell lines. 
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Figure 3
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Figure 4
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Supplementary Figure 2. Hits selective to only normal cell lines 
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