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Abstract

Motivation: Dynamic models are used in systems biology to study and understand cellular pro-

cesses like gene regulation or signal transduction. Frequently, ordinary differential equation (ODE)

models are used to model the time and dose dependency of the abundances of molecular compounds

as well as interactions and translocations. A multitude of computational approaches have been de-

veloped within recent years. However, many of these approaches lack proper testing in application

settings because a comprehensive set of benchmark problems is yet missing.

Results: We present a collection of 20 ODE models developed given experimental data as bench-

mark problems in order to evaluate new and existing methodologies, e.g. for parameter estimation

or uncertainty analysis. In addition to the equations of the dynamical system, the benchmark col-

lection provides experimental measurements as well as observation functions and assumptions about

measurement noise distributions and parameters. The presented benchmark models comprise prob-

lems of different size, complexity and numerical demands. Important characteristics of the models

and methodological requirements are summarized, estimated parameters are provided, and some

example studies were performed for illustrating the capabilities of the presented benchmark collec-

tion.

Availability: The models are provided in several standardized formats, including an easy-to-use hu-

man readable form and machine-readable SBML files. The data is provided as Excel sheets. All files

are available at https://github.com/Benchmarking-Initiative/Benchmark-Models, with MATLAB

code to process and simulate the models.
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1 Introduction

Dynamic models based on ordinary differential equations (ODEs) have become a widely used tool in

systems biology to quantitatively describe regulatory processes in living cells. Within this approach,

known biochemical interactions of important compounds can be translated into rate equations

describing the temporal evolution of the state of biological processes. Experimental data is then

used to estimate parameters like rate constants or initial concentrations and to validate or improve

the model structure.

The dimensionality and nonlinearity of these models constitute a challenge for numerical and

statistical methods regarding parameter estimation and identification of the most plausible model

structure. For that reason, a multitude of new modeling techniques have been developed within

recent years. However, they are often not well-tested especially in realistic application settings

and therefore performance benefits or limitations are unknown (Vyshemirsky and Girolami, 2008;

Lillacci and Khammash, 2010; Raue et al., 2013; Hug et al., 2013; Degasperi et al., 2017; Maier

et al., 2016; Stapor et al., 2018). Since the performance of computational approaches depends on

model characteristics such as nonlinearity, number of parameters or amount of experimental data,

it is essential to have a reasonably large set of benchmark problems. These need to cover a broad

range of application settings in order to generalize results obtained in performance studies to new

modeling projects.

One frequent limitation is that realistic measurements are typically not available for evaluations.

Simulated data, as an example, is often much more informative in terms of number of data points

(Tönsing et al., 2014) and does not have a complex noise structure (Villaverde et al., 2015) like mea-

surements from living cells. Moreover, in most cases experimental measurements require augmenting

the equations of the dynamic model with so-called observation functions containing scalings- and/or

offset parameters, together with transformations of the data such as a log-transformation.

In many scientific fields benchmark collections are available, however, only a limited number

of benchmark problems are currently available for modeling intracellular processes and they cover

only a small set of application setups: (i) Six benchmark models have been published by Villaverde

et al. (2015), however for most of them, only simulated data are provided. For the models with

experimental data, one has less data points than parameters, and the other provides its equations

only in a compiled version, which limits their use for model evaluation. (ii) Additional benchmark

problems were defined within the DREAM6 (Dialogue on Reverse-Engineering Assessment and

Methods) and DREAM7 challenges. However, both challenges only had simulated data available

because the models do not represent real biological networks occurring in specific living cells. In

addition, abundances of the molecular compounds were assumed as known initial values and the

dynamic variables were assumed as directly measured without observation functions which renders

these problems as rather unrealistic. (iii) Public repositories, e.g., the Biomodels database (Le

Novere et al., 2006) provide a large number of realistic / published models. Unfortunately, for

most models the measured data used for calibration is not or only partly provided. Moreover, if

the data is published, the description of the link between model and data is often not sufficient,

i.e., the noise model and observation functions are not comprehensively defined as required for a

non-ambiguous benchmark problem. One major reason for this might be that current standards

for defining models like the Systems Biology Markup Language (SBML) (Hucka et al., 2003) only
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comprise the biological part of the model but do not contain equations for observations and noise

models used to estimate parameters. Standards for the encoding of experimental descriptions, such

as the Simulation Experiment Description Markup Language (SED-ML) (Waltemath et al., 2011),

are unfortunately not yet used widely and only supported by a fraction of the available tools.

In this manuscript, 20 models of biochemical reaction networks are presented which should

serve as a comprehensive set of benchmark problems enabling testing of a multitude of data-based

modeling approaches. The models have different complexity ranging from 9 to 269 parameters. All

models comprise measured data (21 to 27132 data points per model). We also provide measurement

errors either determined experimentally or from an underlying error model.

2 Methodology

2.1 Pathway models

Biochemical reaction networks can be modeled using reaction rate equations,

ẋ = f(x, u, θ) . (1)

which describe the dynamics of compound concentrations x(t) ∈ Rnx as a function of parameters θ

(Section 2.3) and inputs u(t) ∈ Rnu (Section 2.4).

The initial values x(0) of Eq. (1) might be known. However, in most applications some elements

of x(0) are unknown and defined as parameters, i.e., x(0) ≡ xθ0 ⊂ {θ}, or functions of parameters,

i.e., x(0) ≡ x0(θ). Mathematically, we distinguish between three classes:

1. The initial conditions might be known / given, e.g., zero before treatment.

2. The initial conditions might be analytical functions of the parameters, e.g., analytical solutions

to a steady-state constraint (Rosenblatt et al., 2016).

3. The initial conditions might be non-analytical expressions of the parameters, e.g., the result of

a pre-simulation x(0) ≡ x
SSpre

0 (θ) = lim
t→∞

x(t) of an experimental condition (Rosenblatt et al.,

2016; Fiedler et al., 2016).

For a detailed discussion we refer to Rosenblatt et al. (2016) and Fiedler et al. (2016).

2.2 Measurement errors

The state variables of reaction rate equations are linked to measurements via observation functions

gi(x, θ), i = 1, . . . , Nobs, which describe the properties of the experimental device / technique used

to acquire measurement data. The observation functions might be nonlinear functions of the state

variables, e.g., if the readout saturates, for considering detection limits, and comprise scalings (Loos

et al., 2018). For all presented benchmark models, independent normally distributed, additive errors

are assumed for the measurements

yi = gi(x, θ) + εi , εi ∼ N(0, σ2i ) . (2)
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Note that in the chosen notation, index i enumerates each observation/data point yi at a specific

time point and each corresponding standard deviation σi of the measurement error individually.

We consider two broad classes of error models:

1. The standard deviation σi of measurement errors might be determined as part of the experi-

ment and processing of raw data, e.g., by computing standard errors across replicates. In this

case, each data point yi has a given, fixed value σi specifying the accuracy of the measurement.

2. Standard deviations might be unknown and therefore described as error models with error

parameters which might be jointly estimated with other model parameters. The function can

depend on parameters, state variables or both.

While class 1 yields a parameters estimation problem with fewer parameters, class 2 does not require

the calculation of σi from a potentially small number of replicates and the statistical model accounts

for imperfect knowledge of σi (Raue et al., 2013).

An error model E describes the dependence of the standard deviation of an observation on the

error parameters θerr and the state variables x, σi = fnc(gi(x, θ), θerr). The most basic parameter-

dependent error models are unknown standard deviations for the individual observations, ∀i : σi ≡
θabserr,i, or sets of observations Is, s = 1, . . . , ns, i.e.,

E(1) : ∀i ∈ Is : σi ≡ θabserr,s . (3)

Parameter- and state-dependent error models are for instance

E(2) : ∀i ∈ Is : σi ≡
√
θ2abserr + θ2relerr · gi(x, θ)2 , (4)

and

E(3) : ∀i ∈ Is : σi ≡ θabserr + θrelerr · gi(x, θ) , (5)

with two parameters for absolute or relative noise levels. E(2) is obtained if relative and absolute

errors are assumed as two independent sources of variability. E(3) is a phenomenological model which

often realistically describes absolute and relative components of observed measurement errors.

2.3 Parameters

Dynamic models in systems biology comprise up to three classes of parameters:

• Dynamic parameters θdyn that determine the initial states x(0) and the dynamics of the

process, see Eq. (1). These parameters are rate constants such as association/dissociation rates

or -constants, translocation rates between intra- or extracellular compartments, or parameters

like Michaelis-Menten- and Hill-coefficients, efficiencies of genetic perturbations or parameters

of input functions. We note that the dynamic parameters θdyn do not change over time,

although the name might suggest otherwise.

• Observation parameters θobs that describe the relationship between concentrations of intracel-

lular compounds with outputs, e.g., intensities in an assay. These parameters are for example

scaling factors or offsets (Weber et al., 2011).
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• Error parameters θerr that describe the unknown noise levels (see Section 2.2).

Since dynamic parameters depend on the biological context and observation- and error pa-

rameters are determined by the experimental setup, there is often only a limited amount of prior

knowledge about parameters available. For the benchmark models, upper- and lower bounds are de-

fined for all parameters. In most cases, these bounds cover eight orders of magnitude or even more.

In some cases, additional prior knowledge in terms of prior distributions or penalties is available for

specific parameters.

The parameters of the biological process are often transformed to improve the convergence of

optimization (Raue et al., 2013) and to eliminate structural non-identifiabilities (Maiwald et al.,

2016). A common practice is the transformation of the parameters from linear to logarithmic scale.

However, there are also problem-specific transformations as described in the Supplement for the

Bachmann or Becker models.

2.4 Inputs

Inputs u describe the dependence of the biochemical reaction network on external factors as well as

perturbations. Examples are externally controlled concentration of ligands or nutrients, or genetic

perturbations like knockouts or overexpression. Time dependent inputs are often parameterized

functions such as polynomials, splines (Schelker et al., 2012) or control vectors (Banga et al., 2005).

Time-dependent inputs u ≡ u(t) might depend on parameters which is denoted by u(t, θ) in the

following.

3 Model and data formats

For a thorough evaluation of computational methods, we provide a set of 20 published models

and corresponding data sets. The models have been extracted from the literature and have been

developed by more than 10 different research groups. The information is stored in an easily accessible

and standardized format, including an Excel file with general specifications of the model and its

fit results. Measurements and model equations are stored as separate Excel files and for each

experiment individually. In the data files, measurements with uncertainties and results from the

corresponding model simulations are stored. The model files contain finalized ODEs including

experiment-specific parameter assignments and observation functions, and are provided as user-

readable Excel file and in the standardized, machine-readable SBML standard (Hucka et al., 2003).

For a detailed description of the provided files, we refer to Supplementary Section 1.

4 Results

4.1 Benchmark collection

The main focus of this paper is to introduce a comprehensive collection of benchmark problems and

their formulation in a standardized format. A comprehensive overview of the benchmark problems

is provided in Table 1 on page 12.

The benchmark problems cover a wide range of model and data set sizes (Fig. 1A). A local

identifiability analysis using the identifiability test by radial penalization (ITRP) (Kreutz, 2018)
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Figure 1: Property distribution in the presented benchmark collection. (A) Histograms
for numerical model properties: number of observables, conditions, data points and parameters.
Properties of individual models are indicated with an overlayed parallel coordinate plot. (B) Mosaic
plot for the categoric model properties: initial conditions (columns), error models (color) and inputs
(saturation). The areas encode the percentage of models with a particular combination of properties.
Combinations of model properties which are not observed are crossed out in the legend. Non-
analytical parameter-dependent initial conditions can not be solved analytically and are obtained
by simulating the system to steady state.

revealed that most benchmark models possess non-identifiable parameters. Furthermore, we found

that initial conditions are specified in multiple ways, e.g., as equilibrium points of an unperturbed

condition, and that different types of noise models and input functions are used (Fig. 1B). This

results in a large number of combinations which have to be covered by computational modeling

tools.

Although our collection is not unbiased, the spectrum of properties in the published models

reveals requirements to be covered by modeling and parameter estimation tools. In the following,

we will use the benchmark collection to assess a few common questions and statements.

4.2 Log-transformation of model parameters

A variety of studies in the systems biology field advocate the use of log-transformed parameters,

ξ = log10(θ), for optimization:

“For parameters that are by definition non-negative a log-scale should be used in

the parameter estimation.” (Raue et al., 2013)

and recent evaluations verified that this can improve computational efficiency (Kreutz, 2016; Villaverde

et al., 2018). A comprehensive evaluation on application problems is however missing and the pre-

cise reason for the improvement is still unclear. Here, we used the compiled benchmark collection to

confirm the finding for multi-start local optimization (Fig. 2A) and to assess whether changes in the

objective function landscape might be a potential reason. The performance metric is the average

number of converged starts per minute (see Villaverde et al. (2018)). Starts are considered to be

converged if the objective function value differs at most by 10−1 from the best objective function
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Figure 2: Linear vs. logarithmic scale. (A) Performance of the multi-start local optimization
scheme using the MATLAB optimizer lsqnonlin for: (x-axis) sampling of initial values in log scale
and optimization in linear scale; and (y-axis) sampling and optimization in log scale. Performance
is measured as average number of converged starts per minute. (B) Level-sets of the objective
function for a synthesis-degradation process (see Supplementary Information, Section 4) in linear
parameters and log-transformed parameters. (C) Convexity properties of the benchmark problems
in linear parameters and log-transformed parameters. It is indicated whether the two parameters
are sampled in linear or log space and whether the connection between the two parameters is checked
in linear or log space. Statistically significant differences are shown (p-value for rank sum test, * =
< 0.05, ** = < 0.01).

value found across all runs for the given benchmark problem, whereby we only included the models

for which the best value was found more than once. We also found a strong dependence of the

results on this threshold (see Supplementary Information, Fig. S9).

Log-transformation leaves the optima unchanged but changes the shape of the level-sets of

the objective function. We found several examples for which the level-sets are non-convex in the

parameter θ, but convex in log-transformed parameters ξ (see, e.g., Fig. 2B). As local optimizers

are well suited for convex problems, the change in the level set structure could be a reason for

the improvement. To assess whether log-transformation improved the convexity of the objective

function, we drew a random parameter vector θ(1) ∈ Ω and a second random vector θ(2) ∈ Ω with

||θ(2) − θ(1)|| = 1 and a random location on the connecting line, α ∼ U(0, 1). For convex problems,

the objective function J satisfies ∀ θ(1), θ(2) and α:

J(αθ(1) + (1− α)θ(2)) ≤ αJ(θ(1)) + (1− α)J(θ(2)). (6)

Accordingly, the fraction of triples (θ(1), θ(2), α) for which (6) holds provides a measure of convexity.

We evaluated this measure for different combination of sampling strategies for θ(1) and θ(2) (lin or

log scale, indicated in the x-axis of Fig. 2C), and checking the connecting the two parameters in lin

or log scale (see Supplementary Information, Section 5). For each combination, we sampled 1000

triples. Our comparison revealed that for most application problems, log-transformation increases

the considered measure of convexity (Fig. 2C). Indeed, some problems appear to be completely
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convex when using log-transformed parameters. This provides a mechanistic explanation for the

observed improvement in optimizer convergence.

4.3 Performance of local optimization methods

The no free lunch theorem for optimization states that

“[. . . ] what an algorithm gains in performance on one class of problems is nec-

essarily offset by its performance on the remaining problems.” (Wolpert and

Macready, 1997)

This implies that effective optimization relies on a fortuitous matching between an optimiza-

tion method and an optimization problem. Here, we used the benchmark collection to assess the

performance of the trust-region-reflective and the interior-point algorithm in the MATLAB func-

tion fmincon (The MathWorks, 2016) to parameter optimization problems encountered in systems

biology. These local optimizers are widely used, indeed, there are studies using both optimizers to

exploit there individual benefits and performance differences (Stapor et al., 2018). The choice of the

optimizer has direct implication for multi-start local optimization methods (Raue et al., 2013) and

meta-heuristics (Villaverde et al., 2018), but also for uncertainty analysis using profile likelihoods

(Raue et al., 2009).

For fmincon, mainly the default settings provided by MATLAB were chosen, which can be

obtained by optimoptions(′fmincon′). Therein, the algorithm was chosen as trust-region-reflective

or interior-point, respectively. Additional changes to the default settings comprise:

• A user-defined gradient and Hessian for Gauss-Newton optimization.

• The tolerance on first-order optimality was set to 0.

• Termination tolerance on the parameters was set to 10−6.

• As subproblem-algorithm, cg was always chosen.

• The maximum number of iterations was set to 10000.

The trust-region-reflective algorithm is tailored to optimization problems with linear constraints.

The trail step of the optimizer is obtained by minimizing a quadratic approximation of the objective

function within the trust region (which is chosen adaptively). Parameter bounds are handled in

the step construction by scaling and reflection. The interior-point algorithm is a general purpose

method (and the MATLAB default) for optimization problems with linear and nonlinear constraints.

It solves a sequence of approximate optimization problems with barrier functions. In each iteration

a direct step obtained by solving the so-called Karush-Kuhn-Tucker condition or conjugate gradient

step using a trust region is performed. For details we refer to the MATLAB documentation (The

MathWorks, 2016).

We performed multi-start local optimization with 1000 fits for all benchmark models. Our

results revealed that for the considered benchmark problems the trust-region-reflective algorithm

tends to outperform the interior-point algorithm (Fig. 3 and Supplementary Information, Figs. S10-

S30). Indeed, the trust-region-reflective algorithm achieved a higher number of converged starts

per computation time for 18 of the 20 benchmark problems and is for 9 benchmark problems
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Figure 3: Comparison of optimizer performance. Scatter plot of the average number of
converged starts per minute for the interior-point algorithm vs. trust-region-reflective algorithm.

the only algorithm finding the optimal solution. However, the optimal solutions for 2 benchmark

problems were only obtained using the interior-point algorithm. Accordingly, although the trust-

region-reflective algorithm (which is not the MATLAB default) achieves the higher reliability and

performance, it can be beneficial to test alternative local optimizers. Additional information of the

multi-start fits and the computation time for each model, as well as a comparison of the trust-

region-reflective and the interior point method with the least-squares solver implemented in the

MATLAB function lsqnonlin can be found in Supplementary Information, Sections 2, 6 and 7.

4.4 Number of steps for local optimizers

Common questions in practical applications are (i) for how many steps (or iterations) a local opti-

mizer should be run, and (ii) how the number of steps depends on the number of the parameters.

For many local optimization algorithms, such bounds and results for scaling properties are available.

For interior-point it has for instance been reported that for rather general classes of convex problems

“[. . . ] the number of Newton steps hardly grows at all with m [the number of

constraints - author’s note] (or any other parameter, in fact).” (Boyd and Van-

denberghe, 2004, Section 11.5.6)

Similar findings are reported for other methods (see, e.g., Nesterov (2013)). As the independence

of the number of optimization steps from the number of parameters might be surprising, we set out

to assess the properties on the benchmark collection. For each problem, the trust-region-reflective

algorithm implemented in the MATLAB function lsqnonlin was run, without constraints on the

maximum number of function evaluation.

Our assessment of the average number of optimizer steps (Fig. 4) revealed that on average

391±19 iterations were taken. There is – as predicted by theory for convex problems – no significant

dependence on the number of parameters (ρ = 0.02, p-value = 0.93). Accordingly, our analysis
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Figure 4: Influence of problem size. (A) Average number of optimizer iterations and (B)
average computation time vs. the number of parameters. For optimization the trust-region-reflective
algorithm implemented in the MATLAB function lsqnonlin was used and the averages across 1000
runs with different starting points were computed. The influence of the number of parameters was
analyzed using correlation analysis and linear regression.

on the benchmark collection validated for the first time that the theoretical results also hold for

application problems in systems biology (which are in general not convex).

In contrast to the number of iterations, the computation time of local optimization depended on

the number of parameters (ρ = 0.75, p-value = 1.5 · 10−4). For the trust-region-reflective algorithm

using forward sensitivities for gradient calculation, we observed a roughly quadratic dependence

(E[tcom] ∝∼ n2θ).

5 Discussion

Mechanistic dynamical models are used to describe and analyze biochemical reaction networks, to

determine unknown parameters, gain biological insights and perform in-silico experiments. Novel

methods to address these challenging tasks are proposed on a regular basis, however, a thorough

assessment is often problematic. To address this problem, we compiled a collection of 20 benchmark

problems. Reusability was ensured by providing the models in the machine-readable SBML format

and the experimental data in structured Excel files. In addition, all aforementioned models are

included in the open-source MATLAB toolbox Data2Dynamics (Raue et al., 2015) and the analysis

scripts are provided as Supplementary Material.

To ensure that the benchmark problems are realistic and practically relevant, we exclusively

included published models and measured experimental data. This is a key difference to existing

benchmark collections which mostly considered models with simulated data (Villaverde et al., 2015;

Ballnus et al., 2017). The benchmark models possess a broad spectrum of properties (e.g., different

types of initial conditions, noise models and inputs), as well as challenges (e.g., structural and

practical non-identifiabilities, and objective functions with multiple minima and valleys). The size

of the benchmark problems ranges from roughly 20 data points, 10 parameters to be optimized

and a single experimental condition to large models with more than 1000 data points, over 200
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parameters and up to 110 distinct experimental conditions. This facilitates the assessment of the

scaling behavior of novel algorithms.

We illustrated the value of the benchmark collection by performing three different analyses: (i)

Our study of parameter transformations confirmed that optimization benefits from log-transformed

parameter space. Furthermore, it suggested that the reason could be a significant increase of con-

vexity of most problems, which provides a more benign setting for local optimizers. The observed

change in the convexity appears to be the first mechanistic explanation for the observed improve-

ment in optimizer performance. (ii) Our comparison of trust-region-reflective and interior-point

algorithms revealed that the former is better suited for most parameter estimation problems en-

countered in systems biology. (iii) Our analysis of the scaling behavior confirmed theoretical results

showing that the number of optimizer steps does not depend on the number of model parameters.

The results of analyses (i)-(iii) could not have been obtained without the benchmark collection,

which provided the means for a fair comparison. Indeed, the reliability of the findings depends

directly on the size and the representativeness of the benchmark collection. Amongst others, pre-

vious studies were not able to provide an assessment of the scaling properties (Raue et al., 2013;

Villaverde et al., 2015; Ballnus et al., 2017).

In conclusion, we think that the compiled benchmark collection will be an important resource

for the systems biology community. It will facilitate the thorough evaluation of novel computational

methods and support an unbiased assessment. In the future, the list of benchmark problems should

be extended to enable a more fine-grained analysis and it should be integrated with public resources

such as the BioModels database (Le Novere et al., 2006). Therefore, we encourage researchers to

provide further models and data sets, e.g., by uploading them to our GitHub repository to obtain

an even more powerful collection of benchmark models.
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Table 1: Table summarizing the 20 benchmark models and their properties. The models are abbreviated with the

last name of the first author. Many models are based on Western blot data. The number of experimental conditions

is specified as the number of different simulation conditions. The feature abbreviations denote the following: C =

several compartments, E(1) = constant error parameters, Eq. (3), E(2) = error model of Eq. (4), E(3) = error model

of Eq. (5) of main manuscript, Ex = known measurement errors, ev = events, NI = non-identifiable parameters, u(t)

= time dependent input function, u(t, θ) = input function with unknown parameter(s). Initial values are specified

according to the following order: xfix
0 = known initial values, xθ0 = initial condition given by unknown parameters,

x0(θ) = parameter dependent functions, and x
SSpre

0 = pre-equilibration for initial steady state conditions. The models

are described in more detail in Supplementary Section 3.
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Bachmann The model by Bachmann et al. (2011) describes

JAK2/STAT5 regulation via two transcriptional

negative feedbacks, CIS and SOCS3 in murin

blood forming cells

25 6 542 23 113 C, E(1), NI,

xθ0

Becker The model by Becker et al. (2010) shows that

rapid EpoR turnover and large intracellular re-

ceptor pools enables linear ligand response.

6 4 85 13 16 E(1), x0(θ)

Beer The model by Beer et al. (2014) uses Escherichia

coli as chassis to demonstrate heterologous T

domain exchange in non-ribosomal peptide syn-

thetases (NRPSs).

4 2 27132 19 72 E(1), ev,

u(t, θ), xθ0

Boehm The model by Boehm et al. (2014) evaluates pos-

sible homo- and heterodimerization of the tran-

scription factor isoforms STAT5A and STAT5B.

8 3 48 1 9 C, E(1),

u(t, θ), x0(θ)

Brannmark The model by Brännmark et al. (2010) describes

insulin signaling in adipocytes.

9 2 43 8 22 E(1), ev,

NI, u(t),

x
SSpre

0 (θ)

Bruno The model by Bruno et al. (2016) investigates the

activity of Arabidopsis carotenoid cleavage dioxy-

genase 4 (AtCCD4) as regulator of carotenoid of

seeds.

7 6 77 6 13 Ex, xθ0

Chen The model by Chen et al. (2009) describes signal-

ing in ErbB-activated MAPK and PI3k/Akt path-

ways, including seven receptor dimers and two

ErbB ligands.

500 3 105 4 191 E(1), ev, NI,

xfix
0

Crauste The model by Crauste et al. (2017) describes CD8

T cell differentiation after virus infection.

5 4 21 1 12 Ex, NI, xfix
0

Fiedler The model by Fiedler et al. (2016) describes

Raf/MEK/ERK signaling in synchronized HeLa

cells upon stimulation with MEK and ERK in-

hibitors.

6 2 72 3 28 E(1), NI,

u(t, θ), x0(θ)

Fujita The model by Fujita et al. (2010) describes the

epidermal growth factor (EGF)-dependent Akt

pathway in PC12 cells.

9 3 144 6 22 Ex, ev, NI,

u(t, θ), xθ0

Hass The model by Hass et al. (2017) establishes early

Reelin-induced signaling and identifies Src family

kinases (SFKs) as crucial part for Dab1 signaling.

9 6 221 23 62 Ex, ev, x0(θ)
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Isensee The model by Isensee et al. (2018) describes the

Protein Kinase A (PKA)-II cycle in primary sen-

sory neurons and its response to multiple stimuli,

e.g., forskolin and cAMP analogues and is based

on quantitative microscopy and Western blotting.

25 3 713 109 46 C, E(1), ev,

NI, u(t, θ),

x
SSpre

0 (θ)

Lucarelli The model by Lucarelli et al. (2018) describes ac-

tivation of Smad proteins upon TGFβ stimula-

tion, identifies the relevant complexes and linked

them to target genes.

33 43 1755 12 84 E(1), Ex, NI,

xθ0

Merkle The model by Merkle et al. (2016) describes Epo-

induced signaling simultaneously for CFU-E and

H838 cells, with a parsimoneous set of differing

parameters.

23 22 1141 62 197 C, E(1), Ex,

ev, u(t),

x0(θ)

Raia The model by Raia et al. (2011) describes

interleukin-13 (IL13)-induced activation of the

JAK/STAT signaling pathway for B-cells and two

lymphoma cell lines.

14 8 205 4 39 C, E(3), xθ0

Schwen The model by Schwen et al. (2015) describes bind-

ing of insulin to primary mouse hepatocytes based

on flow cytometry and ELISA data.

11 4 292 7 30 E(1), NI,

x0(θ)

Sobotta The model by Sobotta et al. (2017) presents IL-

6-induced JAK1-STAT3 signal transduction and

expression of target genes in hepatocytes.

13 11 2220 110 269 C, E(1),

ev, u(t, θ),

x
SSpre

0 (θ)

Swameye The model by Swameye et al. (2003), rapid shut-

tling of STAT5 from the nucleus back to the cy-

toplasm following Epo stimulus is recognized as a

remote sensor.

9 3 46 1 14 C, Ex, NI,

u(t, θ), x0(θ)

Weber The model by Weber et al. (2015) describes the

interactions of PKD, PI4KIIIβ and CERT at the

trans-Golgi network of mammalian cells.

7 8 135 2 36 E(1),

ev, u(t),

x
SSpre

0 (θ)

Zheng The model is adapted from Zheng et al. (2012)

and describes methylation at histone H3 lysines

27 and 36.

15 15 60 1 46 E(1), ev,

NI, u(t, θ),

x
SSpre

0 (θ)
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Bachmann, J., Raue, A., Schilling, M., Böhm, M. E., Kreutz, C., Kaschek, D., Busch, H., Gretz, N., Lehmann, W. D., Timmer, J., and

Klingmüller, U. (2011). Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range. Mol.

Syst. Biol., 7, 516.

Ballnus, B., Hug, S., Hatz, K., Görlitz, L., Hasenauer, J., and Theis, F. J. (2017). Comprehensive benchmarking of Markov chain Monte

Carlo methods for dynamical systems. BMC Syst. Biol, 11(63).

Banga, J. R., Balsa-Canto, E., Moles, C. G., and Alonso, A. A. (2005). Dynamic optimization of bioprocesses: efficient and robust

numerical strategies. J. Biotechnol., 117, 407–419.

Becker, V., Schilling, M., Bachmann, J., Baumann, U., Raue, A., Maiwald, T., Timmer, J., and Klingmüller, U. (2010). Covering a

broad dynamic range: information processing at the erythropoietin receptor. Science, 328(5984), 1404–1408.

Beer, R., Herbst, K., Ignatiadis, N., Kats, I., Adlung, L., Meyer, H., Niopek, D., Christiansen, T., Georgi, F., Kurzawa, N., Meichsner,

J., Rabe, S., Riedel, A., Sachs, J., Schessner, J., Schmidt, F., Walch, P., Niopek, K., Heinemann, T., Eils, R., and Di Ventura, B.

(2014). Creating functional engineered variants of the single-module non-ribosomal peptide synthetase IndC by T domain exchange.

Mol. Biosyst, 10(7), 1709–1718.

Boehm, M. E., Adlung, L., Schilling, M., Roth, S., Klingmüller, U., and Lehmann, W. D. (2014). Identification of isoform-specific

dynamics in phosphorylation-dependent STAT5 dimerization by quantitative mass spectrometry and mathematical modeling. J.

Proteome Res., 13(12), 5685–5694.

13

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/404590doi: bioRxiv preprint 

https://doi.org/10.1101/404590
http://creativecommons.org/licenses/by/4.0/


Boyd, S. and Vandenberghe, L. (2004). Convex Optimisation. Cambridge University Press, UK.

Brännmark, C., Palmer, R., Glad, S. T., Cedersund, G., and Str̊alfors, P. (2010). Mass and information feedbacks through receptor

endocytosis govern insulin signaling as revealed using a parameter-free modeling framework. J. Biol. Chem., 285(26), 20171–20179.

Bruno, M., Koschmieder, J., Wuest, F., Schaub, P., Fehling-Kaschek, M., Timmer, J., Beyer, P., and Al-Babili, S. (2016). Enzymatic

study on atccd4 and atccd7 and their potential to form acyclic regulatory metabolites. Journal of Experimental Botany, 67(21),

5993–6005.

Chen, W. W., Schoeberl, B., Jasper, P. J., Niepel, M., Nielsen, U. B., Lauffenburger, D. A., and Sorger, P. K. (2009). Input–output

behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol., 5(1), 239.

Crauste, F., Mafille, J., Boucinha, L., Djebali, S., Gandrillon, O., Marvel, J., and Arpin, C. (2017). Identification of nascent memory

CD8 T cells and modeling of their ontogeny. Cell Systems, 4(3), 306–317.

Degasperi, A., Fey, D., and Kholodenko, B. N. (2017). Performance of objective functions and optimisation procedures for parameter

estimation in system biology models. NPJ. Systems Biology and Applications, 3(1), 20.

Fiedler, A., Raeth, S., Theis, F. J., Hausser, A., and Hasenauer, J. (2016). Tailored parameter optimization methods for ordinary

differential equation models with steady-state constraints. BMC Syst. Biol., 10(80).

Fujita, K. A., Toyoshima, Y., Uda, S., Ozaki, Y.-i., Kubota, H., and Kuroda, S. (2010). Decoupling of receptor and downstream signals

in the Akt pathway by its low-pass filter characteristics. Sci. Signal., 3(132), ra56–ra56.

Hass, H., Kipkeew, F., Gauhar, A., Bouch, E., May, P., Timmer, J., and Bock, H. H. (2017). Mathematical model of early Reelin-induced

Src family kinase-mediated signaling. PLoS ONE , 12(10), 1–16.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden,

A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H.,

Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A., Kummer, U., Le Novere, N., Loew, L. M., Lucio, D., Mendes, P., Minch,

E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence,

H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J., and S. B. M. L Forum (2003). The systems biology markup

language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 19(4), 524–531.

Hug, S., Raue, A., Hasenauer, J., Bachmann, J., Klingmüller, U., Timmer, J., and Theis, F. (2013). High-dimensional bayesian parameter

estimation: case study for a model of JAK2/STAT5 signaling. Math. Biosci., 246(2), 293–304.

Isensee, J., Kaufholz, M., Knape, M. J., Hasenauer, J., Hammerich, H., Gonczarowska-Jorge, H., Zahedi, R. P., Schwede, F., Herberg,

F. W., and Hucho, T. (2018). PKA-RII subunit phosphorylation precedes activation by camp and regulates activity termination. J.

Cell Biol.

Kreutz, C. (2016). New concepts for evaluating the performance of computational methods. IFAC-PapersOnLine, 49(26), 63–70.

Kreutz, C. (2018). An easy and efficient approach for testing identifiability. Bioinformatics, 34(11), 1913–1921.

Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep,

J. L., and Hucka, M. (2006). Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of

biochemical and cellular systems. Nucleic Acids Res.., 34, D689–D691.

Lillacci, G. and Khammash, M. (2010). Parameter estimation and model selection in computational biology. PLoS Comput. Biol., 6(3),

e1000696.

Loos, C., Krause, S., and Hasenauer, J. (2018). Hierarchical optimization for the efficient parametrization of ODE models. Bioinfor-

matics, bty514.

Lucarelli, P., Schilling, M., Kreutz, C., Vlasov, A., Boehm, M. E., Iwamoto, N., Steiert, B., Lattermann, S., Wäsch, M., Stepath, M.,
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