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Abstract  
 
Objective 
The primary objective is to work towards a clinical decision support tool that can improve discharge 
practice on the intensive care unit. 
 
Design 
We used two datasets of routinely collected patient data to test and improve upon a set of previously 
proposed discharge criteria. 
 
Setting 
Bristol Royal Infirmary general intensive care unit (GICU). 
 
Patients 
Two cohorts derived from historical datasets: 1933 intensive care patients from GICU in Bristol, 
and 10658 from MIMIC-III (a publicly available intensive care dataset). 
 
Interventions 
None. 
 
Primary outcome measure 
None 
 
Results  
In both cohorts few successfully discharged patients met the of all the discharge criteria. Both a 
random forest and a logistic classifier, trained on MIMIC and cross validated on GICU, 
demonstrated improved performance over the original criteria and generalised well between the 
cohorts. The classifiers showed good agreement on which features were most predictive of 
readiness-for-discharge, and these were generally consistent with clinical experience. By weighting 
the NLD criteria according to feature importance from the logistic model we showed improved 
performance over the original NLD criteria, while retaining good interpretability. 
 
Conclusions 
Our findings constitute a proof of concept for a decision support tool to run alongside a clinical 
information system, and streamline the process of discharge from the ICU. 
 
 
Strengths and Limitations of this study: 
 

• This study applies machine learning techniques to the problem of classifying patients that 
are ready for discharge from intensive care. 

• Two cohorts of historical data are used, allowing cross-validation and a comparison of 
results between healthcare contexts. 

• Our approach represents the first step towards a decision support tool that would help 
clinicians identify dischargeable patients as early as possible.   
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Introduction 
 
Demand for intensive care unit (ICU) beds is rising at a time when resource is constrained[1]�. In 
order to optimise the allocation of this resource, patients should be discharged from the ICU as soon 
as soon as they no longer require the specialist input provided there. The reduced ICU capacity 
caused by discharge delay can result in the delayed admission of emergency patients requiring ICU 
care[2,3]��. Furthermore, patients remaining in the ICU after they are medically fit to leave 
experience detrimental effects on physical rehabilitation and psychosocial well-being[4]�. 
 
The identification of individuals that are ready to leave ICU is a key component of patient flow 
through the hospital. At present this identification is a manual process, relying on physicians 
reviewing patients on a ward round at a standard point in time. There is a lack of formal guidance to 
inform discharge readiness and as such the process is sensitive to both the decision making 
heuristics of individual clinicians and structural factors within the hospital[5]�. These issues may 
introduce undesirable variability in the timeliness of the discharge decision. A number of studies 
have looked to address this problem by attempting to standardise the discharge process[6]�. One 
such study by Knight[7]� proposed a set of physiological criteria to enable nurses to identify 
patients that are fit for discharge from a high dependency unit (HDU), thereby expediting the 
discharge process. 
 
Increasingly ICUs are using clinical information systems (CIS) to collect, store and display 
physiological data. The availability of such routinely collected patient data presents the opportunity 
to apply methods from data science, with the potential to transform healthcare in a number of 
ways[8,9]�. Two particular avenues for development are the automation of simple tasks[10]� and 
the implementation of decision support systems[11]�, both of which would reduce the cognitive 
load of clinicians and free up scarce resource for tasks that require human expertise. We believe that 
the ICU discharge process is one area of healthcare practice that could be significantly improved by 
such data driven approaches. 
 
In this study we investigated the possibility of using routinely collected data to identify patients that 
are ready for discharge. We studied two historical cohorts. One cohort consisted of patients treated 
on the general intensive care unit at the Bristol Royal Infirmary, while the second consisted of 
patients selected from the MIMIC-III database[12]� (see Materials and Methods for details). Since 
there is no generally accepted definition of readiness-for-discharge, we adopted the criteria 
published by Knight[7] as a baseline for automation. Given the rational behind these criteria they 
represent a general and highly conservative set of constraints on physiology that characterise a 
patient as suitable for care on an acute ward (level 1 care). We initially posed the question: how 
many patients met the proposed criteria at the time they were declared ready for discharge? We then 
attempted to improve upon the performance of the original criteria by using machine learning 
techniques to identify patients that were ready for discharge. This work represents the first steps 
towards a decision support tool that will run in real time alongside our CIS and help clinicians 
identify dischargeable patients.  
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Methods 
 
Discharge criteria 
 
The nurse-led discharge (NLD) criteria proposed by Knight[7]� consist of a set of constraints on 
various routinely collected vital signs and laboratory results. If a patient meets all the constraints for 
a period of at least four hours, Knight states that they may be safely discharged by a nurse. In order 
to test the NLD criteria on historical patient data we codified the constraints (see online 
supplementary file section A) into 15 binary tests, which are defined in table 1. 
 

Test ID Test name Variable Test condition 

R0 Respiratory: airway airway airway patent 

R1 Respiratory: FiO2 fio2 fio2 ≤ 0.6 

R2 Respiratory: blood oxygen spo2 spo2 ≥ 95 (%) 

R3 Respiratory: bicarbonate hco3 hco3 ≥ 19 (mmol/L) 

R4 Respiratory: rate resp (rate) 10 ≤ resp ≤ 30 (bpm) 

C0 Cardiovascular: blood pressure bp (systolic) bp ≥ 100 (mmHg) 

C1 Cardiovascular: heart rate hr   60 ≤ hr ≤ 100 (bpm) 

P Pain pain 0 ≤ pain ≤ 1 

CNS Central nervous system gcs gcs  ≥ 14 

T Temperature temp 36 ≤ temp ≤ 37.5 (C) 

B0 Bloods: haemoglobin haemoglobin haemoglobin ≥ 9 (g/dL) 

B1 Bloods: potassium k 3.5 ≤ k ≤ 6.0 (mmol/L) 

B2 Bloods: sodium na 130 ≤ na ≤ 150 (mmol/L) 

B3 Bloods: creatinine creatinine 59 ≤ creatinine ≤ 104 (umol/L) 

B4 Bloods: urea bun 2.5 ≤ bun ≤ 7.8 (mmol/L) 

Table 1: Codified version of the discharge criteria for application to electronic health record data. 
Here the fifteen criteria have been grouped into intuitive subsets and each assigned a test ID (‘R0’ 
to ‘B4’).  If all 15 criteria are met for a period of at least four hours the patient can be safely 
discharged. 

 
Cohort selection 
 
Subjects for this study were selected from two distinct historical data sources to form two patient 
cohorts. The inclusion criteria are detailed in section B of the online supplementary file. The first 
data source consists of the routinely collected data from 1933 patients treated on the general 
intensive care unit at the Bristol Royal Infirmary between 01/02/2015 and 01/02/2017. We refer to 
the cohort selected from this dataset as GICU. The second data source is derived from the MIMIC-
III database[12]�, from which 10658 patients were selected to form the cohort referred to as 
MIMIC.  
 
The use of two cohorts was motivated by two concerns. Firstly, the volume of data was significantly 
increased by the inclusion of the MIMIC cohort, increasing the volume of data available for training 
classifier algorithms. Secondly, the use of two cohorts allowed us to study the generalisation of our 
results between different patient populations under different healthcare systems. 
 
Readiness-for-discharge 
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The key to testing and improving on discharge criteria was to be able to identify, from the historical 
data, patients that were ready-for-discharge (RFD) and not-ready-for-discharge (NRFD). These two 
subsets of patients, RFD and NRFD, define the positive and negative classes respectively. The 
datasets contain a callout for each patient, which marks the time at which a patient was declared 
clinically ready to leave the intensive care unit. For the positive class we selected patients at their 
time of callout who went on to have a positive outcome on leaving the unit. Conversely, patients 
who were declared clinically ready to leave the unit, but subsequently had a negative outcome, were 
included in the negative class. A positive outcome was defined as the patient leaving the hospital 
alive without readmission to ICU. A negative outcome was defined as either readmission to ICU 
during the same hospital admission, or in-hospital mortality after discharge from ICU. Given the 
low rates of negative outcome following callout in both MIMIC and GICU (see table 2), we 
generated further instances of the negative class, in order to balance the class sizes. To do this we 
sampled patients at between three and eight days prior to their callout (see supplementary section B: 
figures 1-3), under the assumption that patients were not-ready-for-discharge at this point in time, 
regardless of their eventual outcome state (positive or negative). Full details of this procedure are 
given in section B of the online supplementary file. 
 
 patients mortality readmission negative 

outcomes 
mean(LOS) 

MIMIC 10658 0.048 0.063 0.095 3.02 

GICU 1933 0.038 0.031 0.062 4.92 

Table 2: Summary of the two study cohorts: MIMIC and GICU. Negative outcome after discharge 
is defined as either readmission to ICU or patient mortality during the same hospital admission (not 
mutually exclusive). Length of stay(LOS) given in days.  

 
 
Feature extraction 
 
We used the same feature set to evaluate the NLD criteria and to train machine learning 
classifiers. We constructed either one or two features corresponding to each of the NLD criteria, 
depending on the criteria in question and on data availability. For example, the features ‘resp min’ 
and ‘resp max’ were used to test the criterion R4, whereas the single feature ‘bun’ was used to test 
B4. Where possible the feature values were calculated from a four hour sample window, as 
specified by the original NLD criteria. In the cases where no data was available during the four hour 
window, an extended 36 hour window was used. This extended window was mainly relevant for 
infrequently measured laboratory test results (see table 1 in section C of the online supplementary 
file). Full details and justification of the feature extraction procedure are provided in section C of 
the online supplementary file, and the resulting 18 features are listed in the first column of table 3.  
 
The results presented in the main text represent a complete case analysis, with all instances 
containing missing data entries removed. This removal reduced the sizes of the MIMIC and GICU 
feature matrices to 5033 and 1858 instances respectively. The validity of the complete case analysis 
was investigated with a sensitivity analysis that used k-nearest neighbour imputation[13]� to fill 
missing data (see section D of the online supplementary file). When training and testing the 
machine learning classifiers, features were standardised by subtracting the column mean and 
dividing by the standard deviation. The complete case feature matrices are visualised in figure 1 
using the t-SNE algorithm[14]� (see supplementary section D: figure 4 for the equivalent imputed 
feature matrices). 
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Analysis of NLD criteria 
 
Knight originally specified that all 15 criteria must be met in order to allow safe discharge by a 
nurse[7]�. Following this specification we evaluated the criteria for both MIMIC and GICU, 
determining which instances were classified as RFD and NRFD, and comparing these results to 
ground-truth. We then further investigated the performance of the NLD criteria as a classification 
system, by relaxing the constraint that all 15 tests must be passed in order to make an RFD 
classification. Instead we used the NLD criteria to produce probability estimates of being RFD, by 
summing the number of tests passed and dividing by 15 to produce a normalised output between 0 
and 1. In this formulation each of the 15 criteria contribute equally to the RFD probability. Using 
the probability outputs it was possible to evaluate the performance of the NLD criteria in the same 
way as the machine learning classifiers described below. 
 
Machine learning classifiers 
 
To improve upon the performance of the NLD criteria, we trained and tested two machine learning 
classifiers: a random forest (RF)[15]�, and a logistic classifier (LC)[16]�. These two algorithms 
were chosen for their simplicity in implementation and ease of interpretation in their predictive 
output. Both classifiers were optimised over a range of hyper-parameter values using cross-
validation (see section E of the online supplementary file). To do so, we produced an ensemble of 
100 randomised train:test data splits for both MIMIC and GICU (70:30 and 67:33 respectively). We 
then optimised each classifier using cross-validation, with the larger subset of MIMIC as training 
data and the larger subset of GICU as validation data. Having obtained the optimised classifier for 
the given data split, the classifier was then refitted to the full training set (MIMIC + GICU). The 
remaining data (i.e. the smaller subsets of MIMIC and GICU) were then used to test the 
performance of the optimised classifier. This optimisation/testing procedure was repeated for all 
100 data splits in the ensemble to produce estimates of the mean and standard deviation of the 
classifier performance. The methodology described was intended to produce classifiers that 
generalised well from MIMIC to GICU, and by extension to other patient populations.  
 
Both the RF and LR classifiers contained mechanisms to promote model sparsity. For the RF this 
mechanism was a restriction in the hyper-parameters tree_depth and max_features (see section E of 
the online supplementary file), while for the LC this was ‘l1’ -regularisation. In both cases the 
intention was to learn which features were most and least predictive of readiness-for-discharge. For 
the RF, feature importance was given by the total reduction in Gini impurity provided by each 
feature. Intuitively this metric captures the reduction in uncertainty brought about a given feature, 
therefore giving a measure of how important that feature is, on average, in classification decisions. 
For the LC, the importance was given by the absolute value of the coefficient for each feature in the 
trained model, capturing the effect of a small change in a given feature value on the prediction 
probability with all other feature values held constant.  
 
Classifier performance was evaluated across a range of prediction thresholds by producing receiver-
operator-characteristic (ROC) and precision-recall (PRC) curves[17]��. Given the need to 
minimise the false positive rate, while retaining high recall, we chose to use the partial area under 
the ROC curve (pAUC) as the overall performance metric[18]�. The pAUC was evaluated up to a 
false positive rate of 0.3, using linear interpolation to approximate the true positive rate at this point 
on the ROC curve. Performance was evaluated in this way for the RF and LR classifiers, and for the 
original NLD criteria. 
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Results. 
 
The original specification of the NLD criteria proved to be highly conservative as expected, 
producing low false positive and true positive rates for both cohorts (supplementary section D: 
tables 2-5). The true positive rates for MIMIC and GICU were 0.4% and 6.4% respectively. As such 
the NLD criteria were sufficiently insensitive as to call into question their usefulness in their current 
form.  
 
By relaxing the constraint that all 15 tests must be passed, the NLD criteria were able to 
successfully identify more patients as RFD. This is illustrated in figure 2 for a single train:test data 
split, alongside the performance of the corresponding optimal random forest classifier (see also 
supplementary section D: figure 5). On this data split the NLD criteria obtained precisions of ~0.8 
at a recall of 0.4 for both cohorts. The performance gain obtained by using a random forest was 
significant, with precisions of >0.8 at a recall of 0.7 for both cohorts. At a false positive rate of 
3.6% the NLD criteria produced 66 true positives, while the random forest produced 113.   
 
 

Feature Importance (RF) Importance (LC)  Rank (RF) Rank (LC) 

gcs_min 0.352 (±0.054) 1.127 (±0.050) 0 0 

airway 0.302 (±0.048) 0.870 (±0.038) 1 1 

bun 0.034 (±0.007) 0.437 (±0.047) 4 2 

fio2 0.048 (±0.007) 0.317 (±0.024) 2 3 

temp_max 0.024 (±0.008) 0.263 (±0.126) 7 4 

haemoglobin 0.029 (±0.006) 0.256 (±0.029) 5 5 

resp_max 0.017 (±0.004) 0.236 (±0.038) 10 6 

resp_min 0.045 (±0.015) 0.233 (±0.053) 3 7 

temp_min 0.014 (±0.004) 0.213 (±0.126) 12 8 

hr_min 0.022 (±0.005) 0.181 (±0.044) 8 9 

hr_max 0.025 (±0.005) 0.168 (±0.044) 6 10 

spo2_min 0.012 (±0.004) 0.158 (±0.027) 14 11 

na 0.009 (±0.003) 0.110 (±0.032) 16 12 

bp_min 0.012 (±0.004) 0.059 (±0.027) 13 13 

hco3 0.010 (±0.004) 0.051 (±0.028) 15 14 

k 0.008 (±0.003) 0.041 (±0.022) 17 15 

creatinine 0.021 (±0.005) 0.031 (±0.027) 9 16 

pain 0.016 (±0.008) 0.021 (±0.018) 11 17 

Table 3: Feature importances given by the random forest (RF) and logistic classifier (LC), 
evaluated over 100 train:test data splits. Importance values are given as: mean(±standard 
deviation). Features are ranked according to mean importance value, and the table is ordered 
according to the ranking given by the logistic classifier. 

 
Broadly the two classifiers agreed as to which features were most predictive of readiness-for-
discharge (see table 3). Eight of the logistic classifier’s top ten important features were also ranked 
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in the top ten by the random forest, when averaged over the ensemble of 100 data splits. The 
Spearman’s rank correlation coefficient between the feature rankings was 0.800 (p=0.00006), and 
both classifiers ranked gcs_min and airway as the two most important features by a significant 
margin. The inclusion of instances with missing data did little to change these feature rankings (see 
supplementary section D: figures 6-7). 
 
Figure 3 summarises classifier performance, quantified using the partial area under the ROC curve 
(pAUC), over the ensemble of data splits. On average the original NLD criteria performed slightly 
better for GICU than MIMIC. The two machine learning classifiers performed similarly well, 
producing large gains in pAUC over the NLD for both cohorts, and higher pAUC values for 
MIMIC than GICU. There was little to distinguish between the random forest and logistic 
classifiers based on pAUC. In the sensitivity analysis (see supplementary section D: figure 8 and 
table 6) both machine learning classifiers still performed better than the NLD criteria, but all 
classifiers showed a performance drop for MIMIC and one classifier tended to perform better for 
each cohort (the random forest and logistic classifiers for MIMIC and GICU respectively). 
 
Given the similarity in classifier performances we chose to use the average feature importances of 
the simpler model – the logistic classifier - to weight the NLD criteria. The weighted version of the 
NLD criteria (referred to as NLDopt) performed better than the original criteria when tested on both 
MIMIC and GICU. On MIMIC the performance gain was larger, with pAUC scores approaching 
those of the machine learning classifiers. Qualitatively the same effect was observed under the 
sensitivity analysis. 
 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/404533doi: bioRxiv preprint 

https://doi.org/10.1101/404533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Examples in practice 
 
To illustrate the results in a more human-interpretable fashion we have selected five informative 
examples from the GICU cohort. Table 4 summarises the performance of the different classification 
systems for these five examples, which are labelled as true or false positive/negative 
(TP,FP,TN,FN) according to how they would be classified under the original nurse-led discharge 
criteria. One patient (ID 4065) is included twice: once at 72 hours before callout, and again at the 
time of callout. All four classification systems show an increased RFD probability for this patient 
between the two time points, as would be expected. Patient 868 is a false negative under the original 
criteria - despite failing two criteria (C0 and T) their callout was successful. The three alternative 
classification systems (NLDopt , RF and LC) correctly assign a high RFD probability for this patient, 
therefore improving upon the original criteria.   
 
For these select examples the logistic classifier is the only system to assign lower RFD probabilities 
to the two false positive instances (1034 and 10783) than to the true positive instance (4065). 
Despite this correct ordering by the logistic classifier its RFD probabilities for the false positives are 
relatively high. Given the conservative nature of the NLD criteria it is expected that correct 
classification of the false positive instances is a hard problem.  
 

Patient NLD NLDopt RF LC NLD fails Notes 

1034 (FP) 0.010 (1.0) 0.010 (1.0) 0.071 (0.784) 0.096 (0.765) - Patient admitted to ICU 
post surgery (primary lung 
tumour). Discharge to 
ward. Readmitted within 
24 hours with bacterial 
pneumonia. 

10783 (FP) 0.010 (1.0) 0.010 (1.0) 0.035 (0.819) 0.163 (0.716) - Patient admitted to ICU 
with secondary hepatic 
tumour. Appears to be 
RFD at 96 hours prior to 
callout. 

4065 (TN) 1.0 (0.467) 0.464 (0.702) 0.368 (0.494) 0.395 (0.450) R2, R4, C0, 
P, B1, B3, B4 

Patient admitted to ICU 
with intracranial abscess. 
Not ready for discharge at 
72 hours prior to callout. 

4065 (TP) 0.010 (1.0) 0.010 (1.0) 0.077 (0.780) 0.047 (0.812) - Same patient as above. 
RFD at time of callout. 

868 (FN) 0.113 (0.867) 0.046 (0.939) 0.080 (0.777) 0.054 (0.806) C0, T Patient admitted with 
malignant large bowel 
tumour. Appears NRFD at 
time of callout. Positive 
outcome. 

Table 4: Example patients and their scores given by the four classification systems: the original 
nurse led discharge criteria (NLD); the weighted criteria(NLDopt); the random forest (RF); and the 
logistic classifier (LC). The reporting score given is the false positive rate at the point where the 
patient falls on the ROC curve, such that a lower score indicates a higher probability of being RFD 
according to the given classifier (explicitly, the reporting metric gives the number of false positives 
that must be accepted before this patient can be classified RFD). These scores can be compared 
across classifiers. The raw (non-calibrated) classifier scores are given in brackets and cannot be 
compared across classifiers. The results FP,TN,TP, and FN indicated in the first column 
correspond to the outcomes of the original NLD criteria. The column ‘NLD fails’ specifies, where 
relevant, which of the NLD criteria were not met (criteria IDs correspond to those in table 1). 
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Discussion 
 
Identifying which patients are suitable for ICU discharge is complex[1]�. Delayed and out of hours 
discharges are associated with an increased mortality[19]�, and patients in ICU who could be 
managed on the ward put an increasing strain on resources. The determination of ready-for-
discharge status is influenced by many unmeasured factors such as ICU census[20]� and this leads 
to unwarranted variation in clinical decision making. The decision to declare someone fit for 
discharge is based on the judgement of individual clinicians and is likely to be given a lower 
priority than decisions around treatment options for patients that are more unwell in the ICU. 
 
In this study we have used routinely collected data to test a set of discharge criteria[7]� against two 
machine learning classifiers. The discharge criteria were found to be highly conservative, with very 
few successfully discharged patients meeting all the required criteria. This low sensitivity was 
expected since the original criteria were designed to be implemented independently of usual ward 
rounds, and false positives in this scenario could have serious consequences. A random forest and a 
logistic classifier both performed better than the clinically derived discharge criteria when trained 
on the same feature set. The two classifiers broadly agreed on which features were most predictive 
of readiness-for-discharge. Weighting the original discharge criteria with the features importances 
of the logistic classifier improved their classification performance.  
 
An important novel aspect of this work is the use of MIMIC-III to increase the volume of training 
data available locally. Such applications of machine learning techniques to datasets that span 
institutions and healthcare settings will be of increasing value as more intensive care datasets 
become available for research[21]. Our results demonstrate the feasibility of using combined 
datasets in this way to derive clinical insight, and could be developed by the application of transfer 
learning approaches[22]� to characterise systematic differences between data distributions.  
 
The features identified as important by the classifiers were clinically meaningful. Clinicians will 
recognise that coma score, respiratory function and renal function are strongly related to successful 
ICU discharge. It is perhaps surprising that cardiovascular parameters were not ranked higher. We 
propose two possible mechanisms to account for this apparent discrepancy. Firstly, it may be a 
consequence of patient heterogeneity on the general intensive care unit[23]�. For example, 
cardiovascular parameters may be highly predictive for cardiac patients yet much of this predictive 
power is lost in our attempt to fit a general model for the whole ICU population. Secondly, it may 
be a due to our simplistic choice of features, which use the absolute values of physiological 
parameters. For some parameters we suggest that other features such as the trend, variance, or 
change since time of admission may be more predictive. For example, improvement in blood 
pressure may be more informative than absolute blood pressure.  
 
Our feature set was chosen to be directly analogous with those used by Knight’s criteria, to allow a 
direct comparison in performance. This feature set is somewhat restrictive, having been originally 
designed to be manually recorded by nurses using paper charts. The rich wealth of data held in 
electronic charting systems could be better exploited by including more physiological parameters, 
and engineering more predictive features. In particular our modelling did not make use of 
demographic information, diagnoses, comorbidities or interventions. The later is of particular 
importance since many of patient’s physiological parameters are controlled by clinical intervention 
during their stay in ICU. For example, a patient on vassopressors may have close to normal blood 
pressure despite suffering form server cardiovascular complications. Therefore, conditioning 
features on medical interventions represents one avenue to significantly boost performance. 
Methods to account for patient heterogeneity and individual disease trajectories would also be 
worth investigating[23,24]���. Although the inclusion of entries with missing data did not 
qualitatively alter the results of our complete case analysis, the development of a robust imputation 
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strategy would improve performance by making best use of the available training data and 
exploiting the value in missingness[25]�. 
 
The aggregate effects of the improvement gains produced by our machine learning approach could 
be beneficial to many[26]�. Therefore, we suggest that a future decision support tool embedded 
within a CIS should use these techniques to alert clinicians when patients appear fit for discharge. 
The increasing worldwide adoption of information systems in intensive care would make such a 
system widely applicable in years to come[27]�. We have shown in previous work that subtle 
changes to the presentation of information can have significant impact on clinical decision 
making[28]�. Therefore we anticipate such a tool has the potential to significantly streamline the 
discharge process. Two issues would need to be addressed prior to implementation on the ICU. The 
first is the human-interpretability of the classifier output. Depending on the machine learning 
approach a number of solutions exist[29]�, including the approximation of random forests with 
simple decision trees[30]��, that would allow clinicians to engage with the reasons behind a given 
classification. The second is the ambiguity behind the ground-truth used to train the classifiers. For 
example, some patients in the datasets used did not have a recorded callout status and some patients 
may have been ready for discharge prior to callout. A live implementation with a human-in-the-
loop[31]� could use clinician input to update ground-truth in such situations and improve learning. 
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Conclusion 
 
We have shown that it is possible to apply machine learning techniques to routinely collected ICU 
data in order to solve a significant clinical and operational problem. This approach offers promise in 
a number of areas. We plan to focus on the development and deployment of a decision support tool 
in order to inform clinicians of patients that could potentially be discharged from ICU, in order to 
streamline the process and reduce unnecessary ICU stay. As more patient data becomes available in 
the wider hospital setting, there is extensive scope to use such data-driven methods to solve the 
problem of poor patient flow through hospitals. 
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Figure captions: 
 
Figure 1: A single t-SNE embedding of the two feature matrices with each cohort plotted 
separately: GICU (left), and MIMIC (right). Green and red points indicate instances of RFD and 
NRFD respectively. The more similar two instances (in terms of feature values), the closer together 
they appear in the embedding space. Feature matrices displayed are those with missing entries 
removed. 
 
Figure 2: Performance of the random forest (RF) and NLD classifiers over a range of prediction 
thresholds, for a single train:test data split. RF optimised using cross-validation with data from 
MIMIC and GICU (see main text). Performance evaluated on the test subset from MIMIC and 
GICU.  
 
Figure 3: Performance of the four classification systems. Performance metric is the partial area 
under the ROC curve up to a false positive rate of 0.3. Orange lines show median pAUC value over 
the ensemble, while the boxes indicate the lower and upper quartiles. 
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