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Abstract  

The resting-state brain is often considered a nonlinear dynamic system transitioning among 

multiple coexisting stable states. Despite the increasing number of studies on the multistability of 

the brain system, the processes of state transitions have rarely been systematically explored. Thus, 

we investigated the state transition processes of the human cerebral cortex system at rest by 

introducing a graph-theoretic analysis of the state transition network. The energy landscape 

analysis of brain state occurrences, estimated using the pairwise maximum entropy model for 

resting-state fMRI data, identified multiple local minima, some of which mediate multi-step 

transitions toward the global minimum. The state transition among local minima is clustered into 

two groups according to state transition rates and most inter-group state transitions were mediated 

by a hub transition state. The distance to the hub transition state determined the path length of the 

inter-group transition. The cortical system appeared to have redundancy in inter-group transitions 

when the hub transition state was removed. Such a hub-like organization of transition processes 

disappeared when the connectivity of the cortical system was altered from the resting-state 

configuration. In summary, the resting-state cerebral cortex has a well-organized architecture of 

state transitions among stable states, when evaluated by nonlinear systematic approach.  
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INTRODUCTION 

A dynamic complex system can possess several stable states (attractors) for a given set of 

system parameters1-6. If a system has multiple coexisting stable states and can switch among them 

in response to noise or intrinsic perturbations to the system, it is generally referred to as a 

multistable system7,8. In this respect, the brain at rest can be considered as a system showing 

multistability1-7,9,10. A repertoire of independent spatial components11-13 and subnetwork 

components14 from spontaneous fluctuations of blood oxygenation level dependent (BOLD) 

functional magnetic resonance imaging (fMRI) signals are examples that suggest multistability of 

the resting state brain. From the perspective of the multistable brain, the conventional term 

“resting state” is not a homogeneous state but a period of switching among multiple micro-states 

(or sub-states). Here, we will refer to a brain state as a sub-state during resting-state period. Of 

note, this multistablity perspective differs from studies on functional connectivity dynamics15-23, 

which have described the dynamic nature of the brain in terms of temporal changes in its 

interactions (connectivity parameters). In contrast, multistability in the complex system is an 

emergent property of nonlinear interactions among nodes in the system without any changes in 

their connectivity.   

In a multistable system, stable states and the transition processes among them characterize the 

dynamics of the system. To explore the multistability and state transitions in the dynamic brain, 

energy landscape analysis has recently been applied to fMRI time series24-30. Prior to its 

introduction to the brain research field, energy landscape analysis had already shown its utility in 

understanding the dynamics of multi-dimensional complex systems, such as protein dynamics and 

the thermodynamics of liquids31-36. In the studies of brain dynamics using energy landscape 

analysis, distributed activity patterns across brain regions have often been used to define brain 

states, one of which the brain belongs to at each measurement time point24-30. In the energy 

landscape analysis, the energy of a state is the negative log probability of the occurrence of the 

state (thus, frequent states have low energy) according to the Boltzmann distribution of the state. 

The (inverse) frequency distribution of all possible brain states (patterns of brain activities across 

the brain regions) is called an energy landscape (see Figure 1).  

The energy landscape of the system consists of several valleys with local minima (called 

“stable states” or “attractors”, abbreviated as LM) that have energies lower (more frequent) than 

their neighbors do in the valleys. Thus, the dynamics of the system can be divided into intravalley 

(within the basin of a local minimum) and intervalley (between-local minima) motions. In the 

former case, a state of the system wanders around a local minimum of the energy surface that the 
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state belongs to, whereas in the latter case, a state transits from one local minimum to another, 

surpassing an energy barrier.  

For a state transition between two local minima states, an optimal pathway refers to the path 

with the lowest maximal energy barrier among all possible paths. The optimal path may contain 

“intermediate states” (a type of local minima) and “transition states” (saddle point states) along 

the path. Among many transition states along the path, the transition state with the highest energy 

on the pathway determines the transition rate. Therefore, for brevity, we refer to this rate-

determining transition state (having the highest energy on the pathway) as the transition state (TS) 

between two states (See Figure 1). Table 1 summarizes the terminology used in the current paper.  

Despite a growing number of studies on the multistability of the resting brain systems1,3-6,24,37-

40, the state transition processes between local minima in the brain systems have not yet been 

sufficiently investigated. In the present study, we explored the multistability and state transitional 

properties of the human cerebral cortex system. We estimated an energy landscape of brain states 

using a pairwise maximum entropy model (MEM) of the resting-state fMRI (rs-fMRI) data from 

the Human Connectome Project (HCP) database41. We extracted local minima and optimal 

pathways among them in the energy landscape, and then explored the characteristics of the brain 

state transition processes from the network-theoretical perspective using the state transition 

network, where states are represented as nodes, transitions between two states (nodes) as edges, 

and transition rates as edge weights.  

In order to analyze the brain state transition, three (a full and two reduced) types of state 

transition networks were employed: a full state transition network composed of all possible states 

along transition pathways between pairs of all stable states (local minima)  (STN-FS, Figure 2A), 

a state transition network composed of all states on the path from all local minima toward the 

global minimum (the most frequent brain state, STN-GM, Figure 2B), and a state transition 

network composed of all local minima and TSs (STN-LM, Figure 3A). In order to explore a 

general architecture of brain state transitions, we analyzed the STN-FS of brain dynamics with 

respect to the network theory using the degree of state nodes (occurrence frequency during state 

transition) and path lengths (how many transient states are needed to arrive at a final state). From 

this transition network analysis, we tested whether hub-like TSs exist, similar to spatial hubs 

found in the conventional network analysis of the brain42-45. We then narrowed down the STN-FS 

to the STN-GM to focus on state transition processes from local minima toward the global 

minimum. In the STN-GM analysis, we particularly examined whether state transitions toward 

the global minimum were processed in a single step or in multiple steps. If multi-step transitions 
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existed, we then identified intermediate stable states (a type of local minima) that mediate those 

multi-step transitions. Finally, according to the transition state theory, a transition rate between 

two states is determined solely by the energy difference of the initial state and the rate-

determining transition state (saddle point), i.e., the TS (Figure 1C). In order to explore the 

transition network in terms of the transition rate, we constructed the STN-LM using TSs and local 

minima. The hierarchy in the brain state transition was investigated by clustering the STN-LM 

with regard to the transition rate.  

We finally investigated the organizational properties of the resting-state brain by comparing 

the transitional properties of the baseline cortical system with those of a virtual system by altering 

the MEM parameters. The comparison between the resting-state brain and the altered (virtual) 

system was conducted over the STN-FS and STN-LM. 

The results of our analysis suggest that the cerebral cortex system at rest contains multiple 

stable states that are clustered into two major state groups. The transition between brain states 

across the two state groups was mediated by a frequent TS, which operated as a hub of the 

transition network. When we removed this hub state, which bridges most transition processes 

across two groups, between-group transitions occurred via an alternative TS, indicating 

redundancy in state transition. State transition in the brain appears to involve multi-step state 

transitions, with some stable states serving as intermediate states for the complete transition. We 

also found that the baseline cerebral cortex at rest shows a more complex and organized state 

transition network than those of artificially altered systems. This network approach to the state 

transition in the brain may provide a new framework for the brain exploration and become an 

effective tool for understanding healthy and abnormal brain systems, concerning brain state 

dynamics. 

 

 

RESULTS 

Maximum entropy model for the cerebral cortex system at rest 

In order to generate the energy landscape of the brain state, we estimated the first and second 

order interaction parameters (i.e., baseline sensitivity Hi and pairwise interaction Jij) of the MEM 

using binarized rs-fMRI activation patterns. The activation patterns of rs-fMRI data were 

reproduced with a high accuracy of fit (rD = 86.3 %) and reliability (ER = 99.9 %) (Figure S1A). 

Baseline sensitivity parameters Hi and pairwise interaction, Jij, are displayed in Figure S1B and 

Figure 1B. Details of the obtained MEM parameters are described in supporting information 
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(Figure S1). 

 

Multiple stable states in the resting-state of the cerebral cortex system 

 Analysis of the energy landscape identified 14 local minima of the cerebral cortex system at 

rest (Figures 2 and 3). Complementary states (active versus inactive for each brain region) of the 

five local minima were also found to be local minima (Figure 3). Two pairs, local minimum (LM) 

1 and LM12, LM7, and LM8, were nearly complementary states of each other. In these pairs, all 

regions were complementary except for one brain region, in each: the inactive precuneus (PC) in 

the LM7 and LM8, and inactive fusiform gyrus (FG) in the LM1 and LM12.  

The most stable local minimum (i.e., global minimum) was LM11, where most cortical 

regions were active except for the insula, supramarginal gyrus, superior parietal lobe, and 

fusiform gyrus (see LM11 map in Figure 2C).  

  

The state transition network among full states (STN-FS) 

 Utilizing disconnectivity graph analysis57, 91 transition pathways were extracted for all 

possible pairs of the 14 local minima. All states on the 91 transition pathways were regarded as 

nodes and transition rates between pairs of nodes as edges in the STN-FS (Figure 1C and 1D). As 

a result, a total of 219 nodes and 1201 edges composed an STN-FS (Figure 2A). When we 

evaluated node degrees for all nodes in the STN-FS, three (state) nodes showed a significantly 

higher node degree than the rest (Figure 2A). Most (86.8%) effective path lengths, i.e., the 

difference between the total path length and the Hamming distance of two initial and final local 

minima, were less than 8 (Figure S2). For half of the total number of pathways (49 pathways), 

effective path lengths had the shortest value of 1.  

  

Analysis of state transition network from local minima toward the global minimum (STN-

GM)  

 For 14 local minima, 13 transition processes toward the global minimum were considered in 

the STN-GM with 82 nodes and 141 edges. A total of eight TSs, which determine transition rate, 

were found in the STN-GM. The STN-GM also showed that intermediate local minima (e.g., 

LM7, LM9, LM12, and LM14) were involved in the transition processes of other local minima 

transitioning toward the global minimum (Figures 2B and 2C). For instance, the transition 

pathways that started from the LM6, LM4, LM3, LM1, and LM12 passed through LM7 before 

reaching the global minimum (LM11). The rates for these transitions were determined by energy 
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differences between TS2 and the initial local minima. The state transition from LM6 to the global 

minimum (LM11) contained an intermediate state (LM7) and the energy of the rate-determining 

transition state between LM6 and LM7 was smaller than that of LM7 and LM11 (i.e., energy of 

TS2), and, thus, the rate-determining transition state was TS2 (upper Figure 2D).  

However, LM10, LM5, LM8, LM13, LM9, LM14, and LM12 had their own rate-determining 

transition states along transition paths toward the global minimum (Figures 2B and 2C). Indeed, 

in the state transition from LM14 to the global minimum (LM11), which contained an 

intermediate state (LM12), the energy of the rate-determining transition state between LM11 and 

LM12 (energy of TS8) was larger than that of LM12 and LM11 (energy of TS6), and, thus, the 

rate-determining transition state was TS8 (lower Figure 2D). 

In this way, by analyzing this reduced state transition network (STN-GM), we could identify 

the characteristics of all transition processes on their way to the global minimum. 

  

Analysis of a state transition network among rate-determining transition states and local 

minima states (STN-LM) 

 The STN-LM was composed of 27 nodes (13 TSs plus 14 local minima) and 90 edges (Figure 

3A). We found a clustered structure in the STN-LM: one cluster containing six local minima 

(LM11, LM12, LM9, LM14, LM13, and LM8), and the other containing their complementary 

local minima (LM1, LM4, LM2, LM6, LM3, and LM7). A similar clustering result was found by 

using energy barriers (Figure 3B). Interestingly, only one rate-determining transition state, TS2, 

bridged two clusters. TS2 is composed of active regions in the FP, SF, AC, mOF, PC, IP, IC, TP, 

PH, FG, which overlap mostly with coactivation of the default mode network51 and the anterior 

and medial temporal lobe  (Figure 3D). Since TS2 has a high node degree (Figure 2A), we can 

refer to TS2 as a hub in the transition network.  

To investigate the effects of TS2 on the transition process, we removed TS2 and explored the 

state transition pathways. After the removal of TS2, we found 36 alternative pathways. In these 

36 pathways, the complementary state of TS2, namely ~TS2, bridged the state transition 

processes between clusters, instead of TS2. The energy difference between TS2 and ~TS2 was 

very small, 0.00737. Since the transition rate is proportional to exp(-Ebarrier) in state transition 

theory, the estimated ratio of the transition rate between the original and alternative pathway was 

99.27%. Thus, we added the ~TS2 node to the state transition network, STN-LM. Moreover, the 

property of clustered transitions was also observed for the transition processes in the ~TS2 system 
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(Figure S3A). Since TS2 and ~TS2 have high node degrees (i.e., measure of frequency of 

appearance), both TS2 and ~TS2 play as hub TSs.  

We extracted the factors that determined transition rates (i.e., energy barriers) for both the 

TS2 system and TS2 removed (~TS2) system (Figure 4); the Hamming distances between initial 

and final states were positively correlated with energy barriers (r = 0.608, p = 1.654 × 10-10 for the 

TS2 system, and r = 0.611 p = 1.276 ×10-10 for the ~TS2 system, Figure 4B). However, there was 

no such relation between the energy barriers and effective path lengths (Figure S3C).  

We further investigated the transition processes by separating the inter-group and intra-group 

processes (Figures 4D, 4E, and 4F). For the intra-group transitions, positive correlations between 

Hamming distances and path lengths were observed for both TS2 and ~TS2 systems. 

However, for the inter-group transitions, we could not find such associations. Thus, we 

further separated the inter-group transitions and found negative and positive correlations between 

Hamming distances and path lengths for the transitions from group 1 to 2 (r = -0.865, p = 3.123 × 

10-5), and from group 2 to 1 (r = 0.921, p = 3.240 × 10-9) in the TS2 system (Figure 4D).  

Interestingly, in the ~TS2 system, the correlations were reversed; positive and negative 

correlations were found for the transitions from group 1 to 2 (r = 0.865, p = 3.123 × 10-5), and 

from group 2 to 1 (r = -0.921, p = 3.240 × 10-9) (Figure 4D). Since the distances between TS2 and 

local minima of group 1 were longer than those of group 2 in the TS2 system, but in the ~TS2 

system, an inverse association was found (i.e., the distances between ~TS2 and local minima of 

group 1 were shorter than those of group 2) (Figure 4C), the cause of the inverse correlations 

could be the distance between the transition state and initial states. In the inter-group transitions, 

path lengths from an initial local minimum to the other group local minima depended on 

Hamming distances from the initial local minimum to the hub TS (Figure 4E and 4F).  

 

Effects on the state transition processes following the alteration of the system   

The effects of the global strengths of pairwise interactions on the transition process were 

investigated by scaling all Jij parameters (αJij, α = 0.0, 0.1, …, and 5.0). Both increases and 

decreases of the scale factor α tended to reduce the total number of local minima (Figure 5A). 

When a markedly small or large-scale factor, α < 0.7 or α > 1.7, was used, only one local 

minimum was found. 

Here, we further analyzed two representative examples: α = 0.8 and α = 1.2. In both cases, the 

total number of local minima was reduced by perturbations, from 14 (baseline resting-state) to 7 
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(for α = 0.8) and 9 (for α = 1.2), and thus 21 and 36 transition processes were considered in their 

state transition networks, respectively.  

In the state transition network of the weak coupling system (α = 0.8), 137 nodes and 258 

edges, which were decreased compared to the baseline resting-state, were found. Under the strong 

pairwise interaction (α = 1.2), compared to the baseline resting-state, the total number of nodes 

was decreased (225 nodes) and that of edges was increased (456 edges). Since most pairwise 

parameters were positive, the energy of the states increased and decreased for weak and strong 

alterations in the scale parameter, respectively. In both cases, a positive correlation between node 

degree and energy was found for the nodes of the transient and transition states (Figure S4a).  

In the baseline resting-state, nodes were densely connected to other nodes (Figure S4b), and, 

the maximum node degree was 44, which was larger than that of the altered systems (8 and 10, 

for α = 0.8, and 1.2, respectively). For all cases, more than half of the effective path lengths had a 

value of 1 (Figure 4). In the weak coupling system (α = 0.8), the longest effective path length was 

15, which was smaller than that of the others (21 and 25 for α = 1.0, and 1.2, respectively). 

 In contrast to the baseline resting-state, in these altered systems, simple and deep energy 

valleys were found (Figure 5C). Indeed, the state transition processes were simpler than those of 

the baseline resting-state (Figure 5D). Except for LM6 in the weak coupling system, all local 

minima directly transitioned to their global minimum (Figure S4D).  

   

DISCUSSION 

The brain at rest has been considered a highly dynamic complex system operating at a critical 

value of coupling that maximizes multistability24,37-39,58. Beyond the multistability of the resting-

state cortical system, we systematically investigated the architecture of the state transition 

processes by applying a graph-theoretic analysis to state transition. State transition network 

analysis suggests a well-organized state transition process embedded in the resting-state human 

cerebral cortex system. The characteristics of the state transition in the resting state cortex system 

are discussed in the subsequent paragraphs.  

  

The resting state brain has intermediate states in state dynamics. Some state transitions in the 

cerebral cortex system toward the global local minimum occurred in multi-steps via several 

intermediate stable states (or intermediate local minima) (Figure 2C and 6B). This phenomenon is 

similarly found in biochemical reactions by enzymes in biological systems33,59-62. For instance, 

during the rebinding of ligand (CO or O2 molecules) to myoglobin after photolysis, several 
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intermediate states were observed in spectroscopic experiments, and these intermediates have 

often been explained in terms of the regulation of ligand binding mechanisms60-62. The state 

transitions during membrane fusion processes occur via intermediate states, which were explored 

in computational and experimental studies63-65. Similar to these phenomena in biochemical 

systems, the intermediate stable states during brain state transition may also play a role in 

lowering energy barriers. We speculate that this lowered energy barrier may regulate and expedite 

transitions along certain pathways of brain state transitions in the resting-state whole brain system. 

It should also be noted that transitions between some pairs of local minima are straightforward 

without any intermediate transition states. 

 

Current network analysis of stable states of the cerebral cortex suggests several characteristics 

of brain state dynamics.  

First, in the brain state transition network, local minima are highly clustered mainly into two 

groups, and the manner in which state transitions among distributed local minimum occurred was 

different between inter-group and intra-group transitions. 

Second, most inter-group state transitions (from a local minimum at a cluster to a local 

minimum at the other) occurred via some hub transition states (saddle points) (e.g., TS2 and ~TS2) 

in the transition pathway (Figure 6D). This phenomenon makes the inter-group transition different 

from the intra-group state transition, where the transition state along the path between two states 

differed according to the initial state. Those hub transition states are analogous to hubs found in 

the conventional network analysis of the brain connectome. Brain connectome studies have 

shown a hub-like structural architecture in the brain, which is considered to mediate efficient 

information exchange42-45. Similar to network analysis focusing on the spatial geometry of the 

connectome, the current result suggests that inter-group brain state transitions occur mostly via 

hub states (more frequently occurring states) in the temporal geometry (Figure 6C). 

Third, path lengths (number of transitions to reach the target state) were positively correlated 

with the Hamming distances (i.e., number of different state bits (or regions)) between the initial 

and final states within the intra-group transitions. This result implies that the transition states of 

intra-group transitions take advantage of shorter transition paths, i.e., efficient transition from a 

brain state to the other state with minimal transition numbers. In the inter-group state transitions, 

path lengths were determined by the Hamming distance between the initial state and the hub 

transition state on the path, not the final state (Figures 4D, 4E, 4F, and 6D). We speculated that for 
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significant state changes in the cortical system, the brain may minimize transitioning costs by 

traveling via hub transition states, not simply following short transition paths. 

   

  

The current simulation study suggests that the cerebral cortex has redundant transition 

pathways. A transition state (e.g., TS2) mediates most of the inter-group state transition processes, 

serving as a transition hub in the resting-state transition network (STN-LM). When we excluded 

this hub transition state, its complementary state ~TS2 appeared to serve as a detour for inter-

group transitions with similar transition rates. This alternative hub ~TS2 was the complementary 

state of the hub state (TS2) of the baseline resting-state. The energy level of ~TS2 was similar to 

that of TS2 and the rates of the transition processes were similar to each other. We considered 

pathways via ~TS2 as “redundant” pathway in inter-group transition processes, as those were 

chosen after removing TS2 as a transition state.  

The existence of multiple pathways has been reported in some complex systems where a 

reaction occurs among multiple units cooperatively. For example, in some biomolecule systems, 

e.g. F1-ATPase and myosin V motor, two reaction pathways have been reported66,67. Multiple 

transition pathways may be associated with “degeneracy” or “redundancy” in the complex brain 

system68,69. The redundant pathways could be particularly advantageous in maintaining effective 

state transitions when a certain transient state cannot play its role in the state transition.  

  

 To understand the organization principle of the baseline configuration for brain state 

dynamics as done in Kang, et al. 24, we compared the baseline (observed) network configuration 

with the virtual (artificially altered) network configurations by scaling the pairwise interactions, 

and analyzed their state transition dynamics. Compared to the virtual networks, the baseline 

resting-state transition network (STN-FS) contained a bigger number of states with high node 

degrees and relatively longer path lengths. Furthermore, neither the clustered structure nor the 

intermediate states of the baseline system were observed in the altered virtual system. For 

example, in the STN-LM of the baseline system, which contains nodes on the pathway toward the 

global minimum (LM11) from other local minima (Figure 2), four types of transition processes 

were identified with four local minima (LM9, LM12, LM14, and LM7) as intermediate states. 

This property was not found in the virtual system, which showed a much simpler transition 

network (Figures 2 and S3).  
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Furthermore, hub intermediate states and hub transition states were found only in the baseline 

resting-state system, not in the virtual system. In the virtual systems, altered by scaling pairwise 

interactions from the baseline resting-state system, local minima having a high node degree 

disappeared; the hub-like local minima of the baseline system (having relatively high energy) 

were eliminated first by scaling pairwise interactions. This phenomenon, of which higher energy 

was eliminated first by network alteration, was consistent with that reported in our previous study 

on the subcortical system24. Meanwhile, low-energy local minima tended to persist even after 

network alteration. If we consider some task performances as states deviating from the baseline 

system, those sustaining local minima may act as common bases from which diverse functions 

arise or as fundamental elements of maintenance of dynamic brain systems. It may be that the 

baseline cerebral cortex system is configured to allow network systems to effectively transition 

among diverse brain states, which may be a necessary element in the workings of the complex 

network systems exhibiting multiple stable states.  

All these transition characteristics may possibly be embedded in the nonlinear coupling over 

the structural network. We speculate that network topology may provide a biased playground of 

multistability, and endogenous fluctuation during resting-state may drive state transitions over the 

structural playground. This interpretation about the interplay between network topology and noise 

is in line with the dynamic nature of the brain9,24. In the current study, we showed that the 

multistable nature of brain states and the well-organized properties of the transition processes can 

emerge from nonlinear interactions over the cortical brain network.  

 

Resting-state brain dynamics and non-stationary functional connectivity have recently been 

explored by evaluating brain-connectivity over the sliding windows from the viewpoint of a linear 

system15-23. For example, Park, et al. 16 assumed linear interactions (connectivity) between brain 

regions change by time, and these time-dependent interactions were estimated for consecutive 

windows. In contrast, multistability in the complex system is an emergent property of nonlinear 

interactions among nodes in the system, without any changes in the internal connectivity. From 

the perspective of the nonlinear system, Hansen, et al. 40 suggested that non-stationary functional 

connectivity (FC) (particularly, rapid transitions switching between a few discrete FC states) can 

be explained by the non-linearity of the nodal activity that derives the structural brain system. 

Spiegler, et al. 70 attributed the nonstationary FC to the criticality of the nonlinear brain system 

embedded in the structural network topology. Similarly, Cabral, et al. 58 also showed that dynamic 

functional connectivity can emerge from a static structural connectivity with various non-linear 
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dynamic models of the brain. They showed that diverse FC states are emergent when the brain is 

operating at the edge of criticality. Pillai and Jirsa 71 also showed that multiple sub-states undergo 

structured flows on the manifold of the low-dimensional state spaces (functional subspaces) and 

this emergent behavior is attributable to the synaptic coupling level over the nonlinear 

interactions. Rabinovich, et al. 72 argues that both flexible and reproducible transitions among 

multiple meta-stable states can emerge in the nonlinear system, which may explain state 

transitions in the decision-making process. All those studies40,58,70-72 are based on a model with 

nonlinear temporal dynamics described using a differential equation. In terms of the nonlinear 

interaction and its consequent emergence of multiple states in the complex brain, our approach 

using pairwise MEM is in line with those studies40,58,70-72. However, the current evaluation differs 

from those studies in that the analysis of brain dynamics with a pairwise MEM is based on the 

statistical mechanics, which deals with the emergence of stable states and their transitions in 

terms of probability. Nevertheless, the two approaches (analysis with a differential equation and 

analysis in the statistical mechanics) are known to be equivalent since ensemble probability 

distributions of each state (in statistical mechanics) can be derived from a large number of 

trajectories as solutions of a differential equation (for a rigorous explanation, see ergodic theorem 

in the statistical physics).  

A small number of major transition paths in the current study may serve as manifold-like 

transitions found in Pillai and Jirsa 71, where a lower dimensional manifold of state transitions 

was induced by an asymmetric interaction (due to task). The organized state transitions explored 

in this study may be correspondent to reproducible transitions among multiple meta-states in 

Rabinovich, et al. 72.  

 

The current study has several limitations and challenges. Due to the high computational cost 

and the requirement of a large sample size, we evaluated the dynamics of a reduced brain system 

at each hemisphere (particularly focusing on the left hemisphere) but did not evaluate those of the 

whole brain system. In spite of strong symmetry e.g., Kang, et al. 24, the interaction between two 

hemispheres and its effect on the dynamic system in the whole brain system remain to be 

explored. We speculated that the dynamic properties of the whole-brain nonlinear system would 

be much more complex. In spite of technical challenges, exploration of the state transition 

properties of the whole brain system with more precisely parcellated brain regions would greatly 

expand our understanding of the brain system.  
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In the preprocessing step, we chose to conduct a global regression as we did for the 

subcortical brain system in our previous study24, which showed that the global regression 

emphasizes properties of the state dynamics. Since the current study focuses on the dynamics of 

brain sub-states in an equilibrium, i.e., a period without statistical changes in the global properties, 

and since the sub-states were defined in terms of spatially distributed activity patterns, we 

considered the relative distribution of brain activity as more adequate in representing dynamic 

brain states than factors due to global fluctuations.  

 

Previous studies have revealed alterations in the dynamics of networks associated with brain 

disorders such as schizophrenia73,74 and autism75. A growing number of studies are showing 

altered dynamics in other brain disorders as well. However, the dynamic properties in brain 

diseases have not been thoroughly researched. The current frameworks for dynamic brain states 

can be used to identify altered dynamic architectures in neuropsychiatric disorders. Research 

using clinical data will yield results that can validate the usefulness of the proposed approach. 

  

 

 

MATERIALS AND METHODS 

Resting-state fMRI data set  

The pairwise MEM (explained in the following section) was generated using rs-fMRI data of 

470 participants (192 males, 278 females, ages: 29.19 ± 3.51 years) from the HCP database41, 

which was used in our previous study24. Briefly, all data were sampled at TR= 0.72 s, during 4 

runs, with 1200 time points per run. A time series of the first principal component scores (i.e., 

eigenvalues) after applying a principal component analysis to fMRI time series at all voxels 

within a region was extracted as a signal for each region. The effects of rigid motion and their 

derivatives were regressed out, followed by linear detrending and despiking of the extracted 

signals46-49. Although there is an ongoing debate concerning filtering and global regression, we 

regressed out global signal changes in the whole-brain mask to emphasize short-term spatial 

patterns in representing specific brain states. Indeed, the current analysis is based on the 

assumption of the resting-state being in an equilibrium, i.e., without long-term statistical 

(temporal) changes in the dynamic properties.  

Since computational cost dramatically increases by degree of the freedom of the system (2N, 

N: number of nodes), we extracted the rs-fMRI time series of only 19 regions of interest (ROIs) 
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out of 33 cortical regions defined in the automated labeling map50. In choosing 19 ROIs to define 

a cortical state, we included brain regions associated with the default mode network, the salience 

network, and higher cognitive brain areas51 and excluded primary/secondary sensory and motor 

cortical regions in the evaluation. We also confined ROIs to a hemisphere (particularly to the left 

hemisphere) since previous studies showed strong symmetric activities (e.g., symmetric 

independent components found in many previous studies, including Smith, et al. 52) and strong 

interhemispheric connectivity e.g., Kang, et al. 24. Co-active regions across hemispheres behave 

similar time courses and, thus, are considered to be less informative in defining diverse brain 

states.    

The ROIs used in this study are the precuneus (PC), parahippocampal gyrus (PH), caudal 

middle frontal gyrus (cMF), fusiform gyrus (FG), inferior parietal lobe (IP), isthmus cingulate 

gyrus (IC), lateral orbitofrontal gyrus (lOF), medial orbitofrontal (mOF), pars-opercularis (Op), 

pars-orbitalis (Or), pars-triangularis (Tr), rostral anterior cingulate gyrus (AC), rostral middle 

frontal gyrus (rMF), superior frontal gyrus (SF), superior parietal gyrus (SP), supramarginal gyrus 

(SM), frontal pole (FP), temporal pole (TP), and insula (IN) in the left hemisphere (Figure 1A). 

The ROIs in the left-hemisphere were mainly evaluated and presented in the current study. 

However, we confirmed that similar results were obtained from the ROIs in the right-hemisphere 

(see Supporting Information, Section S2).  

For each ROI, signals were thresholded to represent inactive (0) and active (1) states. Since 

the number of local minima was maximized when the threshold was zero in the empirical 

evaluation (unpresented) and in our previous analysis24, we selected zero as the threshold to 

binarize regional states after global regression (Figure 1B). A brain state was defined by merging 

all (binarized) 19 regional states into a state vector (the number of elements of a state vector is 

19). Due to a high sample size demand to estimate brain states (for all 219 possible states), we 

concatenated all brain state samples from four sessions of 470 participants into a group-level 

sample data set (the total number of state samples, 1200 samples × 4 sessions × 470 participants) 

and estimated parameters of the group-level pairwise MEM using the method described in the 

following section.   

 

Construction of pairwise maximum entropy model (MEM) 

To analyze resting-state activity in the cerebral cortex, we utilized the pairwise MEM 

estimation approach described in previous studies (Figure 1B)24-26.  
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The estimation process consists of a step for defining brain states and a pairwise MEM model 

for state dynamics, and an optimization step for MEM model parameters to fit probability 

distributions of empirical brain states and states generated by the model. Details of the model 

construction are provided in our previous study24 (for the mathematical details, see review ref.53).   

Briefly, the brain state at time t is represented as a state vector:  

 V��� � ���, ��, ��, … , ��	.      (1) 

The value of �� is either 0 (inactive) or 1 (active), and N represents the total number of nodes (or 

ROIs).  

In the pairwise MEM, the average of each node activity,  


��� � �

�
∑ ������
��� ,          (2) 

and the averages of all pairwise products,  


���	� � �

�
∑ ������	����
��� ,      (3) 

are fixed to characterize the system. With these constraints, maximizing the entropy S  

 � � ∑ ���
� ln ���
���


�� ,    (4) 

derives the following probability of the state Vk , p(Vk), as a Boltzmann distribution 

���
� � �������

∑ �������	�

�
�

,         (5) 

where E(Vk) represents the energy of the state Vk, 

 ���
� � � ∑ ��
�
��� ����
� � ∑ ∑ ��	����
��	��
��

	�
�
��� .    (6) 

The parameters Hi and Jij represent the activation tendency (baseline sensitivity) of node i and the 

pairwise interaction between nodes i and j, respectively. A gradient ascent algorithm was 

employed to estimate MEM parameters, Hi and Jij. These parameters were iteratively updated 

using the following equations, 

��
��� � ��

��� � α�log
����

����
 ,          (7) 

��	
��� � ��	

��� �  α�log
������

������
 ,         (8) 

Here, 
���� and 
���	�� were calculated as follows: 


���� � ∑ ����
� ���
���


�� ,           (9) 


���	�� � ∑ ����
� �	��
� ���
���


�� .   (10) 

Scale parameter ag was initially set to 0.1. The parameters were optimized until the gradients 

reached a value lower than 10-5. In the calculation for the experimental probability distribution of 
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brain states, we calculated the frequency of each state in the group-level sample data set described 

above. 

 

To evaluate the effectiveness of the pairwise MEM, we calculated the accuracy value, rD,  

�� �
�����	�

��
.       (11) 

Here, Dk is the Kullback-Leibler divergence between the probability distributions of the k-th order 

model network and the empirical network, 

�
 � ∑ �������� �
��

���
������

������
,    (12) 

where pN represents the empirical distribution of the network state. We also evaluated the 

reliability parameter ER, 

�! � ��

��
.      (13) 

Here, rs and Sk are given by  

�� �
�����	�

�������
,    (14) 


 � � ∑ �
������ "�
����#��

��� .    (15) 

The measures rD and rS evaluate the adequacy of the pairwise MEM over the independent MEM 

in explaining time series, in two different aspects; rD and rS use Kullback-Leibler divergences and 

difference of the entropy between independent (1st order) and pairwise (2nd order) MEMs. The 

reliability ER was defined to compare those two different measures. If Hi and Jij are estimated 

without error, ER is equal to 1.  

   

Energy landscape analysis  

To describe the dynamics of the cerebral cortex system at rest, we performed the energy 

landscape analysis. More specifically, first, we elucidated the local minima (attractors), and then 

evaluated energy barriers between pairs of attractors, following the procedure described in the 

previous paper24,26.  

To construct an energy landscape, the distance between two states should be first defined. 

Based on this distance, neighbor states can be defined to extract local minima. Following 

previous energy landscape studies, we defined the distance between two states as the number of 

elements (bits) that differ between two state vectors. We also assumed a gradual state transition, 

and the energy landscape was examined by changing one element of the state vector for each step.  
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The local minima (also called, stable states) were defined in states that have lower energy 

(more frequent) relative to their neighbors. To evaluate the energy barrier for each local minima 

pair, the lowest energy pathways were extracted by using the disconnectivity graph analysis54. 

Specifically, for each possible pair of local minima, we recorded the shortest path connecting the 

two local minima. The highest energy on this path was selected as a threshold to remove states 

that exhibited higher energy than the threshold. We repeated this step until the two local minima 

had been disconnected. The highest energy value of the last connected path was assigned to the 

threshold of the local minimum pair. The energy barrier, EB, between two local minima i and j, 

was defined as the lower value between Eth(Vi,Vj) − Vi and Eth
 (Vi,Vj) − Vj, where Eth

 (Vi,Vj) 

represents the threshold as defined above. These disconnectivity graph calculations were 

performed using the i-graph library55. 

 

Construction of the state transition networks 

In the present study, we constructed three types of state transition networks; a state transition 

network composed of all possible states along transition pathways among local minima (STN-FS), 

a state transition network of states from local minima toward the global minimum (STN-GM), 

and a state transition network among TSs and local minima states (STN-LM).  

We first constructed a STN-FS as a directional weighted network (Figure 2A). For all 

possible pairs of local minima, state transition pathways were identified as described in the above 

section. All states on the state transition pathways among local minima were considered nodes of 

the STN-FS. Since the forward and backward state transition pathways were identical for a pair of 

local minima, we only considered the state transitions from the higher to lower local minima. For 

all edges (transitions between pairs of states), we assigned weights using a transition rate, which 

is given by 

$%���� �. 

Here, �  represents the energy barrier (or activation energy) which is the energy difference 

between the highest energy on the transition path and the energy of the initial state (see Figure 

1C).  

 We then constructed the STN-GM to focus on the details of the state transition processes 

toward the global minimum (Figure 2B). To construct this network, all nodes and edges that were 

not connected to the global minimum in the STN-FS were removed. In the STN-GM analysis, we 

particularly identified intermediate states that mediate multi-step transitions toward the global 

minimum. 
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In order to focus on the transition rate among local minima, we constructed a STN-LM 

(Figure 3A), considering local minima and TSs as nodes and transition rates as edges. Note that 

the transition rate between two states only depended on its energy barrier (maximal energy 

difference) along the pathway. Based on the transition rates in STN-LM, we evaluated the 

architecture of the state transitions of the system by applying a cluster analysis of transition rates 

to differentiate intra- and inter-group transitions. The clustering of transitions in the STN-LM was 

conducted using the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) 

algorithm56 with Euclidian metric; distances between nodes were defined by transition rates.  

The constructed network was analyzed in terms of the network theory using node degree 

(frequency of occurrence during state transition) and path length (number of transitions to reach 

the target state). We also analyzed the effective path length between local minima, which is 

defined as the difference between the total path length (number of transitions) and the Hamming 

distance (number of different elements between two state vectors, i.e., number of regions that 

showed active/inactive differences) of the initial and final states.  
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Table 1 
Definitions of terminologies  
Terminology Definition in this study 

State, Vi 
 

A distributed brain activity pattern (a 19-dimensional binarized 
vector) 

Stable state A local minimum in the energy landscape, a brain activity pattern 
that sustains itself, and returns to its state following little 
perturbations. A state Vi is a stable state, if it satisfies, E(Vi) < 
E(Vnei), where Vnei are all neighbor states and E(Vi) is the energy of 
the state Vi. 

Neighbor state A states Vj is a neighbor state for a state Vi, if d(Vi, Vj) = 1, where 
d(Vi, Vj) represents Hamming distance, i.e., the number of different 
elements (regional activity) in the vectors of two brain states Vi and 
Vj. 

Hub state A highly connected (high node degree) state in the state transition 
network, indicating frequently occurring (or visiting) states while 
transitioning among different brain states. 

Rate-determining 
transition state (TS) 

When a transition path contains more than one local minima on the 
path (except for initial and final local minima), the transition path 
has multiple transition states (saddle points). The highest energy 
indicates the least occurrence. Among multiple transition states, the 
state with the highest energy determines the transition rate of 
transitioning between two states. The rate-determining transition 
state is referred to the transition state (TS) of the transition path 
between two states in the current study.  

Intermediate state A stable state on a transition path from a state to the other state, 
except for the initial and final states of the transition path. 

Energy Minus log (occurrence) probability of a state. Probability of 
appearance at a low energy state is higher than those of high energy 
states. In this study, the probability distribution of the states follows 
the Boltzmann distribution, which is given by Eq. 5.  

Transition path The path that has the minimal energy barrier among all possible 
paths from a local minimum to the other local minimum.  

Transition rate Transition speed from a local minimum to the other local 
minimum, defined as exp(-EB) based on the state transition theory. 
EB is the energy barrier which is the energy difference between the 
highest energy on the transition path and the energy of the initial 
state.  

STN State transition network (STN) composed of brain states as nodes 
and transition rates as edges.   

STN-FS A full state transition network composed of all possible states along 
transition pathways between pairs of all stable states (local 
minima). 
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STN-GM A state transition network composed of all states on the path from 
all local minima toward the global minimum.  

STN-LM A state transition network composed of rate-determining transition 
states and local minima. 
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Figure legends 

 

Figure 1. Procedures of the present study. (A) Regions of interest (ROIs) in the human cerebral 

cortex are shown. (B) Functional magnetic resonance (fMRI) data of the resting-state were 

binarized to represent brain states (active or inactive). These binarized states were used to 

construct the pairwise maximum entropy model, which was used to construct the energy 

landscape. (C, D) An illustration of the construction of the state transition network is presented.  

Local minima (LM) and transition states (saddle points, TS) on the transition pathway in the 

energy landscape (C), were used as nodes in the transition network as shown in (D). For each 

pathway, a transition rate was assigned as the weight on its edges (steps on the pathway) of the 

state transition network. Among transition states along the path, the transition state with the 

highest energy on the pathway determines the transition rate (called rate-determining transition 

state). Therefore, for simplicity, we refer to the rate-determining transition state as the TS for the 

transition between two states. LM A, LM B, LM C indicate local minima and TS BA indicates the 

transition from B to A, and TS CA, the transition from C to A. EB indicates the energy barrier in 

the transition path. The red, green, and magenta color nodes represent local minima, transient, and 

transition state nodes, respectively.  
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Figure 2. Analysis of the state transition networks. (A) The state transition network among full 

states (STN-FS) is shown in the left panel. We assigned all states in the state transition process to 

the nodes. The right panel shows a histogram of node degrees for all states (nodes) in the STN-FS. 

A transition state, TS2, has a significantly high node degree. (B - C) State transition processes 

(STN-GM) from local minima (LM) toward the global local minimum (LM11) is shown in (B). 

An illustration of the state transition processes in STN-GM is presented in (C). (D) Two 

representative examples, state transitions from LM6 to LM11 (upper panel) and from LM14 to 

LM11 (bottom panel), are shown. TS represents a transition state (a saddle point). The green, blue, 

and orange colors represent local minima, transient, and transition states, respectively. 
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Figure 3. Analysis of the state transition network (STN-LM) composed of rate-determining 

transition states (TS) and local minima states (LM). (A) The STN-LM is shown. Black and 

gray colored lines represent an inward direction to and an outward direction from the TS. (B) 

Local minima (LM) were clustered according to energy barriers. The leaf ends of the dendrogram 

represent the energy values of the corresponding local minima. (C) Activation patterns of the 

local minima. The “~” sign represents complementary states. For instance, LM2/~LM14 indicates 

that LM2 and LM14 are each other’s complementary states. (D) Activity patterns of the transition 

states are shown with TS2 and ~TS2 as major hub transition states. The red and blue dots 

represent the active and inactive states of the ROIs. The green and orange colors represent local 

minima and transition states. 
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Figure 4. Path lengths and Hamming distances of the state transitions in the TS2 and ~TS2 

systems. The ~TS2 system indicates transition pathways when the TS2 node was removed. 

(A) Definitions of the path lengths from the initial (I) to the final state (F) with transition state 

(TS) are presented. (B) Positive correlations between the energy barriers and Hamming distances 

of the initial and final states are presented. (C) Hamming distances between the local minima and 

TS2 (or ~TS2) are presented for each group. (D) Full path lengths are plotted according to 

Hamming distances of the initial and final states. (E, F) Path lengths between initial and transition 

states (E), and path lengths between final and transition states (F) are plotted according to their 

Hamming distances. The definitions of the groups (G1, G2, and G3) are presented in Figure 3A. 

In (B) and (D) - (F), the left and right panels represent the results of the TS2 and ~TS2 systems. 

The red points represent intra-group state transitions (i.e., transitions of group 1 → 1 and group 2 

→ 2). The blue and green triangle points represent the results of the state transitions between the 

inter-groups; group 1→2, (blue) and group 2→1 (green). 
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Figure 5. Comparisons between baseline and perturbed systems. (A) Total number of local 

minima in the perturbed systems, perturbed by changing global-scale pairwise interactions; αJij. 

The state transition networks among full states (STN-FS) of two representative cases (α = 0.8 and 

1.2) are shown in the lower panel. (B) Probabilities of the node degree and effective path length 

in the state transition network are plotted. The red, blue, and green colors represent α = 1.0, α = 

0.8 and 1.2. (C) Local minima were clustered according to energy barriers. The leaf ends of the 

dendrogram represent the energy values of the corresponding local minima. (D) The state 

transition networks (STNs-LM) composed of rate-determining transition states (TS) and local 

minima states (LM) of two perturbed systems are presented. The green and orange colored nodes 

in the reduced state transition networks represent local minima and transition states, respectively. 
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Figure 6. Illustrative analogy of the state transitions in the cerebral cortex system at rest. (A) 

A schematic energy landscape contains six stable states, which are classified into two major 

groups. (B) A representative pathway of the state transition is shown. Several stable states (local 

minima) operated as intermediate states of the state transition processes. (C) The hub transition 

state (saddle point) TS2 mediates the inter-group transition process between stable states in the 

two groups. (D) ~TS2 also operated as an alternative hub transition state (saddle points) when 

TS2 was removed. This suggests multiple pathways and indicates redundant mechanisms of state 

transitions. Since the energy difference between the TS2 and ~TS2 is small, transition rates of the 

two pathways, colored red and blue, are similar.  
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