
RESEARCH ARTICLE

Running head: PLANT KNOWLEDGE GAPS

What we (don’t) know about global plant diversity

William K. Cornwell1 William D. Pearse2 Rhiannon L. Dalrymple1 Amy Zanne3

1Evolution & Ecology Research Centre, School of Biological, Earth and Environmental

Sciences, UNSW Sydney, Australia
2 Department of Biology & Ecology Center, Utah State University, Logan, UT, USA
3 Department of Biological Sciences, George Washington University, Washington, DC,

USA

Keywords: see below

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 31, 2018. ; https://doi.org/10.1101/404376doi: bioRxiv preprint 

https://doi.org/10.1101/404376
http://creativecommons.org/licenses/by/4.0/


Summary

Rationale

The era of big biodiversity data has led to rapid, exciting advances in theoretical and ap-

plied biological, ecological and conservation sciences. While large genetic, geographic

and trait databases are available, these are neither complete nor random samples of the5

globe. Biases in species absence in these databases create problems, reducing our infer-

ential and predictive power.

Methods

We performed a comprehensive examination of the taxonomic and spatial sampling in

the most complete current databases for plant genes, locations, and traits.10

Results

Only 17.7% of the world’s described land plants feature in all three databases, meaning

that more than 82% of plant biodiversity lacks representation in at least one database.

Species coverage is highest for location data and lowest for genetic data. Bryophytes and

orchids stand out taxonomically and the equatorial region stands out spatially as poorly15

represented in all databases.

Conclusion

We have highlighted a number of clades and regions about which we know little func-

tionally, spatially and genetically, on which we should set research targets. The scientific

community should recognize and reward the significant value, both for biodiversity sci-20

ence and conservation, of filling in these gaps in our knowledge of the plant tree of life.
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Introduction

In perhaps the first plant trait database, Theophrastus of Eresus (371–287 BC), a stu-

dent of Plato and Aristotle, assembled and published a list of the woody and herbaceous

plants growing in his garden (Theophrastus, 1916). Since then the nature and scale of

plant databases have changed, but the goal of organized, accessible information about35

the world’s plants remains the same. For the first time, after more than 2000 years of

research, global versions of Theophrastus’ list are now on the horizon.

Global biological databases have two goals: (1) provide the best global snapshots of

biodiversity available at a given time, and (2) organize their underlying data to facilitate

their intersection with other datasets to address research questions. From decades of40

hard work and accumulated knowledge, we know more now than we ever have about

biodiversity. The hurdles stopping us from attaining our goal of available, comprehen-

sive global plant databases remain daunting but also increasingly surmountable. In this

effort, we believe it is worthwhile, periodically, to take stock of what information we have

and what we still lack. Here we ask how much do we know about global plant diversity,45
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and what and where are the most conspicuous blank pages in our encyclopedia of plant

life?

There are four primary classes of global biological data: taxonomic, geographic, ge-

netic, and trait. Together they provide the most complete picture currently available of

where and how organisms make a living across the globe and how they have evolved50

through time. Each of these data types is complex in its own way. Two classes, taxonomic

and trait, require taxon-based specialized knowledge—botanists are required to build

and curate such datasets [e.g., The Angiosperm Phylogeny Website http://www.mobot.

org/MOBOT/research/APweb/, The Plant List (http://www.theplantlist.org/), The

State of the World’s Plants Report RBG Kew (2016), and TRY Kattge et al. (2011)]. In con-55

trast, data within genetic and geographic databases share similar structure and curation

protocols across all organisms and as such data for plants, animals and microbes can be

usefully kept in one place. General databases for all organisms exist for genes (GenBank;

Benson et al., 2013), phylogenetic relationships based on those genes (The Open Tree of

Life; Hinchliff et al., 2015) and spatial observations (GBIF; http://gbif.org/). Here,60

using The Plant List as our taxonomic backbone, we explore the data available in Gen-

Bank, GBIF, and TRY, as these are the most complete current databases with fundamental

information about global plants.

These three databases (GenBank, GBIF, and TRY) were assembled from numerous

research projects with diverse original goals and data availability; this diversity, while65

valid within each effort, creates global-scale biases in terms of which species feature

in a particular database and which do not, which in turn effects the usability of data

(Beck et al., 2014, 2013; Hinchliff & Smith, 2014; Gratton et al., in press). The globally

uneven distribution of research funding may play a role in creating biases in data collec-

tion by limiting researchers’ efforts to certain geographical regions or taxa (particularly70

to species of commercial or cultural value). Furthermore, biodiversity is not evenly dis-

tributed across the globe. For instance, the high diversity, rarity, and beta-diversity of

many tropical ecosystems means that the sampling effort required to capture some per-

centage of the species present during a sampling trip at low latitudes is much more inten-
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sive than at high latitudes. Global patterns in biodiversity, combined with patchy sam-75

pling effort, has left us with gaps in biodiversity data. Finally, non-random gaps within

a given database can intersect with gaps in other databases in surprising ways, reducing

the number of species about which we have a comprehensive understanding. One of our

main aims is to examine these biases, gaps, and overlaps.

Such data paucity matters. Lack of data is a major impediment to conservation: we80

cannot save a species if we do not know where it is or what it needs to live. Data are

crucial to identifying conservation crises (Cardoso et al., 2011; Rodrigues et al., 2006;

Keith, 2015). For example, high-resolution remote-sensing deforestation maps (Hansen

et al., 2013), when combined with even small amounts of location data can identify rare

species at risk of extinction and worthy of conservation efforts. A great deal of resources85

go into conservation actions for some well-studied species that are at risk; in contrast,

poorly-studied species may be going extinct before conservation biologists are able to

interrogate a geographic database to determine where they are found or a trait database

to determine its form or characteristics should they go looking for it. Similar to recent as-

sessments of gaps in data for birds (Team eBird, July 2014) and fungi (Nilsson et al., 2016),90

it is our hope that an assessment of gaps in plant data across geographic space and the

extant branches of the plant phylogeny will spur the sharing and/or further collection of

data where they are most sorely needed.

By isolating the key spatial and taxonomic knowledge gaps in plant data, we hope to

increase our chances of filling in the most important missing pages in the book of plant95

life as efficiently as possible. To quantify and understand these gaps we present an anal-

ysis of recent downloads from global plant databases. Here, we (1) quantify the species

coverage in each of three GenBank, TRY, and GBIF databases, and (2) quantify the inter-

section of these databases, reporting the proportion of well-studied species (in all three

databases) in contrast to patchily-studied species (in two or fewer databases) and poorly-100

studied species (in zero databases). Finally, we (3) identify the phylogenetic clades and

geographical regions for which we have different amounts of trait and genetic data, al-

lowing us to contrast the clades and parts of the world for which we have relatively poor
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and rich coverage. While plant scientists may all agree that there are gaps in our knowl-

edge of plants, they are unlikely to know where the most gaping holes occur (FitzJohn105

et al., 2014). By highlighting the clades and regions in most urgent need of attention, we

hope to turn what appears an insurmountable task into a manageable checklist of gaps

to be filled.

Materials and Methods

Working across databases requires a common taxonomy: to combine information about110

species from one database with another requires a common definition of what species

exist. We consider The Plant List (TPL; http://www.theplantlist.org/) to be the

most complete and widely-accepted list of plant species (and their taxonomic place-

ment) at the global scale. At the time of writing, TPL (v1.1) records 350,699 names as

“accepted” species of land plants. The taxonomic scope of this analysis (and of TPL) is115

embryophytes (land plants), including the bryophyte grade (mosses, hornworts, and liv-

erworts), lycophytes, monilophytes (ferns and allies), and spermatophytes (seed plants

including gymnosperms and angiosperms). We emphasize that our use of TPL is conser-

vative, as by making use only of species that are “accepted” we exclude less studied lin-

eages in need of additional taxonomic attention. Further, variation in how sub-specific120

epithets are handled among databases limits our analysis to species binomials, and so

we do not address cases where databases contain data on different sub-species or vari-

eties of the same species. Continuing to resolve taxonomic controversies in a globally-

accepted, versioned, and updateable list will help interoperability of these databases and

benefit biodiversity science.125

Databases

We examine the state of three databases: GenBank (genetic; Benson et al., 2013), the

Global Biodiversity Information Facility (GBIF—geographic; http://www.gbif.org/),

and TRY (functional traits; Kattge et al., 2011). These databases were selected as we
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consider them to be the three most complete databases on plant biodiversity currently130

available for the most important characteristics of plants. Below we describe how each of

the databases (genetic, geographic, and functional trait) were downloaded and analyzed.

Each database organization does its own synonymy updating, so we did not attempt to

improve on those steps.

Data were downloaded on the 21st of May, 2018. All of our code and analyses are avail-135

able online (https://github.com/cornwell-lab-unsw/sTEP_overlap). The online

access of our data and code allows for others to adapt our work for other purposes and

permits future readers to compare how our knowledge of plants continues to change over

time. We note that data quality is an issue with all three of these global databases. The

quality of the data within these global collaborations continues to improve but errors re-140

main. Improving data quality is an important and ongoing effort (Franklin et al., 2017;

Cicero et al., 2017; Veiga et al., 2017) that will likely never end.

Geographic data. We obtained a complete set of GBIF observations with georefer-

ences (i.e., the observation had a location associated with it) and had no “spatial issues”.

Removing any records with “spatial issues” means our records were free from obvious145

issues (e.g., latitude/longitude location swaps or mislabelled identifications over water).

In our May 2018 download of GBIF we obtained 174,464,135 observations (tab-delimited

file-size 101 GB). There were many incomplete identifications (e.g., Carex sp.) in the

database, which are removed in our processing. Once these data are synchronized to the

TPL species list, we are left with a total of 150,270,519 observations for 257,266 species.150

Trait data. We use the species-based summary of TRY (Kattge et al., 2011) data avail-

able online (https://www.try-db.org/dnld/TryAccSpecies.txt) to obtain a list of

all species for which any trait data are available in TRY. After synchronizing the species

names to TPL, the database contains 124,414 species for which we have data on at least

one trait.155

Genetic data. We compiled a list of all taxa listed within NCBI’s taxonomy (which

is used in all GenBank searches) as green plants (Plantae). To do this, we downloaded

NCBI’s complete taxonomy network, then extracted all named terminal nodes (i.e., taxa)
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subtending from the ‘green plants’ node (number 33090 at that time). After synchroniz-

ing the species names to TPL, the database contains 108,616 species.160

Analysis

Our first and second aims are to quantify the coverage and intersection of the three

databases (TRY, GenBank, GBIF). We examine the presence and absence of records for

each species in TPL for each database, allowing us to take stock of the species cover-

age and overlap of available data. We thus identify how many species are well-studied165

(i.e. have more than zero data in all three databases), patchily-studied (i.e. have more

than zero data in two or fewer databases) and poorly-studied (i.e. have zero data in all

three databases). While this approach determines that species that are present in each

database with at least a single record are well-studied, it does not mean that these species

are particularly well represented in any given database. There is no single metric by170

which we could determine whether a species is ‘sufficiently’ covered in these databases,

since different purposes have different data requirements; we instead focus on describ-

ing the presence or absence of any data at all.

Our third aim is to examine the taxonomic and geographic distribution patterns in

sampling in all three databases. To do this, we identify the phylogenetic clades and geo-175

graphical regions for which we have some trait and genetic data, allowing us to contrast

the clades and parts of the world for which we have relatively poor coverage. At its core,

our approach quantifies the extent of deviation from completely unbiased sampling. As

with all analysis at this scale, significance testing would be of little use: all patterns de-

scribed would be highly significant. Instead we seek to quantify the extent to which sam-180

pling is uneven across taxonomy and geography.

For taxonomy, we analyze all families for the degree to which sampling (species cover-

age) is non-randomly higher or lower than the overall rate across the entire database. To

do this we apply the KSI method described in Cornwell et al. (2014), modified to use the

G-statistic (Sokal & Rohlf, 1981) as our analysis focuses on presence/absence of data (a185

binary variable), unlike the continuous data in Cornwell et al. (2014) (code for this analy-
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sis is available at www.github.com/traitecoevo/ksi). The key feature of this approach

is that it statistically balances the size of the clade with its deviation from the mean sam-

pling rate (i.e., presence of records for species in that clade in a given database) across

all land plants. Thus our results are not driven by (true) variation in the diversity of the190

families.

For geography, we take two approaches to determine spatial data gaps in trait and ge-

netic databases: one considers all GBIF observations, while the other first calculates the

median latitude for each species. The observation (N=150,270,519) or species (N=257,266)

is then classified as either with or without trait data, with or without genetic data, and195

with or without both trait and genetic data. We fit six generalized additive models for

very large datasets (function "BAM" within Wood, 2017) with the only predictor being lat-

itude. The model estimates the probability of an observation or species having trait data,

genetic data, or both, at a given latitude. Because fitting generalized additive models is

memory intensive, even with 128 GB of RAM, random sub-sampling of the observation200

database down to 10,000,000 points was necessary. This sub-sampling did not affect the

result, however, with repeated samples producing identical fits.

To discover proportionally under-sampled families by biogeographic region, we split

the raw GBIF observations by continent (Environmental Research Systems Institute ,

ESRI). We isolate species that are only found in one biogeographic region, that is, species205

endemic to that particular region. Considering each region separately, we use the KSI ap-

proach to quantify the most disproportionately under-sampled families within each re-

gion. This approach was designed to identify region-specific gaps in data. Note that this

analysis excludes both species with distributions on multiple continents and species that

are invasive somewhere, but we expect these species to be in the well-studied category.210

Results

Of the accepted plant species of the world, 17.7% (61,902 species) are well-studied, mean-

ing we know something about their genetic make-up, something about their functional
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traits, and something about their geo-referenced location (Table 1). These species make

up the "well-studied" section of the Venn diagram (Figure 1), where genetic data, trait215

data and geographic data overlap.

More than half of all plant species - 55.6% - are patchily-studied across the datasets,

meaning they are present in two or fewer datasets (Table 1; Figure 1). Building on cen-

turies of collections and a global network of museums and herbaria, GBIF has by far the

most complete species coverage, with occurrence data for 257,266 species (73.3% of ac-220

cepted diversity). In TRY, trait data are available for 124,414 species (35.5% of accepted

diversity). The database with the least coverage is GenBank, where genetic data are avail-

able for 108,616 species (31.0% of accepted diversity).

For 26.7% of plant species, we know nothing of them but their names. These species

are poorly-studied and we have no genetic, location or functional trait data in the databases225

considered (Figure 1).

Where we know a lot

All large data sources have areas of strength and weakness across the plant phylogeny.

There are several hotspots in our knowledge, and the families that are well-studied (that

is, having higher than average proportion of member species occupying the "well-studied"230

section of Figure 1) tend to be widespread and of economic importance either as food or

resource crops, or as cultivars (Table 3; Figure 3). These include the Poaceae (grasses,

bamboos), Pinaceae (cedars, pines, spruces), Solanaceae (nightshades, with tomatoes,

potatoes, peppers and eggplants), Moraceae (mulberries, breadfruit, jackfruit, figs), Eur-

phorbiaceae (rubber, spurge cultivars), Proteaceae (Macadamia, silky oak, cultivars), Iri-235

daceae (irises, saffron) and Polemonaceae (Phlox). There are well-studied families which

do not have obvious commercial value but may simply have been of interest for research

and exploration by particular research groups: two that came out in the top 10 are the

Zamiaceae (cycads) and Orobanchaceae (broomrapes, mostly parasitic). Other areas of

the phylogeny with good sampling across all datasets are the gymnosperms and early240

diverging angiosperms (Figure 3), perhaps because they were identified by Darwin as in-

formative with respect to the "abominable mystery" of the origin of angiosperms. Some
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of the orders with high coverage (Figure 3) are that way because of their unusually small

clade size. For instance, Trochodendrales and Acorales have full coverage — both or-

ders are comprised of only two accepted species, while Ginkgoales consists of a single245

accepted species.

The spatial patterns in genetic and trait data availability (Figure 2) are evidence of the

non-random distribution of research sites and unequal sampling efforts across latitudes.

There are more data available in GenBank and TRY for the northern hemisphere than the

southern hemisphere and both temperate regions are better sampled than the equatorial250

region (Figure 2). The availability of both trait and genetic data is best around 45 ◦N. If

you were to take a random GBIF observation from that latitude you would have a greater

than 95% chance of accessing trait data for that species, a 90% chance of there being

genetic data, and almost 90% chance of there being both genetic and trait data available.

If you were to select a species at random at this latitude, there would be a 65% chance of255

there being trait data, a 60% chance of there being genetic records for this species, but

only 45% chance of both data types being available (Figure 2).

For many accepted species, there are 10 or fewer geographical observance records

and no genetic or trait data (Figure 4). The species for which there are upwards of 1000

spatial records in GBIF include the dominant trees and shrubs of North America, Europe,260

and South East Australia. As these species are prevalent in regions where many scientists

live and work, they are well documented in numerous way and make up much of the

"well-studied" section of the Figure 1.

Where we don’t know a lot

While the databases all lack a certain number of species contributing to the known265

extant diversity, there are plant families for which we have little data across all databases

(Table 4, Figure 3). Most of the poorly-studied families, those families that are made up

of species that are undersampled geographically, genetically, and functionally, are moss

or liverwort families, but Orchidaceae, Asteraceae and Begoniaceae also earn this title.

When we consider the taxonomic weaknesses of databases individually, we find that they270

shar similarities in the distribution of data gaps (Table 4). GBIF is extremely poorly sam-
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pled for mosses and liverworts—all of the top ten most geographically undersampled

families come from these two clades. Moss and liverwort families are also undersampled

for both traits and genes, nine and seven of the top ten most undersampled families in

these data sets come from these clades, respectively. The traits of Orchidaceae remain ex-275

tremely undersampled despite its widespread cultivation and intense horticultural use.

For genetic data, the other families that make the top ten most undersampled list are all

fairly diverse and widespread tropical understory families: Begoniaceae, Acanthaceae,

and Piperaceae.

We identify the three family groups for which we have the greatest gaps in data for280

endemic species of each of the different continents (Table 2). As well as seeing similar

overall patterns in data gaps to those outlined above, there are some families which made

multiple appearances. More data are needed for Rubiaceae endemics of Asia, Australia,

NZ and Oceania, and South America; for Asteraceae endemics of Europe, Asia and Africa;

for Lamiaceae endemics of Europe and Australia; and for Araceae endemics of Australia285

and South America.

The low latitudes are hotspots for plant diversity, home to some of the most diverse

ecosystems on the planet, and yet we find ourselves with a paucity of plant data for these

tropical regions. It is in the equatorial region where we find the least species coverage of

genetic and trait data. For instance, if one were to select a single species at random at a290

latitude of 0◦, there would only be a 40% chance of data for that species being available

in TRY, a mere 27% chance of there being data for that species in GenBank (dotted lines;

Figure 2), and less than a 20% chance of both trait and genetic data being available.

Discussion

Shortfalls in our knowledge of global plant diversity295

Our knowledge of plants is incomplete in a number of well-defined ways (see Hortal

et al., 2015), four of which are pertinent to the database resources we have analyzed here.

First, given the rate at which species are being discovered, we are quite confident that we
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have not sampled and described all plant life on Earth—this is the Linnean shortfall in

our knowledge of biodiversity (Lomolino, 2004). Second, we lack basic taxonomic or phy-300

logenetic information on the placement of many plants in the tree of life—this is the Dar-

winian shortfall (Diniz-Filho et al., 2013). Third, we do not know the distribution (range)

of many plants on Earth—this is the Wallacean shortfall (Lomolino, 2004). Fourth, we

do not know about the functional traits of many plants—this is the Raunkiæran shortfall

(Hortal et al., 2015). A major result from our study is that the Wallacean shortfall (26.7%)305

is currently far less severe than the Darwinian (69%) or Raunkiæran (64.5%) shortfalls.

Methods within some lines of scientific inquiry lend themselves well to systematic

sampling. Remote sensing, for example, surveys every pixel of the planet for an exten-

sive range of abiotic and biotic features. Similarly, despite the uneven distribution of

biodiversity and the challenge in getting to remote areas, taxonomy has an inherent goal310

to describe every species on earth. That the Wallacean shortfall is less severe than oth-

ers is due mainly to its strong link to taxonomy related resources — GBIF has had great

success in encouraging herbaria and museum collections to participate in systematic

centralization of data from collections; at the time of writing, a 57th country had joined

the initiative. Nonetheless, there is more to do: the gap in our geographic records of the315

plant kingdom currently stands at 26.7%, meaning that there are 93,433 accepted species

for which we do not know even a single location in the world they grow or have grown.

This is literally lost diversity data—for the species to have been described taxonomically,

it was collected, but the geographic information (the location where that specimen was

collected) been lost.320

As we lack important information about where they live, we also then lack informa-

tion about their ecology and evolution. Most worryingly, without even basic geographic

information, any true assessment of the conservation status of these species is impos-

sible. However, as more of the world’s herbarium collections become digitized and up-

loaded directly to GBIF, or through intermediary initiatives, we do expect that this short-325

fall will decline relatively rapidly. Indeed, comparison of the current coverage of Gen-

Bank, GBIF and TRY to that from a preliminary analysis for this paper in 2015 indicated
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that the Wallacean shortfall is decreasing the fastest (see Appendix 1).

Relative to the Wallacean shortfall, the Raunkiæran and Darwininan shortfalls are

more severe. The explicit goal of complete sampling of plant diversity for either trait330

or genetic data has never been clearly stated perhaps because it was so distant, and the

result is patchy species coverage. The Darwinian shortfall is the most severe of the three:

we have a complete lack of genetic information for 69% of known plant species. Worry-

ingly, this dataset has shown the slowest pace of growth in species coverage over the last

3 years (see Appendix 1), likely because it is much more laborious and expensive to pro-335

duce a single record of genetic information than for either of the other databases. The

Raunkiæran shortfall stands at 64.5% of accepted diversity, which is a considerable gap

in our plant knowledge given the current focus on trait-based analyses in the scientific

exploration of ecological and evolutionary processes. There are other taxonomic groups,

including birds and mammals, for which complete sampling has been an explicit aim,340

and as such relevant trait datasets have high-to-complete species coverage (e.g. Wilman

et al., 2014; Jones et al., 2009). Despite the daunting diversity of land plants, we are now

at the point where complete sampling through targeted campaigns is a feasible goal.

Perhaps the most worrying of these shortfalls is the Linnean as it is hard to know any-

thing about what we do not know; these are the species for which we know literally noth-345

ing and they do not even have a name. Estimations are that the number of un-named

plant species may be 10-20% of the number of known plant species (Joppa et al., 2011)

and that the majority may inhabit diverse, tropical regions (Wheeler et al., 2004). These

may have never been collected (collection of new species in the field may be the greatest

rate-limiting step towards mapping the whole tree of plant life (May, 2004)), or they may350

have been collected but mis-identified or are yet to be described. If they have been col-

lected, there may be associated genetic, functional and spatial data but without a name

as a link, this information is lost to us. It can be difficult for taxonomists to keep up with

the influx of new specimens needing description (and the revisions that new specimens

can warrant), and there may not be the expertise or financial support available to do so355

- often resulting in significant lag time between collection and publication of descrip-
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tions with accepted scientific names (Bebber et al., 2010; Wheeler et al., 2004). With new

information and taxonomic effort the number of accepted species will no doubt rise in

the coming years (see Mora et al., 2011); however, the training of taxonomists and the

financial support of their research in both new and existing collections is crucial to the360

reduction of the Linnean shortfall.

Each of these four gaps in our knowledge of plant diversity combines to create what

we suggest is a fifth shortfall in our knowledge of global plant diversity: we do not know

anything about the geography, anything about the genes, nor anything about the traits

for the vast majority of known plant species. We term this the Venn shortfall, since it365

relates to a lack of intersection among databases. The Venn shortfall is a critical issue

that affects both biodiversity science and conservation. How can we assess conserva-

tion risk of a species if all the information we have about them is a name? The narrow

overlap among the different dimensions of our knowledge of plant diversity means that

much research and policy-decision making is limited to data on a relatively small (17.7%370

of accepted diversity) and non-random subset of plants species, and we know that when

data are biased or extremely sparse we are at risk of missing or misidentifying patterns

or processes(Hortal et al., 2015). If we acknowledge the Venn shortfall as a serious prob-

lem facing conservation biodiversity science, then we can treat this as an important goal

worthy of attention and funding.375

Closing the gaps

While there can never be a complete substitute for real data, temporary solutions have

been proposed to leverage existing data to circumvent the shortfalls we describe above.

These include phyndr, an algorithm that maximizes the overlap between phylogenetic

and species’ data (i.e., trait and spatial Pennell et al., 2016), Phylomatic which uses tax-380

onomic data to fill-in missing phylogenetic data, and approaches which use taxonomic

information to “gap-fill” our knowledge of plant functional diversity (Schrodt et al., 2015;

FitzJohn et al., 2014; Taugourdeau et al., 2014). As human pressure on plant diversity

increases through time, such techniques may be our best hope of estimating policy-
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relevant information immediately but they also introduce uncertainty, and dealing with385

this uncertainty in downstream analyses may be non-trivial. Leaving aside the difficul-

ties involved in imputing data and then going out and collecting it, most simple models

of trait evolution for plants are far from adequate (Pennell et al., 2015) and heterogene-

ity in evolutionary processes among the branches of the tree is common (Eastman et al.,

2011)). Such evolutionary methods can be powerful for filling in small gaps where infor-390

mation on a species can be estimated based on its close relatives, but are thus of limited

use in large clades with poor data coverage. Most worryingly, because gap-filling in most

cases uses taxonomic or phylogenetic information to infer species values, there is the

danger of circularity in many contexts, such as evolutionary and biogeographic studies.

For goals that are specific to the unsampled species—such as, what is the species’ ecology395

and its conservation risk—imputation will simply not be informative given the current

patchy data. Such approaches cannot supersede the collection of novel data, but they do

help us make the most of what data we do have.

Unlike the Linnean shortfall, targeted programs may reduce the magnitude of the

Venn, Darwinian, Wallacean and Raunkiæran shortfalls. Held within the world’s > 3000400

herbaria are almost 390 million specimens(Thiers, 2017) and considerable efforts are un-

derway to increase availability of data from these collections through large digitization

and sharing initiatives (Pyke & Ehrlich, 2010; James et al., 2018). The number of species

for which we have names but no other data is large (13.2%), however, these species must

have had museum/herbarium records at some time. If they still exist and are findable,405

these specimens contain sufficient data to address multiple shortfalls at once: there are

collection location data (albeit for older specimens this tends to be at a course scale (Pyke

& Ehrlich, 2010)), and the vouchers themselves can be sources of genetic and trait data

(Younis et al., 2018; Corney et al., 2012; Li et al., 2015). To some extent this is happening,

but current progress is haphazard, and to be maximally efficient with our sampling ef-410

forts, it is worth (1) prioritizing herbaria that are known to have collections of undersam-

pled taxa, especially those that are missing from all three of the databases, and (2) gath-

ering data from specimens in locations known to be effected by habitat loss as quickly as
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possible (as these specimens might be the only collections that we ever obtain).

Our survey of global plant diversity leads us to make four observations that can in-415

form a more optimal strategy for filling in knowledge gaps. First, grant programs can have

direct impacts on the future of the shortfalls we have demonstrated by incentivizing work

which creates overlapping species data, and such opportunities should be expanded. We

suggest that funding programs should support researchers collecting and sharing data

on undersampled regions or clades of the world. Second, publication of results from ge-420

netic data has long required centralized deposition of raw sequences with meta-data; A

similar approach within collectors of locations and trait data would broaden the base

of contributors and rapidly increase availability of both spatial and trait data. Third, one

clear bias is that many well-studied families are those with some commercial value. How-

ever, species do not need to have direct commodity or cultural usefulnesses to be impor-425

tant (Ehrlich & Wilson, 1991). There is immense basic and applied value in novel data on

undersampled families (orchids, Begoniaceae, Asteraceae, and most bryophyte families

see Table 4) in addressing biases in our datasets to future biodiversity and conservation

science. Last, we need to intensify genetic and trait sampling efforts in undersampled

regions: spatial biases are evident in the availability of both genetic and functional trait430

data.

Conclusions

Despite shortfalls (Linnaen, Darwinian, Wallacean, Raunkiæran, Venn) within and across

data sources, there are more reasons than ever to be optimistic about the future of our

knowledge of global plant diversity. Biodiversity sciences are progressing in leaps and435

bounds, empowered by the sharing of large amounts of data. However, the intersec-

tion of data among our plant databases is particularly patchy and non-random, and as

we move towards a more complete picture of global functional diversity, more data are

clearly needed. By taking a targeted approach to expanding and improving the status of

our data foundations for such work we can progress towards an ever more complete pic-440

ture of the many facets of plant biodiversity, and greater inferential and predictive power
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from our global plant data.

Gap-filling is also a goal among those who study other taxa: interestingly eBird — an

ornithologic citizen science effort — performed a gap analysis similar to ours in 2014 and

were able to generate gap-filling enthusiasm, which led to the sharing of data on 227 out445

of the 421 missing bird species (see https://ebird.org/news/ebirds-missing-species/

and https://ebird.org/news/ebirds-missing-species-v2/). The shear number

of missing species is much larger for plants, but publicizing target lists is a good first

step, and with enough of a reward, progress could be rapid. Let us begin!
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Tables

Table 1: Count of accepted plant species in each of the database and overlap of species
among two- and three-way combinations of databases.

Genbank GBIF TRY All three
Genbank 108616 100507 63783
GBIF 100507 257266 114067
TRY 63783 114067 124414
All three 61902
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Figure 1: Shortfalls in our knowledge of the plant kingdom. (1)The Linnean shortfall
(diversity for which we have no names) is the area outside of the "accepted taxonomic
names" footprint. (2)The Darwinian shortfall (diversity for which we have zero genetic
information in GenBank) is the area outside of the "Genetic data" footprint. (3)The Wal-
lacean shortfall (diversity for which we have zero location information in GBIF) is the
area outside of the "Geographic data" footprint.(4)The Warming shortfall (diversity for
which we have zero records of functional trait data in TRY) is the area outside of our
"Trait data" coverage. (5)The Venn shortfall, a culmination of these first four shortfalls, is
the area outside of where these four kinds of knowledge intersect - the area over overlap
where species are considered "well-studied".

20

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 31, 2018. ; https://doi.org/10.1101/404376doi: bioRxiv preprint 

https://doi.org/10.1101/404376
http://creativecommons.org/licenses/by/4.0/


Dataset

Sample size

by GBIF observation by species

Figure 2: Generalized additive models for the relationship between latitude and avail-
ability of plant data. The left panel models individual GBIF observations (N=150, 270,
519); the right panel models species median values for latitude (N=257, 266). Line thick-
ness is indicative of sample size. Note that tropical areas (esp. just south of the equator)
have the poorest data coverage, and just north of 40◦ N is where we find the best coverage
of both functional trait and genetic plant data.
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Table 2: The three most undersampled families for species endemic to each continent.
Note that endemicity in this analysis is based on gbif observations, and may be a under-
estimate due to species that are invasive elsewhere.

Continent Database Family
Proportion
of species
sampled

Estimated
continental
endemics

Distinct-
iveness
index

Africa TRY Acanthaceae 0.097 963 227.263
TRY Asteraceae 0.195 2513 137.427
TRY Aizoaceae 0.149 955 113.331
Genbank Acanthaceae 0.173 963 87.737
Genbank Begoniaceae 0.009 111 70.565
Genbank Lauraceae 0.061 163 59.395

Asia TRY Orchidaceae 0.050 3085 1094.982
TRY Gesneriaceae 0.028 617 269.321
TRY Asteraceae 0.150 2486 216.418
Genbank Orchidaceae 0.284 3085 149.851
Genbank Begoniaceae 0.051 234 144.026
Genbank Rubiaceae 0.247 1352 118.264

Australia TRY Orchidaceae 0.079 557 295.071
TRY Lamiaceae 0.149 261 72.413
TRY Araceae 0.024 42 32.383
Genbank Orchidaceae 0.217 557 56.275
Genbank Frankeniaceae 0.000 32 28.407
Genbank Rubiaceae 0.144 111 25.815

Europe TRY Asteraceae 0.262 1382 92.533
TRY Orchidaceae 0.103 213 79.508
TRY Lamiaceae 0.192 193 28.876
Genbank Asteraceae 0.158 1382 258.282
Genbank Rosaceae 0.197 615 54.249
Genbank Onagraceae 0.000 24 18.678

North America TRY Crassulaceae 0.181 215 119.096
TRY Pottiaceae 0.000 47 73.190
TRY Bryaceae 0.000 46 71.631
Genbank Myrtaceae 0.064 297 154.550
Genbank Begoniaceae 0.009 109 90.513
Genbank Primulaceae 0.093 215 87.264

NZ and Oceania TRY Orchidaceae 0.077 195 84.651
TRY Rubiaceae 0.153 235 48.578
TRY Pandanaceae 0.051 59 30.951
Genbank Phyllanthaceae 0.098 82 29.027
Genbank Euphorbiaceae 0.059 51 25.326
Genbank Orchidaceae 0.200 195 22.924

South America TRY Orthotrichaceae 0.000 128 182.369
TRY Pottiaceae 0.000 127 180.941
TRY Dicranaceae 0.000 109 155.250
Genbank Rubiaceae 0.148 1923 174.428
Genbank Begoniaceae 0.018 219 107.190
Genbank Araceae 0.129 848 103.845
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Table 3: The most well-sampled families for each database, as well as those which are
well-sampled across all three databases, i.e., having a disproportionately high proportion
of species in the "overlap" section of Figure 1.

Database Family
Proportion

sampled
Estimated
diversity

Distinctiveness
index

TRY Poaceae 0.77 11470 8648.92
Begoniaceae 0.96 1601 2754.26
Euphorbiaceae 0.67 6547 2670.13
Orobanchaceae 0.91 1614 2218.14
Santalaceae 0.90 992 1302.79
Moraceae 0.85 1217 1263.58
Loranthaceae 0.91 887 1185.14
Urticaceae 0.74 1465 895.42
Proteaceae 0.76 1253 854.95
Iridaceae 0.61 2315 644.84

Genbank Brassicaceae 0.53 4065 895.56
Restionaceae 0.84 529 635.86
Apiaceae 0.52 3270 631.14
Liliaceae 0.65 745 365.97
Pinaceae 0.87 255 349.81
Poaceae 0.39 11470 339.32
Zamiaceae 0.88 216 312.67
Polemoniaceae 0.71 455 302.12
Plantaginaceae 0.51 1614 296.57
Ericaceae 0.44 3553 282.12

GBIF Proteaceae 0.96 1253 458.72
Solanaceae 0.88 2677 337.89
Myrtaceae 0.83 5970 335.46
Ericaceae 0.85 3553 258.46
Passifloraceae 0.93 932 247.73
Malvaceae 0.83 4506 232.37
Chrysobalanaceae 0.97 535 230.45
Melastomataceae 0.83 4078 226.11
Iridaceae 0.86 2315 222.26
Piperaceae 0.85 2658 217.26

All three Poaceae 0.31 11470 1319.29
Pinaceae 0.84 255 529.78
Euphorbiaceae 0.27 6547 385.33
Orobanchaceae 0.38 1614 382.65
Solanaceae 0.33 2677 373.78
Moraceae 0.41 1217 365.32
Polemoniaceae 0.56 455 333.91
Zamiaceae 0.71 216 296.21
Iridaceae 0.32 2315 287.26
Proteaceae 0.37 1253 274.77
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Table 4: The most disproportionately undersampled families within each database.
Those families which are undersampled across the board are the "least-scienced", hav-
ing the lowest proportion of Representatives in the "overlap" section the Venn diagram.

Database Family
Proportion

sampled
Estimated
diversity

Distinctiveness
index

try Orchidaceae 0.19 27782 4131.81
Pottiaceae 0.0003 3169 2775.82
Hypnaceae 0.0004 2519 2200.85
Lejeuneaceae 0.0004 2269 1980.10
Bryaceae 0 2103 1849.77
Dicranaceae 0.003 2116 1775.56
Sematophyllaceae 0.001 1629 1403.18
Orthotrichaceae 0.002 1272 1078.43
Brachytheciaceae 0.005 1102 909.56
Hookeriaceae 0.002 831 703.53

genbank Orchidaceae 0.22 27782 1179.95
Hypnaceae 0.05 2519 1048.10
Pottiaceae 0.09 3169 902.62
Begoniaceae 0.02 1601 899.25
Bryaceae 0.07 2103 753.64
Sematophyllaceae 0.09 1629 457.60
Dicranaceae 0.12 2116 423.91
Orthotrichaceae 0.10 1272 316.40
Fissidentaceae 0.07 817 289.72
Acanthaceae 0.19 3948 277.58

gbif Orchidaceae 0.57 27782 3833.24
Hypnaceae 0.40 2519 1249.90
Pottiaceae 0.46 3169 1058.46
Sematophyllaceae 0.42 1629 703.30
Bryaceae 0.46 2103 695.73
Dicranaceae 0.52 2116 455.56
Lejeuneaceae 0.54 2269 394.40
Brachytheciaceae 0.49 1102 288.83
Neckeraceae 0.46 816 273.87
Fissidentaceae 0.49 817 217.23

All three Orchidaceae 0.09 27782 1848.76
Pottiaceae 0.0003 3169 1214.53
Hypnaceae 0.0004 2519 961.78
Lejeuneaceae 0.0004 2269 864.75
Bryaceae 0 2103 814.59
Dicranaceae 0.002 2116 764.57
Sematophyllaceae 0.0006 1629 616.81
Orthotrichaceae 0.0008 1272 478.85
Begoniaceae 0.02 1601 423.88
Asteraceae 0.14 32920 405.18
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Figure 3: The proportion of species in each order of the tree of life for which we have
functional trait, genetic and location data, and the proportion which are well-sampled,
having all three types of data available.
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Figure 4: Ranking of the number of occurrences in GBIF for plant species; colors indicate
the presence of trait and genetic data. Species with many spatial records also tend to
have genetic and trait data available. Species with few GBIF records are less likely to be
in TRY or GenBank. Note the log-scaled x-axis.
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Appendix 1

Preliminary work for this manuscript began in March of 2015. At that time data were

downloaded in a similar manner to that presented in the main document. Table S1 shows

the species coverage of each dataset at that time. While the data downloads of 2015 and

2018 are not perfectly comparable (due to small changes in data handling/cleaning both580

by us and by the databases), the changes in species coverage over time are indicative
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of the relative rate at which shortfalls in our knowledge of plant diversity are being ad-

dressed.

Table S1: Coverage of accepted plant species in the three databases in data downloads
from March 2015

Genbank GBIF TRY All three
Genbank 97921 81988 42832
GBIF 81988 217681 65535
TRY 42832 65535 74327
All three 39,650
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