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Abstract 14 

Background and aims. The ‘CSR classification’ categorizes plant species between stress-tolerators 15 

(S), ruderals (R) and competitors (C). Initially proposed as a general framework to describe 16 

ecological strategies at the interspecific level, this scheme has recently been used to investigate the 17 

variation of strategies within species. For instance, ample variation along the S-R axis was found in 18 

Arabidopsis thaliana, with stress-tolerator accessions predominating in hot and dry regions. 19 

Methods. In this study, the range of CSR strategies within A. thaliana was evaluated across 426 20 

accessions originating from North Africa to Scandinavia. A position in the CSR strategy space was 21 

allocated for every accession based on three functional traits: leaf area, leaf dry matter content 22 

(LDMC) and specific leaf area (SLA). Results were related to climate at origin and compared to a 23 

previous study performed on the same species. Furthermore, the role of natural selection in 24 

phenotypic differentiation between lineages was investigated with Qst-Fst comparisons, using the 25 

large genetic information available for this species.  26 

Key results. Substantial variation in ecological strategies along the S-R axis was found in A. 27 

thaliana. By contrast with previous findings, stress-tolerator accessions predominated in cold 28 

climates, notably Scandinavia, where late flowering was associated with traits related to resource 29 

conservation such as high LDMC and low SLA. Because of trait plasticity, variations in CSR 30 

classification to growth conditions were also observed for the same genotypes.  31 

Conclusions. There is a latitudinal gradient of ecological strategies in A. thaliana as a result of 32 

within-species adaptation to climate. Our study also underlines the importance of growth conditions 33 

and of the methodology used for trait measurement, notably age versus stage measurement, to infer 34 

the strength and direction of trait-environment relationships. Taken together, this highlights the 35 

potential and limitations of the CSR classification to explain functional adaptation to the 36 

environment. 37 

Key words: Arabidopsis thaliana, adaptive differentiation, climate, CSR classification, ecological 38 

strategy, functional trait, genetic diversity, Grime triangle, latitudinal gradient, Qst-Fst, trait-39 

environment relationships.   40 
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Introduction 41 

Screening approaches allow species comparison on the basis of key ‘functional traits’, i.e. traits 42 

representative of major functions such as growth, stress resistance, defence and reproduction 43 

(Keddy 1992, Violle et al. 2007). Trait-based approaches in plant ecology have a long history of 44 

classifying plant species into functional groups according to the combination of phenotypic traits 45 

they exhibit (Garnier et al. 2016). Such approaches have been mainly applied for comparative 46 

analyses at the interspecific level to identify general patterns of trait variation and covariation. 47 

However, recent comparative analyses argue for a better integration of intraspecific variability for 48 

understanding the role of trait covariation in plant adaptation, ecosystem functioning and 49 

community assembly (Albert et al. 2010, 2011; Violle et al. 2012; Siefert et al. 2015).  50 

Amongst the prominent examples of plant species classification, Grime (1977) defined 51 

ecological strategies based on the idea that there are two main ecological drivers of plant 52 

diversification: (i) the effect of stress related to the shortage of resources (e.g., nutrient, water and 53 

light), and (ii) the effect of disturbance. Stress is viewed in this context as any environmental factors 54 

or combination of factors that reduce plant growth, although the shortage of nutrients, water or light 55 

can each affect specific traits (Grime and Hunt, 1975; Grime 1977; Hodgson et al. 1999). By 56 

contrast, disturbance is viewed as factors that cause the partial or total destruction of plant biomass, 57 

which include grazing, trampling, mowing, but also extreme climatic events such as severe drought, 58 

frost and fire (Grime and Hunt, 1975). Differences in disturbance and stress intensity are expected 59 

to result in quantitative variation in three ecological strategies: (i) stress-tolerators (S) in stressed, 60 

resource-poor habitats with low disturbance, which invest resources to protect tissue from stress 61 

damages, (ii) ruderals (R) in resource-rich environments associated with repeated disturbance, 62 

which invest resources into rapid reproduction and propagule dispersal, and (iii) competitors (C) in 63 

highly productive habitats with low stress intensity and disturbance, which invest resources into the 64 

rapid growth of large organs to outcompete neighbours. The S-R axis is traditionally viewed as an 65 

axis of resource-use variations at the leaf level (Pierce et al. 2013), where ruderality is associated 66 
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with acquisitive resource-use (characterized by short-lived, flimsy leaves with high nutrient 67 

concentration and high net photosynthetic rate), and stress-tolerance is associated with conservative 68 

resource-use (characterized by long-lived, tough leaves with low nutrient concentration and low net 69 

photosynthetic rate). By contrast, variation of competitive ability along the C axis is thought to 70 

reflect variation in plant and organ size, and it is expected to operate where the impacts of stress and 71 

disturbance are low (Grime 1977; Hodgson et al. 1999). 72 

Originally designed in the context of temperate herbaceous vegetation, the CSR scheme has 73 

been extended to other types of vegetation (Caccianiga et al. 2006; Navas et al. 2010; Schmidtlein 74 

et al. 2012), including a recent worldwide application (Pierce et al. 2017). An algorithm has 75 

recently been developed to quantify the CSR scores of diverse plant species based on the 76 

measurement of three leaf traits: leaf area (LA), specific leaf area (SLA) and leaf dry matter content 77 

(LDMC) (Pierce et al. 2013, 2017). Albeit less precise than methods that consider whole-plant traits 78 

which are more closely associated with stress response, competitive ability and ruderality (Hodgson 79 

et al. 1999), classification tools based on few leaf traits have the advantage that many 80 

measurements can be performed with minimal effort. This allows comparing very ecologically 81 

disparate species (Pierce et al. 2017), or many genotypes and populations within species (May et al. 82 

2017).  83 

Arabidopsis thaliana is a small rosette-shaped species that is widely used in molecular 84 

biology and quantitative genetics. It has recently gained a renewed interest in evolutionary ecology 85 

due to the large collection of natural accessions collected from various climates and genotyped at 86 

high density (Weigel 2012). Furthermore, A. thaliana has been shown to exhibit a significant range 87 

of phenotypic variation in relation to climate, making it possible to investigate the genetic and 88 

evolutionary drivers of functional diversification (Vasseur et al. 2018). For instance, Qst-Fst analysis 89 

has been proposed as a powerful way to discriminate adaptive and non-adaptive processes at the 90 

origin of phenotypic differentiation between genetic groups, populations or lineages (Leinonen et 91 

al. 2013). Indeed, this method allows one to compare the level of phenotypic differentiation (Qst) to 92 
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the genetic differentiation (Fst) expected under the neutral model of population divergence. In 93 

plants, this has been used to investigate the role of selection at the origin of between-populations 94 

phenotypic differences related to resource-use traits (Brouillette et al. 2014), drought resistance 95 

(Ramírez-Valiente et al. 2018), life history traits (Moyers and Rieseberg 2016), and functional 96 

adaptation to an elevation gradient (Luo et al. 2015). 97 

A. thaliana is generally described as a ruderal species that, like most annual plants, 98 

reproduces quickly and invests preferentially resources to the production and dispersal of 99 

propagules (Díaz et al. 2016; Pierce et al. 2017). In a recent paper, May et al. (2017) used the CSR 100 

framework to investigate intraspecific variation in ecological strategies within this species. Using 101 

16 accessions originating from contrasted climates in Europe, they found that A. thaliana actually 102 

exhibits a wide range of variation from ruderals to stress-tolerators, with most accessions being 103 

classified as intermediate (SR) and none as competitor. Interestingly, May et al. also found that 104 

ruderality was negatively correlated with the temperature at the site where the accession originated 105 

from. For instance, stress-tolerators originated predominantly from sites in hot climates (Libya, 106 

Sicily and Cape Verde Islands). However, May et al. (2017) used a relatively low number of 107 

accessions, which prevents examining the evolutionary and adaptive bases of CSR variations with 108 

the environment.  109 

In the present study, we analysed CSR variations on a set of 426 A. thaliana accessions 110 

originating from contrasting climates in Europe, North Africa and East Asia. Using the 111 

classification method based on three leaf traits (area, SLA and LDMC) (Pierce et al. 2017), we 112 

tested the range of ecological strategies exhibited by these accessions. We investigated whether the 113 

variation in strategies can be attributed to adaptive processes, using the genetic data available in this 114 

species to perform Qst-Fst analysis. We also examined how CSR strategies measured with leaf traits 115 

correlated with whole-plant traits related to competitive ability (rosette size) and propagule 116 

dispersal (fruit number). Finally, we compared our results to the findings from May et al. (2017), 117 
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and we discussed the possible causes of differences between studies such as the direction of trait-118 

environment relationships. 119 

Materials and Methods 120 

Plant material  121 

Two experiments were performed in this study: the first one in the PHENOPSIS automaton (see 122 

below) and the second one in greenhouse. In the first experiment, we used a total of 400 natural 123 

accessions of A. thaliana L. Heynh representative of a geographical sampling from the worldwide 124 

lines of the RegMap population (Horton et al. 2012) (n = 214) and from French local populations 125 

(Brachi et al. 2013) (n =186). In the second experiment, we used a total of 200 accessions from a 126 

random sampling from the worldwide lines of the RegMap population. Overall, 426 accessions 127 

ranging latitudinally from North Africa to Scandinavia were phenotypically characterized, 172 of 128 

which were common to both experiments (Tables S1 and S2). 129 

Experimental design 130 

In Experiment 1 (PHENOPSIS), plants were grown in the high-throughput phenotyping platform 131 

PHENOPSIS (Granier et al. 2006) in 2014, using one replicate plant per accession, except for Col-0 132 

for which there were 10 replicates. Seeds were stratified in the dark at 4 °C for at least one week 133 

before sowing to ensure homogeneous germination among genotypes. Four to six seeds were sown 134 

at the soil surface in 225 ml pots filled with a 1:1 (v:v) mixture of loamy soil and organic compost. 135 

Prior to sowing, soil surface was moistened with one-tenth strength Hoagland solution, and pots 136 

were kept in the dark for 48 h under controlled environmental conditions (20 °C, 70% air relative 137 

humidity). Pots were then placed in the PHENOPSIS automaton growth chamber at 20 °C, 12 h day 138 

length, 70 % relative humidity, 175 µmol m-2 s-1 PPFD. Pots were sprayed with deionized water 139 

three times per day until germination, soil water content was then adjusted to 0.35 g H2O g-1 dry soil 140 

(–0.07 MPa soil water potential) to ensure optimal growth (Aguirrezábal et al. 2006; Vile et al. 141 
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2012; Vasseur et al. 2014). After emergence of the fourth leaf, seedlings were thinned to keep only 142 

one plant in each pot. 143 

In Experiment 2 (Greenhouse), plants were grown in four replicates per accession in 144 

greenhouse between December 2015 and May 2016. Seeds were sown on organic soil and stratified 145 

at 4 °C for four days. At the emergence of the first two true leaves, plants were transplanted in 300 146 

ml individual pots filled with a 1:1 (v:v) mixture of loamy soil and organic compost. Pots were 147 

randomly distributed among four blocks that were rotated every day in the greenhouse. All pots 148 

were watered twice a week. To reduce environmental heterogeneity in the greenhouse, walls were 149 

painted in white and a semi-transparent curtain was installed below the glass roof. Additional light 150 

was provided to reach ca. 65 µmol m-2 s-1 PPFD. Photoperiod and temperature were kept constant at 151 

12 h day length, and 18/16 °C day/night, respectively.  152 

Trait measurement 153 

In both experiments, traits were measured following standardized protocols (Perez-Harguindeguy et 154 

al. 2013) at a fixed phenological stage when flower buds were macroscopically visible (i.e. bolting 155 

stage, used as measurement of flowering time, FT). The lamina of a fully-expanded, adult and non-156 

senescent leaf exposed to light was detached from the rosette, kept in deionised water at 4 °C for 24 157 

h for water saturation, and then weighted (mg). After the determination of water-saturated mass, 158 

individual leaves were scanned for determination of leaf lamina area (LA, mm2) using ImageJ 159 

(https://imagej.nih.gov/ij/). Dry mass of the leaf lamina was obtained after drying for 72 h at 65 °C. 160 

Leaf dry matter content (LDMC, mg g-1) and specific leaf area (SLA, mm2 mg-1) were calculated as 161 

the ratio of lamina dry and water-saturated mass, and the ratio of lamina area to lamina dry mass, 162 

respectively (Perez-Harguindeguy et al. 2013). In PHENOPSIS, plants were harvested at first 163 

opened flower and rosette fresh mass (mg) was measured. In Greenhouse, plants were harvested 164 

after full senescence and total number of fruits was manually counted on the inflorescence. Overall, 165 

out of the 400 and 200 accessions in PHENOPSIS and Greenhouse, respectively 357 and 198 166 
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accessions were completely phenotyped for all traits (Tables S1 and S2), with 152 accessions 167 

common to both experiments.  168 

We calculated CSR scores (i.e. % along C, S and R axes) for all accessions in PHENOPSIS 169 

and Greenhouse based on three traits: LA, LDMC and SLA, using the recent method developed by 170 

Pierce et al. (2017). The method is based on an algorithm which combines data for three leaf traits 171 

(LA, SLA and LDMC) that were shown to reliably position the position of species in the CSR 172 

scheme. We calculated CSR scores for each accession using average trait value per experiment 173 

using the calculation table provided in Supplementary Information of Pierce et al. (2017). 174 

Re-analysis of published data 175 

In our study, there were several accessions common with a previously published analysis of CSR 176 

variations in A. thaliana (May et al. 2017). Ten accessions were common between May et al. and 177 

the PHENOPSIS experiment on the one hand, and six accessions with the greenhouse experiment 178 

on the other hand. In May et al. (2017), CSR scores were calculated based on six traits with a 179 

method previously proposed by Hodgson et al. (1999). To compare both datasets, we first 180 

recalculated CSR scores from data in May et al. with Pierce’s method, using LA, LDMC and SLA 181 

provided for their 16 accessions (May et al. 2017), and compared them to the CSR scores they 182 

measured with the Hodgson’s method. 183 

Genetic analysis and Qst-Fst comparisons 184 

Genetic groups in A. thaliana were determined by clustering of 395 accessions for PHENOPSIS 185 

dataset, and 198 accessions for Greenhouse dataset, both using the 250K Single Nucleotide 186 

Polymorphisms (SNPs) data available from Horton et al. (2012). Clustering was performed with 187 

ADMIXTURE (Alexander et al. 2009) after linkage disequilibrium pruning (r2 < 0.1 in a 50 kb 188 

window with a step size of 50 SNPs) with PLINK (Purcell et al. 2007), resulting in 24,562 189 

independent SNPs. We assigned each genotype to a group if more than 60% of its genome derived 190 

from the corresponding cluster. The accessions not matching this criterion were labelled 191 

‘‘Admixed’’ and were not used for the Fst and Qst calculation. Cross-validation for different number 192 
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of genetic clusters revealed that the PHENOPSIS dataset was composed of six genetic groups 193 

(group 1 = 74 accessions, group 2 = 48, group 3 = 18, group 4 = 55, group 5 = 5, group 6 = 71, 194 

admixed = 123), while the Greenhouse dataset was composed of four genetic groups (group 1 = 38 195 

accessions, group 2 = 16, group 3 = 83, group 4 = 7, admixed = 54). Consistent with the hypothesis 196 

of genetic divergence because of isolation by distance, these genetic groups were geographically 197 

clustered (Fig. S1). We calculated Weir and Cockerham Fst value for all the 24,562 SNPs, and Qst as 198 

the between-group phenotypic variance divided by the total phenotypic variance, using mixed-effect 199 

models with Group as random factor. We used parametric bootstrap method to generate 95% 200 

confidence intervals (CI) around Qst values with the package ‘MCMCglmm’ in R (100,000 201 

iterations). 202 

Statistical analyses 203 

Genotypic means in the greenhouse experiment were estimated as the fitted genotypic values from 204 

the linear models, using lsmeans function. Genotype effect on trait variation and broad-sense 205 

heritability (H2) were assessed using individual data from the greenhouse experiment (Table S3). 206 

Genotype effect was tested with one-way ANOVA following linear modelling, using Genotype and 207 

Block as explanatory variables. H2 was measured as the ratio of phenotypic variance attributable to 208 

genotypic effect over total phenotypic variance, using mixed-effect models with Block as fixed 209 

factor and Genotype as random factor, using the package nlme in R.  210 

Climate variables at the collection points of each accession were extracted from the 211 

Worldclim database (http://www.worldclim.org/bioclim), with a 2.5 arc-minutes resolution. Trait-212 

trait, trait-environment and trait-CSR relationships were examined with Spearman’s rank 213 

coefficients of correlation (ρ), and associated P-values (P), using the function cor.test (Table S4). 214 

Pearson’s coefficients of correlations (r) between traits and climatic variables were also calculated 215 

(Table S5). Regression lines were drawn from Standard Major Axis (SMA), using the package 216 

smatr. All analyses were performed in R 3.2.3 (Team RC 2014). 217 
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Results 218 

Trait variation and covariation 219 

All traits varied significantly among accessions (all P < 0.001, Table S3). We found that FT ranged 220 

between 30 and 101 days (57 days on average) in PHENOPSIS, and between 25 to 115 days (61 221 

days on average) in Greenhouse. Trait variation was mainly due to genetic variability among 222 

accessions, as measured by the high amount of phenotypic variance accounted for genotype effect 223 

(H2 ranged between 0.58 for LA and 0.73 for SLA, 0.88 for FT; Table S3). Most traits were 224 

correlated with each other (Fig. S2; Tables S4,S5): SLA and LDMC were negatively correlated 225 

(Spearman’s coefficient ρ = -0.94 and -0.88 in PHENOPSIS and Greenhouse, respectively, both P < 226 

0.001; Fig. S2F), and FT was positively correlated with LDMC (ρ = 0.63 and 0.86, P < 0.001; Fig. 227 

S2B), and negatively with SLA (ρ = -0.73 and -0.92, both P < 0.001; Fig. S2D).  228 

CSR classification 229 

A. thaliana accessions mainly varied along the S-R axis, between purely ruderals (R) to moderate 230 

stress-tolerators (S/SR) (Fig. 1). We found only three accessions (together < 1%) classified as CS, 231 

CR or CSRs. The accessions were mainly R-oriented: R, R/CR, R/CSR and R/SR represented 84% 232 

and 91% of all accessions in PHENOPSIS and Greenhouse, respectively (Table 1). Although we 233 

calculated CSR scores with only three leaf traits using the Pierce’s method, whole-plant traits were 234 

consistent with our classification. For instance, the C-axis is expected to be related to plant size and 235 

height, while the R-axis is expected to be related to flowering time and seed dispersal (Grime 1977; 236 

Hodgson et al. 1999). Accordingly, we found that C and R-axis were positively but poorly 237 

correlated with rosette fresh mass and the total number of fruits, respectively (ρ < 0.50, P < 0.05; 238 

Fig. S3).  239 

CSR scores were significantly correlated between PHENOPSIS and Greenhouse 240 

experiments, as measured across the 152 accessions common to both experiments (ρ = 0.34, 0.41 241 

and 0.54 for C, S and R, respectively, all P < 0.001; Fig. S4). However, they were also significantly 242 

different between the two experiments (P < 0.01 for all the three scores). Accordingly, 78 243 
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accessions (51%) were classified in different CSR groups between the two experiments (“plastic” 244 

accessions hereafter). Globally, plastic accessions shifted towards more ruderal strategies in 245 

Greenhouse compared to PHENOPSIS, as reflected by the differences of S and R score between 246 

experiments (Fig. 2). 22% of the plastic accessions were classified as R in PHENOPSIS and R/CR 247 

in Greenhouse (inversely, 18% were classified as R/CR in PHENOPSIS and R in Greenhouse). 248 

Comparatively, C scores did not differ a lot between the two experiments (Fig. 2B).  249 

Relationships between CSR scores, flowering time and climate 250 

Ruderality was positively correlated with SLA and mean annual temperature (MAT, °C) at the 251 

collection point of the accessions, but negatively with FT and LDMC (Fig. 3; Tables S4,S5). Thus, 252 

our results suggest that ruderality is typical of early-flowering plants with leaf traits representative 253 

of fast resource acquisition as reflected by low LDMC and high SLA values (Wright et al. 2004; 254 

Shipley et al. 2006). Inversely, stress-tolerators were characterized by late-flowering, with resource-255 

conservative trait values such as high LDMC and low SLA; which were negatively correlated with 256 

MAT (Fig. S5). Consistently, S and R strategies were positively and negatively correlated with 257 

latitude, respectively (Table S4).  258 

Qst-Fst analysis suggested that the latitudinal variations of CSR strategies resulted from 259 

adaptive processes such as natural selection acting on leaf traits. Indeed, a value of Qst significantly 260 

higher than Fst at neutral loci is generally considered as a signature of diversifying selection on the 261 

underlying traits (Leinonen et al. 2013). Here, we used the 95th quantile of the Fst distribution 262 

genome-wide as a threshold of significance for phenotypic differentiation above neutral 263 

expectation. In Greenhouse, both S and R scores were significantly above neutral Fst (Qst = 0.95, 264 

95% CI = [0.72-1.00], and Qst = 0.82, 95% CI = [0.62-1.00] for S and R, respectively, while mean 265 

Fst = 0.09 and Fst 95th quantile = 0.35; Fig. 4A). In PHENOPSIS, only R scores were above, but 266 

non-significantly, neutral Fst (Qst = 0.37 versus Fst 95th quantile = 0.33). S scores were slightly, and 267 

non-significantly, below the neutral expectation (Qst = 0.29, 95% CI = [0.10-0.80]; Fig. 4C). By 268 

contrast, in both Greenhouse and PHENOPSIS, Qst of C scores were close to 0, suggesting that this 269 
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axis of plant strategies did not vary under the influence of adaptive processes in A. thaliana. The 270 

lower Qst values reported for the PHENOPSIS experiment can be explained by the absence of 271 

individual replicates in this experiment. By contrast, using genotypic mean in Greenhouse across 272 

four replicates allowed reducing intra-genotypic variance, and thus total phenotypic variance 273 

compared to phenotypic variance between genetic groups. Consistent with these results, plotting the 274 

distribution of A. thaliana ecological strategies across Europe (Fig. 4B,D) revealed that accessions 275 

with S-oriented strategies (S, SR, SR/CSR, S/CSR, S/SC, SC and SC/CSR) were originating from 276 

northern regions, Sweden in particular. 277 

Comparison with observations from May et al. 278 

In contrast with our results, the 16 accessions in the study published by May et al. were mainly 279 

categorized as S-oriented: S/SC, S/SR, S/CSR, SR and SR/CSR (Table 1, Fig. S6). May et al. used 280 

the Hodgson’s method to calculate CSR scores with seven traits, including flowering time and 281 

duration, two important components of ruderality (Hodgson et al. 1999). To compare the two 282 

classification methods, we used the traits values for LA, SLA and LDMC provided in May et al. 283 

(2017) to calculate CSR scores with the Pierce’s method and compared them with the Hodgson’s 284 

method. The CSR scores calculated with the two methods were positively correlated (ρ = 0.77, 0.79 285 

and 0.73 for C, S and R, respectively; all P < 0.01; Fig. S7), suggesting that both methods return 286 

similar categorization (Table 1). However and despite the significant correlations, CSR scores 287 

varied substantially between the two methods (Fig. S7). This showed that the traits related to 288 

ruderality (flowering time and duration) and competition (plant height and lateral spread) used in 289 

the Hodgson’s method impacted the inference of plant ecological strategies compared to leaf traits 290 

alone.  291 

FT measured in this study was strongly positively correlated with FT measured in May et al. 292 

under controlled conditions (n = 10 and 6 in PHENOPSIS and Greenhouse, respectively, both r = 293 

0.96, P < 0.01; Fig. S8A). By contrast, LDMC measured in May et al. was negatively correlated 294 

with our measurements (Fig. S8D), possibly because of three individuals with early FT and 295 
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extremely high LDMC values (> 250 mg g-1) compared to our measurement (< 110 mg g-1) on the 296 

same accessions (red dots in Fig. 3C). As a result, FT and LDMC were negatively, albeit non-297 

significantly, correlated in the May et al. study (ρ = -0.35; Fig. 3C). Furthermore, there was a 298 

positive correlation between LDMC and MAT in May et al. (P < 0.05), while we found the 299 

opposite in both PHENOPSIS and Greenhouse (Fig. 3B). By construction of the CSR classification 300 

method, LDMC strongly participates to S and R axes (Fig. 3F and Fig. S5). Consequently, the 301 

positive correlation between LDMC and MAT found in May et al. was associated with a positive 302 

correlation between S and MAT (Fig. S5D), and inversely a negative correlation between R and 303 

MAT (Fig. 3D), although these two relationships were not significant with the 16 accessions from 304 

May et al. when using the Pierce’s method of CSR classification.  305 

Discussion 306 

Functional adaptation to climate in A. thaliana 307 

The relationship between CSR and climate at the interspecific level is still not well established 308 

(Pierce et al. 2017). More broadly, trait-environment relationships remain a central question in 309 

functional ecology and functional biogeography (Poorter et al. 2009; Violle et al. 2014; Borgy et al. 310 

2017; Butler et al. 2017; Šímová et al. 2018). By contrast, adaptation to climate has been widely 311 

studied within species, notably genetic adaptation along latitudinal or altitudinal gradients in annual 312 

plants, and in A. thaliana in particular (Johanson et al. 2000; Picó et al. 2008; Banta et al. 2012; 313 

Guo et al. 2012; Brachi et al. 2013; Wolfe and Tonsor 2014; Bloomer and Dean 2017; Tabas-314 

Madrid et al. 2018). Indeed, A. thaliana has been the model species in molecular biology, plant 315 

genetics and evolution for the last decades (Bergelson and Roux 2010; Weigel 2012). It is widely 316 

distributed in various climates, but is generally considered as a ruderal species that grows fast, 317 

reproduces early and dies right after seed dispersal (Pierce et al. 2017). As expected, we found in 318 

this study that A. thaliana was predominantly ruderal, secondly stress-tolerator and poorly 319 

competitor. However, we showed an important range of CSR variation among A. thaliana 320 

accessions along the S-R axis and associated with flowering time variation.  321 
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Consistent with previous studies, flowering time was positively correlated with latitude 322 

(Caicedo et al. 2004; Lempe et al. 2005; Banta et al. 2012). For instance, northern accessions 323 

exhibit late-flowering and long life cycle even when they are grown under controlled conditions in 324 

growth chamber or greenhouse (Vasseur et al. 2018). Our results showed that flowering time was 325 

positively correlated with LDMC, and that values for the two traits were higher in accessions 326 

originating from higher latitude and lower temperatures. Thus, northern accessions exhibit a suite of 327 

traits associated with resource conservation and longevity such as late flowering, high LDMC and 328 

low SLA (Wright et al. 2004; Shipley et al. 2006; Vasseur et al. 2012). Qst-Fst analysis revealed that 329 

these latitudinal variations result from the adaptive diversification of leaf traits. These adaptive 330 

shifts can be explained because, in cold regions, biomass production during the growing season is 331 

limited by various stresses. Low temperatures directly limit plant growth rate by slowing down 332 

metabolic processes. Furthermore, cold indirectly limits plant growth rate because of the reduction 333 

in the availability of water and nutrients. In these conditions, slow growing genotypes with long life 334 

cycle, associated with high LDMC, low SLA and low metabolic activities, can be an efficient 335 

strategy. Interestingly, stress tolerance has been shown to be selected at both ends of the geographic 336 

range of A. thaliana, but is expressed under different temperature conditions (Exposito-Alonso et al. 337 

2018; Vasseur et al. 2018).  338 

Conversely, ruderal strategies were more abundant in temperate and hot environments. 339 

Ruderal plants are typically associated with a short life cycle, low LDMC and high SLA, and 340 

presumably high metabolic rate and low tissues protection (Grime 1977). In temperate climates with 341 

a relatively long growing season and high resource availability, these characteristics may allow A. 342 

thaliana individuals to complete their growth cycle early and avoid competition with taller species. 343 

Furthermore, in hot and dry climates with a shorter growing period (e.g., Mediterranean climate), 344 

fast growing strategies may allow A. thaliana individuals to complete their growth cycle and 345 

disperse before the onset of drought, which operate as a disturbance rather than a stress, and should 346 

therefore be more favourable to ruderality (Madon & Médail 1997; Volaire 2018). This result is 347 
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consistent with interspecific studies at global scale that reported a positive relationship between 348 

SLA and temperature in herbaceous species (Borgy et al. 2017; Šímová et al. 2018). This can be 349 

interpreted as a sign of selection for fast-growth, ruderal strategies in hot and stressing 350 

environments at both intra- and interspecific levels (Anderegg et al. 2018).  351 

The lack of adaptive differentiation between genetic groups along the C axis, as reflected by 352 

the low Qst values compared to neutral Fst, can be explained by the low variation of competitive 353 

ability among A. thaliana accessions. Additionally, it could suggest that competitive environments 354 

can be found in various climates as long as stress does not dominate vegetation processes. This 355 

would also explain the lack of a clear geographic pattern and latitudinal gradient of competitive 356 

ability across plant populations and species (Damgaard and Weiner 2017). 357 

Influence of classification methodologies, trait measurement and growth conditions on trait-358 

environment relationships 359 

Trait-trait, trait-CSR and trait-environment relationships were sometimes opposite between May et 360 

al. (2017) and our study. For instance, May et al. (2017) reported a positive correlation between 361 

stress-tolerance and mean temperature, while we found the opposite. A first explanation of these 362 

differences is the methods used to calculate CSR scores among accessions. Although Pierce’s and 363 

Hodgson’s scores were all positively correlated when performed on the same set of traits and 364 

accessions, scores obtained from the two methods varied substantially. For instance, an accession 365 

had S score at 35% with Hodgson’s method but 0% with Pierce’s method (Fig. S7B). The re-366 

analysis of May et al. data made by the authors (A. Wingler, personal communication) indicated 367 

that the three accessions with very high values for S identified using the Hodgson’s method (Mt-0, 368 

Cvi-0 and Ct-1) were no longer in the top three ranked accessions for S when using the Pierce’s 369 

method, which led to a lack of correlation of S and R with temperature when using this method. 370 

This can be explained because life history traits at whole-plant level, notably flowering time and 371 

plant size, are important components of ruderality and competitive ability in herbaceous species 372 

(Violle et al. 2009; Hodgson et al. 2017), but they are not included in the Pierce’ method of CSR 373 
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classification. Here, we found that C and R axes calculated with leaf traits were positively, but 374 

poorly, correlated with rosette fresh mass and fruit number, respectively. Additionally, many early-375 

flowering accessions were similarly classified as purely ruderal (R = 100%,), although they 376 

displayed variations in leaf traits and flowering time, and consequently, in their level of ruderality. 377 

This was translated into no, or small differences in CSR strategies between accessions from 378 

temperate and Mediterranean climates (Fig. 4), although Mediterranean accessions can be very 379 

short-lived and thus, more ruderal than accessions from less stressing environments (Vasseur et al. 380 

2018). Together, this suggests that classification methods based on leaf traits can be powerful to 381 

screen large database or to perform many measurements at global scale, but it might be limited to 382 

examine subtle variations within species and/or in specific taxa. For instance, including other, 383 

easily-measurable traits might be necessary to better describe ruderality in annual plants, such as 384 

phytomer miniaturization and the number of juvenile phytomers, because each promotes early 385 

maturity (Hodgson et al., 2017). 386 

A second explanation to the opposite trait-environment relationships found between this 387 

study and May et al. is the difference in the protocols used for trait measurement. In our 388 

experiments, we followed the recommended procedures to phenotype traits of all individuals at the 389 

same ontogenetic stage (Reich et al. 1999; Perez-Harguindeguy et al. 2013). Specifically, LDMC 390 

and SLA were measured at the transition to flowering (i.e. bolting stage). By contrast, leaf traits 391 

were measured in a growth chamber at the same age by May et al. (61 days for LDMC), although 392 

flowering time in growth chamber varied from 30 days to 82 days (and some accessions did not 393 

flower at all), and although it is widely recognized that leaf traits strongly vary during plant 394 

ontogeny (Walters et al. 1993; Hérault et al. 2011; Pantin et al. 2012). In other words, LDMC was 395 

measured 30 days after flowering for the earliest accessions and before flowering for the latest ones. 396 

With such a procedure, the leaves compared might have been in contrasted physiological stages. In 397 

particular, leaves measured on the early-flowering accessions might have been - at least in part - 398 

senescing, which may result in much higher LDMC values - and lower SLA values - in these 399 
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accessions (Fig. 3C). In agreement with this hypothesis, the LDMC values measured on the early-400 

flowering accessions in our experiment were approximately half of the values estimated by May et 401 

al.. As LDMC strongly participates to the S-R axis, this could explain the opposite correlations 402 

between CSR and environment between the two studies. Furthermore, we found that FT was 403 

positively correlated with LDMC, consistently with previous studies in a smaller set of accessions 404 

(Vile et al. 2012), as well as in recombinant inbred lines (El-Lithy et al. 2010; Vasseur et al. 2012, 405 

2014). Previous studies have notably reported that early-flowering genotypes have resource-406 

acquisitive strategies, characterized by high SLA but low LDMC and short lifespan (El-Lithy et al. 407 

2010; Vasseur et al. 2012, 2014, 2018; Blonder et al. 2015).  408 

Finally, opposite correlations between studies might also partly result from trait plasticity to 409 

growth conditions. FT in A. thaliana is expected to vary with light conditions and temperature 410 

(Mouradov et al. 2002). For instance, A. thaliana does not generally flower under short-day 411 

conditions. In our study, traits were measured in controlled and constant conditions, on plants 412 

grown in 12 h photoperiod and without cold exposure (i.e. vernalization). However, we could 413 

expect FT and leaf traits, and thus CSR-environment relationships, to be different when measured 414 

on plants grown outside like in May et al., after vernalization or in short- or long-day conditions. 415 

Consistent with this idea, we found that half the accessions common to PHENOPSIS and 416 

Greenhouse did not have the same position in the CSR space: plants grown in the greenhouse were 417 

generally shifted towards the R end of the spectrum compared to plants grown in PHENOPSIS. 418 

This can be explained by the relative low light intensity provided by artificial lamps in the 419 

greenhouse compared to the phenotyping platform (65 versus 175 µmol m-2 s-1 PPFD). In addition, 420 

plants were grown in the greenhouse at higher density than in PHENOPSIS, which could have 421 

increased competition for light between plants. The shade-avoidance syndrome has been described 422 

as a suite of leaf trait responses to low light and competition (Kim et al. 2005; Mullen et al. 2006). 423 

This includes an increase in leaf angle and SLA, associated with a reduction in LDMC and 424 

flowering time (Kim et al. 2005; Vasseur et al. 2011). This is consistent with a shift towards 425 
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resource-acquisitive strategies in Greenhouse. Importantly and more broadly, controlled conditions 426 

are very different from natural conditions that plants experience in the wild, and where plants 427 

should ideally be measured to properly infer their ecological strategies. However, it remains 428 

difficult to take into account genotype-by-environment interactions when screening genotypes in 429 

natural conditions. Consequently, trait-based approaches for functional classification of plants were 430 

initially proposed as a tool to infer the adaptive significance of traits in controlled conditions 431 

(Grime and Hunt, 1975). 432 

Conclusion 433 

Intraspecific variation in functional strategies varied substantially along the S-R axis in A. thaliana. 434 

Tolerance to stress seems to be favoured in cold environments at higher latitudes while ruderality is 435 

predominant in temperate and hot climates. However, CSR categorization within species, 436 

specifically in an herbaceous species like A. thaliana, is sensitive to several parameters such as the 437 

type of traits used to classify accessions and the protocols used for trait measurement. Furthermore, 438 

our results suggest that phenotypic plasticity to growth conditions can significantly impacts trait 439 

values and thus, the determination of plant ecological strategies. This suggests that the use of trait 440 

databases for local or global analyses of trait-environment relationships at species level might suffer 441 

from biases due to both phenotypic plasticity and intraspecific trait variation. In a recent analysis, 442 

ruderality has been demonstrated to correlate positively with the probability of naturalization of 443 

alien species (Guo et al. 2018). In future studies, it will be interesting to examine in more details the 444 

response of traits, trait combinations and strategies to environmental conditions. For instance, 445 

analysing the plasticity of CSR strategies to different temperatures and water stresses could reveal 446 

whether S-related strategies are constitutive or stress induced, and whether invasive species show 447 

greater plasticity in ecological strategies than other species. 448 
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Figure legends 633 

Figure 1. CSR variation in A. thaliana. (A) CSR representation of the 357 accessions from 634 

PHENOPSIS. (B) CSR representation of the 198 accessions from Greenhouse. Dots are coloured by 635 

CSR scores, following colour code provided in Pierce et al. (2017).  636 

Figure 2. Plasticity of CSR classification in A. thaliana. (A) The 78 plastic accessions that have 637 

different CSR classification between PHENOPSIS and Greenhouse experiments are plotted. Arrows 638 

start at Greenhouse position and end at PHENOPSIS position, they are coloured according to CSR 639 

scores in PHENOPSIS, following colour code provided in Pierce et al. (2017). (B) Boxplot 640 

representing the difference in CSR scores between experiments (Greenhouse values – PHENOPSIS 641 

values).  642 

Figure 3. Relationships between ruderality, traits and environment in A. thaliana. Leaf trait 643 

and flowering time data were obtained from May et al. (2017) (red dots, n = 16), PHENOPSIS 644 

(green dots, n = 357) and Greenhouse (blue dots, n = 198). Ruderality (R) was calculated with 645 

Pierce’s method (2017) for all data. Mean annual temperature (MAT, °C) was extracted at the 646 

collection point of the accessions with Worldclim. FT: flowering time (days), LDMC: leaf dry 647 

matter content (mg g-1). ρ represents Spearman’s coefficient of correlation. Significance code: NS: P 648 

> 0.1, .: P < 0.1, *: P < 0.05, **: P < 0.01,***; P < 0.001. Regression lines were drawn from 649 

standard major axis (SMA).  650 

Figure 4. Qst-Fst analysis and geographic location of CSR strategies in A. thaliana. Distribution 651 

(in grey) of Fst values across the 24,562 SNPs with 95th quantile threshold of non-neutral 652 

expectation (dashed line), and Qst values for the C, S and R scores measured as the ratio of 653 

phenotypic variance between genetic groups over total phenotypic variance. Analysis performed 654 

independently on Greenhouse dataset (A), and PHENOPSIS dataset (C). Geographic location of 655 

CSR strategies with Greenhouse dataset (B, n = 198), and PHENOPSIS dataset (D, n = 357).  656 
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Table 1. Proportion (%) of ecological strategies among A. thaliana accessions. 657 

 PHENOPSIS Greenhouse 
Original scores 
from May et al. 

Recalculated 
scores with data 
from May et al. 

2017 

R 25.5  24.2   31.3  

R/CR 47.6  58.6  12.5   

R/CSR 8.7  7.1    

R/SR 2.2  1.5  6.2  6.2  

SR/CSR 8.4  4.5   12.5  

SR 0.6  3.5  56.3  25.0  

S 0.2     

S/CSR 3.1  0.6   18.7  

S/SC   25.0   

S/SR 2.8    6.3  

CSR 0.3     

CS 0.3     

CR 0.3     

 658 

List of Supplementary Information 659 

Table S1. Phenotypic traits measured in PHENOPSIS experiment. 660 

Table S2. Phenotypic traits measured in Greenhouse experiment. 661 

Table S3. Heritability and genetic effects on traits measured in Greenhouse experiment. 662 

Table S4. Spearman’s pairwise correlations between traits and environments. 663 

Table S5. Pearson’s pairwise correlations between traits and environments. 664 

Figure S1. Geographic location of the genetic groups defined with SNPs clustering. (A) 665 

Representation of the six genetic groups (+ admixed) identified in the PHENOPSIS dataset (n = 666 

394). (B) Representation of the four genetic groups (+ admixed) identified in the Greenhouse 667 

dataset (n = 198).  668 
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Figure S2. Trait-trait relationships in A. thaliana. PHENOPSIS (blue dots, n = 357) and 669 

Greenhouse (green dots, n = 198). ρ represents Spearman’s coefficient of correlation. Significance 670 

code: NS: P > 0.1, .: P < 0.1, *: P < 0.05, **: P < 0.01,***; P < 0.001. Regression lines were drawn 671 

from standard major axis (SMA). 672 

Figure S3. Correlations between C and R axes, plant biomass and fruit number. (A) 673 

Correlation between C axis and rosette fresh weight (mg) measured in PHENOPSIS (blue dots, n = 674 

357). (B) Correlation between R axis and fruit number measured in Greenhouse (green dots, n = 675 

198). ρ represents Spearman’s coefficient of correlation. Significance code: NS: P > 0.1, .: P < 0.1, 676 

*: P < 0.05, **: P < 0.01,***; P < 0.001. Regression lines were drawn from standard major axis 677 

(SMA). 678 

Figure S4. Correlations between CSR scores in PHENOPSIS and Greenhouse experiments. 679 

Correlations were estimated on the set of 152 accessions common to both experiments. ρ represents 680 

Spearman’s coefficient of correlation. Significance code: NS: P > 0.1, .: P < 0.1, *: P < 0.05, **: P < 681 

0.01,***; P < 0.001. Regression lines were drawn from standard major axis (SMA). 682 

Figure S5. CSR-traits and CSR-environment relationships in A. thaliana. Leaf trait and 683 

flowering time data were obtained from May et al. (2017) (red dots, n = 16), PHENOPSIS (blue 684 

dots, n = 357) and Greenhouse (green dots, n = 198). Ruderality (R), stress-tolerance (S), and 685 

competitive ability (C) were calculated with Pierce’s method (2017) for all data. Mean annual 686 

temperature (MAT, °C) was extracted at the collection point of the accessions with Worldclim. FT: 687 

flowering time (days), LDMC: leaf dry matter content (mg g-1). ρ represents Spearman’s coefficient 688 

of correlation. Significance code: NS: P > 0.1, .: P < 0.1, *: P < 0.05, **: P < 0.01,***; P < 0.001. 689 

Regression lines were drawn from standard major axis (SMA).  690 

Figure S6. CSR representation of the 16 accessions from May et al. (2017). CSR scores 691 

recalculated with leaf trait data using Pierce’s (2017) method. Dots are coloured by CSR scores, 692 

following colour code provided in Pierce et al. (2017). 693 
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Figure S7. Correlation between Hodgson’s and Pierce’s methods for quantifying CSR. CSR 694 

scores were recalculated with leaf traits provided for the 16 accessions in May et al. (2017), using 695 

Pierce’s method, and compared to CSR scores measured in May et al. (2017) with Hodgson’s 696 

method. ρ represents Spearman’s coefficient of correlation. Significance code: NS: P > 0.1, .: P < 697 

0.1, *: P < 0.05, **: P < 0.01,***; P < 0.001. Regression lines were drawn from standard major axis 698 

(SMA). 699 

Figure S8. Correlations between traits measured in May et al. and the present study. 700 

Correlations were estimated on the 10 and 6 accessions common to May et al. (2017) and 701 

PHENOPSIS (blue dots) and Greenhouse (green dots) experiments, respectively. ρ represents 702 

Spearman’s coefficient of correlation. Significance code: NS: P > 0.1, .: P < 0.1, *: P < 0.05, **: P < 703 

0.01,***; P < 0.001. Regression lines were drawn from standard major axis (SMA). FT: flowering 704 

time (days), LA: leaf area (mm2), LDMC: leaf dry matter content (mg g-1), SLA: specific leaf area 705 

(m2 kg-1). 706 
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