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2 Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada.7
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Article title: The interaction of phylogeny and community structure: linking clades’ community compositions and1

trait evolution2

Running title: Clades’ variation in community composition3

1 Abstract4

Aim.5

Community phylogenetic studies use information about species’ evolutionary relationships to understand the pro-6

cesses of community ecological assembly. A central premise of the field is that species’ evolution maps onto ecological7

patterns, and phylogeny reveals something more than species’ traits alone. We argue, therefore, that there is a need8

to better understand and model the interaction of phylogeny with species’ traits and community composition.9

Innovation.10

We outline a new method that identifies clades with unusual ecological structures, based around partitioning the11

variation of species’ site occupancies (β-diversity). Eco-phylogenetic theory would predict that these clades should12

also demonstrate distinct evolutionary trajectories. We suggest that modelling the evolution of independent trait13

data in these clades represents a strong test of whether there is an association between species’ ecological structure14

and evolutionary history.15

Main conclusions.16

Using an empirical dataset of mammals from around the world, we identify two clades of rodents that tend not17

to co-occur (are phylogenetically overdispersed), and then find independent evidence of slower rates of body mass18

evolution in these clades. We suggest that our approach, which assumes nothing about the mode of species’ trait19

evolution but rather seeks to explain it using ecological information, presents a new way to examine eco-phylogenetic20

structure.21

Keywords: beta-diversity, trait evolution, mammals, phylogenetic scale, competition, environmental filtering22
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2 Introduction23

Community phylogenetics (eco-phylogenetics) represents an attempt to link the evolutionary history of species to24

their present-day ecological interactions (Webb et al. 2002; Cavender-Bares et al. 2009). The field is young but25

controversial, and some of its fundamental assumptions have been criticised (notably by Mayfield & Levine 2010).26

Many community phylogenetic studies invoke niche conservatism (reviewed in Wiens et al. 2010) to assert that27

phylogenetic distance is a measure of distance in niche space, making phylogenetic structure a metric of ecological28

structure. However, few studies explicitly model such niche conservatism, and when a model is defined it is usually29

Brownian motion, which (arguably) describes neither niche conservatism (Losos 2008) nor similarity among distantly30

related species (emphasised by Godoy et al. 2014; Cadotte et al. 2017). Phylogeny is most often invoked as a31

proxy for unmeasured functional traits (as the ‘Phylogenetic Middleman’—Swenson (2013); see also Peres-Neto et32

al. (2012)). Such use undervalues phylogenetic relationships among species, which could be used to place (rather33

than approximate) species’ trait and distribution data within the context of past evolutionary and/or biogeographical34

processes that have shaped current patterns of species’ distributions and their co-occurrences. We cannot disentangle35

species’ functional trait evolution from their functional trait ecology if we use phylogeny as a measure of both. There36

is, therefore, a need to better integrate evolutionary history into community phylogenetics that parallels advances in37

the field of comparative analysis, where phylogeny is increasingly viewed as the inferential backbone for models of38

species’ trait evolution, not simply as a statistical correction (e.g., Freckleton et al. 2011).39

One of the earliest, and most commonly used, applications of community phylogenetic methods is to disentangle the40

impact of niche-based processes such as environmental filtering and competition on community assembly (Webb 2000;41

Cavender-Bares et al. 2006). Here, it is assumed that a community of closely-related species (phylogenetic clustering)42

reflects environmental filtering on the basis of phylogenetically conserved traits, while the converse (phylogenetic43

overdispersion) implies competitive exclusion (Webb et al. 2002). This direct mapping of phylogenetic structure44

onto ecological processes has been criticised (Cavender-Bares et al. 2009; Mayfield & Levine 2010), leading many to45

separately calculate the phylogenetic and functional trait structures of communities and then compare them (e.g.,46

Kraft & Ackerly 2010; Graham 2012). Critically, such comparisons do not capture the interaction between functional47

traits and phylogeny: how different ecological structures in different clades may have arisen. Multiple ecological and48

evolutionary processes interact to affect eco-phylogenetic structure, obscuring the signal of each process (Webb et al.49

2002; Kraft et al. 2007; Cavender-Bares et al. 2009; Kembel 2009; Elliott et al. 2016). At its simplest, one clade may50

be functionally or phylogenetically overdispersed while another is clustered: only a clade-based approach can detect51

and unpick these conflicting signals. Figure 1 gives a conceptual example of how common ecological processes can52

produce variation among clades’ eco-phylogenetic structure. Using differences in ecological pattern among clades to53

guide questions about ecological assembly is a form of phylogenetic natural history (Uyeda et al. 2018).54

It is already well-appreciated in the eco-phylogenetic literature that different clades might demonstrate conflicting55

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2018. ; https://doi.org/10.1101/404111doi: bioRxiv preprint 

https://doi.org/10.1101/404111
http://creativecommons.org/licenses/by-nc-nd/4.0/


patterns, hinting at the interaction of ecological and phylogenetic structure (Ndiribe et al. 2013; Elliott et al. 2016).56

For example, the phylogenetic scale (e.g., clades with different crown ages) of a study, and its relationship with spatial57

scale (e.g., spatial extent) has itself become an object of study (see Swenson et al. 2006; Vamosi et al. 2009; Graham58

et al. 2018). Parra et al. (2010) were one of the first to examine the contribution of different clades to a single metric59

of phylogenetic structure. Later work expanded node-based analysis to consider the separate structures of individual60

clades (Pearse et al. 2013), and others have examined variation in environmental and biogeographic structure among61

clades (Leibold et al. 2010; Borregaard et al. 2014). Surprisingly, these advances in the measurement of clade-based62

eco-phylogenetic structure have been disconnected from clade-based advances in trait evolution (e.g., Beaulieu et al.63

2012; Mazel et al. 2016) and phylogenetic diversification (e.g., Rabosky 2014). This is despite early work linking the64

order of trait evolution to community composition (Ackerly et al. 2006; Silvertown et al. 2006).65

We suggest that one central assertion of community phylogenetics is that the evolution of species’ traits can be66

meaningfully linked to their present-day ecological structure (Webb et al. 2002; Cavender-Bares et al. 2009). A strong67

test of this assertion would be to link variation in the tempo or mode of trait evolution among clades with independent68

evidence of variation of community composition within those same clades. This goes beyond independently testing69

for phylogenetic structure of assemblages and traits (Swenson 2013): it tests hypotheses that specific clades should70

have different modes of trait evolution that cause, or are the consequence of, changes in the community composition71

of those clades (see figure 1). This approach looks to validate the assertion that variation among clades’ ecological72

structure is a product of the interaction of phylogeny with ecology using independent trait data.73

In this paper, we extend an existing β-diversity framework (Legendre & De Cáceres 2013) to identify the unique74

contribution of phylogenetic clades to variation in community composition. Thus the contributions of clades can be75

compared with those of species and sites. Using this method it is possible to detect clades whose species do and76

do not tend to co-occur (‘clustered’ and ‘over-dispersed’ clades; Webb et al. 2002), and thus detect and disentangle77

variation in ecological structure across the tree of life. We apply our method to global mammal data (Jones et al.78

2009; Thibault et al. 2011), where we find support for slower rates of body mass evolution in over-dispersed clades.79

By linking variation in clades’ ecological structure to variation in clades’ trait evolution, we show the power of80

phylogeny as data to help understand the evolution of ecological community assembly.81
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3 Methods82

All software referred to below in italics are packages for the R environment (R Core Team 2017), and novel code writ-83

ten for this project is released in pez (in the function family beta.part ; Pearse et al. 2015, to be added after acceptance,84

and currently in the supplementary materials). The supplementary materials contain code (that, using suppdata,85

also fetches all data; Pearse & Chamberlain 2018) that reproduces our empirical example in its entirety.86

3.1 Overview and motivation87

We often wish to determine whether species within an assemblage are more (phylogenetically clustered) or less88

(overdispersed) related compared to some expectation of assembly from a larger set of species, from which patterns89

we hope to infer some ecological mechanism. However, there is a growing understanding that such patterns are90

not necessarily uniform among the clades within a phylogeny (Leibold et al. 2010; Parra et al. 2010; Pearse et al.91

2013; Borregaard et al. 2014). Indeed, phylogenetic clustering is an inherent property of clades: a phylogenetically92

clustered assemblage must have one or more over-represented clades, since clades are closely-related species and93

phylogenetic clustering is the presence of closely-related species. Below we describe how these patterns of clustering94

and overdispersion map onto clades within a phylogeny, using an extension of existing approaches to partition β-95

diversity (Legendre & De Cáceres 2013). By testing for differences in the evolution of such clades, we are able to96

test for associations between ecological and evolutionary processes, moving phylogeny from proxy for traits to data97

to be explored in the context of traits.98

Figure 2 shows two assemblages (‘A’ and ‘B’) in an eight-species phylogeny; one of the clades is clustered, the other99

overdispersed. The general principle is clearer with species’ presence (‘1’) and absence (‘0’) data, but the calculations100

are the same with species’ abundances. While the variance (σ2) of each species’ occupancy of the two sites is the101

same (1/2), by summing the species’ occupancies within each clade the variance increases in the clustered clade and102

decreases in the overdispersed clade. When compared with simulations that provide null expectations of the expected103

variance in different clades, it is therefore possible to locate significant clustered and overdispersed clades across a104

set of ecological assemblages. We note that the standard advice when calculating β-diversity of abundance data is to105

work with a transformed data matrix (typically a Hellinger transformation; Legendre & Gallagher 2001). We do not106

do so here for clarity, and note that our simulations indicate our method is robust to such untransformed data.107

Once clades with different ecological structures have been identified, we can test whether the evolution of independent108

trait data differs within those clades (following Beaulieu et al. 2012). It is, of course, equally possible to test for109

variation in the evolution of clades first, and then to test the community composition of those clades using our β-110

diversity approach as the two procedures are performed independently. In such cases, clades with outliers in a PGLS111

regression (see Freckleton et al. 2011), or the output from methods such as SURFACE (Ingram & Mahler 2013),112
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bayou (Uyeda & Harmon 2014), or BAMM (if shifts in speciation/extinction were of interest; Rabosky 2014) could be113

used to select candidate clades. Such clade-level tests directly map variation in ecological and evolutionary structure114

onto each other. Within this framework, phylogeny is not a mere proxy for missing species’ trait data (Mace et al.115

2003; Srivastava et al. 2012; Swenson 2013): the interaction between phylogenetic, community composition, and trait116

data provides novel insight into how evolutionary history is linked with ongoing ecological processes.117

We suggest that the main source of novelty in our approach is the comparison of trait evolution among clades with118

the ecological structure of clades. Additionally, our method of detecting variation among clades’ ecological structure119

is also novel. While there exist various approaches for identifying clades with particular ecological structures, our120

method is distinct from them. Firstly, and most importantly, it is a method for detecting variation in clade-level121

compositions (c.f. Ives & Helmus 2011). Secondly, it compares multiple sites (c.f. Pearse et al. 2013) simultaneously122

as it measures β-diversity. Thirdly, it does not seek to find clades that contribute to an overall pattern (c.g. Parra123

et al. 2010) but rather identify contrasting patterns among clades. Finally, it models all species simultaneously and124

so does not compare species’ individual drivers of presence/abundance, making it capable of detecting overdispersion125

(c.f. Leibold et al. 2010; Borregaard et al. 2014).126

Because our clade-wise test of ecological structure is novel, so too are our definitions of overdispersion and clustering127

(c.f. Webb 2000; Webb et al. 2002; Cavender-Bares et al. 2009). Here we define a clustered clade not on the sole128

basis of presences within a single site, but rather the pattern of presences and absences across multiple sites. For129

example, the clustered clade in figure 2 would not traditionally have been considered clustered in site B. Further, we130

emphasise that, in our framework every clade has a variance, and while we present “clustered” and “overdispersed”131

clades in figure 2, it is likely that many clades fall somewhere between these two extremes.132

3.2 Extensions of β-diversity and significance tests133

The method of Legendre & De Cáceres (2013) is essentially based around variance in species’ abundances across134

sites. In this context, our β-diversity partitioning extends species-level contributions to consider clade contributions.135

This allows ecologists interested in comparing the contributions of species and sites to β-diversity patterns to also136

compare the contributions of clades. Indeed, while we focus solely on phylogenetic clades in this manuscript, we see137

no reason why this approach could not be applied to other (hierarchical) groups of species, such as those produced138

using functional traits (Petchey & Gaston 2006).139

We suggest two ways to assess the significance of a clade’s departure from the expected variance (the clade-level140

variances, σ2, on figure 2). The first is an ‘exact’ method based on the expectation of variances, and is described141

in the Supplementary Materials. The second method is based on the contrast of observed clade variances with142

null distributions of variances estimated via permutation (e.g., reshuffling species’ identities across the phylogeny,143

reviewed in Gotelli 2000). Ranking a clade’s observed variance among its null variances would reveal whether a144
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clade had unusually high or low variance. The null model approach protects against cases in which a clade whose145

members are entirely absent or omnipresent within a set of communities from being highlighted as a clade with low146

variance. We strongly recommend the use of ecological null models to assess significance as they allow more flexibility147

over the processes contained with a null hypothesis, and are not as reliant on the statistical distribution of species’148

abundances.149

3.3 Simulations testing clade-partitioning150

We used simulations to verify our method’s ability to detect variation in ecological structure among clades. Below we151

describe each parameter of the simulation, listing each parameter in italics and its values across the simulations (in152

parentheses). We simulated phylogenies of nspp species (either 50 or 100) following a pure-birth Yule process (using153

geiger v. 2 ; Pennell et al. 2014). We then selected a focal clade containing either 5–10% or 10–20% of the species in154

the phylogeny, and simulated a trait under Brownian motion (root set to 0, also using geiger v. 2; Pennell et al.155

2014) across the entire phylogeny with a σ2 (0.5, 1, 1.5, 2, 2.5; σ2
tree), excluding the focal clade, which had a σ2 a156

multiple of 10 greater or lesser than across the entire tree (×10−3, 10−2.75, 10−2.5, ..., 103; σ2
clade). We then simulated157

community assembly across nsite sites (either 50 or 100) on the basis of this simulated trait: in each site we randomly158

selected a species and randomly drew species to be members of that community on the basis of their trait distance159

from that species. Thus species with absolute differences in simulated traits ≥ 1 from the focal species would have a160

probability of membership of 0; a species with a difference of |0.5| would have a probability of 0.5. We acknowledge161

that this mapping between trait difference and probability of co-occurrence is arbitrary and was chosen for the sake162

of simplicity. In related simulations, however, we have seen little evidence that this qualitatively affects our method’s163

performance.164

These simulations represent a form of ecological assembly that is deliberately agnostic with regard to any particular165

ecological mechanism (e.g., facilitation, competition, or environmental filtering), but conceptually similar to that166

shown in figure 1. It is well-known that multiple ecological mechanisms can result in the same eco-phylogenetic167

structure (Cavender-Bares et al. 2009; Mayfield & Levine 2010). Here we simply aim to simulate variation and then168

test our power to detect that variation, given pattern detection is an important aid in determining the processes169

underlying community assembly. A clade can evolve faster than the rest of the phylogeny (σ2
clade > σ2

tree), in which170

case we would expect close-relatives to rarely co-occur within a clade (an overdispersed clade; see figure 2). A clade171

can also evolve slower than the rest of the phylogeny (σ2
clade < σ2

tree), in which case we would expect close-relatives172

to frequently co-occur (a clustered clade; see figure 2). Even in simulations where σ2
clade = σ2

tree, we still evolved a173

separate trait for the focal clade, making this an extremely conservative test of our method.174

We repeated this simulation approach for all combinations of our parameter values, and an additional 20 times for each175

combination with identical σ2
tree and σ2

clade, resulting in a total of 2160 simulations. For each simulation, we ranked176
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the observed variance of the focal clade within 99 randomisations (the observed value was included as part of the null177

distribution, totalizing 100 values for each null distribution), swapping species’ identities on the phylogeny and keeping178

everything else constant. These rankings provide probabilities under the null hypothesis: values greater than 0.975179

suggest clustering (at α5%) and values lesser than 0.025 suggest overdispersion. This provides a test of whether our180

method can reliably detect overdispersion (ranked the lowest or second-lowest variance in the randomisations when181

σ2
clade < σ2

tree), clustering (ranked the highest or second-highest variance in the randomisations when σ2
clade < σ2

tree),182

and whether it is vulnerable to false-positives (i.e., type I error rates greater than the expected confidence level at183

0.05—ranking consistent with clustering or overdispersion when σ2
clade = σ2

tree). Note that clades are hierarchically184

nested within each other, and so species that are shared across clades mean clades’ structure are not necessarily185

independent. While we make reference to this in the discussion, we do not conduct simulations to investigate this186

further, as it is a feature that has been discussed at length in the literature (e.g., Alfaro et al. 2009). We draw the187

reader’s attention to the fact that we conduct these simulations over a range of parameter values, with the explicit188

aim of finding the conditions under which our method performs well and where it underperforms.189

3.4 Empirical example: global rodent communities190

To provide an empirical example of how our approach uses ecological structure to generate specific hypotheses about191

the evolution of species’ traits, we present an analysis of a global rodent dataset. We took data from a global mammal192

community dataset (Thibault et al. 2011), global phylogeny (Bininda-Emonds et al. (2007), updated by Fritz et al.193

(2009)), and body mass from a large database for mammal traits (Jones et al. 2009). This global community dataset194

covers a number of continents and community types, and body mass is known to be a good proxy for ecological195

interactions in rodents (see Thibault et al. 2011). Excluding all species not covered in all three datasets left us with196

abundance information for 483 species across 939 sites (assemblages) worldwide. Following the method described197

above, we identified clades’ β-diversity and assessed statistical significance by comparison to 1000 independent-swap198

randomisations (Gotelli 2000; Kembel et al. 2010).199

Identifying clades with unusual β-diversity does not, however, test whether there is an association between the200

evolution of a clade and its ecological structure. We therefore fitted Brownian motion and Ornstein-Uhlenbeck (OU)201

models using OUwie (Beaulieu et al. 2012) to the (log-transformed) body mass data, contrasting models with shared202

and varying parameters for clades identified as significantly departing from our null expectations in our β-diversity203

approach. Support for Brownian and OU models with different parameters for the clades identified by the β-diversity204

ecological analysis would suggest a link between ecological structure and trait evolution. Where hierarchically-nested205

clades were identified, we selected the oldest clade as this is more conservative (the ‘cascade’ problem; see Discussion)206

and parameter estimation is more accurate in larger clades (Beaulieu et al. 2012). In the Supplementary Materials,207

we present results of a series of permutation tests we performed to ensure that our evolutionary model-fitting was208
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not biased towards finding support for particular evolutionary hypotheses.209
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4 Results210

Results from our simulations are presented in table 1 and figure 3, and show that our method powerfully and reliably211

detects variation in phylogenetic structure among clades. Our method has strong statistical power to detect clustering212

(higher variance within a clade; the red line in figure 3), and a somewhat reduced power to detect overdispersion213

(lower variance within a clade; the blue line in 3). As shown in table 1, however, greater sampling modifies this:214

sampling 100 species across 100 sites additively increases the ranking of the observed variance by 10% (e.g., from215

p = 0.85 to p = 0.95) in comparison with 50 species across 50 sites. Our method shows a tendency to spuriously216

suggest support for clustering (i.e., overall inflated type I error rates in simulations of 24% at two-tailed α5%; see217

figure 3), but again this varies depending on the biological context. As shown in table 1, focal clades that make218

up large proportions of the total data are more likely to be erroneously identified as clustered: if the focal clade219

contains 10 of the 100 species in a system (nsites = 50, σ2=1) the predicted probability of clustering is 0.77, but220

if the clade contains 20 species (i.e., 20% of the species) that prediction rises to 0.95. Neither of these predicted221

values are statistically significant at α5%. As we highlighted above, we conducted simulations across a wide region222

of parameter space to highlight where our method performs well and where it performs poorly. Thus the raw results223

plotted in figure 3 do not necessarily reflect our average expectations for performance of our method.224

From our analyses of the rodent dataset, figure 4 shows the mammal clades identified as having significantly different225

variance distributions, and table 2 shows the AIC comparison of models of trait evolution that incorporate variation226

within those clades. The two clades on which we focused (marked on figure 4) are the Scuridae (squirrels) and their227

sister family the Gliridae (dormice), and the Echimyidae (a Neotropical rodent family) and some close-relatives within228

what is sometimes called the Caviomorpha (e.g., South American rodents like the guinea pig). We refer to these two229

groups as the ‘squirrels’ and ‘cavis’, respectively, although these terms do not precisely map onto all species within the230

clades. The squirrel and the cavi clades were both identified as having low variance (phylogenetic overdispersion).231

Note that our method also detected clades indicative of clustering (high variance). As the low-variance clades232

are nested within these high-variance clades, we suggest they might reflect important eco-evolutionary shifts. The233

detection of both phylogenetic clustering and overdispersion demonstrates the ability of our method to reveal both234

kinds of pattern in empirical datasets.235

Table 2 shows that the squirrel and cavis clades were also characterised by different rates of trait evolution. The236

top four models, with δAIC less than 5, all supported different rates of body mass evolution for these two clades.237

The fifth-best model had a δAIC of 14.9 and so there is only limited support (Burnham & Anderson 2002) for238

the alternative hypothesis that trait evolution is constant across the squirrels, cavis, and the rest of the mammal239

phylogeny. The lowest-AIC model favoured a simple three-rate Brownian motion model in which the rate of body240

mass evolution in squirrel and cavi clades is significantly slower, most notably in the squirrel clade. Our permutations241

procedure suggest that, by chance, we would expect to find the opposite pattern to that found with the empirical242
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data (see Supplemental Materials), giving greater strength to our findings.243
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5 Discussion244

We have presented a novel method for identifying clades (groups) of species whose ecological community structure245

differs from other species across a set of communities. Simulating species’ phylogenies and responses to an environ-246

mental gradient, we demonstrated that the method reliably detects shifts in the variance of species’ abundances,247

identifying different phylogenetic structures. Most importantly, however, we have also shown, using empirical data,248

that the tempo of trait evolution shifts within clades associated with unusual present-day ecological structure. To249

the best of our knowledge, this is the first eco-phylogenetic framework that performs hypothesis tests of associations250

between the evolution and ecological community composition of clades. By linking variation among clades’ ecological251

structure with independent evidence for variation in those clades’ rates of trait evolution, we have found evidence for252

an interaction between evolutionary and ecological information. We argue that our approach, combining evidence of253

both ecological and evolutionary patterns, has more power to answer questions about the underlying eco-evolutionary254

drivers of community assembly than methods focusing singularly on phylogenetic or trait data alone.255

5.1 β-diversity partitioning in community phylogenetics256

The use of phylogeny as a proxy for ecological process has been criticised. It has been argued that there is little need257

for phylogeny if we already have functional traits (Swenson 2013), and phylogenetic pattern rarely maps directly258

onto ecological process (a critique that applies equally to functional traits; Mayfield & Levine 2010). However, we259

have suggested one central premise of community phylogenetics is that there is an association between the evolution260

of species’ traits and the phylogenetic structure of the communities in which they are found. Many community261

phylogenetic studies, like ours, examine the tempo and mode of trait evolution within their system (e.g., Swenson et262

al. 2006; Kraft et al. 2007), but few have asked how trait evolution and community phylogenetic structure are linked263

and feedback into each other. Simple measures of phylogenetic signal assume complete, or at least unbiased, taxon264

sampling (Pagel 1999; Blomberg et al. 2003), and so eco-phylogenetic structure, which, by definition, implies non-265

random taxonomic representation, may mask broader (true) patterns of trait evolution by introducing non-random266

taxonomic sampling. Our approach offers a coherent framework to test for links between the macro-evolutionary267

dynamics of clades and their present-day (or relatively recent past) community composition.268

Despite conceptual issues, the utility of phylogeny in predicting species’ traits (Guénard et al. 2013), Janzen-Connell269

effects (Gilbert & Webb 2007), invasion success (Strauss et al. 2006), and ecosystem function (Cadotte et al. 2013)270

suggests phylogeny will remain a useful (Tucker et al. 2018), if imperfect (Cadotte et al. 2017), proxy in ecology for271

some time. Yet we suggest that phylogeny is more than just a surrogate for unmeasured traits, and that it provides us272

with the ability to link patterns and processes in ecology and evolution. Here, we map patterns in separate ecological273

assemblages and species trait datasets onto each other, linking them by treating phylogeny in and of itself as data in274
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two separate analyses. Our approach does not invoke niche conservatism, but rather seeks to understand how traits275

have evolved and match with (current) patterns of species co-occurrences across local communities. As such, there is276

no requirement that closely related species are more ecologically similar or compete more strongly, assumptions that277

have been heavily criticised (Cahill et al. 2008; Mayfield & Levine 2010). Our results simply support a link between278

the ecological structure (β-diversity) of clades and the evolutionary history of those clades. The evolutionary patterns279

we observe come from interactions, or the absence of interactions, that occurred over millions of years, potentially280

in assemblages very different to those we see today. Our analyses indicate that these past interactions have left an281

imprint on present-day ecological structure, and imply that future evolutionary trajectories may be influenced by282

present-day species interactions.283

In our analysis of small mammal assemblages, we showed that the ‘capi’ and ‘squirrel’ clades, whose members tended284

not to co-exist (their clade variances were low), have lower rates of character evolution (table 2). Rodent body size285

is a driver of ecological competition (Bowers & Brown 1982; Ernest 2005), and our results suggest slower evolution286

of body size is a driver of variation in the present-day community composition of our small-mammal communities.287

The clades we have focused on are relatively small and young (see figure 4), and previous work (Ackerly et al. 2006;288

Silvertown et al. 2006) has suggested that traits that evolve early and late in the evolutionary history of a clade may289

affect ecological assembly differently. Our results imply that it is not just the timing of body size evolution that290

may be important, but also its rate of evolution. We do not yet know what caused this slow-down in the ‘capi’ and291

‘squirrel’ clades and whether these associations are driven by changes in diversification rate (which can be confounded292

with trait evolution; FitzJohn 2010). There is, however, some evidence that younger clades tend to co-occur more293

than older ones (Pearse et al. 2013; Parmentier et al. 2014).294

5.2 Method performance295

We show that our method has good statistical power, and compares favourably to the widely used NRI and NTI296

metrics of phylogenetic community structure, for which statistical power has been estimated at less than or equal297

to 20% (Kraft et al. 2007) and 60% (Kembel 2009). In some cases, however, we observed inflated type I error rates298

relative to these other methods (see below for discussion). In many ways these are unfair comparisons, given that our299

approach makes use of information from multiple sites (although the number of species with phylogenetic structure300

is comparable), which we would argue this is a strength of our method. Phylogenetic Generalised Linear Mixed301

Models (Ives & Helmus 2011) also use many sites at once, and our results compare favourably to this approach302

(87% detection rate for phylogenetic clustering, 53% for overdispersion, but with fewer sites than in our study). It303

is important to note, however, that these alternative methods are intended to answer different questions. We make304

these comparisons simply to demonstrate that our approach performs reasonably in comparison with others, even in305

simulations where the number of species in a focal clade could be as low as 5 and the datasets themselves are small306
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(no more than 100 species or sites).307

Our simulations show that, in cases where the focal clade makes up a large proportion of the species under study308

(in our simulations, over 20%) type I error rates could be inflated. We do not feel that this is of concern, for309

several reasons. First, within our framework, clades must be detected as significant both in terms of their ecological310

structure and also their historic trait evolution. As such spurious identification of structured clades would tend to311

weaken any association between their ecology and evolution. Second, it is rare that ecological assemblages are truly312

randomly structured: the norm is for them to display some degree of phylogenetic structure (Vamosi et al. 2009).313

We suggest most biologists may be more interested in detecting the difference between overdispersion and clustering,314

not overdispersion/clustering versus random assembly. This is the case in our empirical example, where we examined315

clades that were overdispersed whose sisters are clustered. Third, we used two separately evolved traits for the tree316

and the focal clade. Our method may be detecting genuine differences between the focal clade and the tree as a317

result of different ecological assembly on the basis of genuinely different traits. We also note that type II error rates318

have been shown to be even higher for other, more commonly used, metrics of phylogenetic structure. For example,319

SESMPD and SESMNTD, when estimated by taxa-shuffling null distributions such as we employ here, can have320

type I error rates of c. 50% (Kembel 2009).321

5.3 Potential methodological extensions322

Like similar approaches (Parra et al. 2010; Pearse et al. 2013; Borregaard et al. 2014), does not directly consider323

nestedness (Ulrich et al. 2009), where the significance of a clade ‘cascades’ up into higher super-sets of hierarchical324

groupings (c.f. the ‘trickle-down’ problem in diversification analysis; Purvis et al. 1995; Moore et al. 2004). One325

possible extension would be to compare each clade with the summed clades subtending it (not, as in the method326

we present, the species within it). Thus each clade in a fully resolved phylogeny would have its variance compared327

with the variances of the two clades subtending it (our supplementary code permits this). Significance could be328

tested through null permutation, as we use in this manuscript, or potentially through nested ANOVAs. However,329

we suggest that this cascading is not so much a limitation but rather a matter of interpretation; that a group has330

unusual β-diversity because it contains other unusual groups does not strike us as problematic. A balanced approach331

could limit the study to particular clades on the basis of age or other a priori interest, or to hold problematic clades332

constant in null randomisations.333

We also note that our approach for identifying ecologically structured clades does not incorporate phylogenetic334

branch lengths. Branch lengths inform models of trait evolution, and so for our purposes of mapping independent335

evolutionary structure onto ecological structure we consider it undesirable to have branch lengths play a role in both336

aspects. For those interested in incorporating branch lengths in other situations, a simple approach would be to337

multiply each species’ abundance by its evolutionary distinctiveness (Isaac et al. 2007) or another measure of its338
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phylogenetic uniqueness (e.g., Redding & Mooers 2006; Cadotte et al. 2010). However, depending on the question339

at hand this might ‘average out’ the signal that we may be interested in detecting. For example, if community340

composition varies with phylogenetic scale (Webb et al. 2002; Cavender-Bares et al. 2009; Vamosi et al. 2009), it341

might be better to model the standard effect size (SES; sensu Kembel 2009) of node variance as a function of node342

age (see Pearse et al. 2013).343

5.4 Conclusion344

We suggest that the identification of clades with unusual ecological structure is of at least as much interest as the345

summary statistics that have been used frequently to describe phylogenetic assemblage structure but which map346

only poorly to ecological process. Further, we see that establishing links between assemblage structure and the347

evolution of species’ traits as a central premise of community phylogenetics, but has been rarely tested. As a field,348

community phylogenetics is well-placed to take advantage of recent advances in trait evolution (Pennell & Harmon349

2013; Nuismer & Harmon 2015) and eco-phylogenetic theory (Pigot & Etienne 2015). We have outlined here an350

approach to directly test links between the ecological structure of assemblages and the evolution of species’ traits. As351

we gain a firmer grasp of assemblages’ phylogenetic structure, we can begin to model it as data, not merely measure352

its pattern.353
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Figure legends501

Figure 1. Linking clades’ evolution and ecological structure. Here we give an example of how clade-level502

variation in ecological structure (the tendency for close/distant relatives to co-occur) might arise. We consider a503

set of species that are initially filtered within some biogeographic (or meta-community) context; perhaps the clade504

is widespread but not all its members are present in every continent/region, for example. A trait, represented by505

the size of the circles at the tips of the phylogeny, evolves across the phylogeny, but evolves faster in one clade506

(the red branches) and slower in another (the blue branches). Ecological community assembly on the basis of this507

trait, regardless of mechanism, will result in different eco-phylogenetic structures across these clades. Re-framing508

our eco-phylogenetic analysis in terms of clades allows for the generation of falsifiable hypotheses about how species’509

ecology and evolution interact. In this study, we use evidence of variation in the ecological structure of clades to510

test for variation in the evolution of those traits. It would also be possible to find clades with differing evolutionary511

patterns, and then use these to test for differing methods of ecological assembly and co-existence within those same512

clades. We emphasise that this diagram is but one example of how ecological assembly and the macro-evolution513

of species’ traits could interact. While we do not show the interaction of fitness and niche differences on species’514

co-occurrence (sensu Chesson 2000; Mayfield & Levine 2010), we see no reason our approach could not be applied515

to more complex models of ecological assembly.516

Figure 2. Overview of variance-based partitioning method. A horizontal dashed line splits the phylogeny517

into two clades: one has an overdispersed community phylogenetic structure (close relatives are unlikely to co-occur),518

and the other a clustered structure (closed relatives are likely to co-occur). It is these two kinds of ecological structure519

that our method aims to detect. A vertical grey dashed line separates species and grouped clade calculations. To520

the left of the vertical line, the abundances of each species in two assemblages (A and B) are shown alongside the521

variance (σ2) of each species’ compositions across the assemblages; all species have the same variance (1/2). To the522

right of the vertical line, community abundances for the species have been summed: the variance of these abundances523

is now much lower for the over-dispersed clade and much higher for the clustered clade. For simplicity, we use binary524

presence-absence data as an illustration, but this method can be applied to species’ abundances within assemblages.525

While there is an analytical expectation for clade-level variances (see text) we recommend using ecological null models526

to assess the significance of clade-level patterns. Note that when more than two sites are considered, a single variance527

value for each species is calculated across all species’ presences and absences (or abundances).528

Figure 3. Simulations showing how method performance increases with effect size. In grey, the proba-529

bilities are shown for when there was no difference between the model of trait evolution in the focal clade and the530

rest of the phylogeny. The mean of these values, along with the percentage of values lying beyond the 2.5% and531

97.5% quantiles, are shown in black. In blue, the probabilities for the overdispersed (low variance; σ2
clade > σ2

tree)532

are shown, along with a quasi-Binomial GLM prediction. In red, the probabilities for the clustered (high variance;533
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σ2
clade < σ2

tree) are shown, along with a quasi-Binomial GLM prediction. At an α5%, a predicted probability of 0.025534

or 0.975 would provide statistical support for the focal clade being clustered or overdispersed, respectively. None of535

these curves account for the additional explanatory variables used in the models in table 1, and thus these curves536

are conservative. Raw data used to parameterise the models shown in table 1.537

Figure 4. Empirical mammal results showing associations between ecological structure of clades and538

their rates of body mass evolution. To the left and right, the phylogeny of all 483 mammals in the study. Two539

large blue circles on the nodes of each phylogeny indicate the two ‘squirrel’ and ‘cavi’ clades tested in the evolutionary540

analysis (see text and table 2). The left-hand phylogeny is coloured according to the ranking of the clades’ variances;541

a ranking of 1 (blue; see legend) would indicate a clade whose variance was lower than all 1000 null permutations,542

and a ranking of 1001 (red; see legend) a clade whose variance was higher than all 1000 null permutations. In the543

center, a site-by-species matrix of relative abundance in all 939 assemblages, with a colour-scale indicating relative544

abundace (see legend at bottom). The right-hand phylogeny is shaded according to a reconstruction of body mass (g)545

across the phylogeny (using phytools Revell 2012). Although this reconstruction does not explicitly model variation546

in rate among clades, variation in size across its branches can be seen.547
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effect size (σclade
2 :σtree

2  or σtree
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Estimate Std Err z p
Intercept (nspp = nsites = 50) −0.0574 0.5643 −0.10 0.9191

log10(
σ2
tree

σ2
clade

) 0.8788 0.2015 4.36 <0.0001***

nclade 0.3710 0.0916 4.05 0.0001***
σ2
tree −0.1703 0.2753 −0.62 0.5363

Contrast—nspp = 100 0.3772 0.5263 0.72 0.4739
Contrast—nsites = 100 0.4182 0.3122 1.34 0.1809

(a) Clustering (higher variance)

Estimate Std Err z p
Intercept (nspp = nsites = 50) 1.2188 0.2701 4.51 <0.0001***

log10(
σ2
clade

σ2
tree

) −1.8568 0.1265 −14.68 <0.0001***

nclade 0.0048 0.0244 0.20 0.8437
σ2
tree −0.1751 0.1399 −1.25 0.2114

Contrast—nspp = 100 −0.1595 0.2007 −0.79 0.4271
Contrast—nsites = 100 −0.3402 0.1569 −2.17 0.0306*

(b) Overdispersion (lower variance)

Estimate Std Err z p
Intercept (nspp = nsites = 50) 0.6432 0.0296 21.72 <0.0001***
nclade 0.0174 0.0030 5.90 <0.0001***
σ2
tree −0.0338 0.0170 −1.98 0.0478*

Contrast—nspp = 100 −0.0088 0.0239 −0.37 0.7123
Contrast—nsites = 100 0.0222 0.0191 1.16 0.2455

(c) Null (no difference in variance)

Table 1: Simulations showing how method performance varies as a function of phylogeny and clade
size, rate of trait evolution, and effect size. Each sub-table shows the results of modelling the estimated
probabilities that focal clades are clustered (higher variance; a), overdispersed (lower variance; b), and random (null,
no difference; c) across the simulations. At an α5%, a predicted probability of 0.025 or 0.975 would provide statistical
support for the focal clade being clustered or overdispersed, respectively. Generalised Linear Models with a quasi-
binomial error structure were used to account for non-normality of errors in the clustering (a) and overdispersion
(b) models, and so coefficients are reported on the logit scale. In (a), a greater statistical power to detect clustering
is most strongly associated with the number of species in the focal clade and the difference in evolutionary rate
between the focal clade and the rest of the phylogeny (deviance: null527 = 98.46 and residual522 = 62.52; estimated
dispersion = 0.51). In (b), a greater statistical power to detect overdispersion is most strongly associated with
the difference in evolutionary rate between the focal clade and the rest of the phylogeny and the number of sites
sampled (deviance: null524 = 277.74 and residual519 = 152.97; estimated dispersion = 0.51). In (c), there is a slight
tendency for larger focal clades to appear more clustered, and for faster-evolving traits to drive overdispersion, even
when focal clades evolve under the same model as the rest of the phylogeny (F4,919 = 13.75; r2 = 5.64%; p < 0.0001).
We recommend that more attention should be paid to effect estimates than statistical significance in these models,
since statistical significance can be driven by sample size and these are the results of simulations.
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θ0 θc θs σ0 σc σs α0 αc αs δAIC

— — — 53 32 1.12 — — — 0.00
2.14±0.42 5.38±1.53 2.00±1.39 52 30 1.12 0.00 1.13
2.14±0.42 5.38±720.76 2.05±0.52 51 0.00 0.00 49 1.54
2.15±0.42 352.83±159.69 -15.44±130.72 52 30 1.1 0.00 0.00 0.00 5.00

— — — 58 — — — 14.90
2.17±0.44 58 58 16.90
2.14±0.44 5.32±1.70 1.96±1.25 57 57 17.00

Table 2: Results of log(body mass) evolutionary modelling. Above are the θ (optimum), σ (rate), and α
(rate of return to optimum) estimates, along with AIC and δAIC values, for all trait evolutionary models. Each row
represents a different model; ‘—’ is used to indicate when a parameter is not fit in a model, and where only a single
estimate for a parameter is given (e.g., θ0) only a single parameter was fit across the whole phylogeny. Thus rows one
and four represent Brownian motion (models with no optima), and all other rows are variants of Ornstein-Uhlenbeck
models. In subscripts of parameters, ‘c’ refers to the ‘capi’ clade, ‘s’ to the ‘squirrel’ clade, and ‘0’ to the remainder of
the phylogeny. See text and figure 4 for a description of these species making up each clade. The α and σ estimates
have been multiplied by 10−4 for brevity of presentation. The four most likely models according to δAIC all contain
clade-level variation, strongly supporting different patterns of evolution in the clades highlighted by the clade-level
partitioning of β-diversity(see text).
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