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Abstract

Contaminant  DNA  is  a  well-known  confounding  factor  in  molecular  biology  and  in  genomic
repositories. Strikingly, analysis workflows for whole-genome sequencing (WGS) data usually neglect the
errors introduced by potential contaminations. We performed a comprehensive evaluation of the extent and
impact of contaminant DNA in WGS by analyzing more than 4,000 bacterial  samples from 20 different
studies. We found that contaminations are pervasive and can introduce large biases in variant analysis. We
showed that these biases can translate in hundreds of false positive and negative SNPs, even for samples with
slight  contaminations.  Studies  investigating  complex  biological  traits  from  sequencing  data  can be
completely biased if contaminations are neglected during the bioinformatic analysis. We used both real and
simulated data to evaluate and implement reliable, contamination-aware analysis pipelines. Our results urge
for the implementation of such pipelines as sequencing technologies consolidate as a precision tool in the
research and clinical context.
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MAIN TEXT

Introduction

Whole  genome  sequencing  (WGS)  has  enhanced  the  study  of  complex  biological  phenomena  in
bacteria,  such  as  population  dynamics,  host  adaptation  or  outbreaks  of  microbial  infections  (1,  2).  In
addition,  democratization  of  high-throughput  sequencing  technologies  and  continuous  improvements  in
laboratory  procedures  are  also  turning  WGS into  a  promising  alternative  for  the  clinical  diagnosis  and
surveillance of several pathogenic species (3–5). Thus, many efforts in the basic and clinical research fields
are directed  to  the improvement  of  bioinformatics  pipelines  to  ensure the robustness  of  the conclusions
drawn.

Central  to  many  bacterial  WGS  bioinformatics  pipelines  is  the  identification  of  genetic  variants.
Incorrect identification of variants can have a major impact on several areas of microbiological research.
Applications based on variant analysis include, but are not limited to, phylogenetics (6), phylodynamics and
dating(7), genome-wide association studies(8), experimental evolution(9), epidemiological analyses(10) or
drug development(11). Furthermore, the frequency at which each variant is observed in a sample can be used
to characterize population genetics processes. Analysis of the allele frequency spectrum enables the study of
population dynamics of clonal diversity within a niche or co-existence of mixed lineages(12). In the clinical
field,  variant  analysis  at  a  genomic  scale  allows  the  identification  of  pathogen  species  and  genotypes,
distinguish between relapse and superinfections,  or prediction  of resistance phenotypes and transmission
links. 

While many factors are taken into account when developing SNP calling pipelines, surprisingly the
potential role of contaminants is seldomly considered (13). However, misinterpretation of contaminated data
can lead to draw incorrect conclusions about biological phenomena (14, 15).

Genomic databases are known to encompass contaminated sequences, with assembled genomes that
can contain large genomic regions from non-target organisms (16,  17). Strikingly, a recent study revealed
that  deposited  bacterial  and  archaeal  assemblies  are  contaminated  by  human  sequences  that  created
thousands of spurious proteins(18). While the potential impact of contaminants has been considered in fields
like metagenomics or transcriptomics, most bacterial WGS analysis pipelines lack specific steps aimed to
deal  with  contaminant  data.  This  situation  likely  originates  from  the  assumptions  that  microbiological
cultures are mostly free of non-target organisms and that, if any, contaminating sequences hardly map to the
reference genomes or are removed using standard filter cutoffs. To date, the extent of contaminations and
their impact in bacterial re-sequencing pipelines has not been comprehensively assessed.

In this  work, we use both real and simulated data to perform a detailed comparison of a standard
bacterial mapping and SNP calling pipeline against two alternative contamination-aware approaches. First,
we  implement  a  taxonomic  filter  removing  contaminant  reads  that  allowed  us  to  assess  the  extent  of
contaminations and estimate its impact in a dataset comprising 2,600 samples of 13 different species from 12
bacterial WGS projects. Second, we compare the performance of this taxonomic filter with a filter based on
the similarity of the alignments, and evaluate the impact of contaminations in 8 WGS projects comprising
1,500 samples of Mycobacterium tuberculosis (MTB) WGS samples. 

We found that contaminations are frequent across bacterial WGS studies and can introduce large biases
in variant analysis despite using stringent mapping and variant calling cutoffs. Importantly, this is not only
true for culture-free sequencing strategies, but also for experiments sequencing from pure cultures. We show
that  the  effect  size  is  not  dependent  on  the  amount  of  contamination  and  that  samples  with  subtle
contaminations can accumulate dozens of errors. We demonstrate that removing contaminant reads with a
taxonomic classifier allows the implementation of highly accurate variant calling pipelines and provide a
validated workflow for WGS analysis of MTB.
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Results

Contaminations are common across WGS studies, even when sequencing from pure cultures.

To assess the extent of contaminations across bacterial WGS studies, we taxonomically classified the
sequencing  reads  of  4,194 WGS samples  from 20  different  studies  using  Kraken,  a  metagenomic  read
classifier  that  has  been  extensively  used  and  evaluated  in  the  literature.  Out  of  these,  1,553  samples
corresponded to  M. tuberculosis sequencings,  here  referred  as  the  MTB dataset,  and  2,641 to other  13
bacterial species, here referred as the  bacterial dataset  (Table 1). According to taxonomic classifications,
varying levels of contamination with non-target reads can be found in the different studies (Figure 1). From
the bacterial dataset, L. pneumophila, A. baumannii, L. monocytogenes, P. aeruginosa and N. gonorrhoeae
studies showed the expected taxonomic profile from pure culture isolate sequencings, since virtually all the
reads are classified in their respective target genus. By contrast, contaminations can be clearly found in the
rest of studies from this dataset, with an average of 45% of samples per study having less than the 90% of the
reads coming from the target organism. The T. pallidum study represents an extreme case, with its samples
having an average of only 40% of reads coming from this organism. This result is expected since in this
study the samples were sequenced directly from clinical specimens using a bait capture strategy. However,
high levels of contamination can be found in other studies where sequencing is performed from pure cultures
(Figure 1a). 
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Figure 1: Proportion of sequencing reads for different organisms across 4,346 WGS samples 
from 20 different studies. Each dot represents a sample with a given percentage of sequencing 
reads coming from the genus indicated in the y-axis. Dashed lines highlight the target organism 
of each study. A 0.3 of vertical jitter was applied for better visualization. Only organisms in a 
proportion above the 2% are shown. a) Studies of the bacterial dataset. b) Studies of the MTB 
dataset. The two Enterococcus species analyzed in the bacterial dataset are shown under the 
same rectangle as they belong to the same genus and the same study.

When looking at  the  MTB dataset,  we also observed contaminations  to be common across studies
(Figure  1b).  As  expected,  direct  sequencings  from clinical  specimens  and  early  positive  mycobacterial
growth indicator tubes (MGIT), which are inoculated with primary clinical samples, present higher levels of
contamination in terms of both the number of samples contaminated and the proportion of non-target reads
within them. Common contaminants for these samples comprise human DNA, and bacteria usually found in
oral and respiratory cavities like  Pseudomonas, Rothia, Streptococcus  or  Actinomyces, and can constitute
virtually all reads in some samples. However, as observed for the bacterial dataset, contamination was also
detected in studies in which the sequenced DNA came from pure culture isolates. For instance,  Bacillus,
Negativicoccus and Enterococcus represented up to 68%, 58% and 32%, respectively, of different samples
from the KwaZulu study. Strikingly, 17 out of 73 MTB samples from the Nigeria study were identified as
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Staphylococcus  aureus (92%  to  99%  of  reads),  probably  due  to  a  mistake  during  data  uploading  or
mislabeling in the laboratory. The high-depth dataset was mostly free of contamination, with the exception of
two samples  for  which 3.32% of  Acinetobacter  baumannii  and 2.83% of  non-tuberculosis  mycobacteria
(NTM) was identified (representing 795,887 and 920,379 reads respectively).

A taxonomic filter to selectively analyze non-contaminant reads.

To assess the impact of these contaminations in bacterial WGS analysis, we compared the outcomes in
variant calling for each sample before and after removing contaminant reads as classified by Kraken. We
refer to this  contamination  removal  methodology as “taxonomic  filter”  (detailed in Methods).  To assess
whether our Kraken setup can be safely used to remove contaminant reads across the analyzed datasets, we
first estimated the proportion of reads that can be classified up to the level of species and genus for each
organism using a simulated FASTQ file from the corresponding reference genome (Supplementary Table 1).
For most of the organisms more than the 99% of the reads could be classified at species level for 250bp
Illumina MiSeq sequencings (median = 99.35%) with the exceptions of K. pneumoniae (97.86%), S. aureus
(95.01%)  and  T.  pallidum  (93.54%).  For  100  bp  Illumina  HiSeq  sequencings  the  proportion  of  reads
classified for each organism was lower in every case (median=98.79%) with a dramatic drop for T. pallidum
(72.74%), and with the exception of M. tuberculosis that remained 99.98%. At genus level, Kraken was able
to classify most of the reads of each organism (median=99.89% for 250 bp sequencings; median=99.77% for
100 bp sequencings) with the exception of  S.aureus  that remained around 95% for both 250 and 100 bp
sequencings. Interestingly, for  T. pallidum, which showed to be the most difficult organism to classify at
species level, 100% of reads were classified at genus level.

Second, we scanned all the WGS samples to estimate the maximum proportion of reads Kraken is
capable of classify as the target organism in real samples (Supplementary Table 1). In most cases there was
at least one sample per bacteria that could be classified as good as the reference genome (median difference
between real  and simulated  sequencings  of  1% at  species  level  and 0.35% at  genus  level).  The higher
difference was observed for T. pallidum for which the maximum number of reads classified in a real WGS
sample at genus level was of 94.75%. 

Therefore,  to  safely  analyze  the  effect  that  contaminants  reads  have  in  WGS  sequencings  of  the
bacterial dataset, we applied the taxonomic filter at the genus level, thus removing from each sample those
reads classified as any other organism than the target genus (e.g we removed all non-Acinetobacter  reads
from the  A.  baumannii  study).  This  strategy can  safely  remove  contaminants  at  the  cost  of  potentially
analyzing reads from the same genus than the target organism. In addition, we avoided highly contaminated
samples introducing extreme biases in the analysis by discarding samples with contaminations higher than
50% and depths lower than 40X (20X for  T. pallidum,  see Methods for a further explanation). From the
initial 2,641 samples of the bacterial dataset, 2,233 met these criteria. 

Contamination impacts bacterial WGS analysis

The  expected  effect  of  contaminant  read  mappings  is  to  produce  mixed  calls,  leading  to  the
identification of false positive variable SNPs (vSNPS). These false positive calls would alter the frequencies
calculated at a given position, what might also produce false negative fixed SNPs (fSNPs) by lowering the
frequency below the required cutoff to call fixed variants (90% frequency in this work). Overall, There was a
high correlation between removing vSNPs and recovering fSNPs (Pearson Correlation Coefficient=0.76)
(Figure 2). However, not all the contaminant reads are expected to affect positions with fSNPs and, in fact,
for 405 samples (18%) the taxonomic filter removed the false positive vSNPs without affecting any fSNP.
Similarly, in 38 samples (3%) we observed the recovery of at least one false negative fSNP without removal
of vSNPs. Notably, we did not observe a correlation between the number of vSNPs removed and the degree
of contamination of a sample (Pearson Correlation Coefficient = -0.06) (Table 2). This result suggests that
the  impact  in  variant  analysis  is  highly  dependent  on  which  are  both  the  contaminant  and  the  target
organisms, rather than the amount of contaminating reads. 
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Figure 2: Correlation between the number of vSNPs removed and the number of fSNPs 
recovered after contamination removal with the taxonomic filter.

Overall, the impact of removing contaminant reads on vSNP and fSNP inference depended heavily on
the species considered. For example, virtually no change was observed for N. gonorrhoeae samples (Table 2,
Figure 3) while a mean number of 549 vSNPs were removed and 73 fSNPs recovered for  K. pneumoniae
samples. In many WGS applications genetic variants are not analyzed on a sample basis but across the entire
dataset.  We therefore evaluated the impact  of contaminant  reads on polymorphic positions called across
datasets. On average, the total number of polymorphic positions was reduced by 1.51% for fSNPs (range 0%
- 6%) and 8.67% for vSNPs range (0% - 41%) (Figure 3, Supplementary Table 2).

Unexpectedly,  we also observed a small  proportion of fSNPs to be systematically  removed by the
taxonomic filter (median=0.2% of fSNPs, ranging from 0% to 5.6% between studies; Supplementary Table
3). Those positions can be considered false negatives introduced by the pipeline, including inconsistencies of
the mapping software, and the inability of Kraken to classify a small proportion of reads disregarding their
similarity to the reference genome (further discussed in Supplementary Results 1 and Supplementary Figure
1).  When inspecting a  fraction of the removed fSNPs, we observed that  most of them were across low
coverage regions. Removing few reads in those regions makes the position fall below the required thresholds
to a call a fSNP in the filtered sample. 

Thus, our results not only show that contaminants have a major impact on variant analysis, but also that
dealing  with  such  contaminants  will  require  different  contamination-control  strategies  and  specific
implementations for each organism to reach an acceptable trade-off between false positives and negatives. 
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Implementation of a contamination-aware analysis pipeline: Mycobacterium tuberculosis as a test
case. 

Given  the  results  observed  in  the  bacterial  dataset,  we  implemented  two  contamination-control
approaches on top of a specific analysis pipeline for M. tuberculosis WGS data (see Methods): a taxonomic
filter  at  species  level  (Mycobacterium  tuberculosis  complex)  and  a  similarity  filter  that  removes  read
mappings with identity and length lower than 97% and 40 bp respectively. We tested both approaches using
simulated and real sequencing runs. In first instance, we used  in-silico  simulated experiments to evaluate
how non-MTB reads are mapped to the MTB reference genome and quantify the false positive and negative
SNPs that arise as a consequence. We mapped simulated sequencings of 45 organisms to the MTB reference
genome, including oral and respiratory microbiota, clinically common non-tuberculous mycobacteria, and
human reads. As expected, conserved genes like the 16S,  rpoB,  or the tRNAs, constitute hotspots where
contaminant sequences are frequently aligned to. However, non-MTB alignments are not only produced in
these regions but across the reference genome (Figure 4a). This is dependent on the phylogenetic relationship
of the contaminant  organism to the one being studied.  Non-tuberculous  mycobacteria  represent  the best
example  of  this,  as  their  read mappings can produce high sequencing depths  along the MTB reference
genome.  Remarkably,  human reads,  which  are  frequently  the main  concern  in  clinical  samples,  did not
produce alignments at all.
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Figure 3: Fraction of polymorphic positions with vSNPs removed after applying the taxonomic 
filter for each one of the studies analyzed.
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Figure 4: Mapping of non-MTBC reads across the MTBC reference genome impacts variant 
calling. a) Mean sequencing depth obtained along the MTBC reference genome across 1000-bp 
windows when mapping 1,500,000 simulated reads of non-tuberculous mycobacteria species 
and organisms other than mycobacteria (OTM). For OTM, the 10 organisms that produced 
higher sequencing depths are shown. b) Number of false positive vSNPs and false negative fSNPs
(note logscale) in samples in-silico contaminated with different proportions of non-MTB 
organisms when following three different analysis pipelines (taxonomic filter, similarity filter and
a standard pipeline including a mapping quality filter (MAPQ 60))Next, we evaluated the 
performance of the taxonomic filter and the similarity filter 

   

using  in-silico  contaminated  samples.  Whereas  both  approaches  reduced  the  number  of  non-MTB
mappings, the taxonomic filter showed the best performance, eliminating all non-MTB alignments with the
only exception of a proportion of M. avium reads. Accordingly, the number of false positive vSNPs due to
contaminants was reduced with both methods, but in the case of the taxonomic filter almost all erroneous
SNP calls  were eliminated  (Figure  4b).  Only  contaminations  with  M. avium,  a  closely  related  bacteria,
compromised its performance. Nonetheless, the errors observed were notably lower than when only using a
mapping quality threshold (60 in this work). For example, when a 5% of M. avium was present, the 3,325
false positive vSNPs and 51 false negative fSNPs identified were reduced to 24 and 9 respectively after
applying the  taxonomic  filter.  The few false  negative  fSNPs  observed in  Figure  4b  that  are  systematic
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between all methods, were due to some positions next to hard-to-map regions that do not pass the coverage
cutoffs required to call a fSNP in contaminated samples.

Remarkably, even slight contaminations (5% in this simulation) can introduce a large number of false
positive  vSNPs. As expected,  the erroneous calls  produced by such small  contaminations  fall  mainly in
conserved regions. However, in agreement with the results shown in Figure 4a, spurious SNPs can be called
across the genome (Supplementary Figure 2). Importantly, it is precisely because many of the contaminant
alignments are produced in conserved genes that we predicted false antibiotic resistances, including well-
known mutations to first line drugs in MTB treatment (Supplementary Table 4). 

We  also  evaluated  whether  these  filters  systematically  remove  sequencing  reads  from  particular
genomic regions leading to biases produced by the methodology itself.  To do so, we analyzed the mean
sequencing depth obtained across the genome, before and after applying the filters, for all the samples of the
MTB  dataset  that  have  less  than  1%  of  contamination  (984  samples;  78%  of  the  samples  analyzed).
Importantly, we observed the taxonomic filter to systematically remove sequencing reads coming from the
16S gene due to the inability of Kraken to classify many reads coming from this gene up to the level of
species.  However,  for  the  rest  of  the  genome  it  showed  an  excellent  performance,  with  virtually  no
differences  in  depth,  even  for  conserved  regions  like  the  rpoB  gene  (Supplementary  Table  5).  On  the
contrary, the similarity filter produced a systematic decrease in depth across the genome. In the 97% of the
genome the sequencing depth was reduced more than 1X, with several regions showing larger decreases
(Supplementary Table 6).

Impact of contaminations in clinical WGS samples of Mycobacterium tuberculosis.

After  evaluating the performance of the taxonomic  and similarity  filters,  we used them to remove
contaminants in a dataset comprising 1,553 MTB WGS samples from eight different studies. As done for the
bacterial  dataset,  we  only  analyzed  samples  with  at  least  50%  of  reads  classified  as  Mycobacterium
tuberculosis  complex and  40x  of  median  sequencing  depth  (20X  for  direct  sequencing  from  clinical
specimens) to discard heavily contaminated sequencings (1,267 samples, 81.6% of the MTB dataset)

Given that the taxonomic filter showed to be extremely conservative with all genomic positions except
the  16S  gene,  we  discarded  from the  following  analyses  any  SNP called  in  this  region  (rrs,  rrl,  rrf).
Therefore, the differences observed in variant analysis when applying this filter can be attributed to noise
introduced by contaminations. In accordance, we expected no differences in variant calling in samples not
affected by contaminants. When analyzing real WGS MTB samples with the taxonomic filter we observed
no variant change for 788 samples (62% of the samples analyzed). Importantly, this agreement was true for
samples  with  low-level  contaminations  (less  than  1%)  but  also  for  samples  with  higher  number  of
contaminant reads (up to 31%). Overall, the number of SNPs either removed or recovered after applying the
taxonomic filter were independent of the level of contamination of a sample (Pearson Correlation Coefficient
= 0.03). Altogether, these results strongly support that the changes observed in variant analysis after applying
the taxonomic filter can be attributed to noise introduced by contaminants rather than a methodological bias.
On the contrary, the similarity filter always remove variant positions even for the 984 samples with 99% of
MTB. This is in agreement with the higher rate of false negatives observed in the in-silico experiments. 

Contaminant read mappings introduce new variants that alter the allele frequencies. After applying the
taxonomic filter, we observed a mean change of 42% allele frequency (median=41%; IQR=36%). As shown
in Figure 5, the main consequence of these alterations is the introduction of many false positive vSNPs, even
for samples with contaminations as low as 5%. However, altering allele frequencies can also lead to call false
negative vSNPs, and false positive and negative fSNPs. Among the 38% of samples for which at least one
change was observed, the taxonomic filter  removed on average 761.7 vSNPs (median=18) and 4 fSNPs
(median=1), and recovered 1.7 vSNPs (median=1) and 5.9 fSNPs (median=2). On average, the total number
of polymorphic positions within each study was reduced by 0.4% for fSNPs (range 0% - 2%) and 43% for
vSNPs range (3% - 95%) (Figure 3, Supplementary Table 2). Applying the similarity  filter  removed on
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average 129.1 vSNPs (median=20) and 6.1 fSNPs (median=5) and recovered 2.6 vSNPs (median=2) and 2.3
fSNPs (median=2). 

Figure 5: Differences in SNP calling in samples of the MTB dataset between a standard pipeline
and the two contamination-control methodologies tested. Rulers at the left of the graphic 
highlight the false positive and negative SNPs attributable to contamination according to each 
filtering methodology.

   

Sequencing directly from clinical specimens is subject to greater alterations in variant analysis (Figure
5) since this strategy usually yields highly contaminated samples and limited sequencing depth. In these
cases, the SNP frequencies are more sensitive to contaminant reads since only few reads can be responsible
for a shift in the frequencies that make a position to fall below or above the required thresholds to call a
variant (Supplementary Figure 1). However, a high sequencing depth does not guarantee an analysis safe of
errors  either.  This  effect  can  be  observed  in  the  High-depth  sequencing  study,  a  work  based  on  low-
frequency variant analysis from samples with more than 1000X sequencing depth. In this study, 7 samples
out of 63 showed changes in the SNP analysis after applying the taxonomic filter. On average, 16.9 false
positive vSNPs were removed (ranging from 2 to 42 vSNPs) and for one sample 3 false negative fSNPs and
2 vSNPs were recovered. Remarkably, no strong contamination was detected for these samples (with MTB
ranging from 96.86% to 99.84%). For instance, in a sample with as much as 99.84% of MTB, the taxonomic
filter removed 13 false positive vSNPs in 12 different genes across the genome. 

Discussion

In this work we analyze more than 4,000 WGS samples from 14 different pathogenic bacterial species
to evaluate the impact of contaminations in WGS studies. We demonstrate that contaminant reads suppose a
great pitfall since they are unexpectedly frequent and can have a large impact in variant analysis, which is the
foundation of many genomic analyses. As expected, contaminations are a main issue when sequencing DNA
that has not been extracted from pure cultures or single colonies,  like in the case of clinical specimens.
However, we show that experiments sequencing from pure cultures are not necessarily free of contamination,
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and  that  using  standard  mapping  quality  parameters  are  not  enough  to  deal  with  contaminant  reads.
Therefore,  bioinformatic  pipelines  assuming  that  all  the  reads  successfully  mapped  are  from the  target
organism might lead to a biased variant analysis. 

We show that the errors introduced by contaminations are very variable among different studies, (Table
2; Figure 3; Figure 5), which differ not only on the organism being sequenced but also on the sampling
source  and  laboratory  protocols.  For  example,  in  the  T.  pallidum  study,  where  samples  are  heavily
contaminated, very little differences are observed in the variant analysis. This stems from the fact that most
of the contamination in this study comes from human reads, unlikely to map to the T. pallidum genome. On
the contrary,  for the  L. pneumophila  dataset,  a sample with 96.27% of  Legionella,  had 79 vSNPs and 5
fSNPs removed,  and  17 fSNPs recovered after filtering a 3% of unclassified reads. According to the NCBI
blast, a fraction of those reads was from Legionella spiritensis. The downstream relevance, however, is not
directly proportional to the absolute number of erroneous SNPs and frequencies, but to what that errors mean
for each organism. For example,  for organisms with low genetic  diversities,  like in the case of MTB, a
change in few fSNPs can have major implications in epidemiology studies since transmission cutoffs vary
between 5 to 12 fSNPs(19). This is also true when predicting drug-resistance, particularly considering that
many  drug-resistance  associated  genes  are  conserved  among  bacteria  and  hence  more  prone  to  recruit
contaminant  mappings.  Likewise,  the  higher  impact  observed for  the  vSNPs,  both in  terms  of  absolute
numbers and frequencies, can have large implications in those applications based on the analysis of the allele
frequency spectrum, for example when studying complex traits in bacterial populations. 

A main limitation of this study is that we used the same bioinformatic pipeline to analyze WGS from
organisms that are genetically different. This might have led us to either over or underestimate the effects of
contaminations  for  some organisms,  where  species-specific  filters  might  be needed for  a  more  accurate
analysis. For MTB, for instance, repetitive and mobile elements (accounting for ~10% of the genome) are
typically removed from the analysis. However, we think that the problem is mitigated by the fact that the
analysis on the contaminants in the bacterial dataset  is limited to reads from genera other than the target
organism and, therefore, our estimation of the impact of contaminations among these species is likely to be
underestimated. This is particularly true considering that the closer the contaminant organism is to the one
under study, the larger the errors produced in variant analysis. Implementing accurate contamination-aware
pipelines  for different  organisms will  require  specific  analysis  workflows that  must  be comprehensively
evaluated to ensure the reliability of the results. 

We performed such comprehensive evaluation for WGS analysis of MTB, for which we benchmarked
two methods to remove contaminant mappings using both real and simulated data. Our analysis shows more
accurate results using a taxonomic filter as compared to the similarity filter, what is probably true for any
other organism with representative genomes in the databases and moderate genetic diversities. The analyses
for MTB reveal a large number of variants introduced by contaminants with downstream consequences when
calling vSNPs and fSNPs as well as the wild type. Remarkably, we show that contaminations can introduce
substantial errors in samples that could be considered “pure” or with high sequencing depths, implying that
contamination-aware pipelines will be needed in any circumstance. 

The robustness  and high-accuracy of  the  Kraken-based taxonomic  filter  for  MTB had a cost  of  a
systematic decrease of coverage in the 16S gene, what is not relevant for some applications (phylogeny,
epidemiology)  but  is  relevant  for  detecting  resistance  to  some  aminoglycosides.  Kraken  provided  our
implementation  the  necessary  balance  between  speed  and  accuracy  to  analyze  thousands  of  samples.
However, multiple strategies and software can be used to develop taxonomic or similarity filters, depending
on the necessities of each research group and application.

Contaminations suppose a usually neglected pitfall in WGS studies that can introduce large biases in
variant analysis. Our results at the variant level parallels those observed in genomic repositories  (16,  18).
Therefore, we call for the use of validated contamination-aware pipelines in any bacterial WGS study. These
analyses pipelines should be capable of, at least, report the contaminated samples and their contaminants to
be later interpreted by the researcher. Ideally, they should be able to produce accurate results regardless of
the extent of contamination of a sample. Pipelines capable of accurately analyze contaminated WGS data
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will  soon become essential,  since the improvement  of laboratory  protocols  allows the sequencing of  an
increasing number of bacterial species directly from clinical specimens(20,  21). In this work, we provide a
highly accurate contamination-aware pipeline for MTB WGS analysis that will be extremely helpful in the
upcoming studies and clinical applications sequencing MTB directly from respiratory samples. 

Material and Methods 

Datasets analyzed from bacterial WGS studies

In order to detect contamination through different studies and evaluate its impact in bacterial WGS
experiments,  we  analyzed  WGS  runs  from 20  different  studies.  We  considered  studies  that  have  been
published recently and for which Illumina sequencing reads were already available for downloading. The
datasets comprised 8 MTB studies and 12 studies of other 13 relevant pathogenic species. Nineteen of these
datasets were publicly available beforehand  (22–40). To include a dataset generated in our laboratory, we
sequenced 138 MTB samples from Mozambique in the Illumina MiSeq platform (Supplementary Methods
1). A total of 4,194 Illumina runs were analyzed, comprising 1,553 MTB samples (MTB dataset) and 2,641
samples from the rest of organisms (bacterial dataset) (Table 1). 

Contamination assessment using Kraken

In order to assess contamination in each dataset, sequencing reads were taxonomically classified using
Kraken(41) with a custom database comprising all sequences of bacteria, archaea, virus, protozoa, plasmids
and  fungi  in  RefSeq  (release  78),  plus  the  human  genome  (GRCh38,  Ensembl  release  81).  Kraken
classifications and kraken database setup were performed with default parameters.

Analysis pipeline

To analyze WGS data we used a general analysis pipeline for read mapping and variant calling.  In
summary,  reads  were  trimmed  and  filtered  to  remove  low-quality  sequences  and  then  mapped  to  the
reference genome of each organism using bwa mem (42). We used as reference genomes those used by the
authors in their respective manuscripts when specified and otherwise the representative genome of RefSeq
(Supplementary  Table  7).  For  MTB samples  we used the genome of  the  inferred most  recent  common
ancestor of the Mycobacterium tuberculosis complex. Alignments with mapping qualities (MAPQ) below 60
were removed. Variants were then called and filtered using two different set of parameters to call fixed SNPs
(fSNPs) and variable SNPs (vSNPs). The cutoffs to call fSNPs were minimum depth of 20 reads, with the
variant observed in at least 20 reads, average base quality of 25,  p-value  cutoff of 0.01, observed in both
strands and minimum frequency of 90%. The cutoffs to call vSNPs were minimum depth of 10 reads, with
the variant observed in at least 6 reads, average base quality of 25,  p-value  cutoff 0.01, observed in both
strands and minimum frequency of 10%. We also removed SNPs near indels in a window of 4 bp. For MTB
samples,  we  used  an  additional  annotation  filter  to  remove  SNPs  in  repetitive  and  mobile  regions.
Additionally, to call fSNPs, we used a density filter removing SNPs within high-density regions (allowing a
maximum of 3 SNPs in 10bp windows). This filter is commonly used in MTB WGS data since it is not
expected to observe many contiguous variants given the extremely low genetic diversity of this species.

We compared this general analysis pipeline with two approaches for contamination removal. The one
referred as taxonomic filter consisted in the removal of contaminant reads after the trimming step, prior to
mapping.  For  MTB samples,  we  removed  those  reads  classified  by  Kraken  as  any  species  other  than
Mycobacterium tuberculosis  complex. In the case of organisms other than MTB, to be conservative,  we
removed the reads classified as any organism other than the target at the level of genus, keeping also those
sequences  classified  as  phages  of  that  organisms.  For  MTB  samples,  we  also  tested  another  method
consisting in  a custom  similarity  filter  to  eliminate  low-quality  alignments  consisting in  the removal  of
alignments with length and identity below 40 bp and 97% respectively.
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Importantly, in this work we only considered for analysis those samples where the errors introduced by
contaminations would not be easily detected with standard pipelines. Therefore, extreme biases introduced
by highly contaminated sequencings are not reported in this work. To do so, we only evaluated the impact of
contaminations in variant calling for samples with more than the 50% of the target organism and with a
median depth of at least 40X. In the case of studies performing WGS directly in clinical samples (sputum-
capture sequencing, sputum-direct sequencing and Treponema studies) we analyzed those samples that had at
least 20X of median coverage, since in this type of sequencing is expected to sequence samples with lower
coverages and high proportions of non-target reads.

Generation of simulated datasets

We used the  reference  genome of  each organism to  generate  simulated  sequencing  samples  using
ART(43). We generated paired-end sequencings of 250 and 100 bp using the errors profiles of Illumina
MiSeq (--ss MSv3) and Illumina HiSeq (-ss HS20) platforms respectively. This allowed us to estimate the
proportion of reads that cannot be classified by Kraken up to level of genus and species for each organism.
The same approach was used to generate  sequencing runs of different bacterial  contaminants commonly
observed in MTB WGS samples (see below). The command line used to generate the sample was:

art_illumina  -ss  [MSv3  |  HS20]  --id  {}  --rcount  2000000  --in
{}.genomic.fna -l 250 --mflen 800 --out simulated_reads/{}. --paired --
minQ 25 -s 300

Evaluation of the impact of contaminations and methodology validation

We generated sequencings for the MTB reference genome, the human genome (GRCh38, Ensembl
release 81) and 44 different non-MTB bacterial species (Supplementary Table 8). This allowed us to perform
two kind of experiments (mapping of non-MTB reads to the MTB reference genome and analysis of mock
contaminated samples) as explained further below.

In order to inspect which regions of the reference genome are susceptible of recruiting non-MTB reads,
we mapped the simulated reads and then measured the mean sequencing depth across the genome in 1000 bp
windows. To assess whether false positive SNPs and drug resistance predictions are produced by these non-
MTB mappings, we generated mock contaminated samples by mixing sequencing reads of the reference
genome  with  different  proportions  (5%,  15%,  30% and  70%)  of  other  organisms  corresponding  to  12
common contaminants identified in the  MTB dataset.  Therefore, any SNP identified when analyzing these
samples would be false positive SNPs imputable to contaminations.

In addition, we mapped these mock samples to a modified version of the reference genome where we
introduced random mutations each 100bp, and all the drug resistance conferring mutations described as “high
confidence” in the PhyResSE catalog(44). Therefore, any of the introduced SNPs that were undetected when
analyzing these samples, would be false negative SNPs attributable to contamination.

Supplementary Materials

Supplementary methods 1. Whole genome sequencing of MTB samples from Mozambique.

Supplementary Results 1. Limitations of the Kraken-based taxonomic filter.

Supplementary Table 1. Evaluation of the performance of Kraken classifying reads at genus and species level for the

reference genomes and among all samples of the studies analyzed.

Supplementary Table 2. Difference in the number of  variant positions within a dataset between the basic and the

taxonomic-filtered pipeline.
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Supplementary Table 3. Proportion of fSNPs removed per sample in the bacterial dataset.

Supplementary Table 4. Evaluation of false drug resistance predictions in mock contaminated samples.

Supplementary  Table  5.  Genomic  regions  (1,000  bp  windows)  with  a  coverage  decrease  greater  than  1X  after

taxonomic filtering in 984 samples of the MTB dataset with more than 99% of reads classified as MTB.

Supplementary Table 6. Top ten genomic regions (1,000 bp windows) with greater coverage decrease after applying

the similarity filter in 984 samples of the MTB dataset with more than 99% of reads classified as MTB.

Supplementary Table 7. Reference genomes of the bacterial dataset.

Supplementary  Table  8.  Non-MTB  species  included  in  the  simulated  sequencings  to  evaluate  the  impact  of

contaminations in MTB WGS samples.

Supplementary Figure 1. Effects of contaminations and taxonomic filtering in variant calling.

Supplementary Figure 2. Contaminations can lead to incorrect calls across the M. tuberculosis genome.
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Tables

Table 1. Studies analyzed.

Study name Publication Runs
analyzed

Sample source Dataset

Mozambique Unpublished 138 Clinical isolates MTB

dataset

Kwazulu-Natal Cohen  et  al.
2015

433 Single colonies from clinical isolates MTB

dataset

Nigeria Senghore et al.
2017

73 Clinical isolates MTB

dataset

Belarus Wollenberg  et
al. 2017

552 Clinical isolates MTB

dataset

High-depth
sequencing

Trauner  et  al.
2017

63 Clinical isolates MTB

dataset
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Sputum  capture-
sequencing

Brown  et  al.
2015

58 Clinical  respiratory  specimens
(culture-free  sequencing  with  a  bait
capture strategy)

MTB

dataset

Sputum  direct-
sequencing

Votintseva  et
al. 2017

68 Clinical respiratory specimens (direct
culture-free sequencing)

MTB

dataset

MGIT sequencing* Pankhurst et al.
2016

168 Early-positive MGIT cultures (liquid) MTB

dataset

A. baumannii Willems  et  al.
2016

36 Single-colony recultured in broth Bacterial

dataset

C. difficile Stone  et  al.
2016

54 Pooled single-colony isolates Bacterial

dataset

Enterococcus† Tyson  et  al
2018

197 Isolates from retail meats Bacterial

dataset

K. pneumoniae Holt et al 2015 285 Human,  animal  and  environmental
isolates

Bacterial

dataset

L. monocytogenes Halbedel  et  al
2018

424 Clinical isolates from human Bacterial

dataset

L. pneumophila Timms  et  al
2018

48 Pure culture isolates from human and
cooling towers 

Bacterial

dataset

N. gonorrhoeae Yahara  et  al
2018

272 Pure culture isolates from human Bacterial

dataset

P. aeruginosa Marvig  et  al
2015

445 Clinical isolates from human Bacterial

dataset

S. aureus Aanensen et al
2016

337 Clinical isolates from 186 hospitals in
21 countries

Bacterial

dataset

S. enterica Gymoese  et  al
2017

366 Human,  animal  and  environmental
isolates

Bacterial

dataset

T. pallidum Pinto et al 2016 25 Clinical  specimens  (culture-free
sequencing  with  a  bait  capture
strategy)

Bacterial

dataset

Vibrio‡ Greig  et  al
2018

152 Clinical isolates from human Bacterial

dataset

*This study included sequencings from non-MTB organisms. We analyzed the 168 reported as
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MTB by the authors.  †This  study included sequencings  from two species (E. faecalis  and E.

faecium).  ‡This study included sequencings from different Vibrio species, we only analyzed the

152 reported as V. cholerae by the authors.

Table 2. Effect of applying the taxonomic filter in the variant analysis of samples of the bacterial

dataset.

Study Mean
percentage

of target
organism 

Mean number
of vSNPs
removed

(median; IQR)

Mean number of
fSNPs recovered

(median; IQR)

Pearson Correlation
Coefficient between
removal of vSNPs
and recovery of

fSNPs

Pearson
Correlation
Coefficient

between removal
of vSNPs and
percentage of

target organism

A. baumannii 97.30% 89 (43; 165) 57 (10; 113) 0.99 0.25

C. difficile 76.74% 299 (397; 379) 27 (16; 32) 0.45 0.23

E. faecalis 89.96% 30 (19; 33) 4 (3; 5) 0.65 -0.13

E. faecium 94.38% 9 (5; 10) 3 (2; 5) 0.47 -0.45

K. pneumoniae 84.38% 549 (62; 112) 73 (13; 41) 0.76 -0.44

L. pneumophila 99.06% 12 (0; 8) 3 (0; 1) 0.99 -0.63

L.
monocytogene
s

98.42% 2 (0; 1) 0 (0; 0) 0.49 -0.43

N. gonorrhoeae 99.17% 0 (0; 0) 0 (0; 0) 0.34 -0.09

P. aeruginosa 97.43% 9 (2; 14) 1 (0; 1) 0.50 -0.11

S. enterica 95.01% 97 (91; 87) 7 (6; 12) 0.14 0.02

S. aureus 91.42% 50 (22; 50) 9 (3; 9) 0.54 -0.10

T. pallidum 39.75% 45 (34; 52) 6 (5; 4) 0.63 -0.48

V. cholerae 91.32% 9 (5; 16) 2 (1; 3) 0.76 -0.56
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