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ABSTRACT 

Hypoxia is a generic micro-environmental factor in most solid tumours. While most 

published literature focused on in vitro or single tumour type investigations, we carried out 

the first multi-omics pan cancer analysis of hypoxia with the aim of gaining a comprehensive 

understanding of its implication in tumour biology. A core set of 52 mRNAs were curated 

based on experimentally validated hypoxia gene sets from multiple cancer types. The 52 

mRNAs collectively stratified high- and low-hypoxia tumours from The Cancer Genome Atlas 

(TCGA) database (9698 primary tumours) in each of the 32 cancer types available. High-

hypoxia tumours had high expression of not only mRNA but also protein and microRNA 

markers of hypoxia. In a pan cancer transcriptomic analysis, ≥70% of the known cancer 

hallmark pathways were enriched in high-hypoxia tumours, most notably epithelial 

mesenchymal transition potential, proliferation (G2M checkpoint, E2F targets, MYC targets) 

and immunology response. In a multi-omics analysis, gene expression-determined high-

hypoxia tumours had a higher non-silent mutation rate, DNA damage repair deficiency and 

leukocyte infiltration. The associations largely remained significant after correcting for 

confounding factors, showing a profound impact of hypoxia in tumour evolution across 

cancer types. High-hypoxia tumours determined using the core gene set had a poor 

prognosis in 16/32 cancer types, with statistical significances remaining in five after 

adjusting for tumour stage and omics biomarkers. In summary, this first comprehensive in 

vivo map of hypoxia in cancers highlights the importance of this micro-environmental factor 

in driving tumour progression.   
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INTRODUCTION 

Hypoxia, low oxygen tension, is a characteristic feature of solid tumours and a hallmark of cancer. 

Cancer cells adapt to hypoxia via processes including HIF activation and unfolded protein response 

signalling which alter the expression of genes involved in multiple pathways such as angiogenesis, 

metabolism, invasion, and epithelial-to-mesenchymal transition 
1,2

. Hypoxia also increases DNA 

hypermethylation and genome instability 
3,4

. The transcriptional reprogramming generates a pro-

survival advantage to hypoxic cancer cells and results in adverse phenotypes, including resistance to 

therapy and a higher potential to metastasise 
5,6

.  

Given its crucial role in tumour progression and resistance to therapy, hypoxia has been explored as 

a therapeutic target. Approaches for targeting hypoxia have been successfully developed and 

include increasing oxygen delivery, sensitising hypoxic cells to radiation or using bio-reductive agents 

that are selectively cytotoxic to hypoxic tumour cells 
7–9

. The effect of hypoxia modification has been 

supported by high level evidence from clinical trials 
6,10

, making it arguably the most validated target 

yet to be translated into the clinic 
7
.   

Despite increasing efforts to study omics response to hypoxia 11–15, most of the literature focused on 

in vitro investigation and limited to single or a small number of tumour types. The in vivo impact of 

hypoxia on tumour genetics and its relationship with other cancer hallmarks are still largely 

unexplored. To date, the largest in vivo multiple cancer types hypoxia gene expression studies were 

performed by Chi et al., 
16

 and Buffa et al. 
17

. However, both studies were limited to three cancer 

types and transcriptome data only. Here we evaluated a set of core hypoxia genes in a large-scale 

pan-cancer multi-omics analysis. We first defined a core gene set with a high confidence of hypoxia 

inducibility in multiple cell types. In The Cancer Genome Atlas (TCGA) programme containing mRNA 

expression of 9698 primary tumours from 32 cancer types, tumours with consistently high 

expression of core hypoxia genes were identified in each cancer type. High-hypoxia tumours had 

high expression of other well-known hypoxia markers, including NDRG1 and GAPDH proteins and 
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miR-210 and miR-21 microRNAs. High-hypoxia tumours were highly enriched with the majority of 

cancer hallmark pathways, including most notably epithelial mesenchymal transition, proliferation 

and immunology response. By analysing paired clinical and multi-omics data, we also identified 

significant associations between hypoxia and tumour stage, homologous recombination deficiency, 

high DNA mutational load and immune cell infiltrate in multiple cancer types. High-hypoxia tumours 

were associated with a poor prognosis in 16 cancer types. Overall, our work generates the first 

comprehensive molecular landscape of hypoxia in human cancers, which highlights the important 

and independent associations with various cancer hallmarks and also profound impact on patient 

survival.   

RESULTS 

Definition of 52 Core Hypoxia Genes  

To curate genes that reliably reflected transcriptional response to hypoxia, we examined hypoxia 

gene expression experimental studies collated in two recent review papers 14,15. The study inclusion 

criteria were: (1) genome-wide identification of hypoxia responsive genes, and (2) use of multiple 

cell lines (or tissues) to increase the confidence of finding. Similar studies were combined or filtered 

out to minimise redundancy. In total ten gene sets 
16,18–28

 were included (more details in 

Supplementary Methods). Most of the above literature reported genes both induced or suppressed 

by hypoxia, and we selected only the hypoxia inducible genes, as defined per the original 

publications. Furthermore, a hallmark hypoxia gene set was obtained from the Molecular Signatures 

Database 
29,30

, which was derived from four cell line datasets independent from the above ten 

studies. Another expert curated hypoxia gene set was taken from a review 
1
. The 12 founder gene 

sets represented experimentally validated transcriptional response genes to hypoxia from nine 

cancer types, i.e. head and neck, cervix, sarcoma, breast, neuroblastoma, glioblastoma, prostate, 

non-small cell lung cancer, and melanoma. The 12 gene sets also included hypoxia response genes in 

the following normal cells: B cell, epithelium, astrocytes, monocytes, embryonic cell (Supplementary 
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Table S1). The core hypoxia genes were defined from the founder gene sets as those consistently 

inducible by hypoxia in multiple (≥M) studies. Increasing the value of M increases the hypoxia 

specificity of the core gene set, at the cost of decreasing the coverage of the captured hypoxia 

transcriptional programme. The 52 genes present in at least four studies (M=4) made the final core 

hypoxia gene set and were used in the subsequent data analysis. Different values of M were also 

attempted with broadly similar results. 

The 52 core hypoxia genes overlapped well with most of the 12 founder gene sets (Figure 1A), with 

the highest overlaps observed with hypoxia genes derived for cervix (79.0%) 21, head and neck 

(74.1%) 
18

, neuroblastoma (68.8%) 
24

 and sarcoma (67.6%) 
20

. Interestingly, all the four gene sets 

were identified from single cancer types with a large number of cell lines (4 to 11), suggesting that 

consistently hypoxia inducible genes identified across multiple cell lines in one cancer type are well, 

albeit not perfectly, preserved. The core hypoxia genes loosely overlapped (12.9%) with the prostate 

cancer gene set correlating with pimonidazole staining 
23

, which might either reflect a sharply 

different hypoxia transcriptional programme in profoundly hypoxic prostate carcinoma or a different 

type of hypoxia measured by pimonidazole 31,32. Details of the 52 core hypoxia genes are provided in 

Supplementary Table S2. 

Core Hypoxia Genes Identified Tumours with High-hypoxia Phenotype 

The expression pattern of the 52 core hypoxia inducible genes were used to collectively define the 

extent of hypoxia in 9698 human primary cancerous tissues from 32 cancer types in the TCGA, a 

widely used methodology 
16,17,20,33

. In each cancer type, unsupervised clustering (K-means, K=2) of 

the 52 core genes stratified tumours into two groups. In each cancer type, almost all core hypoxia 

inducible genes were simultaneously elevated in one group of tumours, therefore termed as high-

hypoxia gene expression phenotype (Supplementary Figure S1).  
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We asked whether the high-hypoxia phenotype based on core hypoxia genes captured genome-wide 

hypoxia transcriptional programme reflected by the founder gene sets in individual cancer types. In 

each cancer type, genome-wide differential expression analysis between high- and low-hypoxia 

tumours was performed using LIMMA, where a t statistics was produced for each gene quantifying 

its relative difference between high-hypoxia and low-hypoxia tumours. Positive t statistics indicate 

up-regulation in high-hypoxia tumours while negative values indicate down-regulation. Among the 

12 founder gene sets, eight were derived from samples (cell lines or primary tumours) whose cancer 

types were among the 32 available in TCGA. For each of those eight gene sets, we compared the 

distribution of member gene t statistics with null distribution of genome-wise t statistics in the 

corresponding cancer type(s). For seven founder gene sets, member genes had significantly higher (t 

test, P<0.001) t statistics compared to the null distributions (Figure 1B), indicating their significant 

up-regulation in high-hypoxia tumours. Therefore, the results suggest that the identified high-

hypoxia phenotype faithfully reflected the transcriptional response to hypoxia in individual cancer 

types.   

We then asked whether an in vivo hypoxia transcriptional program was preserved across cancer 

types. Similarity of the global hypoxia transcriptional program between two cancer types was 

computed as the Spearman correlation of the genome-wide t statistics between high- and low-

hypoxia tumours. Using an arbitrary cut-off of 0.3, we identified 62 similar pairs of cancer types 

(Figure 1C). Our results therefore suggest that molecular responses to hypoxia were conserved 

across certain cancer types. 

High-hypoxia Phenotype Associated with Cancer Hallmarks      

We next sought to identify which biological processes were consistently associated with an in vivo 

high-hypoxia phenotype in a pan cancer setting. Mixed effects linear regression model was applied 

for each gene, explaining (Z standardised) gene expression as a function of hypoxia phenotypes 

(high- or low-), with cancer type included as a random effect variable. The ~20000 mRNAs were 
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ranked according to their association strengths with hypoxia (coefficients in the regression models), 

where gene set enrichment analysis (GSEA) 
29

 was employed to identify gene sets whose expressions 

were enriched or depleted in high-hypoxia tumours.  

Among 50 cancer hallmarks, 36 were significantly enriched in high-hypoxia tumours (false discovery 

rate (FDR)<0.01, Supplementary Table S3), suggesting a large effect of hypoxia on other cancer 

hallmarks. The top hallmarks enriched in high-hypoxia tumours included not only the well expected 

hypoxia, glycolysis, angiogenesis and unfolded protein response gene sets, but also epithelial 

mesenchymal transition (EMT), tumour necrosis factor α (TNF-α) signalling via nuclear factor-κB (NF-

κB), cell cycle and proliferation (G2M checkpoint, E2F targets, MYC targets) and immunology 

response (inflammatory response, interferon gamma/alpha response, allograft rejection, Figure 2). 

The emergence of EMT as the most enriched process suggests an important role of hypoxia in 

stimulating tumour invasion and metastasis, consistent with previous literature 
5
. The identified cell 

cycle and proliferation pathways were recently suggested in the development of high copy number 

alteration and mutation phenotypes 
34,35

. Our results indicated that some of the genome instability 

associated with dysregulated cell cycle and proliferation pathways might be due to hypoxia. P53 

pathway genes were also significantly up-regulated in the high-hypoxia tumours, in line with a recent 

report on a p53-dependent pro-apoptotic pathway responding to severe hypoxia 36. Moreover, TNF-

α and NF-κB signalling control the pro-inflammatory response and have been implicated in tumour 

cell invasion and metastasis 37,38. Our data suggests that hypoxia contributes to tumour progression 

via activating TNF-α and NF-κB signalling and manipulating inflammatory response. Whether the 

TNF-α inhibitors could be successfully re-purposed to modify hypoxia in primary cancerous tissues 

will be of interest 39.  

As tumour purity might be a confounding factor in the genomic analysis 40, we re-ran the above 

mixed linear regression model with purity corrected estimates. Tumour purity was previously 
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inferred using ABSOLUTE method on copy number alteration data 34, and was benchmarked 

histologically 
41

. Correcting for tumour purity only marginally affected the GSEA analysis results.  

 Proteins and MicroRNAs Associated with High-hypoxia Phenotype 

To gain more biological understanding of the high-hypoxia phenotype, we analysed functional 

proteomic and microRNA (miRNA) abundance data for their differential expression between high-

hypoxia and low-hypoxia tumours. Abundance of 198 cancer-related proteins and phosphoproteins 

was measured for TCGA tumours using reverse-phase protein arrays (RPPA) 42. To identify the 

proteins significantly and consistently associated with hypoxia in a pan cancer setting, we again 

applied a mixed effects linear regression model for each protein, predicting (Z standardised) its 

abundance as a function of hypoxia phenotype, with cancer type included as a random effect 

variable. Thanks to the robust statistical framework employed here, we identified 42 and 85 proteins 

that were respectively up-regulated and down-regulated in high- vs. low-hypoxia tumours 

(FDR<0.01, Supplementary Table S4). The large number of down-regulated proteins in high-hypoxia 

tumours is consistent with a global decrease of protein synthesis under hypoxia via reduced mRNA 

translational efficiency 
43

.  

Among the top proteins enriched in high-hypoxia tumours, N-Myc Downstream Regulated 1 and 

Glyceraldehyde-3-Phosphate Dehydrogenase mRNAs (NDRG1 and GAPDH) were included in the core 

hypoxia gene set. In addition, mRNA of plasminogen activator inhibitor-1 protein (SERPINE1) is stress 

regulated and was shown to be inducible by hypoxia in a murine macrophage cell line 
44

. 

Accumulation of epidermal growth factor receptor (EGFR) protein under hypoxia and by over-

expressing hypoxia-inducible factor 2-α (HIF2-α) was also reported previously in glioma, breast, 

prostate cancer cell lines 
45,46

. Fibronectin binds to extracellular matrix, and has significant functions 

in cell adhesion, migration and growth. Hypoxia was shown to induce fibronectin in mouse 

embryonic stem cells, promoting their proliferation and migration 
47

. Moreover, annexin 1 
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(ANNEXIN1), involved in anti-inflammatory effects, was found to be hypoxia inducible in a breast 

cancer cell line and highly expressed in triple-negative tumours 
48

.  

Among the proteins most down-regulated in high-hypoxia tumours, B-cell lymphoma 2 (BCL2) is 

apoptosis-regulating and resides in the mitochondrial membrane. A previous study suggested that 

hypoxia induced autophagy by up-regulating BCL2 interacting protein 3 like (BNIP3L) and BCL2 

interacting protein 3 (BNIP3) and disrupting the BCL-2-Beclin1 complex, which generates a survival 

advantage under hypoxia 49. Another study showed that down-regulation of BCL2 might be mediated 

through miR-210, a well-known hypoxia inducible miRNA 50. Another protein highly down-regulated 

in the high-hypoxia gene expression phenotype was estrogen receptor-α (ER-α), which regulates 

hormone responsiveness and was shown to be inhibited by hypoxia in breast cancer ER-positive cell 

lines 
51–53

. Our result was also in line with the clinical observation of an anti-correlation between ER-

α and HIF-1α 
53,54

. In a phase II trial, HIF-1α was implicated in the resistance to endocrine treatment 

for ER-α-positive breast cancer patients 
55

. Our results therefore suggest a possibly important 

association between hypoxia and ER-α in cancer types beyond breast carcinoma, and the potential 

benefit of adding inhibitors targeting HIF signalling to mediate endocrine sensitivity. Taken together, 

our pan cancer protein analysis suggests that certain known hypoxia-mediated cellular processes 

observed previously in individual cancer types could be generalised to multiple cancer types.   

MiRNAs are short non-coding RNAs that have important function in mRNA post-transcriptional 

silencing and are frequently dysregulated in cancers 
56

. Abundance of more than 700 miRNAs were 

profiled previously for TCGA tumours 
57

. We applied a mixed effects linear regression model to 

identify the miRNAs consistently differentially expressed between high- and low-hypoxia tumours in 

a pan cancer setting. We identified 331 miRNAs induced by hypoxia and another 161 miRNAs 

suppressed by hypoxia (FDR<0.01, Supplementary Table S5). Among the top hypoxia inducible 

miRNAs identified by the model, hsa-miR-210 is arguably the most well-known hypoxia miRNA 

biomarker in the literature 11,12,58. In addition, hsa-miR-21 was found to be induced by hypoxia in 
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both normal smooth muscle cells and a pancreatic cancer cell line 59,60. Also, four of seven miRNAs 

shown to be hypoxia inducible in two bladder cancer cell lines 
12

 ranked highly in our pan cancer 

analysis.  

Among the miRNAs most suppressed in hypoxia gene expression phenotypes, hsa-miR-139 

expression was reported to be lost in invasive breast cancer tumours, while its in vitro over-

expression suppressed invasion and migration 61. Our analysis suggested that the effect of has-miR-

139 might be mediated through hypoxia-related signalling. A direct regulatory relationship was also 

reported between hsa-miR-30a and autophagy-related BCL2 and Beclin-1 in small cell lung cancer 

and head and neck cancers 
62,63

. Hsa-miR-101 is a well-documented tumour suppressor that is 

repressed by the pro-inflammatory cytokine IL-1β via the COX2-HIF-1α pathway 
64

. Our analyses thus 

identify some key miRNAs that are probably universally important in mediating hypoxia responses 

across cancer types and are potential therapeutic targets.  

High-hypoxia Phenotype Associated Independently with High Tumour Stage, Genome 

Instability, DNA Damage Repair Deficiency, and Immune Infiltrate  

While a role of hypoxia in promoting tumour aggressiveness, metastasis and genome instability was 

identified from studies on single cancer types, we highlight in this work its importance across cancer 

types. Our pan-cancer evaluation aimed to quantify associations between a high-hypoxia phenotype 

and  multiple aggressive features characterised in previous studies 
34,65–68

: tumour stage, mutational 

load, homologous recombination deficiency, leukocyte infiltrate and aneuploidy score. Briefly, 

mutations were called from whole-exome sequencing data and non-silent mutations per million 

base pairs were used for mutation rate. Mutation rate was log2 transformed to normalise the 

skewed distribution. Homologous recombination deficiency score was summarised from three types 

of homologous recombination deficiency or genome scarring, i.e. loss of heterozygosity, large-scale 

state transitions and the number of telomeric allelic imbalances 68. Leukocyte score reflected the 
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total level of tumour immune infiltrate and was derived from methylation data. Aneuploidy score 

was the number of chromosome arms with arm-level copy number alterations.  

American joint committee on cancer pathology stages were used in most cancer types. For CESC, 

DLBC, OV, UCEC, UCS and THYM, only clinical stages were available and therefore used instead. In 

eight of the 27 cancer types where tumour stages were available, high-hypoxia tumours were 

associated with higher tumour stage (Fisher’s exact test, FDR<0.1, Figure 3A). One interesting 

question is whether hypoxia was associated with higher tumour stage independently of other 

confounding factors. We performed multiple regression analysis predicting tumour stage (modelled 

as a discrete variable from 1 to 4) as a function of hypoxia phenotype, mutation load, homologous 

recombination deficiency score, aneuploidy score and leukocyte infiltrate score. High-hypoxia was 

independently associated with high tumour stage in nine cancer types (FDR<0.1, Figure 3B). The 

results, combined with various pre-clinical evidences of hypoxia in increasing tumour aggressiveness 

69
 and the success of hypoxia-targeting treatments in limiting tumour progression 

70
, indicate a role 

of hypoxia in driving tumour progression across multiple cancer types. 

Various studies reported increased DNA mutation rate among in vitro cell lines exposed to hypoxia 4. 

We observed significantly higher mutation rates in high-hypoxia tumours across nine cancer types (t 

test, FDR<0.1, Figure 3C). In multiple regression models, hypoxia was adjusted with the above 

mentioned variables and also tumour stage. Tumour stage was modelled as an ordered categorical 

variable using stage 1 as the reference level, while the effects of stage 2, 3, and 4 against stage 1 

were estimated. The approach was chosen to better model the non-linear associations between 

tumour stage and molecular biomarkers. Hypoxia was significantly associated with a higher mutation 

rate independent of other variables in three cancer types, including thymoma, pancreatic 

adenocarcinoma, uterine corpus endometrial carcinoma (FDR<0.1, Figure 3D). 
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High-hypoxia phenotype was also associated with increased homologous recombination deficiency 

in seven cancer types (t test, FDR<0.1, Figure 3E). In multiple regression models, the association with 

hypoxia was retained in five cancer types (FDR<0.1, Figure 3F).  

Immune infiltrate and hypoxia are both important parts of the tumour micro-environment. Our 

above transcriptome-based hallmark analysis showed associations between hypoxia and various 

immunology response pathways. To further explore this finding, we evaluated the association 

between a high-hypoxia gene expression phenotype and leukocyte level determined from 

methylation data. Overall leukocyte content in the TCGA tumours was estimated using methylation 

probes which had the greatest difference between leukocyte cells and normal tissues in a mixture 

model 
66

. High-hypoxia phenotype was associated with significantly more leukocytes in 14 cancer 

types and significantly less leukocyte levels in four cancer types (t test, FDR<0.1, Figure 3G). After 

correcting for confounding factors, hypoxia was associated with higher leukocytes in nine (FDR<0.1, 

Figure 3H) and lower leukocyte levels in one cancer type. While the associations between tumour 

mutation rate, copy number alteration burden and response to immunotherapy were recently 

characterised 34,71, our data suggested an important yet previously less explored association 

between hypoxia and the tumour immunological landscape.  

All the above analyses were repeated with correction for tumour purity as a confounding factor, 

which only marginally affected the results (data not shown). Overall, our analyses suggest a very 

profound association between hypoxia and tumour genetics at multiple molecular levels.     

Hypoxia is A Poor Prognostic factor in Multiple Cancer Types 

To investigate the impact of hypoxia on patient survival, we next evaluated the prognostic value of 

hypoxia gene expression phenotypes using three clinical endpoints of overall survival, disease 

specific survival and progression free survival 67. Patient were treated with surgery, where follow up 

data were censored at 10-year for each endpoint. In 16 cancer types, hypoxia was a poor prognostic 
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marker in at least one and often multiple clinical endpoints (Cox regression, FDR<0.1 for each 

endpoint, Figure 4A). Although hypoxia is widely recognised as a strong mediator of resistance to 

radiotherapy, this analysis emphasises its importance in surgery-treated patients.    

We further adjusted hypoxia with mutation load, homologous recombination deficiency score, 

aneuploidy score, leukocyte infiltrate score and tumour stage in multivariable Cox models. For each 

endpoint and each biomarker, the nominal P values from Cox models were corrected using FDR. In 

five cancer types (kidney renal papillary cell carcinoma, mesothelioma, lung adenocarcinoma, uveal 

melanoma and breast invasive carcinoma), hypoxia remained a significant poor prognostic factor for 

at least one clinical endpoint (FDR<0.1, Figure 4B). Note that in the multivariable analyses, the 

prognostic significances of a high-hypoxia phenotype were comparable to other omics-based 

biomarkers (Figure 4C), i.e. high homologous recombination deficiency was associated with poor 

prognosis in four cancer types; high aneuploidy score was associated with poor prognosis in one 

cancer type; high mutational load corresponded with a good prognosis in three cancer types and 

poor prognosis in another; high leukocyte infiltrate was associated with a poor prognosis in two 

cancer types. Compared with omics biomarkers, tumour stage remained a stronger prognostic 

factor, in line with a previous report 72. Nevertheless, the consistent effect of hypoxia on patient 

survival again highlights that it is a clinically relevant phenotype worth intervention.    

DISCUSSION 

Recent advances in high-throughput technologies and establishment of large consortium like TCGA 

have enabled integrative and pan cancer analyses of many cancer hallmarks, including somatic 

mutations 
73

, somatic copy number alterations 
34

, DNA damage repair 
68

 and immunology 
66

. These 

analyses are generating an increasingly clear picture of the whole spectrum of changes associated 

with cancer. Understanding the impact of hypoxia on tumour biology is a key object in cancer 

research. By performing the first multi-omics pan cancer analysis of tumour hypoxia we highlight 

here the profound association between hypoxia and various cancer hallmarks.    
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It is well accepted in the literature that hypoxia results in large-scale change in transcriptional 

reprogramming, and the changes differed across cancer types 
15,16,18

. By surveying a large number of 

experimentally validated hypoxia gene sets, we identified a group of core genes consistently 

inducible by hypoxia. Note here that we chose to exclude hypoxia gene signatures, as their 

bioinformatics derivation methods differ substantially and could well reflect other biological 

parameters, as discussed in a previous review 
14

. We showed that the primary tumours stratified as 

high-hypoxia by the highly conserved core gene set not only highly expressed the founder cancer-

type-specific hypoxia gene sets in most of the cancer types (albeit perhaps not prostate carcinoma), 

but also were highly enriched with well-known protein and miRNA hypoxia markers. The results 

therefore showed that we have identified primary tumours with differential levels of hypoxia. Our 

pan cancer analysis also suggested that some of the hypoxia-mediated mechanisms reported in 

individual cancer types or in vitro could be generalised to multiple cancer types and in vivo.   

We observed remarkable associations between hypoxia and many other cancer hallmarks, including 

high mutation rate and more DNA damage repair deficiency. Our data also showed that high-hypoxia 

tumours had high epithelial mesenchymal transition potential and cell proliferation signatures, 

consistent with the literature evidence from single tumour sites 46,74–76. Previous studies 

characterised the relationship between somatic mutations and copy number alterations with an 

immune landscape 34,71. Our analysis showed hypoxia was mostly associated with increased 

leukocyte content, independent from other confounding factors. It is of interest for future research 

to investigate whether hypoxia biomarkers could improve the prediction of response to immunology 

therapy.  

Hypoxia has been well recognised as mediating resistance to radiotherapy 36,50,77 and is arguably the 

most established target not yet translated into the clinic 7. Although studies in some cancer types 

showed hypoxia was an adverse prognostic feature following surgery 11,58,78,79, we showed here its 

widespread importance for surgery-treated patients across tumour types. Importantly, the effect of 
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hypoxia on surgical outcomes was comparable with other omics marker. Targeting hypoxia and 

hypoxia signalling, either alone or in combination with other therapies, could well generate a sizable 

survival benefit for cancer patients.  

In summary, our study highlights a high level of conservation of hypoxia response genes across 

tumour types. Hypoxia has a large effect on multiple cancer hallmarks with EMT, proliferation and 

immunology response being the most consistently enriched phenotypes. High-hypoxia tumours also 

have high tumour stage, mutational burden, homologous recombination deficiency and immune cell 

infiltrate. Our work supports the importance of translating hypoxia modification therapies into the 

clinic to improve patient survival rates.  

METHODS 

TCGA Omics Data 

TCGA is a large-scale cohort for multi-omics analysis of tumours. Recently, TCGA has published the 

pan-cancer atlas, where all omics data were harmonised for consistent quality control, batch effect 

correction, normalisation, mutation calling, and curation of survival data. For this work, we extracted 

processed RNA sequencing V2, microRNA sequencing, reverse phase protein array and patient 

clinical and survival data from the Pan-cancer Atlas consortium, which were described elsewhere 

34,66–68. Only the primary tumours were kept for analysis. We also downloaded paired mutational 

load, homologous recombination deficiency, aneuploidy score, leukocyte infiltrate, tumour stage 

and patient survival data from the consortium for evaluating the association with hypoxia.  

Stratification and Analyses of Hypoxia Gene Expression Phenotypes 

For each cancer type, primary tumours were stratified into two groups (high- and low-hypoxia) by 

applying unsupervised K-means clustering (K=2) on the mRNA expressions of the core hypoxia genes. 

We used kmeans function (1000 random starts) in R (v3.4.1). Differential expression analysis was 
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performed using LIMMA (v3.34.9). To identify the genes consistently associated with high- and low-

hypoxia tumours in pan cancer setting, a mixed effect linear model was applied for each gene: 

���������	 
 � � ������ � �1|��	��������, where hypoxia (1 indicates high-hypoxia and 0 

low-hypoxia status) is a fixed effect variable and cancer type a random effect variable. nlme library 

(v3.1-131) in R was used for estimating β coefficients, which reflect the sign and strength of 

associations between gene expression and hypoxia. Expressions of each gene were Z standardised to 

ensure β coefficients were comparable between different genes. When correcting tumour purity as 

confounding factor, purity value was added as a fixed effect variable: ���������	 
 � � ������ �

� � ������ � �1|��	���_�����. Genes were ranked from high to low based on β coefficients. GSEA 

analysis was performed using gene pattern public server and with 50 hallmark gene sets.     

Statistical Analysis 

Unequal variance t test was used to compare if the mean of two distributions were equal. Fisher’s 

exact test was used to test independence of distribution of high- and low-hypoxia tumours across 

different tumour stages. Survival estimates were performed using the Kaplan-Meier method, and 

hazard ratios (HR) and 95% confidence interval (CI) were obtained using the Cox proportional hazard 

model. All P-values were two-sided and multiple testing corrections were done using false discovery 

rate. All statistical analyses were done in R (v3.4.1). 
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Figures and Figure legends 

Figure 1. Core hypoxia genes define in vivo hypoxia transcriptional programme. A) 12 founder gene 

sets of reliable hypoxia inducible genes were curated from literature. The genes included in more 

than 4 founder gene sets made up the final core hypoxia gene set. In the Chord diagram, relative 

circular lengths indicate size of founder gene sets, and thickness of the links between founder gene 

sets and the core gene set are proportional to the number of member genes from founder set 

included in the final core gene set. B) The distributions of genome-wide t statistics from LIMMA 

analysis comparing high- vs. low-hypoxia tumours were used as null, where the distributions of t 

statistics for 8 founder gene sets were significantly higher than the null distributions. C) Similarity of 

hypoxia transcriptional programme between two cancer types was quantified with Spearman 

correlation of genome-wide t statistics. With an arbitrary cut-off of 0.3, 62 similar pairs could be 

identified with the strength of association being proportional to the thickness of links.   

 

Figure 2. Pan cancer gene set enrichment analysis of the high-hypoxia phenotype. Genes were 

ranked according to their strength of association with the high-hypoxia phenotype in a pan cancer 

analysis of 32 cancer types available in TCGA. The high-hypoxia phenotype was defined from 

expression of 52 core hypoxia inducible genes.  GSEA analysis was performed testing the enrichment 

of 50 hallmark pathways in high-hypoxia tumours. Some of the most enriched pathways, besides 

hypoxia, glycolysis and angiogenesis, are shown.  

 

Figure 3. Associations between hypoxia phenotype, tumour stage and other cancer hallmarks in 32 

cancer types. A) Associations between hypoxia and tumour stages were evaluated using χ2 test. B) 

Associations between hypoxia and tumour stages were analysed in multiple regression models 

adjusting the confounding factors. C) and D) Associations between hypoxia and mutation rate were 

analysed using both t test and multiple regression models adjusting the confounding factors. E) and 
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F) Associations between hypoxia and homologous recombination deficiency scores were analysed 

with both t test and multiple regression analyses. G) and H) Associations between hypoxia and 

leukocyte were analysed in both t test and multiple regression analyses. In each plot cancer types 

were ranked according to the effect size. Numerical values in each plot indicate FDR values.  

 

Figure 4. Prognostic value of hypoxia phenotypein 32 cancer types. A) Prognostic significances of 

the 52 core hypoxia gene expression phenotype (high vs. low) alone were evaluated in each cancer 

type using Cox proportional hazard model. The analysis was performed for overall survival, 

progression free survival and disease specific survival separately. Dots indicate coefficients from Cox 

model and lines indicate 95% confidence intervals. In each endpoint P values were corrected into 

FDR (values on the side). B) The hypoxia gene expression phenotype was adjusted with mutation 

load, homologous recombination deficiency score, aneuploidy score, leukocyte infiltrate and tumour 

stage (using stage 1 as reference). C) The same multivariable analyses done in B). For each endpoint 

and each biomarker, P values from 32 Cox models were corrected into FDR. Y axis is -log(FDR,10), 

with higher values indicating more significance. The dashed horizontal line indicates a FDR of 0.1.   
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