
 

Trisomy 21 drives production 

of neurotoxic tryptophan catabolites via the interferon-inducible kynurenine pathway 

 

 

Authors: 

Rani K. Powers1,2,3#, Kelly D. Sullivan1,3#, Rachel Culp-Hill4, Michael P. Ludwig1, Keith P. Smith1, Katherine A. 

Waugh1, Ross Minter1, Kathryn D. Tuttle1, Angela L. Rachubinski1, Ross E. Granrath1, Rebecca B. Wilkerson4, 

Angelo D’Alessandro1,4, James C. Costello2,3,* & Joaquin M. Espinosa1,3,5*  

 

Affiliations: 

1Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 
2Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 

3Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 
4Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 

Aurora, CO, USA 
5Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 

USA 

 

#These authors contributed equally to this work 

 

*Corresponding Authors: 

James C. Costello: james.costello@ucdenver.edu,Joaquin M. Espinosa: joaquin.espinosa@ucdenver.edu 

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2018. ; https://doi.org/10.1101/403642doi: bioRxiv preprint 

https://doi.org/10.1101/403642
http://creativecommons.org/licenses/by/4.0/


ABSTRACT. 

Trisomy 21 (T21) causes the condition known as Down syndrome (DS), with clear impacts on brain development 

and function. In a previous paper (Sullivan, 2016) we showed that T21 consistently activates the interferon (IFN) 

response, but the contribution of IFN hyperactivity to DS phenotypes awaits elucidation. Here, we report the 

results of a large plasma metabolomics study, showing that T21 disrupts tryptophan catabolism toward increased 

production of kynurenine (KYN) and its neurotoxic derivative quinolinic acid. We also show that stimulation of 

IFN signaling leads to tryptophan depletion, over-production of KYN, and super-induction of IDO1, the rate-

limiting enzyme in the KYN pathway, in human cells with T21 and a mouse model of DS. Finally, cytokine profiling 

revealed a positive correlation between circulating levels of IFNα and KYN dysregulation in people with DS. 

Altogether, these results reveal a mechanism by which IFN hyperactivity could drive cognitive deficits and 

neurodegeneration in DS. 
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INTRODUCTION. 

Down syndrome (DS) is caused by triplication of chromosome 21 (trisomy 21, T21), which occurs in 

approximately 1 in 700 live births, representing the most common chromosomal abnormality in the human 

population (1). T21 impacts multiple organ systems during development and causes an altered disease spectrum 

in people with DS, significantly increasing their risk of developing Alzheimer's disease (AD), leukemia, and 

numerous autoimmune conditions (1-7), while protecting them from solid malignancies (8, 9). However, DS-

associated phenotypes are highly variable among individuals with DS, even for conserved phenotypes such as 

cognitive impairment and predisposition to early onset AD (2, 10). Therefore, a deeper understanding of the 

mechanisms driving such phenotypic variation could illuminate not only mechanisms of pathology, but also 

opportunities for diagnostics and therapeutic strategies to serve this special population.  

In order to identify molecular pathways that could contribute to both the altered disease spectrum 

experienced by the population with DS as well as the inter-individual variation among phenotypes, our group 

previously analyzed transcriptomes (11) and circulating proteomes (12) from several cohorts of individuals with 

DS compared to euploid individuals (D21, controls). These efforts revealed that multiple cell types from people 

with T21 show transcriptional signatures indicative of constitutive activation of the interferon (IFN) response (11), 

which could be explained by the fact that four of the six IFN receptors are encoded on chr21 (13). Furthermore, 

plasma proteomics analyses demonstrated that people with DS show signs of chronic autoinflammation (12), 

including elevated levels of potent inflammatory cytokines with known ties to IFN signaling (e.g. IL-6, TNF-α). 

However, it remains to be defined how this obvious immune dysregulation contributes to highly variable DS-

associated phenotypes, including the diverse neurological manifestations of T21. To gain further insight into this 

area, we investigated metabolic changes caused by T21 in the plasma of people with DS.    

Here, we report the results of the largest plasma metabolomics study of individuals with DS to date using 

untargeted, highly sensitive liquid chromatography mass spectrometry (LC-MS) technology. We discovered 

dysregulation of a number of inflammation-associated metabolites, such as succinate and 2-hydroxyglutarate 

(14, 15), in individuals with DS. However, most prominent among the dysregulated metabolites were those 

related to tryptophan catabolism. Specifically, people with DS showed highly statistically significant upregulation 

of kynurenine (KYN) and its neurotoxic derivative quinolinic acid (QA) (16). Using an unbiased, machine learning 

approach to build a predictive metabolic signature of T21, we found that select metabolites in the tryptophan 

pathway, along with other inflammation-associated metabolites, can accurately distinguish plasma from 

individuals with DS from euploid controls. Using cell-based metabolic flux assays, we found that IFN-α stimulation 

leads to profound depletion of tryptophan in T21 cells, along with markedly increased production of KYN, which 

could be explained by overexpression of IDO1, the rate-limiting enzyme in the KYN pathway and a known 

interferon stimulated gene (17). We found that a mouse model of DS that includes triplication of the IFN receptor 

gene cluster, Dp(16)1/Yey, has increased levels of KYN relative to wild type littermates, and produces more KYN 

when injected with the IFN-stimulating molecule poly(I:C). Given the well-established roles of KYN dysregulation 

on a wide range of neurological conditions (18-20), our results suggest that IFN-dependent activation of the KYN 

pathway could contribute to key neurological phenotypes in DS. 
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RESULTS. 

Trisomy 21 causes consistent changes in plasma metabolite abundance. 

In order to identify metabolic pathways that are consistently dysregulated by T21, we collected plasma 

samples from two fully independent cohorts: the Translational Nexus Clinical Data Registry and Biobank 

(referred hereto as Cohort 1), and the Crnic Institute’s Human Trisome Project (www.trisome.org, NCT02864108, 

referred hereto as the Cohort 2). Cohort 1 included 49 individuals with T21 and 49 euploid (D21) individuals, 

while Cohort 2 consisted of 30 T21 and 41 D21. The breakdown of patients according to age and sex are reported 

in Table 1. While the Cohort 1 is balanced for karyotype but imbalanced for age, Cohort 2 is more age-balanced, 

with a bias towards females in both D21 and T21 groups. When the two cohorts are combined, age, sex, and 

karyotype are more evenly distributed, which prompted us to analyze the cohorts both individually and in 

combination. Because the variables of age, sex, and cohort-specific features (e.g. protocol for sample collection, 

processing and storage), can influence metabolite abundance and/or detection, we accounted for these variables 

when determining the impact of karyotype as described below. 

To determine metabolite abundance, we performed untargeted, LC-MS metabolomics on plasma from 

each cohort. The combined analysis workflow is outlined in Figure 1 – figure supplement 1A with details 

available in the Materials and Methods. This approach led to the identification of 91 high-confidence metabolites 

detected in both cohorts. To identify those that are consistently differentially abundant between people with and 

without DS, we employed a robust linear model-fitting approach that accounted for age, sex, and cohort (21). 

We arrived at this model after evaluating each of these variables in the cohorts individually, as well as in 

combination. Using the 91-metabolite panel, we first evaluated the impact of age and sex within each cohort. We 

fit linear models and compared the results within Cohort 1, where we included or excluded the variables age and 

sex directly in the model (Figure 1 – figure supplement 1B). We found that taking age and sex into account 

directly impacted the differential abundance statistics when comparing T21 to D21 individuals; this result was 

expected given the differences in age and sex seen in Cohort 1.  We performed the same comparison within 

Cohort 2 (Figure 1 – figure supplement 1C) and found similar results, although age and sex had less of an 

impact as Cohort 2 is more balanced. The differences observed between cohorts motivated us to evaluate the 

impact of a combined cohort analysis, with the goal of mitigating the biases within each of the individual cohorts 

and increasing our statistical power with a greater number of individuals.  

Integrating data across cohorts required us to evaluate the impact of each cohort as a batch effect. 

Indeed, we observed strong differences in the distributions of metabolite abundances between cohorts (Figure 
1 – figure supplement 2A). By using the same linear model fit, while additionally including the cohort as the 

batch covariate in the model, thus accounting for age, sex, and cohort, the distributions of metabolite abundance 

became overlapping and comparable (Figure 1 – figure supplement 2B). We confirmed the impact of the 

cohorts as a model covariate using principal components analysis (PCA), showing that the first principal 

component can explain the variation seen between cohorts (Figure 1 – figure supplement 2C). After accounting 

for patient cohort, along with age and sex in the model, the first two principal components no longer account for 

variation that can be attributed to the modeled covariates (Figure 1 – figure supplement 2D), indicating that 
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the two cohorts can be combined to find metabolite changes that are attributable to karyotype rather than 

systematic effects associated with age, sex, and cohort-specific variables.  

When the combined total of samples in the two cohorts were analyzed for the 91 metabolites using the 

linear model fit including age, sex, and cohort covariate, we identified 16 metabolites that are significantly 

differentially abundant according to a Benjamini-Hochberg adjusted p-value cut-off of 0.01 (Figure 1A, 
Supplemental File 1A). Of these, seven were less abundant in the plasma of individuals with T21 and nine were 

more abundant. 

Among the significantly depleted metabolites are the amino acids L-serine and L-tyrosine, consistent with 

earlier reports (22, 23) (Figure 1A-B). Depletion of L-homocysteine (Figure 1A-B), which has also been 

previously observed in people with DS (24), could be attributed to the localization of the cystathionine-beta-

synthase gene (CBS) on chr21. Among upregulated metabolites we observed succinate and 2-hydroxyglutarate, 

two metabolites related to the TCA cycle (Figure 1A-B). Elevated succinate levels have been previously reported 

in people with DS and interpreted as a sign of mitochondrial dysfunction (23), but succinate upregulation is also 

an established marker of inflammation (14). Other upregulated metabolites include the antioxidant molecules 

dehydroascorbate and mannitol (Figure 1A-B) (25, 26). In order to identify metabolic pathways that were 

systematically dysregulated in individuals with T21, we performed an unbiased pathway enrichment analysis. 

We tested a total of 52 KEGG pathways (27) that had at least 5 metabolites included in our 91 metabolites 

(Supplemental File 1B). Using a hypergeometric test, the most significantly enriched pathway was Tryptophan 

Metabolism (p-value = 0.002, adj. p = 0.096). In fact, of the 11 tryptophan catabolic metabolites annotated in this 

pathway and detected in our analysis, five are differentially abundant: KYN, QA and 5-hydroxyindoleacetate are 

upregulated, while indole and indole-3-acetaldehyde are downregulated (Figure 1C). As noted later, depletion 

of L-serine could also be related to dysregulated tryptophan metabolism (Figure 1A-B, see later Figure 3 – 
figure supplement 2).	

A signature of tryptophan catabolites and inflammatory metabolites accurately stratifies plasma samples 
from individuals with trisomy 21.  

Next, we employed a machine-learning approach to investigate whether metabolites identified with our 

platform could be used to stratify plasma samples provided from individuals with or without DS (see Materials 
and Methods for details). As a baseline for comparison, we established the predictive power of each of the 16 

differentially abundant metabolites (Figure 2A). To achieve this, we used metabolite abundance as a predictor 

of T21 that we evaluated using receiver operatic characteristic curves (ROC), which compares the true positive 

rates (TPR) to false positive rate (FPR). Interestingly, QA had the most predictive value (AUC = 0.73) (Figure 
2A). Next, to determine the predictive potential of multivariate plasma metabolic profiles to distinguish T21 from 

D21, we prioritized metabolites based on their predictive value using a lasso regression feature selection 

approach (28). To achieve this, we trained 10,000 independent, 5-fold cross-validated lasso regression models 

on the combined data set of both cohorts to identify metabolites that were consistently selected in models with 

high predictive value. The coefficients of an individual metabolite reflect the metabolite’s weight in that model, 

thus we selected the metabolites with the greatest average coefficient weights that were consistently selected in 
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over 80% of the trained models with an accuracy > 0.9. This analysis yielded 11 metabolites, of which eight had 

positive model coefficients and three had negative model coefficients (Figure 2B). These 11 metabolites 

included seven of the 16 most differentially abundant metabolites and an additional four from the remaining 75 

metabolites in our analysis, demonstrating that this approach is not simply selecting the most differentially 

abundant metabolites, but rather the model is selecting the groups of metabolites that together provide the 

strongest predictive power. The most frequently selected metabolites included three members of the tryptophan 

metabolism pathway: QA, KYN, and 3-indole-acetaldehyde (Figure 2B). Of note, these three metabolites were 

selected in 100% of models with > 90% accuracy, while acyl-C5:1 had the largest median positive model 

coefficient. Next, we evaluated the predictive power across the combined Nexus and HTP cohort using the 

selected most predictive 11 metabolites. We performed a bootstrapped analysis using a lasso regression to 

benchmark model performance. We split the combined cohort to train the model on 80% of the participants 

(randomly selected) and tested performance using the held-out 20%. We repeated this process for 10,000 

iterations and found an average model performance of AUC=0.88 with a 95% confidence interval of [0.76, 0.97] 

(Figure 2C).  

These results demonstrate that there is strong predictive power within a small group of plasma 

metabolites for stratifying T21 individuals from D21 individuals. Also, using an independent methodology, these 

results confirm that differential tryptophan metabolism is a major contributor to the distinguishing metabolic profile 

of people with DS, which prompted us to investigate this result in more depth. 

Trisomy 21 induces the kynurenine pathway.  

In vertebrate cells, there are three major catabolic pathways for tryptophan, leading to the production of 

serotonin, KYN, or indole (Figure 3). There is a 10% decrease in L-tryptophan levels in individuals with T21, 

though it does not rise to the level of significance (p = 0.05, adjusted p = 0.12) (Figure 3, Supplemental File 
1A). There is also an approximately 10% decrease in serotonin, which is not significantly different between T21 

and D21. However, 5-hydroxyindoleacetate (5-HIA), a breakdown product of serotonin, is significantly elevated 

in the group with T21 (adjusted p = 3e-3) (Figure 3). Conversion of tryptophan to KYN represents a major 

pathway for catabolism of ingested tryptophan, accounting for removal of up to 99% of this amino acid that is not 

used in protein synthesis (29). Remarkably, KYN itself and the neurotoxic downstream product QA, are 

significantly elevated in people with DS (Figure 3). In contrast, picolinic acid (PA), a neuroprotective derivative 

of KYN, is not different between the two groups (Figure 3). Kynurenic acid (KA), another neuroprotective 

metabolite in the pathway, was detected only in Cohort 2 and was not affected by karyotype (Figure 3 – figure 
supplement 1A). Accordingly, the KYN/tryptophan, QA/PA, and QA/KA ratios are all significantly higher in 

people with DS (Figure 3 – figure supplement 1B-D).  Notably, indole and its derivative indole-3-acetaldehyde, 

both of which are significantly decreased in the T21 group (Figure 3), are metabolites produced from tryptophan 

by tryptophanase-expressing gastrointestinal microbiota (30, 31). Interestingly, indole can also be employed by 

the gut microbiota to synthesize tryptophan in a reaction that consumes L-serine (31), an amino acid that is 

significantly depleted in the plasma of people with DS (Figure 3 – figure supplement 2). Thus, lower levels of 
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indole and L-serine could be interpreted as a sign of increased tryptophan biosynthesis by the gut microbiome 

to sustain levels of this essential amino acid when it is shunted into the KYN pathway in people with DS. 

Altogether, our results indicate that a major metabolic impact of trisomy 21 is a dysregulation of 

tryptophan catabolism toward increased production of the neurotoxic metabolites in the KYN pathway. This is 

an important result, because activation of the KYN pathway has been implicated in myriad neurological and 

neurodegenerative disorders. Repeatedly, elevations in the KYN/tryptophan ratio, QA/PA, and/or QA/KA ratios 

have been linked to the development of neurological conditions such as Alzheimer’s disease (32-35), 

Huntington’s disease (36, 37), AIDS/HIV-associated neurocognitive disorder (38-40), Parkinson’s disease 

(41), amyotrophic lateral sclerosis (42, 43), and multiple sclerosis (44, 45). 

Trisomy 21 sensitizes cells to super-induction of the KYN pathway upon IFN stimulation. 

In order to further investigate the mechanism of KYN dysregulation in DS, we employed cell-based 

metabolic flux experiments using isotope-labelled tryptophan on a panel of age- and sex-matched skin fibroblasts 

with and without T21. Of note, the rate-limiting step in the KYN pathway is the conversion of L-tryptophan into 

N-formyl-kynurenine, a reaction catalyzed by the tryptophan 2,3 dioxygenase 2 (TDO2) enzyme in the liver or 

the indoleamine 2,3 dioxygenases 1 and 2 (IDO1-2) enzymes elsewhere (17). Importantly, IDO1 is a well-

recognized IFN-stimulated gene (ISG) whose expression can be induced by Type I (α/ β) and Type II (γ) IFN 

ligands (46-50). Given our previous finding that T21 fibroblasts are hypersensitive to IFN-α, β, and γ stimulation 

(11), we performed these experiments before and after IFN-α stimulation. Remarkably, IFN-α stimulation 

produced a significant, time-dependent depletion of tryptophan in T21 cells, but not supernatant (Figure 4A, 
Figure 4 - figure supplement 1A, Supplemental File 1C), concurrent with a significant increase in KYN levels 

in the supernatant, but not cells (Figure 4B, Figure 4 - figure supplement 1B). The restriction of isotope-labeled 

tryptophan depletion to the cells is likely due to isotope-labeled tryptophan being far in excess in the supernatant. 

Accordingly, the KYN/tryptophan ratio was significantly elevated upon IFN-α stimulation only in T21 supernatants 

and cells (Figure 4 - figure supplement 1C,D), and most prominent between KYN in the supernatant and 

tryptophan in the cells, consistent with consumption of intracellular tryptophan and subsequent secretion of KYN 

(Figure 4C). Matched Western blot analysis showed that T21 fibroblasts display stronger induction of STAT1 

phosphorylation (a transcription factor driving IDO1 transcription) and subsequent IDO1 expression at the protein 

level, than in D21 cells (Figure 4D). In fact, after 24 hours of IFN-α treatment, all three T21 cell lines employed 

in the metabolic flux assay expressed much higher levels of IDO1 relative to their diploid counterparts (Figure 
4E).  

Together, these results provide a mechanistic explanation for the observed dysregulated levels of 

tryptophan catabolites in plasma of people with DS, whereby T21, likely via overexpression of the four IFNRs 

encoded on chr21, would provoke a systemic hyper-sensitivity to IDO1 induction in response to IFN signaling. 

Tryptophan catabolism is selectively disrupted in the Dp(16)1/Yey mouse model of DS. 

 To test the impact of various groups of genes encoded on human chr21 on tryptophan metabolism, we 

employed three cytogenetically distinct mouse strains carrying segmental duplications syntenic to human chr21 
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(51): Dp(10)1/Yey (Dp10), Dp(16)1/Yey (Dp16), and Dp(17)1/Yey (Dp17), which have triplication of ~35 genes 

from mouse chr10, ~120 genes from chr16, and ~20 genes from chr17, respectively, and compared them to wild 

type C5Bl/6 mice (WT). We prepared plasma samples from age- and sex-matched cohorts comprised of these 

strains and measured kynurenine using LC-MS. Interestingly, we found that the only strain with significantly 

increased plasma KYN levels relative to WT mice was the Dp16 model, which is not only the largest segmental 

duplication, but the one harboring the four IFN receptors homologous to those found on human chr21: Ifnar1, 

Ifnar2, Ifngr2, and, Il10rb (Figure 5A).  Furthermore, we and others have previously shown that not only are the 

IFN receptors overexpressed in this model, but downstream IFN signaling is chronically activated on numerous 

tissues including blood and brain (11, 52). Therefore, we focused exclusively on this model in subsequent 

studies. To determine the impact of further stimulation of IFN signaling on altered tryptophan catabolism in Dp16 

mice, we chronically injected age and sex-matched Dp16 and WT mice with the synthetic dsRNA 

polyinosinic:policytidylic acid (poly(I:C)) or a sham control using an established protocol (53), and collected 

plasma samples. Poly(I:C) activates pattern recognition receptors including TLR3, RIG-I/MDA5, and PKR, with 

subsequent upregulation of Type I IFN production and concomitant downstream signaling (54). Metabolomic 

analysis of WT mice revealed modestly increased levels of KYN in poly(I:C)-treated-group relative to the Sham-

injected control group; however, only the Dp16 mice displayed statistically significantly higher levels of KYN 

when injected with poly(I:C) (Figure 5B).  

  These results are consistent with a gene-specific component to dysregulation of the KYN pathway and 

further implicate triplication of the IFN receptor locus as a key contributor. Moreover, they demonstrate the 

heightened sensitivity of an IFN receptor-triplicated model to KYN production in response to IFN stimulation at 

the organismal level. 

Kynurenine dysregulation positively correlates with circulating levels of IFNα and downstream 
cytokines. 

Recently, we reported the results of the largest plasma proteomics study of people with DS to date (12), 

which revealed that T21 causes changes in the circulating proteome indicative of chronic autoinflammation, 

including elevated levels of many cytokines acting downstream of IFN signaling. Hence, we decided to test 

whether there was a correlation between inflammatory markers and KYN dysregulation. Toward this end, we 

measured a panel of 38 cytokines using a Mesoscale Discovery (MSD) assay in 37 participants in Cohort 2, 18 

of them with DS, the other 19 being mostly age- and sex-matched typical controls. We calculated Spearman’s 

correlation between specific metabolites of interest versus all cytokines measured. Strikingly, the top cytokine 

positively correlated with KYN levels among those with DS was IFN-α2a (ρ = 0.67, Figure 6A). In fact, most of 

the cytokines positively correlated with KYN levels (ρ > 0.3) are known to be induced by IFN signaling in various 

settings, such as MCP-1, IL-33, IL-31, IP-10, IL-8, MIP-1α, MCP-4, IL-27, and TNF-α  (55-69). In most cases, 

the positive correlation was unique to people with DS (see for example IFN-α2a, MCP-1, Figure 6B, C). A similar 

result was obtained for the QA correlation analysis, with the top positively correlated markers being MCP-1 

(CCL2) and MCP-4 (CCL13), two known IFN-inducible monocyte chemotactic proteins (61, 65) (Figure 6D). 

Once again, most positively correlated cytokines (ρ > 0.3) are known to act downstream of IFN signaling (55-
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69). As for KYN, the correlations were unique to or more pronounced in people with DS (see for example MCP1 

and MCP4 (Figure 6E,F)). 

Altogether, the combination of correlative studies in plasma samples and cause-effect relationships using 

cell-based assays support the notion that dysregulation of tryptophan metabolism in DS is driven by hyperactive 

IFN signaling downstream of T21. 

DISCUSSION. 

The developmental and clinical impacts of T21 in the population with DS are highly variable, with a large 

number of co-morbidities showing increased prevalence in this population relative to typical people. Despite 

many research efforts in this area, little is known about the molecular pathways that drive the various co-

morbidities common in DS. Clearly, identification of these pathways would facilitate the design of diagnostic and 

therapeutic strategies to serve this at-risk population via precision medicine approaches. An obvious impact of 

these approaches would be in the management of diverse neurological conditions showing increased prevalence 

in this population, including, but not restricted to, early onset AD (3, 10, 70, 71), epilepsy (72), depression (73), 

and autism (74, 75). Our results point to dysregulation of the KYN pathway as a potential contributing factor to 

the development of these conditions in people with DS, with obvious diagnostics and therapeutic implications as 

described below. 

People with DS constitute the largest population with a strong predisposition to AD, which is attributed to 

the fact that the APP gene is located on chr21 (3, 70, 71, 76), and that APP duplication causes familial early 

onset AD in the typical population (77). By age 40, virtually all individuals with DS present the brain pathology of 

AD; however, the age of dementia diagnoses is highly variable, with some individuals being diagnosed in their 

30’s, while others remain dementia-free in their 70’s (78, 79). Therefore, the population with T21 provides a 

unique opportunity to identify mechanisms that either accelerate or delay AD development. The results in this 

report, when integrated with a significant body of literature, support the existence of an IFN➝IDO1➝KYN 

signaling pathway that could accelerate AD onset and progression in people with DS. First, it is clear that people 

with DS display chronic immune dysregulation with clear ties to IFN signaling. We recently reported a 

comprehensive analysis of the circulating proteome of people with DS (12), which revealed clear signs of immune 

dysregulation across the lifespan. These, and other efforts in the field (80), have identified a core set of 

inflammatory markers elevated in people with DS, including MCP-1, IL-6, TNF-α and IL-1β, all of which are 

known to be induced by IFN signaling and whose levels are both elevated in typical people with AD and positively 

associated with AD progression (55, 81-83). Here, we show that circulating levels of IFN-α2a and MCP-1 

positively correlate with dysregulation of the KYN pathway (Figure 5), which has been repeatedly associated 

with AD development (see below) (32, 35, 84, 85). Second, T21 consistently activates the IFN transcriptional 

response across diverse cell types, including circulating immune cells (11), which is likely due to the fact that 

four of the six IFNRs are encoded on chr21 (86). Accordingly, T21 cells are hypersensitive to IFN ligands and 

show significant overexpression of ISGs (11, 86-88), including IDO1, the rate limiting enzyme in the KYN 

pathway. Pioneering work by Dr. Leonard Maroun and colleagues showed that reduction of IFN signaling in the 
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early Ts16 mouse model of DS, with either anti-IFN antibodies or by crossbreeding with a strain lacking two 

IFNRs, improved embryonic development and increased survival of cortical neurons in vitro (89-91). Additionally, 

connections between IFN signaling and T21 were established as early as in the 1970s (13, 92-94), but never 

explored fully. Third, IFN signaling is likely to promote neuropathology and AD progression both upstream and 

downstream of amyloid deposition. IFN signaling was shown to enhance APP expression and processing into 

the pathological amyloid peptide, Aβ 1-42, leading to increased amyloid plaque formation (95, 96). Furthermore, 

in mouse models of AD, IFN signaling was shown to mediate neuroinflammation, neuronal cell death, and 

cognitive decline downstream of amyloid plaque formation (96-99). Finally, the KYN pathway has been 

consistently implicated in AD progression. Multiple studies have reported elevated levels of metabolites in the 

KYN pathway in people with AD, and, in many of these studies, KYN dysregulation has been positively correlated 

with AD progression (35, 84, 85, 100-105). Furthermore, IDO1 inhibition reverses AD pathology driven by 

injection of Aβ1-42 in mice (106) and in an early transgenic mouse model of AD (107). Based on these 

observations, we hypothesize here that those individuals with DS showing the strongest degree of dysregulation 

in the IFN➝IDO1➝KYN pathway will also display earlier onset and faster progression of AD. Clearly, testing this 

hypothesis will require a significant effort, including a multi-dimensional, longitudinal analysis of IFN signaling, 

KYN dysregulation, and various metrics of the AD pathological cascade. 

Beyond AD, it is possible that KYN dysregulation is a driver of other neuropathologies more prevalent in 

DS, such as epilepsy/infantile spasms/seizures, depression, and autism (72-75). KYN and QA were shown to 

promote seizures in mice, rats, and frogs (108-111), and QA was found to be elevated in mouse models of 

epilepsy (112), leading to the characterization of QA as an ‘endogenous convulsant’ with a pathogenic role in 

seizure disorders (113). The role of tryptophan catabolism in depression is undisputed (114), with a prominent 

role for serotonin depletion as a causative event, leading to the widespread therapeutic use of selective serotonin 

reuptake inhibitors (SSRIs). Importantly, activation of the KYN pathway shunts tryptophan away from serotonin 

synthesis, causing serotonin depletion, which led Lapin and others to propose the ‘kynurenine hypothesis’ of 

depression (115). The discovery of the neurotropic activities of KYN and its derivatives indicated that induction 

of the KYN pathway could not only drive serotonin deficiency, but also promote depression-associated anxiety, 

psychosis, and cognitive decline (116). Notably, it has been amply documented that therapeutic administration 

of IFN-α can induce depression (117-119). During therapeutic use of IFN-α for the treatment of hepatitis C, high 

tryptophan breakdown was associated with depression-like symptoms during the course of treatment, leading 

Wichers et al. to propose that IDO1 induction (and consequent neurotoxicity) was the principal 

pathophysiological mechanism (50, 120). Regarding autism, independent cohort studies have documented 

dysregulation of KYN metabolism in patients diagnosed with autism spectrum disorder (ASD) (121, 122), as 

demonstrated by increased KYN/KA ratios (122) and elevated levels of QA (121), adding further evidence to the 

growing notion of neuroinflammatory processes in the etiology of ASD (123).  

In addition to the recognized neurological conditions discussed above, KYN dysregulation could 

contribute to the cognitive deficits associated with DS. The acute effects of KYN metabolites, QA in particular, 

on cognitive function are well documented (16, 124). QA is a potent neurotoxin that acts as an excitotoxic agonist 
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of NMDA receptors, and which may also exert toxicity via oxidative stress (9). Importantly, dysregulation of the 

KYN pathway in DS could explain a large body of work showing beneficial effects of memantine, an NMDA 

antagonist that protects from QA-mediated neurotoxicity (10-13), as well as anti-oxidants such as vitamin E, in 

various animal models of DS (125-129). Of note, memantine is an approved drug for the treatment of AD, which 

is currently being tested in a follow-up Phase II clinical trial to improve cognition in young adults with DS 

(NCT02304302). The initial pilot trial showed benefits on a subset of neurocognitive measures (130). A second 

independent trial, which focused on adults 40 years and older, showed no effects in any of the endpoints  (131). 

However, we posit here that the limited therapeutic effect of this drug is due to its action at a very downstream 

step in the pathway, and that inhibitors of IDO1 (107, 132), kynurenine-3-monooxygenase (KMO) (133), and IFN 

signaling (e.g. JAK inhibitors, decoy IFNR receptors) (134, 135) should be considered. Even if memantine is 

pursued further, we suggest that its use should be accompanied by an assessment of the degree of KYN 

dysregulation in those receiving the drug. In principle, memantine should have no benefits for individuals with 

DS who display normal levels of QA.  

Finally, it is important to note that the KYN pathway plays major roles in immune control. KYN is a potent 

immunosuppressive metabolite promoting ‘immune privilege’ in tissues such as the brain, testes, and gut, but 

which is also exploited by some tumor types to evade immune surveillance (17, 136). KYN upregulation in people 

with DS may affect key cell types involved in autoimmunity, such as regulatory T cells (17, 136), and it may 

represent an immunosuppressive negative feedback mechanism downstream of chronic IFN signaling (46-49, 

137). Given that people with DS are highly predisposed to myriad autoimmune disorders, and that Pneumonia 

lung infections are the top cause of death in people with DS (138), our results justify future investigations to 

define the role of KYN dysregulation in multiple common co-morbidities in DS. 
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Materials and Methods 

Human cohorts and sample collection 

All human subjects in this study were consented according to Colorado Multiple Institutional Review Board 

(COMIRB)-approved protocols. Written informed consent was obtained from parents or guardians of participants 

under the age of 18, and assent was obtained from participants over the age of 7 who were cognitively able to 

assent. Deidentified plasma samples were obtained from the Translational Nexus Clinical Data Registry and 

Biobank (University of Colorado Anschutz Medical Campus, COMIRB #08-1276) for 49 individuals with DS and 

49 controls without DS. Additionally, plasma samples for 31 individuals with DS and 42 controls were obtained 

through the Human Trisome Project (University of Colorado Anschutz Medical Campus, COMIRB #15-2170, 

www.trisome.org). Plasma was collected in Vacutainer tubes (EDTA – purple capped or Lithium heparin – light 

green capped) and stored at -80oC. Participant medical history was collected by the respective biobanks.  

Sample preparation 

For plasma analyses (human and mouse plasma), a volume of 50 µl of was extracted in 450 µl of ice cold lysis 

buffer (methanol:acetonitrile:water 5:3:2). For cell experiments, 1x106 cells were extracted in 1 ml of lysis buffer. 

In both protocols, incubation with lysis buffer was followed by vortexing for 30 minutes at 4ºC. Separate extraction 

for hydrophobic metabolites (including oxylipids) were performed in ice cold methanol with similar ratios and 

workflows. Insoluble proteins were pelleted by centrifugation (10 minutes at 4ºC and 10,000 x g) and 

supernatants were collected and stored at -80°C until analysis. UHPLC-MS metabolomics analyses were 

performed using a Vanquish UHPLC system coupled online to a Q Exactive mass spectrometer (Thermo Fisher, 

Bremen, Germany).  Samples were resolved over a Kinetex C18 column (2.1 x 150 mm, 1.7 µm; Phenomenex, 

Torrance, CA, USA) at 25ºC using a three minute isocratic condition of 5% acetonitrile, 95% water, and 0.1% 

formic acid flowing at 250 µl/min,48 or using a 5 min gradient at 400 µl/min from 5-95% B (A: water/0.1% formic 

acid; B: acetonitrile/0.1% formic acid) and a 17 min gradient ((A) water/acetonitrile (75/25, vol/vol) with 5 mmol/L 

ammonium acetate and (B) 2-propanol/acetonitrile/water (50/45/5, vol/vol/vol) with 5 mmol/L ammonium 

acetate). Compounds of interest were monitored and quantified in negative ion mode against deuterium-labeled 

internal standards. MS analysis and data elaboration were performed as described (139, 140). To monitor 

possible technical variability, technical replicates were run for both cohorts. Briefly, for the plasma samples from 

each cohort, aliquots of each of the individual samples were combined to make technical replicates, which were 

run as described above. Additionally, in each experiment, several buffer aliquots were run as blanks for artifact 

identification.  

Metabolomics data processing 

Metabolite assignments and isotopologue distributions in tracing experiments with 13C15N-tryptophan were 

performed using MAVEN (Princeton, NJ, USA) and Compound Discoverer (Thermo Fisher, Bremen, Germany), 

on the basis of accurate intact mass, retention time and MS/MS (141, 142). Peak areas were exported for further 

statistical analysis with R (R Foundation for Statistical Computing, Vienna, Austria). Data sets from each of the 

two studies were log2-transformed. To perform differential expression analysis, the limma R package was used 
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to fit a linear model to the data, including age, sex, and cohort as covariates (21). Log fold change, p-value and 

adjusted p-value were calculated for the T21-D21 comparison using the empirical Bayes function and Benjamini-

Hochberg adjustment procedure for multiple testing correction in limma (143). Adjusted p-values shown in the 

volcano plots and reported on the box plots were generated with this limma moderated t-test. For displaying data 

per sample on the boxplots, we plotted the residuals from the model fit. 

For pathway enrichment, we first mapped the 91 metabolites to KEGG pathways using the KEGGREST 

R package (144). Of the 91 metabolites, 79 were annotated to at least one KEGG pathway. In total, this resulted 

in 116 unique pathway annotations which had at least 1 metabolite in them from the set of 79. We excluded 

pathways with less than 5 metabolites in them, leaving 52 pathways to investigate. Using this set of pathways, 

we performed a hypergeometric test in which the 16 differentially abundant metabolites were selected from the 

79. For each pathway, we tested the number of metabolites that were both in the pathway and differentially 

abundant. 

Predictive modeling 

To select metabolites to be used as features for predictive modeling, we used the age-, sex-, and cohort-adjusted 

metabolomics data. Missing values made up less than 1% of the data and were imputed with the k-nearest 

neighbors algorithm using k = 5. Imputation was performed within the karyotype group using the impute package 

in R (145). We trained 10,000 independent, 5-fold cross-validated lasso regression models on combined set of 

Nexus and HTP samples using the R, glmnet package (146). For each independently trained model, metabolite 

coefficients and model accuracy was recorded. For models which reached 90% accuracy or greater, we recorded 

which metabolites had non-zero coefficients (i.e. features selected in the model). To select our final set of 

biomarkers to test, we used metabolites which had been selected by at least 80% of the models reaching 90% 

accuracy or greater, resulting in 11 total metabolites. We then evaluated the performance of building a predictor 

using the lasso model with the top 11 identified metabolites. To estimate performance, we ran a bootstrapped 

analysis over 10,000 independently trained models. We randomly separated the 169 patient samples into 80% 

training and 20% testing sets. Using the 11 metabolites, we used 5-fold cross-validation on the training set to 

identify the optimal value, then tested the trained model on the held-out testing set. We reported the average 

model performance over the 10,000 models and provide an empirically determined (from the bootstrapped 

analysis) 95% confidence intervals. Area under the receiver operating characteristic curve (AUC) is reported.    

Data and code availability 

All data and R code developed for the full set of statistical and machine learning analyses is available at: 

https://github.com/CostelloLab/Trisomy21_KYN_metabolomics. To ensure reproducibility, this code can be run 

to generate all figures for this manuscript. 

Cell culture 

Human fibroblasts were described previously (11). For the metabolic flux experiment, cells were cultured in 5 

mg/L 13C11 15N2 L-tryptophan (Sigma-Aldrich Cat #574597) for 72 hr prior to stimulation with 10 ng/mL IFN-α 

(R&D Systems Cat# 11101-2). Media was prepared by adding 120 uL of 10 mg/mL stock 13C11 15N2 L-
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tryptophan in 1x PBS to 240 mL of RPMI (Corning Cat# 10-040) in 10% Dialyzed FBS (Sigma Cat# F0392) and 

1x Anti-Anti (Gibco Cat# 15240-062). Cells were treated with 10 ng/mL IFN-α or vehicle by adding 6 uL of 

0.2 mg/mL IFN-α or 1x PBS to 120 mL of heavy labeled media. Cell lysates and media were collected at 0, 1, 6, 

and 24 hours following initial application of the heavy tryptophan and IFN-α. LC-MS metabolomics profiling was 

performed as described above, and tryptophan catabolites were identified by their C13 and/or N15 peaks. 

Western blots 

Cells were plated at equal densities (~33,000/cm2) and allowed to attach overnight. The next day, IFN-α (R&D 

Systems Cat# 11101-2) was added at 10 ng/mL in RPMI (Corning Cat# 10-040) and cells were harvested by 

0.25% trypsin (Gibco Cat# 25200-056) at 0, 1, 6, and 24 hours.  Trypsin was quenched by adding RPMI with 

10% Dialyzed FBS (Sigma Cat# F0392). Cells were pelleted at 200g for 5 minutes. Cell pellets were washed 

with 1x PBS, then resuspended in RIPA buffer containing 1 μg/mL pepstatin, 2 μg/mL aprotonin, 20 μg/mL trypsin 

inhibitor, 10 nM leupeptin, 200 nM Na3VO4, 500 nM phenylmethylsulfonyl fluoride (PMSF), and 10 μM NaF. 

Suspensions were sonicated at six watts for 15 s two times and clarified by centrifugation at 21,000 g for 10 min 

at 4°C. Supernatants were quantified in a Pierce BCA Protein Assay and diluted in complete RIPA with 4x 

Laemmli sample buffer. Tris-glycine SDS-polyacrylamide gel electrophoresis was used to separate 20–40 μg 

protein lysate, which was transferred to a 0.45 μm polyvinylidene fluoride (PVDF) membrane. Membranes were 

blocked in 5% non-fat dried milk or 2.5% bovine serum albumin (BSA) in Tris-buffered saline containing 0.1% 

TWEEN (TBS-T) at room temperature for 30 min.  Immunoblotting was done using primary antibodies against 

Stat1 (Santa Cruz Biotechnology Cat# 346), pStat1 (Cell Signaling Technology Cat# 7649), IDO1 (Cell Signaling 

Technology Cat# 86630), and GAPDH (Santa Cruz Biotechnology Cat# 365062) overnight in 5% non-fat dried 

milk or 2.5% BSA in TBS-T at 4°C while shaking.  Membranes were washed 3x in TBS-T for 5–15 min before 

probing with a horseradish peroxidase (HRP) conjugated secondary antibody in 5% non-fat dried milk at room 

temperature for one hour. Membranes were again washed 3x in TBS-T for 5–15 min before applying enhanced 

chemiluminescence (ECL) solution. Chemiluminensence signal was captured using a GE 

(Pittsburgh, PA) ImageQuant LAS4000. 

Mouse strains  

Dp(10)1Yey/+, Dp(16)1(Yey)/+ and  Dp(17)1(Yey)/+ have been previously described (51). Dp(16) mice were 

purchased from Jackson Laboratories or provided by Drs. Faycal Guedj and Diana Bianchi at the National 

Institutes of Health. Dp(10)Yey/+, and Dp(17)1(Yey)/+ mice were provided by Drs. Katheleen Gardiner and 

Santos Franco, respectively. Animals were used between 6 and 30 weeks of age. All mice were maintained on 

a C57Bl/6 background and housed in specific-pathogen-free conditions. All experiments were approved by the 

Institutional Animal Care and Use Committee at the University of Colorado Anschutz Medical Campus. 

Poly(I:C) treatment 

Mice were allocated into control and poly(I:C) groups according to age, sex, and genotype. VacciGradeTM high 

molecular weight poly(I:C) (InvivoGen Cat# vac-pic) was diluted to 1 mg/mL, according to manufacturer’s 
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instructions. For induction of chronic inflammation, mice received intraperitoneal injections of 10 μg/g poly(I:C) 

at two-day intervals for a total of nine injections. Blood was either collected prior to the final injection, via the 

submandibular vein into 0.5 mL of 18 u/mL sodium heparin (Sigma Cat# H3393) or after sacrifice via cardiac 

puncture into 1.3 mL lithium heparin tubes (Fisher Cat #41-12-17-02). Blood samples were centrifuged (700 x g, 

15 mins, 21°C) to separate the plasma. Plasma was collected into a fresh tube and centrifuged (2200 x g, 15 

mins, 21°C) to pellet any remaining cells; cell-free plasma was aliquoted and  stored at -80°C.  
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FIGURE LEGENDS.  

Table 1 – Demographic characteristics of study participants in Cohort 1 and Cohort 2. 

Figure 1 – Trisomy 21 causes consistent changes in circulating metabolite abundance.  

A) Differentially abundant metabolites in plasma samples from individuals with T21 were identified using a linear 

model adjusting for age, sex, and cohort. Metabolites that increased in the T21 group are shown in red and 

metabolites that decreased in the T21 group are blue. The horizontal grey line represents an adjusted p-value 

of 0.01. B) Box plots showing model residuals (i.e. remaining component of the model fit after adjusting for age, 

sex, and cohort) for significantly differentially abundant metabolites. p-values were calculated using the linear 

model from A and Benjamini-Hochberg for multiple testing correction. C) Top 5 most significant KEGG pathways 

identified by enrichment analysis. Each of the 91 metabolites analyzed is ranked by fold change, with blue and 

red lines indicating a pathway metabolite significantly down- or up-regulated in the T21 group, respectively. Grey 

lines indicate that a pathway metabolite was not significantly differentially altered. p-values were calculated using 

a hypergeometric test and Benjamini-Hochberg correction was used to adjust the p-values. The numbers of 

significant (sig) and total of the 91 metabolites present in each KEGG pathway are shown to the right. 

Figure 1 – figure supplement 1 – Statistical workflow adjusts for the effects of age and sex in circulating 
plasma metabolites. 

A) Overview of the analysis pipeline used to identify, annotate, and analyze plasma metabolites measured in 

individuals with Down syndrome (T21 group) and controls without Down syndrome (D21) from the Translational 

Nexus Biobank (Nexus, Cohort 1) and the Human Trisome Project (HTP, Cohort 2). Putative metabolites were 

annotated using MAVEN. Across the two cohorts, 97 metabolites were detected consistently. Data preprocessing 

included filtering out metabolites with low intensity values or that were detected in less than 90% of the T21 

and/or D21 samples, leaving 91 metabolites. Batch correction and linear model fitting was performed before the 

combined data set was used for analysis. B) Differentially abundant metabolites in plasma samples from T21 

individuals in Cohort 1 alone. Metabolites that increased in the T21 group are shown in red and metabolites that 

decreased in the T21 group are blue. The horizontal grey line represents an adjusted p-value of 0.01 estimated 

using a linear model fit with no covariates (left) or including age and sex as covariates (right). C) Differentially 

abundant metabolites in plasma samples from T21 individuals in Cohort 2 alone, colored as described in B. The 

horizontal grey line represents a Benjamini-Hochberg adjusted p-value of 0.01 estimated using a linear model fit 

with no covariates (left) or including age and sex as covariates (right). 

Figure 1 – figure supplement 2  – Adjustment for age and sex covariates prior to metabolomics analyses. 

A) Density plots showing the distribution of log2 intensity values for all 91 metabolites in Cohort 1 (purple) and 

Cohort 2 (green) prior to any adjustment. B) Density plots showing the distribution of adjusted log2 intensity 

values for all 91 metabolites, colored as in A, after a linear model was used to adjust for age, sex, and cohort 

covariates. C) Principal components plot showing each sample in the Cohort 1 and Cohort 2, colored as in A 
and B. Triangle and circle points represent T21 and D21 individuals, respectively. The first and second principal 

components representing all 91 metabolites are plotted, with their respective percentage of variance explained 
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shown in parentheses. D) Principal components plot as in C, after data for the 91 metabolites had been adjusted 

for age, sex, and cohort. 

Figure 2 – A signature of tryptophan catabolites and inflammation-related metabolites accurately 
distinguishes plasma samples from individuals with trisomy 21. 

A) Receiver operating characteristic (ROC) plot reporting the area under the curve (AUC) for each of the 16 

significantly differentially abundant metabolites. B) Box and whisker plots showing the distribution of lasso 

regression coefficients for the 11 metabolites selected in 80% of models meeting accuracy > 90% over 10,000 

bootstrapped iterations. C) Bootstrapped, multivariate model performance using the selected 11 metabolites 

from B across 10,000 iterations. The mean internally cross-validated result with 95% confidence intervals are 

shown. 

Figure 3 – Trisomy 21 induces the kynurenine pathway. Schematic of tryptophan metabolism and the 

kynurenine pathway. Metabolite levels are plotted as model residuals (i.e. remaining component of the model fit 

after adjusting for age, sex, and cohort). p-values were calculated using the linear model from Figure 1A 
Benjamini-Hochberg for multiple testing correction Multi-headed arrows are used to represent multiple steps in 

the pathway that are not shown. Arrows with dashed lines represent reactions occurring in tryptophanase-

expressing gastrointestinal microbiota. 

Figure 3 – figure supplement 1 – Individuals with Down syndrome have elevated kynurenine/tryptophan, 
quinolinic acid/picolinic acid, and quinolinic acid/kynurenic acid ratios. A) The levels of kynurenic acid 

(only detected in the Cohort 1 HTP plasma samples) were not significantly altered in T21 individuals after 

adjusting for age and sex. The ratios of B) kynurenine to tryptophan and C) quinolinic acid to picolinic acid were 

significantly increased in T21 individuals by a Benjamini-Hochberg adjusted p-value < 0.01. D) The ratio of 

quinolinic acid to kynurenic acid was moderately increased in T21 individuals (adjusted p = 0.04). 

Figure 3 – figure supplement 2 – Metabolites involved in microbiome-mediated tryptophan synthesis in 
people with and without trisomy 21. 

Simplified schematic of tryptophan synthesis. Box and whisker plots showing model residuals (i.e. remaining 

component of the model fit after adjusting for, age, sex, and cohort), for which metabolites that increased in the 

T21 group are shown in red and metabolites that decreased in the T21 group are shown in blue. P-values were 

calculated using the linear model in Figure 1A adjusting for cohort, with age and sex as covariates, and using 

Benjamini-Hochberg for multiple testing correction. 

Figure 4 – Trisomy 21 sensitizes cells to super-induction of the kynurenine pathway by IFN-α. 

Flux metabolomics experiment using heavy-labeled tryptophan in fibroblast cell lines (n = 3 T21, n = 3 D21).  A) 
Levels of heavy-labeled tryptophan in D21 (left) and T21 (right) fibroblast cell lysates, with or without IFN-α 

treatment. B) Levels of heavy-labeled kynurenine in D21 (left) and T21 (right) supernatant, with or without IFN-

α treatment. C) Ratio of heavy-labeled kynurenine to heavy-labeled tryptophan levels in D21 (left) and T21 (right) 

supernatant, with or without IFN-α treatment. At each timepoint, the p-value between the Ctrl and IFN+ samples 
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was calculated using a two-tailed student’s t-test and Benjamini-Hochberg for multiple testing correction (* p < 

0.05, ** p < 0.01, *** p < 0.001). D) Western blot analysis confirming STAT1 phosphorylation and upregulation 

of IDO1 over a 24 hour timecourse. E) Western blot analysis confirming STAT1 phosphorylation all six cell lines 

and IDO1 super-induction in T21 fibroblasts after 24 hours of IFN-α treatment. 

Figure 4 – figure supplement 1 – Trisomy 21 sensitizes cells to super-induction of the kynurenine 
pathway by IFN-α. 

Flux metabolomics experiment using heavy-labeled tryptophan in fibroblast cell lines (n = 3 T21, n = 3 D21). A) 
Levels of heavy-labeled tryptophan in D21 (left) and T21 (right) supernatant, with or without IFN-α treatment. B) 
Levels of heavy-labeled kynurenine in D21 (left) and T21 (right) fibroblast cell lysates, with or without IFN-α 

treatment. C) Ratio of heavy-labeled kynurenine to heavy-labeled tryptophan levels in D21 (left) and T21 (right) 

fibroblast cell lysates, with or without IFN-α treatment. At each timepoint, the p-value between the Ctrl and IFN+ 

samples was calculated using a two-tailed student’s t-test and Benjamini-Hochberg for multiple testing correction 

(* p < 0.05, ** p < 0.01, *** p < 0.001). 

Figure 5 - Tryptophan catabolism is disrupted in the Dp(16)1/Yey mouse model of DS. 

A) Box and whisker plots showing levels of plasma kynurenine in the indicated mouse model. B) Box and whisker 

plots showing levels of plasma kynurenine in WT and Dp16 mice injected with sham or poly(I:C). p-values were 

calculated using a two-tailed student’s t-test (* p < 0.05). 

Figure 6 – Kynurenine dysregulation positively correlates with circulating levels of IFN-α and IFN-
inducible cytokines.  

A) Heatmap showing ranked Spearman’s correlation values between kynurenine and a panel of cytokines 

measured by a Mesoscale Discovery (MSD) assay. B, C) Scatterplots for the two cytokines most positively 

correlated (Spearman’s correlation) with kynurenine, IFN-α2a and MCP-1, are shown to the right, with points in 

red and black representing T21 and D21 samples, respectively. D) Heatmap showing ranked Spearman’s 

correlations between quinolinic acid and cytokines measured by the MSD assay. E, F) Scatterplots for the two 

cytokines most positively correlated (Spearman’s correlation) with quinolinic acid, MCP-1 and MCP-4, are shown 

to the right, with points in red and black representing T21 and D21 samples, respectively. 

Supplemental File 1. Metabolomics Data. A) Plasma Metabolomics B) KEGG Analysis C) Flux experiment. 
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  Cohort  Combined  

Characteristics 
 

(n = 98) (n = 71) 
  COMBINED 

(n = 169) 
 

Karyotype         
    Euploid (D21)  49 (50.0%)  41 (57.7%)   90 (53.3%)  
    Trisomy 21 (T21)  49 (50.0%)  30 (42.3%)   79 (46.7%)  
Age, All         
    0-18  68 (69.4%)  7 (9.9%)   75 (44.4%)  
    19-30  13 (13.3%)  28 (39.4%)   41 (24.3%)  
    31-65  17 (17.3%)  36 (50.7%)   53 (31.4%)  
Age, D21         
    0-18  24  4   28  
    19-30  8  13   21  
    31-65  17  24   41  
Age, T21         
    0-18  44  3   47  
    19-30  5  15   20  
    31-65  0  12   12  
Sex, All         
    Male  44 (44.9%)  27 (38.0%)   71 (42.0%)  
    Female  54 (55.1%)  44 (62.0%)   98 ( )  
Sex, D21         
    Male  18  15   33  
    Female  31  26   57  
Sex, T21         
    Male  26  12   38  
    Female  23  18   41  

D21 = euploid chr21, T21 = trisomic chr21. Data shown as n (%). 

Table 1. Baseline characteristics of the cohorts from which plasma samples were obtained. 
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