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One Sentence Summary 43 

Unbiased single-cell transcriptomics re-defines the transcriptional landscape of cerebrospinal fluid 44 

leukocytes and identifies T follicular helper cells as essential drivers of local inflammation in multiple 45 

sclerosis. 46 

 47 

Abstract 48 

 49 

Single-cell transcriptomics enables unbiased biological discovery and holds new promise for 50 

personalized medicine. However, its potential for understanding human diseases by comparing patient 51 

vs. control samples in a clinical setting remains largely unexplored. Here, we applied single-cell RNA-52 

sequencing (scRNA-seq) to rare cerebrospinal fluid (CSF) specimens from well-characterized controls 53 

and patients with multiple sclerosis (MS) – a prototypic inflammatory disease of the central nervous 54 

system (CNS). We thereby generated and validated the first transcriptional atlas of single CSF 55 

leukocytes in health and disease. In MS patients, we found an expansion of natural killer cells and late 56 

B cell lineages and based on these insights we developed a score with potential diagnostic relevance. 57 

Using this analytical approach, we identified and characterized activated phenotypes of MS-derived 58 

CSF leukocytes, including an enrichment in T follicular helper (TFH) cell transcriptional signatures. 59 

We validated the expansion of such B cell-helping TFH cells in MS patients and demonstrated that TFH 60 

cells exacerbate symptoms in an animal model of MS and promote B cell infiltration of the CNS. TFH-61 

dependent B cell expansion may thus drive local CNS autoimmunity in MS. Our study demonstrates 62 

how single-cell transcriptomics can identify novel disease mechanisms in a clinically-relevant case-63 

control study design. 64 

  65 
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Introduction 66 

 67 

Single-cell transcriptomics is a transformative and rapidly evolving technology generating biological 68 

information at unprecedented resolution and scale. The technique has mostly been employed to re-69 

define the heterogeneity of complex tissues derived from healthy rodents or humans (1, 2). The novelty 70 

of these studies has mostly been limited to the identification of previously unrecognized cell types or 71 

cell phenotypes (3) and the regulation of their development. Diseased tissues have also been analyzed 72 

with single-cell technologies and the cancer field has seen especially rapid adaptation of these methods 73 

(4, 5). Proponents of the technology posit that insights from single-cell transcriptomics are likely to 74 

translate into palpable benefits for human patients and enable precision medicine in the not-too-distant 75 

future (6–8). However, outside of the field of cancer (9), we are currently aware of only a handful of 76 

studies that utilize this technology to compare tissue samples from disease-affected donors against those 77 

of separate control donors in a clinically relevant setting (10, 11). This leaves many methodological 78 

questions unexplored. Case-control studies are particularly important in systemic immune disease, 79 

when healthy control tissue cannot be reliably obtained. Indeed, many analytical tools for identifying 80 

differences between two sets of single-cell profiles (e.g. malignant vs. non-malignant) have been 81 

developed (12), but their applicability to a clinically relevant case-control scenario has not yet been 82 

examined. 83 

Here, we applied single-cell transcriptomics to cerebrospinal fluid (CSF) cells from patients with 84 

multiple sclerosis (MS) and controls, validating key findings with flow cytometry and mouse model 85 

studies. MS is a chronic inflammatory, demyelinating disorder of the central nervous system (CNS) – 86 

most likely of autoimmune origin – causing substantial disability (13). We chose this paradigmatic 87 

inflammatory disease, because many questions remain unanswered despite a vast amount of available 88 

literature. Evidence supports the involvement of both T cells and B cells in MS, but the relative 89 

contribution of each cell type to disease aetiology is unknown. On the one hand, both the expansion of 90 

B cells and the production of immunoglobulins occur in the CNS (14) and B cell depleting therapies 91 

are effective in MS (15). On the other hand, T cells are abundant in MS lesions (16, 17) and T cells are 92 

affected by many established MS treatments and induce an MS-like condition named experimental 93 
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autoimmune encephalomyelitis (EAE) in rodents (18). Much needs to be learned about the interaction 94 

of T with B cells in MS. 95 

CSF is a rare and clinically important specimen that has been studied extensively in MS, but has not yet 96 

been adequately analyzed with unbiased transcriptome methods (19). We speculated that a study of this 97 

fluid can serve as the basis for an important proof of principle: translating single-cell transcriptomic to 98 

the bedside. CSF is a clear liquid that envelops the CNS and provides mechanical protection and trophic 99 

support (20) and acts as transport medium for immune cells (21). Under healthy conditions, the non-100 

cellular fraction of CSF is mostly an ultra-filtrate of serum (22). In contrast, CSF cells - derived 101 

exclusively from the hematopoietic lineage - exhibit a distinct and tightly controlled cellular 102 

composition. Compared to blood, leukocyte concentrations in the CSF are 1,000-fold lower and CD4+ 103 

T lymphocytes predominate, while myeloid-lineage cells are rare (23). Clinically, CSF provides a 104 

unique diagnostic window into immune-related processes in the CNS. In MS, CSF exhibits several 105 

disease-associated changes including an increased concentration of oligoclonal immunoglobulins (24, 106 

25). Flow cytometry-based studies have also identified an expansion of B lineage cells in MS (23, 26) 107 

with evidence of antigen-driven maturation (27, 28). However, the mechanisms promoting maturation 108 

of B cells such as class-switching in the CSF have not been identified and an unbiased characterization 109 

of CSF cells is missing. 110 

Here we have used single-cell transcriptomics to generate a comprehensive map of the cellular 111 

composition and transcriptional phenotype of CSF cells in MS, demonstrating the feasibility of this 112 

technique in its application to human CSF samples. We find high levels of transcriptional and cellular 113 

heterogeneity across donors, an important consideration for future power calculations. We demonstrate 114 

why analyses aimed at capturing relevant disease-associated changes across a transcriptional continuum 115 

require novel analytical tools, and we introduced a new approach termed cell set enrichment analysis 116 

(CSEA) to address some of these challenges. Through these analyses, we make disease-related 117 

discoveries, like class-switched B lineage cells expanded in the CSF in MS. These changes coincide 118 

with an expansion of B cell-helping T follicular helper (TFH) cells that promote CNS auto-immunity 119 

and local B cell infiltration in animal models of the disease. These insights, derived from single-cell 120 
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transcriptome technology, lead us to propose a new cellular mechanism, locally driving CNS 121 

autoimmunity and disability in MS. 122 

 123 

Results 124 

Single-cell transcriptomics identifies the composition of cerebrospinal fluid cells 125 

 126 

We aimed to characterize clinically relevant CSF cells in greater detail and to evaluate the applicability 127 

of single-cell transcriptomics in a translational setting. We optimized processing of primary human CSF 128 

cells (Methods) decaying rapidly in nutrient-poor CSF (29) and analysed these cells using 1) 129 

microfluidics-based single-cell RNA-sequencing (scRNA-seq) (30) and 2) flow cytometry (Fig. 1A). 130 

We first performed scRNA-seq on total unsorted CSF cells from treatment-naïve patients (n = 6) with 131 

either a first episode indicative of MS (i.e. clinically isolated syndrome (CIS)) or a first diagnosis of 132 

relapsing-remitting MS. For simplicity, we refer to this cohort as MS (Methods). Patients with 133 

idiopathic intracranial hypertension (IIH) served as controls (n = 6), because CSF itself is normal in IIH 134 

(31) while the production and absorption of CSF are unbalanced (32). Both cohorts were well matched 135 

with regard to age and sex (Fig. S1A and Table S1). Standard CSF and disease parameters were either 136 

comparable between groups or exhibited known MS-associated changes (Fig. S1B and Table S2). 137 

After quality control and removal of low quality cells and samples (2 donors per group; see Methods), 138 

our scRNA-seq approach returned transcriptional information for a total of 22,357 high-quality CSF 139 

cells from 4 control and 4 MS donors, with an average of 833 ± 193 SD genes detected per cell (Table 140 

S3). After normalization (Methods) and unbiased cell type clustering, we identified a total of 10 CSF 141 

cell clusters (Fig. 1B and Fig. S2A). Initially, CD4+ T cells did not cluster reliably into known lineages 142 

and were therefore tentatively merged into one cluster (CD4_Tc). We manually assigned cluster 143 

identities based on known marker gene expression (Fig. 1C-D and Table S4; see Methods) and gene set 144 

enrichment analysis (GSEA) of marker genes (Table. S5). CSF cells featured a strong predominance of 145 

T cells (more CD4+ than CD8+) over monocyte lineage cells, natural killer (NK) cells, dendritic cells 146 

(DC), and B lineage cells including B cells (Bc) and plasma cells (plasma) (Fig. 1B and Fig. S2A-B). 147 

Granulocytes, megakaryocytes, and non-hematopoietic cells (e.g. neurons, glia, ependymal cells) were 148 
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not represented in our clustering of CSF cells (Fig. 1B) as these cell types are not present in the CSF 149 

(23). Simultaneous flow cytometry of samples from all cohorts confirmed this unique composition of 150 

CSF leukocytes (Fig. S3A-C) in accordance with previous studies (23). Thus, single-cell 151 

transcriptomics reliably reconstructs the composition of primary human CSF cells. 152 

 153 

Single-cell transcriptomics identifies an MS-specific composition of CSF leukocytes 154 

 155 

Next, we analysed our dataset for disease-specific differences in CSF cell composition (Fig. 2A). 156 

Overall, inter-donor variability was high (Fig. S2B). Despite this variability, there were significant 157 

compositional differences between the MS and control cohorts (Methods). Binomial regression 158 

modelling of scRNA-seq cluster membership counts reflects a significant decrease in the proportion of 159 

non-classical monocytes relative to classical monocytes in MS (Wald test P < 10-8; Fig. 2B). A 160 

decreased ratio of non-classical / classical monocytes was confirmed by flow cytometry (t-test P < 0.01; 161 

Fig. S3B). The absolute abundance of non-classical monocytes is known to decrease in MS (33); in our 162 

small scRNA-seq study, high variability in absolute non-classical monocyte abundance across the 8 163 

donors suffices to explain apparent sampling differences between disease conditions (P > 0.01, 164 

empirical Bayes moderated t-test). Despite high inter-donor variability, we found statistically 165 

significant expansions of NK cells, B cells, and class-switched late lineage B cells (i.e. plasma cells) in 166 

MS (P < 0.01 empirical Bayes moderated t-test; Fig. 2A-C) that was confirmed by flow cytometry (t-167 

test P < 0.01; Fig. S3B) and was in accordance with previous studies (33, 34). Of note, plasma cells 168 

were detected in samples of all 4 MS patients but were virtually absent from control-derived CSF 169 

samples (Fig. 2A and Fig. S2B). 170 

The expansion of B lineage cells was a uniquely MS-specific feature (Fig. S4C) and we therefore 171 

examined these clusters in greater detail. In the B cell cluster, IGHD (marker of naïve B cells) and 172 

IGHM genes were dominantly expressed in 5% and 34% of B cells, respectively (Fig. S4A,D). The 173 

expression of heavy chain genes was dominated by IGHG genes in the plasma cell cluster (83%; Fig. 174 

S4B,D) while fewer cells expressed IGHA genes (encoding IgA chains). This verifies that the vast 175 

majority of plasma cells in the CSF are class-switched. In both B cells and plasma cells the ratio between 176 
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dominant κ-light chain (encoded by IGKC) expression and dominant λ-light chain (encoded by IGLC 177 

genes) expression was approximately 2:1 – a physiological surface expression ratio for blood B cells 178 

(Fig. S4D). In accordance with previous studies (14, 27, 28, 35), our findings suggest that local B cell 179 

maturation, including both class-switching and proliferation, occur within the CSF compartment in MS. 180 

Our comprehensive profiling of CSF cells in MS had identified changes in the relative abundances of 181 

B lineage cells, NK cells, and in monocyte subsets. We speculated that a combination of these 182 

parameters – rather than one single parameter – could aid diagnosing MS if quantifiable with flow 183 

cytometry. We therefore used the combined flow cytometry data as a baseline for calculating a 184 

composite score that was higher in MS-derived than control CSF samples (Fig. S5). This score 185 

discriminated MS from control with good sensitivity and specificity in this preliminary cohort. This 186 

indicates that single-cell transcriptomics of CSF cells can propose novel diagnostic schemes. 187 

 188 

Characterizing the distribution of CD4+ T cell states 189 

 190 

We next aimed to dissect the composition of the tentatively merged CD4+ T cells in our data. We 191 

extracted all cells assigned to the CD4+ T cell (CD4_Tc) cluster, performed secondary normalization 192 

and clustering, and thereby identified eight sub-clusters (Fig. 2D,E). Two of these were identified as 193 

remaining CD8+ T cells (r-CD8) and remaining monocytes (r-mono) based on transcriptional markers 194 

and were removed from further analysis. A transcriptionally distinct (Fig. 2F and Table S4) cluster of 195 

FOXP3 expressing (i.e. most likely regulatory) T cells (Treg) was more abundant in two and especially 196 

abundant in one, albeit not all MS donors (Fig. S2C). Clinical and MRI disease features were not 197 

different in these two MS patients (data not shown) supporting sub-clinical MS heterogeneity. Based 198 

on mean expression and statistically significant one vs. all differential expression of known marker 199 

genes (Fig. 2F and Table S4) and cluster specific GSEA (Table S5), two of the remaining clusters were 200 

transcriptionally best described as naïve (up-regulation of SELL (CD62L), CCR7 (CD197), and CD27, 201 

FDR < 0.05; n_CD4: SELLhiCCR7hiCD44loCD69lo and CD27hi) and as proliferating or differentiating 202 

CD4+ T cells (up-regulation of SELL, CCR7, FDR < 0.05; prol_CD4: SELLhiCCR7hiCD44loCD69lo and 203 

CD27lo). The latter cluster expressed ribosomal genes (e.g. RPS8, RPS6) and nucleus forming 204 
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transcripts. Abundance of such proliferating T helper cells was increased in MS-derived samples (Fig. 205 

2G) potentially indicating local expansion of CD4+ T cells in the CSF in MS. Three of the remaining 206 

clusters exhibited a memory-like phenotype (SELLint/loCCR7int/lo) and were transcriptionally best 207 

described as central memory (up-regulation of CD69, FDR < 0.05; cm_CD4: CD69hiCD44hi and 208 

CD27hi), as early effector memory (up-regulation of IL7R and CD69, FDR < 0.05; eem_CD4: 209 

CD69hiCD44hi and CD28hi), and as late effector memory (up-regulation of IL7R, FDR < 0.05; 210 

lem_CD4: CD69intCD44hi and CD28lo) CD4+ T cells. These clusters showed no significant disease-211 

specific expansion or contraction, after accounting for donor variability. Flow cytometry detected no 212 

significant differences in the proportion of total CD4+ vs. CD8+ T cells in MS (Fig. 2H) indicating that 213 

changes to T cells in MS are subtle, occurring at the subset level. 214 

While the division of the CD4+ T cells into sub-clusters was informative in this context, we found that 215 

the resulting clusters are not very well distinguished from one another (Table S4) and that CD4+ T cells 216 

transcriptionally instead form a continuum of cell states, in accordance with previous scRNA-seq 217 

studies (30, 36). Indeed, independent of our clustering analysis, we explored how transcriptional 218 

signatures vary across the entire CD4+ T cell population, using VISION (an updated R version of 219 

FastProject (37) https://github.com/YosefLab/VISION). This analysis highlighted a continuum of 220 

transcriptional CD4+ T cell states that span multiple sub-clusters in terms of T cell activation and 221 

memory (Fig. S6A,B), thereby providing a view of the data complementary to our analysis above. 222 

Analysis of MS-related transcriptional changes of CD4+ T cells may therefore benefit from techniques 223 

that do not depend on data-driven partitions, e.g., clusters. These insights motivated our development 224 

of CSEA below (see also Fig. S7,8). 225 

 226 

Single-cell transcriptomics can help interpreting MS genetics, transcriptomics and diagnosis 227 

 228 

We aimed to systematically compare our transcriptome characterization of CSF cells against available 229 

data-sets. A single study had previously reported expression profiling of CSF cells in relapsing-230 

remitting MS, albeit not at single-cell level (19). This approach identified signs of local B cell 231 

expansion, but offered limited additional insight because unsorted cells were profiled. We therefore 232 
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used our scRNA-seq data to systematically infer the cellular composition of these unsorted CSF cells 233 

in MS patients in relapse and remission (n = 26 per group) using a deconvolution algorithm (38). 234 

Deconvolution was unable to reliably discern NK cells and most CD4+ T cell subsets (Table S10), most 235 

likely due to the high transcriptional similarity between subsets. However, it was able to infer an 236 

increased abundance of cells resembling plasma cells and Tregs as well as decrease of non-classical 237 

monocytes in the CSF of MS patients (Fig. 3A).  These results therefore support some of our findings 238 

in this independent cohort of MS patients. Furthermore, this demonstrates that tissue-specific scRNA-239 

seq can help interpret available bulk-level patient-derived data-sets. 240 

The immune cell type(s) causing or promoting MS remain subject of debate. Results from genome-241 

wide association studies have often been interpreted to reflect T cell-dependent mechanisms driving 242 

MS (39). We therefore systematically evaluated ~170 known genes associated with genetic MS risk 243 

loci (40) against their respective expression levels in the CSF cell clusters we had identified (Fig. 1). 244 

We found that a minority (17%) of MS risk genes were expressed in multiple clusters (e.g. CD58, CD28, 245 

TYK2) (Fig. 3B). Most MS risk genes were instead preferentially expressed in one or two clusters. Such 246 

genes with a ‘cluster-enriched’ pattern were mainly expressed in B cell and plasma cell clusters (19% 247 

of genes, e.g. CD40, CXCR5, BACH2), in NK cells (11% of genes, e.g. MAPK1, TCF7, JAK1), in pDCs 248 

(9%, e.g. IKZF1, IRF8), and in monocyte and mDCs (22%, e.g. CD86, IFNGR2). Notably, in CSF cells 249 

only 3% of MS risk genes showed highest expression in the CD4+ T cell cluster (e.g. FOXP1, SOCS1, 250 

IL7R) and 14% showed enrichment in CD8+ T cells (e.g. BATF, ETS1, IZKF3) (Fig. 3B). Although 251 

highest expression cannot be equated with highest functional relevance, our data suggest that multiple 252 

immune cell lineages in the CSF can be affected by genetic MS risk. This argues for a multi-lineage 253 

immune etiology of MS – potentially through the interaction of B lineage cells with other cell types. 254 

 255 

Identifying and interpreting cluster-specific transcriptional changes in MS 256 

 257 

After exploring the overall changes in the cellular composition of the CSF in MS, we next focused on each 258 

cell cluster individually, testing genes for up-regulation (FDR < 0.05) in MS (Table S4). The complete 259 

CD4+ T cell (CD4_Tc) cluster as well as both CD8+ T cell clusters exhibited an increased expression of 260 
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MHC class I genes (i.e. HLA-A, HLA-C, B2M) and of IL32 in MS patients indicating increased activation 261 

(23). In accordance, GSEA (41) showed enrichment of pathways associated with protein synthesis (e.g. 262 

peptide chain elongation; P < 0.01) and thus cellular activation in CD4+ T cells and naïve CD8+ in MS 263 

(Table S6). The CD8+ T cell clusters showed higher expression of genes associated with activation and 264 

cytotoxicity (GZMK, GZMA, PRF1 encoding perforin 1) and GSEA identified antigen presentation 265 

pathways in activated CD8+ T cells (P < 0.01, Table S6). Overall, this suggests higher activation and 266 

cytolytic capacity of cytotoxic CSF cells in MS. Both classical and non-classical monocytes featured higher 267 

expression of genes associated with antigen presentation (e.g. CD74, HLA-DRB1) and with migration (e.g. 268 

ITGB2 encoding integrin-β2). The non-classical monocyte cluster also showed signs of increased secretory 269 

activity (e.g. induction of GRN encoding granulin) and GSEA found antigen presentation and interferon 270 

signaling pathways enriched in this cluster (P < 0.01, Table S6). The mDC cluster showed an increased 271 

expression of MHC class II (i.e. HLA-DRA) and MHC class I genes (e.g. HLA-A) and induction of CD1E. 272 

This indicates a propensity for lipid antigen presentation. GSEA identified lymphocyte costimulation 273 

pathways in this cluster (P < 0.01, Table S6). We did not observe statistically significant disease-specific 274 

transcriptional changes in the NK, pDC, and Bc clusters. This may – at least in part – be due to low cell 275 

numbers in these clusters. Because plasma cells were virtually undetected in control patients estimation of 276 

differential expression effect was prohibited. In conclusion, our analysis of transcriptional changes 277 

individually in each cell cluster reflects an ongoing immune cell activation in the CSF in MS. 278 

 279 

Cell set enrichment analysis helps identifying disease-specific transcriptional changes 280 

 281 

Our approach above used conventional single-cell analysis steps: 1) identifying cell clusters, 2) 282 

obtaining differentially expressed (DE) genes between disease-states for every cluster, 3) using GSEA 283 

to test for over-representation of known gene-sets and ascribe biological meaning. We speculated that 284 

this approach would be particularly insensitive to gene signatures or cell states that are poorly 285 

represented by tight clustering – as observed in CD4+ T cell subsets. For example, a certain functional 286 

property may be specific to MS but only be present in a small subset of cells within a cluster; these 287 

patterns could be easily missed in a cluster-wide MS vs. control comparison. We therefore developed a 288 
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novel procedure – cell set enrichment analysis (CSEA) – which reutilizes the GSEA test for working 289 

on ranked lists of cells rather than genes (Methods, Fig. S7). In this procedure, cells in a cluster are first 290 

ordered by a transcriptional phenotype of interest (e.g., summed expression of genes in a pathway). The 291 

statistical test can then detect cases in which a subset of cells from one group (e.g., MS) exhibit 292 

unusually high or low values of that transcriptional phenotype compared to cells from the second group 293 

(e.g., control). We refer to these exceptional groups of cells as core cell sets. 294 

We used this technique for a more comprehensive and clustering-free exploration of disease-specific 295 

transcriptional changes in the CD4+ T cell compartment. As a source for transcriptional phenotype, we 296 

used signature scores from the VISION pipeline (Fig. S7). VISION signature scores are calculated by 297 

summing the expression of specific sets of genes, which can reflect a dichotomy between conditions of 298 

interest (e.g., naïve vs. memory T cell state) or a certain cellular function (e.g., signaling through 299 

interleukin (IL)-2; see Methods). The gene signatures were obtained from databases such as MSigDB 300 

and NetPath (42, 43) and are based on literature curation and on mining of large numbers of published 301 

microarray and RNA-seq studies (Methods). 302 

Our CSEA testing procedure returned lists of core cell sets driving statistically significant signature 303 

enrichments in MS (P < 0.01, Bonferroni adjusted, Table S7). We identified core MS cell sets (Methods) 304 

driving enrichments for both an exhausted-versus-naïve CD4 signature (44) and a memory T cell 305 

signature (45) (Fig. S8), both exhibiting considerable overlap with the memory sub-clusters in Figure 306 

2D. Importantly, the memory cell clusters exhibited no significant MS-specific differential abundance 307 

in our standard analysis above, but CSEA highlights a subset of these cells with pronounced memory 308 

or exhausted phenotypes that are particularly abundant in MS CSF. This argues for persistent T cell 309 

activation in the CSF in MS. We further identified several other MS core cell sets with exceptionally 310 

high expression of transcriptional signatures of T helper cell (Th)1 (46), induced (i)Treg (47), and T 311 

follicular helper (TFH) cells (48, 49). Importantly, the cells in each of these three core sets do not 312 

significantly cluster in a transcriptome- wide analysis (VISION consistency testing P-value > 0.1), 313 

suggesting that cluster-based analyses are not well suited for capturing this layer of cell phenotype; e.g., 314 

cells expressing a Th1-polarized transcriptome are spread across both naive and memory clusters. Our 315 
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novel analytical approach can therefore decouple clustering of cells from disease-state enrichment of 316 

cells, providing a new framework for interpreting complex scRNA-seq datasets. 317 

Overall, these CSEA results emphasize an expansion of CD4+ T cells with a Treg, Th1, and TFH 318 

phenotype in MS. The Th1 result could indicate a greater role for Th1 versus Th17 in MS disease in the 319 

CSF. Interestingly, TFH cells are known to drive B cell maturation. This lead us to hypothesize that an 320 

increase in TFH abundance is responsible for the differences we observed in the B cell compartment of 321 

the CSF. 322 

 323 

Expansion of B cell-helping T follicular helper cells in the CSF in MS patients 324 

 325 

Our unbiased approach had identified MS-specific changes in the CSF: 1) increased numbers of class-326 

switched B cells, 2) induction of transcriptional indicators of B cell maturation within B cell clusters, 327 

and 3) enrichment of signatures of B cell-helping (50) TFH cells in CSEA. We therefore next tested 328 

whether TFH cells are in fact altered in the CSF in MS. Increased numbers of circulating TFH cells had 329 

previously been described in the blood of MS patients (51, 52). We found the proportion of 330 

CD3+CD4+CXCR5+ TFH cells (Fig. 4A) significantly increased in the CSF of MS patients (Fig. 4B and 331 

Table S4). The proportion of activated TFH cells expressing PD-1 and ICOS was also increased in MS 332 

(Fig. 4B) while the alternative CD4+CXCR5-PD-1+ subset (53) was unchanged (data not shown) 333 

suggesting that these are bona fide TFH cells. The abundance of activated TFH cells positively 334 

correlated with the proportion of CSF plasma cells (Fig. 4C) suggesting that both subsets may be 335 

functionally related in the CSF. 336 

Next, we characterized CSF-resident TFH cells in greater detail by performing bulk RNA-sequencing 337 

(Methods) of TFH cells sorted from the CSF of new cohorts of MS patients and controls. MS-specific 338 

transcriptional changes were comparably subtle and no individual genes reached gene-level significance 339 

for differential expression (Table S8). This indicates that numerical differences in TFH cell abundance 340 

are more pronounced than transcriptional changes of TFH cell phenotype. To investigate this further, 341 

we performed GSEA and found an enrichment of gene sets associated with T helper cell memory and 342 

pathogenicity in MS-derived TFH cells (P < 0.01, Bonferroni correction; Table S9). Genes often 343 
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recurring in these enriched gene sets (Fig. S9) were associated with cytotoxicity and cell death (e.g. 344 

GZMA, GZMK, CASP3, CASP4) and with co-inhibitory function (e.g. KLRG1, TIGIT, CTLA4). In 345 

accordance with our CSEA results, this suggests that pathogenic TFH cells expand in the CSF in MS 346 

patients. TFH cells are essential for the maturation of plasma cells and memory B cells. TFH expansion 347 

may thus contribute to the local interaction between T and B cells and thus potentially drive the disease. 348 

 349 

TFH cells promote B cell accumulation in the CNS in an animal model of MS 350 

 351 

As a test to this hypothesis, we next evaluated the in vivo functional relevance of TFH cells using a 352 

common animal model of MS. We generated mice with deficiency of Bcl6 – the lineage-defining 353 

transcription factor of TFH cells (50) – restricted specifically to T cells. Such CD4CreBcl6fl/fl mice lack 354 

TFH cells and fail to mount antigen-specific B cell responses, while differentiation of other T helper 355 

cell lineages is unaffected (54) (Fig. S10). The course of EAE – an animal model of MS – has not been 356 

investigated in these mice before. We therefore induced EAE using myelin oligodendrocyte 357 

glycoprotein (MOG)35-55 peptide. EAE severity was significantly reduced in CD4CreBcl6fl/fl mice 358 

compared to Cre-negative littermates (Fig. 5A). Accordingly, the number of inflammatory lesions and 359 

infiltrated area in the spinal cord of CD4CreBcl6fl/fl mice was lower than in controls (Fig. 5B,C). When 360 

we extracted leukocytes infiltrating the CNS at the peak of EAE we found that the proportion of pro-361 

inflammatory IL-17 producing CD4+ T cells was reduced in CD4CreBcl6fl/fl mice indicating a lower 362 

degree of CNS tissue destruction and inflammation in the absence of TFH cells (Fig. 5D). Next, we 363 

tested how the absence of TFH cells influenced B cells in the CNS and found a lower proportion of 364 

total B cells (B220+CD3-) infiltrating the CNS in CD4CreBcl6fl/fl mice by flow cytometry (Fig. 5E). We 365 

also histologically stained for B cells in the CNS and again found a lower number of intraparenchymal 366 

B cells in the spinal cord of CD4CreBcl6fl/fl mice with EAE compared to Cre-negative littermates (Fig. 367 

5F). Taken together our data indicate that TFH cells enhance MS-like autoimmunity by locally 368 

supporting the expansion of B cells in the CNS. 369 

  370 
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Discussion 371 

 372 

In this study we applied single-cell transcriptomics to rare and clinically relevant CSF specimen from 373 

MS patients and controls. We thereby create the first comprehensive map of the cellular composition 374 

and transcriptional phenotype of CSF cells. In analysing our data, we observed that – transcriptionally 375 

– CD4+ T cells are best described as a continuum of cell states rather than clearly defined subsets or 376 

clusters (36). This observation together with considerable inter-donor heterogeneity necessitated 377 

development of CSEA that facilitates extracting disease-specific mechanisms from complex scRNA-378 

seq data, by focusing (in a data- driven way) on the most relevant subsets of cells. Beyond the specific 379 

application in this paper, we therefore expect that methods such as CSEA will be essential for 380 

conducting future single-cell transcriptomics studies with a case vs. control design. 381 

 382 

Pooling CSEA together with other components of our analysis, we identified a potential multi-lineage 383 

immune aetiology of MS with an expansion of matured B lineage cells, NK cells, and proliferating T 384 

helper cell subsets in the CSF. Transcriptionally, MS-derived cells featured an enrichment of Th1- and 385 

TFH-like signatures, which formed the basis for speculating that TFH cells play a role in MS. In fact, 386 

we found that TFH cells accumulate in the CSF in MS and correlate with plasma cell numbers in 387 

accordance with a previous study (55). We also found that TFH cells promote disease severity and local 388 

B cell expansion in an animal model of MS. In conjunction with a previous study (56), our data provide 389 

strong in vivo evidence that a pathological interaction between TFH cells and B cells drives CNS 390 

inflammation. This sequential approach exemplifies how single-cell transcriptomics can be translated 391 

to the bedside and reverse validated in corresponding animal models. By translating technology, we 392 

here identify a new cellular mechanism, locally driving CNS autoimmunity and disability in MS. 393 

 394 

Previous studies have shown that B cell clones at least partially expand in the CSF in MS (27, 57) while 395 

migration from the periphery also occurs (14, 35). An importance of B cells in MS was previously 396 

suggested by the presence of oligoclonal immunoglobulins, by the expansion of plasmablasts in the 397 

CSF (25, 58), and by the efficacy of B cell-depleting therapies in MS (15). However, strong in vivo data 398 
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confirming a functional link between TFH cells and B cells in neuro-inflammation was not previously 399 

reported. Notably, the gene encoding the TFH marker CXCR5 is a genetic risk locus for MS (59). 400 

Previous studies suggest that TFH cells and B cells in the CSF could be derived from meningeal sources. 401 

Chronic ongoing CNS inflammation induces ectopic lymphoid tissue (eLT) in the affected tissue in 402 

many autoimmune diseases and is thought to be the site of local auto-antibody production (60). In MS, 403 

eLT develops in the meninges (61, 62), contains B cells and TFH cells (56, 63), and is located in close 404 

vicinity of degenerating axons and neurons (60, 64–66). It remains to be tested experimentally, whether 405 

CSF and meningeal immune cells communicate and interact. 406 

 407 

Finding controls for CSF-based studies is difficult. The ideal controls would be healthy and matched 408 

for all confounders (67). However, lumbar punctures (LP) cannot be performed for solely scientific 409 

purposes in healthy volunteers. In addition, volunteers in clinical studies are usually males (68) while 410 

MS patients are predominantly female (13). We therefore intentionally used IIH controls, which are 411 

well matched for sex, age and comorbidities (Fig. S1A) and CSF from IIH patients was found normal 412 

in a previous study (26). Even in MS patients an LP is usually performed only once to exclude relevant 413 

differential diagnoses during the diagnostic work-up for a first relapse indicative of MS. We specifically 414 

recruited these untreated first-relapse patients for our study. Although this was not part of our formal 415 

inclusion criteria, we thereby enriched for patients currently in (first) relapse. The phenotype of CSF 416 

cells in remission may be different. We also intentionally limited our study to treatment-naïve patients 417 

since many MS treatments considerably impact peripheral or CSF leukocyte composition (69) or 418 

substantially alter the transcriptional profile of immune cells (70). Characterizing treatment effects was 419 

not the focus of the present study. In fact, our study forms a reference point for future CSF 420 

transcriptomics studies in MS patients in other disease stages (e.g. remission or progressive) or while 421 

receiving disease modifying treatments. 422 

 423 

Transcriptional studies in MS were initially performed in unsorted peripheral blood mononuclear cells, 424 

because these are easily accessible (71). Some studies focussed on defined cell populations like T cells 425 

(72), on gender-specific differences (73), or correlated transcriptional findings with genetic information 426 
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(74). More recent and larger-scale studies also included different MS treatments (75–77), or enriched 427 

for myelin antigen-specific T cells from the blood of MS patients (78). Although these previous studies 428 

have provided important insights into peripheral immune responses in MS, they all feature essential 429 

inherent short-comings: 1) peripheral blood cells constitute a poor surrogate of inflammation in the 430 

brain in MS, 2) transcriptional studies using mixed populations cannot distinguish changes in cell 431 

composition from changes in gene expression per cell, 3) previous enrichment techniques solely 432 

focussed on T cells (78) – a hypothesis driven approach. 433 

 434 

Our study provides the first unbiased and single-cell-resolution look at local immune processes in the 435 

CSF. On a wider perspective, our study demonstrates that scRNA-seq of human CSF cells can generate 436 

novel hypotheses about debilitating neurological diseases that can be validated using reverse-437 

translational tools. Our study thus forms the basis for a future application of the method in other 438 

neurological diseases such as Parkinson’s and Alzheimer’s disease. 439 

  440 
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Materials and Methods 441 

 442 

Patient recruiting and inclusion 443 

A total of 26 treatment-naive patients with MS or clinically isolated syndrome (CIS) receiving a lumbar 444 

puncture (LP) for diagnostic purposes, were prospectively recruited (Table S1). The control group 445 

consisted of 22 patients diagnosed with idiopathic intracranial hypertension (IIH) (Table S1). Patients 446 

were recruited in three consecutive cohorts. CSF cells from cohort 1 were used for unsorted single-cell 447 

RNA-seq (6 IIH vs. 6 MS patients). CSF cells from cohort 2 were analysed by flow cytometry only (7 448 

IIH vs. 11 MS patients), and cells from cohort 3 were flow sorted for RNA-seq of CD3+CD4+CXCR5+ 449 

TFH cells (9 IIH vs. 9 MS patients) (Table S1 and Fig. S1). All patients were of Caucasian ethnicity 450 

and gave written informed consent. The study was performed in accordance with the declaration of 451 

Helsinki and approved by the local ethics committees under reference number 2015-522-f-S.  452 

For MS patients, formal inclusion criteria were defined as: 1) treatment naive patients with a first 453 

episode suggestive of MS (i.e. clinically isolated syndrome (CIS)) or with relapsing-remitting (RR)MS 454 

diagnosed based on MAGNIMS criteria (79, 80), 2) patients receiving LP for diagnostic purposes and 455 

consenting to participate. Exclusion criteria for MS patients were defined as: 1) questionable diagnosis 456 

of MS by clinical signs or magnetic resonance imaging (MRI) findings, 2) secondary chronic 457 

progressive MS or primary progressive MS. IIH patients were included, if they gave informed consent. 458 

Exclusion criteria for all patients were: 1) immunologically relevant co-morbidities (e.g. rheumatologic 459 

diseases), 2) severe concomitant infectious diseases (e.g. HIV, meningitis, encephalitis), 3) pregnancy 460 

or breastfeeding, 4) younger than 18 years, 5) mental illness impairing the ability to give informed 461 

consent, 6) artificial blood contamination during the lumbar puncture resulting in >200 red blood cells 462 

/ μl. patients whose diagnostic work-up revealed a diagnosis other than MS / IIH within four weeks of 463 

clinical follow-up were retrospectively excluded (Fig. S1C). The following diagnostic tests were 464 

performed in all MS patients to exclude differential diagnoses: PCR for cytomegaly virus, Ebstein-Barr 465 

virus, Human Herpes Virus-6, Herpes simplex Virus (HSV)-1, HSV-2 and Varicella-Zoster Virus in 466 

CSF. Blood tests for anti-HAV IgM, HBsAg, anti-HBc, anti-HCV, rheuma factor, Waaler-Rose Test, 467 

anti-cyclic citrullinated peptide (CCP), antinuclear antibody (ANA), anti-double strand (ds)DNA 468 
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antibodies, antineutrophil cytoplasmic antibodies (ANCA). CSF and serum were tested by the 469 

Treponema pallidum hemagglutination assay (TPHA). Borrelia burgdorferi was detected in CSF and 470 

blood by ELISA. R version 3.4.4 and RStudio 1.1.447 were used for the analysis of clinical and human 471 

flow cytometry data. 472 

 473 

Sampling and flow cytometry analysis of cerebrospinal fluid cells 474 

LPs were performed under sterile conditions using 20G Sprotte Canulae (Pajunk Medical). Up to 5 ml 475 

of CSF and 3 ml of blood were collected for scientific purposes in addition to diagnostic material. All 476 

samples were pseudonymised at collection. CSF was transported to further processing as quickly as 477 

possible and centrifuged at 300g for 10 min. The supernatant was removed and CSF cells were 478 

resuspended in 5 ml of X-Vivo15 media (Lonza) and stored at 4°C until further processing. CSF flow 479 

cytometry was performed in all donors using a Navious flow cytometer (Beckman Coulter). Cells were 480 

incubated in VersaLyse buffer and stained using the following anti-human antibodies (Beckman 481 

Coulter; clone names indicated): CD3 (UCHT1); CD4 (13B8.2); CD8 (B9.11); CD14 (RMO52); CD16 482 

(3G8); CD19 (J3-119); CD45 (J.33); CD56 (C218); CD138 (B-A38). 483 

For scRNA-seq, CSF cells in media were centrifuged at 400 g for 5 min and resuspended in 40 µl of X-484 

Vivo15 media. 5 µl of the single-cell suspension was manually counted in a Fuchs-Rosenthal chamber. 485 

The maximum of CSF cells used for input was 10,000 cells. If total available CSF cell numbers were 486 

lower than 10,000 cells, all available cells were processed. On average 5,917 cells ± 1,505 SD (control 487 

6,167 cells ± 2,614 SD vs. MS 5,667 cells ± 1,506 SD) CSF cells were used as input per donor. 488 

A summed composite score differentiating flow cytometry results of MS form control patients was 489 

calculated. First, for each sample analysed by flow cytometry four ratios were calculated: 1) proportion 490 

of NK to CD4+ T cells, 2) Bc to CD4+ T cells, 3) CD8+ to CD4+ T cells, and 4) CD14+CD16- to 491 

CD14+CD16+ monocytes. Each resulting group average was normalized to a value of 1 by dividing 492 

individual values by the group average. These four normalized ratios were added to obtain a basic 493 

composite score. A value of 1 was added to the basic composite in each case that an elevated 494 

immunoglobulin index or oligoclonal bands were detected in the samples; i.e. a maximum of 2 was 495 

added to the basic score. This extended composite score was named ‘Münster MS composite’ score. 496 
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Receiver operator curve (ROC) analysis of the composites was performed and the area under the curve 497 

(AUC) was calculated using the Glm and rocplot functions of the Deducer package v0.7-9 in R. 498 

 499 

Generation of single-cell libraries and sequencing 500 

Single-cell suspensions were loaded onto the Chromium Single Cell Controller using the Chromium 501 

Single Cell 3' Library & Gel Bead Kit v2 (both from 10X Genomics) chemistry following the 502 

manufacturer’s instructions. Sample processing and library preparation was performed according to 503 

manufacturer instructions using AMPure beads (Beckman Coulter). Sequencing was carried out on a 504 

local Illumina Nextseq 500 using the High-Out 75 cycle kit with a 26-8-0-57 read setup. Average 505 

sequencing depth was 51,064 ± 13,041 SEM reads/cell (Table S3). 506 

 507 

Preprocessing of sequencing data 508 

The analysis pipeline for scRNA-seq data is illustrated in Fig. S11. Processing of sequencing data was 509 

performed with the cellranger pipeline v2.0.2 (10X Genomics) according to the manufacturer’s 510 

instructions. Raw bcl files were de-multiplexed using the cellranger mkfastq pipeline. Subsequent read 511 

alignments and transcript counting was done individually for each sample using the cellranger count 512 

pipeline with standard parameters. The cellranger aggr pipeline was employed, to ensure that all 513 

samples had the same number of confidently mapped reads per cell. The cellranger computations were 514 

carried out at the High Performance Computing Facility of the Westfälische Wilhems-University 515 

(WWU) Münster. The pre-quality control (QC) total number of cells with available scRNA-seq profiles 516 

was 22,357 with an average of 3,176.3 ± 3,246.2 SD individual cells available per control donor and 517 

2,413.0 ± 1,198.7 SD individual cells available per MS donor (Table S3). This corresponds to an 518 

average cell recovery rate of 48.8% ± 27.5% SD compared to input cells (control 46.1% ± 33.1% vs 519 

MS 51.6% ± 32.0%)  520 

 521 

Single-Cell Sample Filtering 522 

Initial exploratory data analysis identified one MS sample and one IIH sample whose clustering did not 523 

overlap with other samples (data not shown). This tight clustering suggested either strong batch effects 524 
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or significant contamination. Both samples were excluded from further analysis, leaving 5 control- and 525 

5 MS-derived samples. 526 

Nine barcode-level quality control (QC) metrics were computed for the unfiltered 10x Cell Ranger 527 

output: (1) number of unique molecular identifiers (UMIs), (2) number of reads, (3) mean reads per 528 

UMI, (4) standard deviation of reads per UMI, (5) percent of reads confidently mapped to the gene, (6) 529 

percent of reads mapped to the genome but not a gene, (7) percent of reads unmapped, (8) percent of 530 

UMIs corrected by the Cell Ranger pipeline, and (9) the number of cell barcodes corrected by the Cell 531 

Ranger pipeline. These metrics were used for filtering and normalization. We applied the gene and 532 

sample filtering using a scheme previously described (81). This involved four steps: 533 

1. Define common genes based on UMI counts: Genes with nu or more UMIs in at least 25% of 534 

barcodes, where nu is the upper-quartile of the non-zero elements of the UMI matrix. 535 

2. Filter samples based on QC metrics. Remove samples with low numbers of reads, low 536 

proportions of mapped reads, or low numbers of detected common genes. The threshold for 537 

each measure is defined data-adaptively: A sample may fail any criterion if the associated 538 

metric under-performs by zcut standard deviations from the mean metric value or by zcut median 539 

absolute deviations from the median metric value. Here we have used zcut = 2. This function is 540 

implemented in scone::metric_sample_filter (see below). 541 

3. Remove barcodes from donors with fewer than 100 barcodes following sample filtering. These 542 

donors have contributed too few high-quality samples to reliably estimate donor-specific 543 

effects. Only seven cells were removed in this step. 544 

4. Filter genes based on UMI counts: Genes with nu or more UMIs in at least ns barcodes, where 545 

nu is the upper-quartile of the non-zero elements of the sample-filtered UMI matrix. We have 546 

set ns = 5 to accommodate markers of rare populations. This sub-step ensures that included 547 

genes are detected in a sufficient number of samples after sample filtering. For the CD4+-only 548 

analysis this step was applied again after the data matrix was subset to include only CD4+ 549 

clusters. 550 

 551 

 552 
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Single-Cell Normalization 553 

We utilized the SCONE package (81) to select an appropriate normalization based on a standardized 554 

panel of performance criteria. Clustering and Correlation evaluations were based on principal 555 

component analysis (PCA)-based dimensionality reduction to ten principal components.  556 

Scaling normalization: We included a number of scaling methods with wrappers implemented in the 557 

SCONE package, including: no normalization, total count normalization, trimmed mean of M-values 558 

normalization method (TMM) normalization, upper quartile normalization, full quantile normalization, 559 

and the relative log expression normalization. 560 

Categorical covariates: We considered normalization procedures that include a linear regression-based 561 

batch adjustment for log-transformed expression data. For our purposes we considered the donor ID as 562 

a batch covariate. Normalized matrices were scored for batch mixing using the SCONE batch silhouette 563 

score. We also monitored the silhouette score of MS vs. control status, although we never explicitly 564 

included this categorical biological covariate as part of the adjustment model. The stratified Partitioning 565 

Around Medoids (PAM) argument was applied to the evaluation of de novo PAM clusters, considering 566 

a range of K from 2 to 8. 567 

Control genes: Positive controls were selected from the top 500 most common gene symbols referenced 568 

in the Molecular Signatures Database (MSigDB) C7 collection of immunological signatures (42). 569 

Negative controls were selected from a previous study (82). In order to match sets for mean expression, 570 

genes were binned according to the rounded mean log2 expression (adding 1 to each observation). Genes 571 

for the positive control set, and two negative control gene sets (adjustment and evaluation) were drawn 572 

in equal numbers (maximum) from each expression bin, for a total of 207 genes each. For the CD4+-573 

only analysis the lists were slightly smaller at 196 genes each. 574 

Unwanted variation: We performed adjustment based on principal components (PC) of the QC (named 575 

qPC). Such qPC-based adjustment involved regression on PCs of the QC metrics discussed above. We 576 

also performed the remove unwanted variation (RUV) normalization strategy (83). Both RUVg and 577 

qPC adjustments considered by SCONE were performed over a range of 0 to 8 factors.  578 

Selected normalizations: The top performing normalizations for both the full analysis and CD4+-only 579 

analysis both involve relative log expression scaling, qPC-based adjustment, and batch adjustment. For 580 
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the full analysis this normalization included all eight qPCs, whereas the T cell analysis included only 581 

four. 582 

 583 

Seurat Analysis 584 

After sample filtering, we loaded the normalized log-transformed UMI matrix into the Seurat analysis 585 

pipeline (84). Following data scaling and PCA, we clustered the cells in the first ten principal 586 

components using the Seurat::FindClusters function. Clustering resolution was set to 0.6. Identical 587 

options were used for the CD4+-only Seurat analysis (see below), defining subclusters of those cells. 588 

We manually annotated clusters based on marker gene expression and enrichment analyses described 589 

below. t-distributed stochastic neighbour embedding (t-SNE) data representations were computed using 590 

the fast option in Seurat::RunTSNE. 591 

 592 

VISION Analysis 593 

We passed raw and normalized UMI data to the VISION pipeline 594 

(https://github.com/YosefLab/VISION) (37). Mean expression per gene symbol was calculated prior to 595 

the analysis in order to make the features relatable to general gene signatures. The goal of FastProject 596 

analysis – on which VISION is based – is to uncover biologically meaningful gene signatures that vary 597 

coherently across single-cell neighbourhoods (37). These signatures can help assign meaning to the 598 

dominant expression differences between clusters. In addition to raw data, we passed QC, donor, status, 599 

and Seurat cluster covariates for exploratory analysis and visualization. VISION quantifies the extent 600 

to which cell signature values cluster across the cell manifold by using “consistency testing.” VISION 601 

scores the extent to which neighbouring cells (similar expression profiled) are predictive of a cell’s 602 

signature value using autocorrelation (Giri’s C) statistics, comparing against random permutations in 603 

order to assign statistical significance with respect to a uniform null model. We also included the Seurat 604 

t-SNE as a precomputed projection. Our signature set includes: 605 

1. Human cell cycle genes described before (2), representing sets of genes marking G1/S, S, 606 

G2/M, M, and M/G1 phases. 607 

2. The MSigDB C7 immunological signature collection (42). 608 
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3. TH signatures compiled previously (46). 609 

4. NetPath database signatures (43). 610 

5. Curated T cell signatures (36). 611 

6. Curated TFH (48, 49) signature sets. 612 

Housekeeping genes were referenced from the same source as the SCONE negative controls above (82). 613 

 614 

Comparing gene expression and cluster composition between MS patients versus controls 615 

 616 

Differential Composition Analysis 617 

For both the initial and the CD4+-only clustering, we used limma::voom (85) to test the difference in 618 

cluster abundances (cell counts) between MS donors and control donors. 619 

Binomial regression modelling was applied to compare the relative sampling of classical and non-620 

classical monocytes in monocyte fraction of MS and control CSF samples. The classical fraction of 621 

monocytes increased significantly from 17% in control donors to 32% in MS donors (Wald test P < 10-622 

8). 623 

Cluster-specific expression analysis 624 

We performed one versus all comparisons following each clustering analysis in order to annotate the 625 

clusters. One versus all differential expression (DE) tests P-values were used to rank genes by the extent 626 

they are up-regulated in one cluster over all others. Tests were performed separately for each donor 627 

sample with at least 10 cells in the target cluster. qPC factors used for normalization above were 628 

incorporated into a linear predictor for limma-voom DE testing. Results for each donor sample were 629 

combined in multiple ways, calculating median log fold changes, meta-analysis P-values for one-sided 630 

tests using Stouffer's method, and irreproducible discovery rates (IDR) (86) for two-sided tests using 631 

the est.IDRm tool in the scRAD package (87) for all genes and comparisons (Table S4). Examples of 632 

reproducible marker RNAs (FDR < 0.05, IDR < 0.05, and median FC > 2-fold) for the initial clustering 633 

can be found below: 634 

 635 
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Cluster (ID) Marker RNA Gene Symbol 

B cell (Bc) CD79A, MS4A1 

Plasma cell (plasma) CD79A, XBP1 

CD4+ T cell (CD4_Tc) IL7R 

Naïve CD8+ T cell (nCD8_Tc) NKG7, CCL5 

Activated CD8+ T cell (aCD8_Tc) NKG7, CCL5, GZMK 

Natural killer cell (NK) NKG7, GNLY 

Plasmacytoid dendritic cell (pDC) CLEC4C 

Myeloid dendritic cell (mDC) LYZ, FCER1A, CD1C 

Classical monocyte (class_mono) LYZ, CD14, S100A9 

Non-classical monocyte (nc_mono) LYZ, CD14, FCGR3A, MS4A7 

 636 

After re-clustering the CD4+ T cell cluster (CD4_Tc), the marker criteria above identified contaminating 637 

populations with markers of non CD4+ T cell lineages. These cells were erroneously clustered together 638 

with CD4+ T cells in the initial clustering and we named them remaining CD8+ T cells (r-CD8) and 639 

remaining monocytes (r-mono). 640 

 641 

Tc Contaminant Cluster (ID) Marker RNA Gene Symbol 

Remaining CD8+ T cell (r-CD8) NKG7, CCL5 

Remaining monocytes (r-mono) LYZ, FCER1A, CD1C, CD14, FCGR3A, 

MS4A7 

 642 

Remaining CD4+ subclusters were annotated by joint considerations of i) significant (FDR < 0.05) and 643 

large log2 fold change greater than 0.1 and ii) Mean expression of known markers (Fig. 2F). 644 

Per cluster case-control comparison 645 

Cluster-specific gene expression differences between MS and control were also assessed. Donors were 646 

only included in a comparison if 10 or more cells from the target cluster were detected in the donor’s 647 
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sample. All pairings of MS donors with control donors were considered (up to 16). For each valid case-648 

control pair, DE analysis was performed using limma-voom, as in the marker analysis, but comparing 649 

case cells against control cells. Log fold change was summarized by the median of log fold changes 650 

estimated across the donor pairs. Meta-analysis was performed on all possible pairings of cases and 651 

controls (up to 4! = 24); the median meta-analysis P-value was reported. IDR modelling was applied at 652 

the pair level, modelling the reproducibility of up to 16 replicate significance signals (Table S4). Some 653 

genes are very lowly expressed across individual clusters, resulting in unstable statistical estimation for 654 

those genes. Genes were filtered before DE if they had mean un-normalized UMI counts below 0.05. 655 

 656 

Gene Set Enrichment Analysis (GSEA) 657 

After deriving lists of differentially expressed genes, we sought to uncover enrichment for particular 658 

gene sets to capture biological differences between samples. We applied GSEA tests (41) to all single-659 

cell differential expression tests returning cluster specific gene expression (i.e. genes expressed by one 660 

cluster vs. other clusters, Table S5) and disease specific gene expression (i.e. genes expressed within 661 

one cluster in MS cells vs. control cells, Table S6). We used signed significance scores based on meta-662 

analysis P-values as gene signals and applied the Bonferroni adjustment to control the FWER for each 663 

category of hypotheses (i.e. test type, cluster, and sign). Sets considered in this analysis include all 664 

MSigDB C7 signature sets and all curated T cell signature sets described previously (36) with 10 or 665 

more genes quantified in the present study; “UP” and “DN” signature subsets were tested separately. 666 

The initial description of GSEA recommend simulating a null distribution for the GSEA test statistic at 667 

the gene level (e.g. recomputing lfcs for shuffled sample labels) (41). This approach is computationally 668 

costly in our case; in this analysis we generated null distributions of the GSEA test statistic by shuffling 669 

gene set memberships, assigning empirical one-sided P-values based on simulation (https://CRAN.R-670 

project.org/package=gsEasy). 671 

 672 

Cell Set Enrichment Analysis (CSEA) 673 

For the CD4+-only analysis we considered a novel adaptation of the GSEA method, applying the 674 

technique to cell sets: CSEA (illustrated in Fig. S7). CSEA is a hypothesis testing method for 675 
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simultaneously uncovering enrichments and identifying subsets of cell sets of importance. In this 676 

procedure, a collection of cells is first ordered by a transcriptional phenotype of interest (e.g., sum 677 

expression of genes in a pathway). The resulting statistical test is sensitive to cases in which only a 678 

subset of cells from one group (e.g., MS) exhibit unusually high or low values of the transcriptional 679 

phenotype. The input to this method is a list of N cells, rank-ordered by some input signal. Our analysis 680 

uses VISION signature scores, reflecting known axes of biological variation. VISION signature scores 681 

– based on FastProject signature scores (37) – are computed by first centering and scaling each 682 

normalized log expression cell profile. Following scaling, the sum of gene expression values in the 683 

negative signature subset are subtracted from the sum of gene expression values in the positive signature 684 

subset. Signatures are normalized to the total number of genes in the set. For example, a signature set 685 

that describes a dichotomy between naïve and memory T cells may be used to score individual cells, 686 

indicating that some cells have higher expression of genes characterizing the naïve state and lower 687 

expression of genes characterizing the memory state. Using the notation previously described (41) we 688 

will use rj to denote the cell j's signature score; indices have been sorted so that rj > rj+1 (alternatively in 689 

increasing order: rj < rj+1). The test involves considering all cells up to a specific position, i. A “hit” 690 

score is defined as the cumulative sum of signature score magnitudes (optionally exponentiated by 691 

parameter p: |rj|p) for members of cell set S, divided by the sum over all set members in the list. A “miss” 692 

score is similarly calculated for non-members of S, but without weighing by signature score magnitudes. 693 

The CSEA enrichment score (ES) is defined as the maximum of the difference between the running hit 694 

score and running miss score with respect to index i. When p=0, the ES reduces to a one-sided KS test 695 

statistic for differential signature analysis between cell sets. We apply the same permutation scheme as 696 

described for GSEA above. For p>0, CSEA cannot be seen as a simple differential signature test: CSEA 697 

tests for enrichment of a cell set at the high tail (or low tail) of the signature score distribution, but 698 

additionally weighs the set elements according to their signature value. This reduces the effects of low-699 

magnitude cells in S, whereas all cells not in S are treated the same no matter the magnitude of their 700 

signature score. CSEA tests if high magnitude (positive or negative) cells are enriched at a specific tail, 701 

applying permutation tests to account for the additional variability induced by the magnitude weights. 702 

The set of indices up to where the objective score reaches its maximum also holds significance – in 703 
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GSEA (41) referred to as the “leading-edge” of the enrichment test. The intersection of the set S and 704 

the leading-edge is the leading-edge subset, representing an important core subset of cells driving an 705 

enrichment. For each VISION signature, we treated the computed signature scores as cell signature 706 

scores rj. The sets under consideration were the mutually exclusive sets of MS and control cells. The 707 

goal of this approach is to identify core sets of cells that drive each biological condition's enrichment 708 

for high or low signature values (Fig. S7). Contaminating sub-populations in the CD4_Tc cluster, were 709 

removed prior to CSEA. 710 

 711 

Bulk RNA-Seq of sorted TFH cells  712 

CSF TFH cells were sorted on a BD FACS AriaTM III cell sorter using FACS DivaTM software following 713 

manufacturer’s instructions using an 85 µm nozzle and the drop delay was determined using BD 714 

AccudropTM beads. Sorting was performed using sort precision mode “purity” for live 715 

CD3+CD4+CXCR5+ cells. Antibodies against PD-1 (EH12.2H7) and ICOS (C398.4A) were from 716 

Biolegend. Cells were sorted directly into 1,5 ml reaction tubes containing 100 µl RNA Lysis Buffer 717 

(Zymo Research). After sorting, tubes were vortexed, briefly centrifuged and frozen at -80 °C until 718 

RNA isolation. Data were analyzed using FlowJo software v10.4.1 (Tree Star, Inc.). Samples for bulk 719 

RNA-sequencing were prepared using a modified version of the SmartSeq2 protocol (88). Unquantified 720 

purified RNA was used as input. Reaction volumes were scaled up and the number of PCR cycles during 721 

cDNA amplification adjusted accounting for the higher number of input cells compared to the original 722 

protocol (88). Library Preparation was done by the Next UltraII FS DNA Library Prep Kit (New 723 

England Biolabs) using 1-3 ng of cDNA as input. Sequencing for 9 MS samples and 9 IIH samples was 724 

carried out on a NextSeq500 using the High-Out 75 cycle kit (Illumina). 725 

 726 

Bulk expression quantification 727 

RNA-seq reads were aligned to the RefSeq hg38 transcriptome (GRCh38.2) using Bowtie2 (89). The 728 

resulting transcriptome alignments were processed using the RNA-Seq by Expectation Maximization 729 

(RSEM) toolkit to estimate expected counts over RefSeq transcripts (90). Several genes were quantified 730 

multiple times due to alternative isoforms unrelated by RefSeq annotation. Before expression data 731 
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normalization, the gene entry with maximum counts was selected to represent the gene in further 732 

analysis. 733 

 734 

Bulk data filtering 735 

Sample and gene filtering were similar to the scRNA-seq filtering method above, enforcing (> 107k 736 

reads, > 10% read alignment (forced), > 93.3% common genes detected; corresponding to zcut = 20). A 737 

total of 5 samples were removed, leaving 13 samples. Setting ns = 1, we analysed 11,383 genes below. 738 

For each sample, we computed transcriptome alignment and quality metrics using FastQC (Babraham 739 

Bioinformatics), Picard tools (Broad Institute), and custom scripts. Computed metrics included: (1) 740 

number of reads; (2) number of aligned reads; (3) percentage of aligned reads; (4) number of duplicate 741 

reads; (5) primer sequence contamination; (6) average insert size; (7) variance of insert size; (8) 742 

sequence complexity; (9) percentage of unique reads; (10) ribosomal read fraction; (11) coding read 743 

fraction; (12) UTR read fraction; (13) intronic read fraction; (14) intergenic read fraction; (15) mRNA 744 

read fraction; (16) median coefficient of variation of coverage; (17) mean 5’ coverage bias; (18) mean 745 

3’ coverage bias; and (19) mean 5’ to 3’ coverage bias. 746 

 747 

Bulk data normalization, unsupervised, and supervised analysis 748 

Data were normalized using SCONE. 569 positive controls were derived from MSigDB C7 entries 749 

annotated to include TFH cell types, including the most frequently included gene symbols in those 750 

entries. Negative controls for RUVg and evaluation were derived from the housekeeping gene list. 751 

Control lists were sampled down to 186 genes per list so as to match mean expression of genes in each 752 

list. The study group included two batches with 4/3 and 3/3 MS/IIH samples respectively. Biological 753 

condition was used only for evaluation. SCONE recommended TMM scaling and adjustment for 2 754 

factors of RUVg and batch condition.  755 

We performed PCA on the scaled log-transformed normalized data for visualization. DE between MMS 756 

and IIH donors was performed with limma-voom, using RUVg factors and batch in the model to adjust 757 

for unwanted variation. Per-gene DE significance scores were computed from log-transformed P-values 758 

and used for GSEA enrichment testing. Sets considered for testing included numbers 3,5, and 6 759 
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described in the VISION section. The 42 most frequent core members of the significant enrichments 760 

(Bonferroni adjusted P-value less than 0.01) – genes driving 7 or more of these enrichments – were 761 

selected and their normalized log values were correlated against each-other and represented in a sorted 762 

heatmap using pheatmap defaults. 763 

 764 

Expression deconvolution using scRNA-seq data 765 

Raw UMI mean counts per cluster were used as input for deconvolution. Cibersort was used for RNA 766 

expression deconvolution (38) on the E-MTAB69 dataset described previously (19). We found that 767 

when using highly similar cell clusters as input for deconvolution (e.g., CD4_Tc together with CD4+ T 768 

cell sub-clusters) lower abundance clusters (e.g., CD4+ T cell sub-clusters) were not identified due to 769 

high transcriptional overlap. We therefore excluded the CD4_Tc cluster from deconvolution. A 770 

customized RNA signature was extracted based on the scRNA seq data (no quantile normalization, 771 

permutations 100, Q-value 0.1). UMI were transformed for correlation with microarray expression 772 

(x=log2(y+2)*1.5). Only correlations with p < 0.05 were used. The resulting signature contained 91 773 

genes. A deconvolution of the original scRNAseq data served as control, and showed a specific 774 

detection of all cell types (> 0.90 pearson correlation). To test for significant differences in estimated 775 

RNA abundance between clusters, one-way ANOVA with Tukey’s Multiple Comparison test was used.  776 

 777 

Mice and EAE induction  778 

CD4Cre mice (91) and B6.129S(FVB)-Bcl6tm1.1Dent/J (named Bcl6flox or Bcl6fl/fl) mice (54) were 779 

purchased from the Jackson laboratories. The CD4CreBcl6flox strain was maintained by breeding the 780 

Bcl6flox allele to homozygosity (i.e. Bcl6fl/fl) and breeding the Cre alleles in heterozygous to wildtype 781 

matings. Genotyping was done by routine PCR from ear punch DNA. All animal experiments were 782 

approved by the responsible state authorities (LANUV NRW) under reference number 84-783 

02.04.2015.A319 and were performed in accordance with local regulations. Mice of both sexes (8-14 784 

weeks old) were immunized s.c. in the flanks with an emulsion containing the myelin oligodendrocyte 785 

glycoprotein (MOG) peptide MOG35–55 (150 μg/mouse) (GL Biochem (Shanghai) Ltd) and M. 786 

tuberculosis H37Ra extract (5 mg/ml, BD) in CFA (200 μl/mouse). Pertussis toxin (250 ng/mouse, 787 
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Sigma) was administered intraperitoneally on days 0 and 2. Mice were monitored daily and assigned 788 

grades for clinical signs of EAE using the following scoring system: 0, healthy; 1, paralyzed tail tip; 2, 789 

paralyzed tail; 3, waddling; 4, hind legs drag on the ground; 5, butt on the ground; 6, one paralyzed hind 790 

leg; 7, both paralyzed hind legs; 8, one paralyzed front leg (criterium to stop EAE); 9, both paralyzed 791 

front legs: 10, moribund or death. Detailed refinement procedures were performed according to the 792 

impairments of the mice. Mice with a score of >7 were euthanized. GraphPad Prism 5 was used for 793 

statistical analysis of all mouse-related data. 794 

 795 

Isolation of CNS-infiltrating mononuclear cells 796 

Mice were intracardially perfused with cold PBS under ketamin/xylazin anasthesia. The forebrain and 797 

cerebellum were dissected and spinal cords flushed out from the spinal canal with hydrostatic pressure. 798 

CNS tissue was cut into pieces and digested with collagenase D (2.5 mg/ml, Roche Diagnostics) and 799 

DNase I (0.05 mg/ml, Sigma) at 37 °C for 20 min. Mononuclear cells were isolated by passing the tissue 800 

through a 70 μm cell strainer, followed by a 70%/37% percoll gradient centrifugation. The interphase 801 

was removed, washed and re-suspended in culture medium containing 20 ng/ml PMA, 500 ng/ml 802 

ionomycin, GolgiStop, GolgiPlug (BD, each 1:1000 diluted). After 4 hours of incubation at 37 °C, cells 803 

were stained at RT for 30 min with anti-mouse antibodies (Biolegend, clones indicated): CD3 (17A2), 804 

CD4 (RM4-5 or GK1.5), B220 (RA3-6B2) and live/dead staining “Zombie NIR” (BD; 1:500) in PBS. 805 

Cells were fixed with the BD Cytofix/Cytoperm kit according to manufacturer instructions and stained 806 

with IL-17A (eBiosciences, eBio17B7) and IFNγ (BD, XMG1.2) each 1:100 diluted at 4°C for 30 min. 807 

Cells were washed and analysed using a Gallios flow cytometer (Beckman Coulter) and analysed using 808 

FlowJo V10.  809 

 810 

Histology 811 

For histology, mice were intracardially perfused with 20 ml cold PBS under ketamin/xylazin anasthesia 812 

and fixed by perfusion with 10 ml of 4 % paraformaldehyde (PFA). Spinal cord and spleen were 813 

removed and kept in PFA for 48 hours at 4 °C. The fixed spinal cords were cut into 3 mm thick 814 

transverse segments and embedded in paraffin. To evaluate demyelination, spinal cord sections were 815 
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stained with Luxol Fast Blue (LFB) and subsequently incubated with Periodic acid-Schiff (PAS). 816 

Immunohistochemistry was performed using the biotin-streptavidin peroxidase technique (K5001, 817 

Dako) in an immunostainer (AutostainerLink 48, Dako). Sections were pre-treated in a steamer 818 

(treatment solutions pH 6.0 or pH 9.0 (Dako)) before incubation with the primary antibodies against 819 

CD3 (clone CD3-12, BioRad, 1:100) or Mac3 (clone M3/84, BD, 1:100) or B220 (clone RA3-6B2, BD, 820 

1:200). DAB was used as a chromogen. Stained sections were analysed with a keyence microscope and 821 

pictures were taken with an Axioplot camara. ImageJ v1.48 was used to manually count infiltrated cells 822 

and measure areas. 823 

  824 
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Figures 1213 

 1214 

Fig. 1. Single-cell transcriptomics reconstructs the CSF leukocyte composition. 1215 

(A) Schematic of the study sampling and processing. CSF cells of all control (n = 22) and multiple 1216 

sclerosis (MS) (n = 26) donors were analysed by flow cytometry. Subsequently, scRNA-seq of unsorted 1217 

CSF cells (cohort 1, n = 6 donors each group) and bulk RNA-seq of sorted T follicular helper (TFH) 1218 

cells (cohort 3, n = 9 donors each group) were performed on randomly selected donor samples. Cohort 1219 

2 was only used for flow cytometry and not processed for sequencing (B) t-distributed stochastic 1220 

neighbour embedding (t-SNE) plot of 10 color-coded cell clusters identified by scRNA-seq after quality 1221 

control filtering and normalization (Methods) in 22,357 total merged control- (n = 4) and MS-derived 1222 

(n = 4) CSF cells. Cluster identity was manually assigned based on marker gene expression: (C) Feature 1223 

plots, representing all 22,357 donor cells as in panel B, showing expression of selected marker genes, 1224 
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differentially-expressed in one vs. all comparisons (Methods). Dark blue colours indicate high log-1225 

expression while light grey indicates non-expression. Selected protein names are provided for clarity, 1226 

with expressing cell types indicated. (D) Stacked violin plots of the same marker genes in specified cell 1227 

clusters. Cluster key:  CD4_Tc CD4+ T cells, aCD8_Tc / nCD8_Tc activated / naïve CD8+ T cells, NK 1228 

natural killer cells, Bc B cells, plasma plasma cells, class_mono / nc_mono classical / non-classical 1229 

monocytes, mDC / pDC myeloid / plasmacytoid dendritic cells. 1230 

 1231 

 1232 

Fig. 2. Unbiased transcriptomics detects NK and B lineage CSF cell expansion in MS. 1233 

(A) Condition-specific selections of the t-SNE plot in Figure 1, panel B. The distribution of cell types 1234 

identified by scRNA-seq in control- (n = 4 donors, 12,705 cells, left plot) and MS-derived (n = 4 donors, 1235 

9,652 cells, right plot) CSF cells. (B) Barplots depicting the average proportion of cells in each cluster 1236 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 29, 2018. ; https://doi.org/10.1101/403527doi: bioRxiv preprint 

https://doi.org/10.1101/403527


CSF cell transcriptomics in MS                                   page 48/69 

in control and MS samples (note split y-axis). Insets highlight abundance of rarer cell types. (C) Volcano 1237 

plot representing the results of statistical testing for differential cluster abundance between MS vs. 1238 

control donors. log10-transformed moderated t-test Q-values (Benjamini-Hochberg) from linear effect 1239 

modelling on log2-abundance are plotted against estimated mean log2 fold change. Horizontal line 1240 

indicates significance threshold, controlling the FDR < 0.01. (D) Cell profiles from the CD4+ T-cell 1241 

(CD4_Tc) cluster depicted in Figure 1B were re-normalized together and subclustered. A new t-SNE 1242 

computed for all CD4_Tc cells was subselected to plot 8 subclusters identified across control- (n = 4 1243 

donors, 7,764 cells, left plot) and MS-derived (n = 4 donors, 6,749 cells, right plot) CSF samples. (E) 1244 

Average proportion of cells in each CD4_Tc subcluster (including remainder (r-)CD8 and monocytes 1245 

(r-mono)). (F) Heatmap representing the mean normalized log2 UMI counts for marker genes (rows) in 1246 

CD4_Tc subclusters (column) of the dataset depicted in panel D. Rows are Z-normalized so that all 1247 

marker genes are represented using a common scale. Rows and columns are hierarchically clustered. 1248 

(G) Volcano plot as in panel C of CD4_Tc subcluster abundance differences between MS vs. control 1249 

donors. Horizontal lines indicate significance thresholds (blue Q < 0.05, red Q < 0.01) and inset 1250 

highlights overlapping symbols representing memory cell types. (H) Barplots representing the 1251 

proportion of CSF leukocyte subsets identified by flow cytometry in control vs. MS. Cluster key: 1252 

CD4_Tc CD4+ T cells, aCD8_Tc / nCD8_Tc activated / naïve CD8+ T cells, NK natural killer cells, Bc 1253 

B cells, plasma plasma cells, class_mono / nc_mono classical / non-classical monocytes, mDC / pDC 1254 

myeloid / plasmacytoid dendritic cells, Treg regulatory T helper cells, n_CD4 naïve, prol_CD4 1255 

proliferating, cm_CD4 central memory, lem_CD4 late effector memory, and eem_CD4 early effector 1256 

memory CD4+ T cells, r-CD8 remaining CD8+ T cells, r-mono remaining monocytes. 1257 

 1258 
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 1259 

Fig. 3. Deconvolution and interpretation of CSF cell transcriptomes and MS genetics. 1260 

(A) Published microarray data of unsorted CSF cells from controls and MS patients in relapse or 1261 

remission (19) were retrieved and cell type deconvolution was performed using cluster-specific gene 1262 

expression (mean UMI counts) determined by scRNA-seq. Significance was tested applying one-way 1263 

ANOVA with Tukey's honestly significant differences. (B) Heatmap plotting expression (mean UMI 1264 

counts) of 167 published MS risk genes (columns) (40) against CSF cell cluster (rows). Columns were 1265 

hierarchically clustered using One minus Pearson correlation and selected gene names are indicated. 1266 

Cluster names corresponding to Figures 1 and 2 are indicated above each plot.  * P < 0.05, ** P < 0.01, 1267 

*** P < 0.001 1268 

 1269 
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 1270 

Fig. 4. Increased T follicular helper (TFH) cells in the CSF of MS patients. 1271 

(A) Representative flow cytometry dot plot of CSF cells from a control and MS patient stained for CD4 1272 

and CXCR5 after gating on live CD3+ cells. (B) The proportion of CXCR5+ (left), of PD-1+CXCR5+ 1273 

(middle), and of ICOS+PD-1+CXCR5+ (right) cells among live CD3+CD4+ T cells in CSF cells of 1274 

control (co; n = 9) and MS (n = 9) patients was quantified by flow cytometry. (C) Correlation matrix of 1275 

CXCR5+ populations and CD19+ and CD138+CD19+ B lineage cells in the CSF. Blue circles indicate 1276 

significance and the Pearson correlation coefficient is indicated. * P < 0.05 1277 

 1278 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 29, 2018. ; https://doi.org/10.1101/403527doi: bioRxiv preprint 

https://doi.org/10.1101/403527


CSF cell transcriptomics in MS                                   page 51/69 

 1279 

Fig. 5. TFH cells promote neuroinflammation in vivo by expanding B cells. 1280 

(A) Active EAE was induced in control Bcl6fl/fl (n = 6) and TFH-deficient CD4CreBcl6fl/fl (n = 7) mice 1281 

using MOG35-55 peptide (Methods). Mice were monitored daily for clinical EAE signs. One 1282 

representative of four independent experiments is shown. (B) At day 28 after EAE induction, spinal 1283 

cord paraffin cross-sections were stained for LFB-Pas, Mac3 and CD3. (C) The infiltrated area (left) 1284 

and number of CD3+ cells (right) per spinal cord was quantified manually in a blinded fashion. (D) CNS 1285 

infiltrating lymphocytes were extracted at peak of EAE and stained for intracellular cytokines (IL-17 1286 

and IFN-γ). The proportion of cytokine producing live CD4+ T cells was quantified. (E) CNS infiltrating 1287 

leukocytes were co-stained for B220 (left) and the proportion of CD3- B220+ leukocytes was quantified 1288 

(right). (F) Cross-sections of paraffin embedded spinal cords were stained for B220 (left) and the 1289 
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proportion of B220+ cells was quantified (right). Scale bars represent 100 μm in panels B and F. * P < 1290 

0.05, ** P < 0.01, ns not significant. 1291 

  1292 
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Fig. S1. Patient characteristics. 
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(A) Clinical characteristics (age, sex) of all control (co, n = 22) and multiple sclerosis (MS, n = 26) 

patients included into the study after screening are depicted incl.recruitment into the study cohorts. (B) 

MS patients were classified to either have (Gd+) or not have (no Gd) contrast enhancing lesions in brain 

or spinal cord detected by magnetic resonance imaging. Oligoclonal bands (OCB) in CSF were 

classified as being either undetectable (type 1), restricted to CSF (type 2), detected in serum and 

additionally in CSF (type 3), or not determined (?). CSF/serum indices for albumin and immunoglobulin 

G (IgG) were calculated. The CSF barrier function (CSF index pathology) was evaluated as being either 

unaffected (none), showing intrathecal IgG synthesis (Ig only), showing barrier dysfunction (barrier 

only), or showing both intrathecal IgG synthesis and barrier dysfunction (barrier & Ig). (C) Standard 

CSF parameters of all study patients including CSF concentrations of total cells, granulocytes, red blood 

cells (RBC), protein, lactate, and glucose. (D) The study recruitment scheme is depicted. 53% of control 

and 35% of MS samples were excluded after screening for the reasons indicated. Samples from all 

patients were divided into three cohorts and all samples were analysed by flow cytometry. Samples in 

were processed for scRNAseq in cohort 1 and for bulk RNA-seq of sorted T follicular helper cells 

(TFH) in cohort 3. Samples in cohort 2 were only analysed by flow cytometry. (E) Clinical 

characteristics (age, sex) of patients excluded after screening and reasons for exclusion are shown. NA 

not applicable. 
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Fig. S2. Average and individual proportions of cell clusters of scRNA-seq samples.  

(A) Barplot showing the average proportion of cells in each cluster in all samples (MS and control 

merged) (note split y-axis). Insets highlight abundance of rarer cell types. (B) Donor-specific 

proportions of cells in each cluster identified by scRNA-seq (note split y-axis) and (C) in each CD4+ T-

cell (CD4_Tc) subcluster, for all control and MS patients individually. Cluster key: CD4_Tc CD4+ T 

cells, aCD8_Tc / nCD8_Tc activated / naïve CD8+ T cells, NK natural killer cells, Bc B cells, plasma 

plasma cells, class_mono / nc_mono classical / non-classical monocytes, mDC / pDC myeloid / 

plasmacytoid dendritic cells; Treg regulatory T helper cells, n_CD4 naïve, prol_CD4 proliferating, 

cm_CD4 central memory, lem_CD4 late effector memory, eem_CD4 early effector memory, r-CD8 

remaining CD8+ T cells, r-mono remaining monocytes.  
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Fig. S3. Flow cytometry characterization of all CSF cell samples. 

(A) Representative gating strategy for identifying and quantifying cell types by flow cytometry in the 

CSF. Population names are indicated next to the respective gates. The proportion of CD14+CD16++ 

monocyte cells in the CSF was very low in accordance with a previous study (33). We therefore merged 

the CD14+CD16++ with the CD14+CD16+ cells and named this population as non-classical monocytes 

(nc_mono) for consistency with scRNA-seq naming. (B) Quantification of the indicated cell types in 

CSF in control (co) and MS patients. All percentages are expressed as proportion of CD45+ cells. 

Samples with less than 500 total CD45+ events analysed by flow cytometry were excluded from NK 

quantification but not from other cell types. Two sided Student’s t-test for unrelated samples was used 

to calculate significance. Exact P-values are indicated in the plot. (C) Average proportion of cells in 

each cluster measured by flow cytometry. Please note the split y-axis and higher magnification inset. 

CD4_Tc CD4+ T cells, CD8_Tc CD8+ T cells, NK natural killer cells, Bc B cells, plasma plasma cells, 

class_mono / nc_mono classical / non-classical monocytes.  
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Fig. S4. Late B lineage cells accumulate in the CSF in MS. 

(A) Feature plot highlighting the expression level of different heavy chain transcripts in the B cell (Bc) 

cluster identified in Figure 1B. (B) Feature plot as in panel A showing expression of selected heavy and 

light chain transcripts in the plasma cell cluster. (C) Proportions for cells in each donor within the B 

cell or plasma cell cluster. (D) Proportion of Bc and plasma cells expressing indicated heavy (left panel) 

and light (right panel) chain transcript classes at maximum level (per cell). 
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Fig. S5. Evaluating a composite score for diagnosing MS by CSF analysis. 

(A) For each samples depicted in the merged flow cytometry data in Suppl. Fig. 3, we calculated a 

normalized ratio of the proportion of NK to CD4+ T cells, of Bc to CD4+ T cells, of CD8+ to CD4+ T 

cells, and of CD14+CD16- to CD14+CD16+ monocytes. These four normalized ratios were added to a 

basic composite score that is depicted in control (co) vs. MS samples. (B) Receiver operator curve 

(ROC) analysis plotting sensitivity against 1-specificity and the area under the curve (AUC) of the 

composite. (C) Values of 1 were added to the basic composite depicted in panel A if an elevated 

immunoglobulin index or oligoclonal bands were detected in the sample. This extended composite score 

values are depicted by disease status. (D) Receiver operator curve (ROC) analysis of extended 

composite score.  
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Fig. S6. CD4+ T cells are transcriptionally defined by a continuum.  

t-SNE feature plots for CD4+ T cells subclusters representing VISION signatures with significant 

VISION consistency scores (P < 0.01): (A) Late v. early memory signature score from a study on CD8+ 

cells (36). (B) Naïve v. memory T Cell signature score (30). 
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Fig. S7. Scheme of GSEA/VISION/CSEA Analysis. 

Publicly available bulk microarray or RNA-seq data are used to identify gene signature sets 

characterizing immune cell populations. These gene sets are used for either (i) gene set enrichment 

analysis (GSEA) of our scRNA-seq differential expression results or (ii) single-cell VISION signature 

scores, input to both VISION Consistency testing and cell set enrichment analysis (CSEA) testing. 

Further details can be found in the Methods section. 
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Fig. S8. Cell set enrichment analysis helps identifying disease-specific transcriptional changes. 

tSNE plots annotated by representative examples of significant CSEA results for the CD4+ subanalysis. 

In all cases, MS cells are enriched in the upper tail of the VISION signature distribution. Red points 

with green outline represent the core MS set driving the signature enrichment, black points are control 

members of the leading edge cell set. Cells depicted in grey are not members of the leading edge cell 

set. Exhausted vs. naïve (44), memory (45), TFH (48, 49), iTreg (47), Th1 (46). 
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Fig. S9. RNA bulk-seq of TFH cells. 

(A) Live CD3+CD4+CXCR5+ cells quantified in Fig 5B were flow sorted from the CSF of control 

(237±107 SD cells) and MS patients (852±691 SD cells), followed by bulk RNA-seq. Scatter plot 

depicts a principal component analysis (PCA) of normalized TFH gene log-count data, annotated by 

MS phenotype. (B) Genes differentially expressed in MS vs. controls were sorted by significance score 

and input into GSEA to identify biologically meaningful enrichments. The most frequent members of 

core gene sets driving functional enrichments in MS are plotted in a gene-gene Pearson correlation 

matrix (Methods). 
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Fig. S10. Bcl6 deficiency does not affect in vitro T helper cell differentiation.  

(A) Naïve CD4+CD62LhighCD44lowCD25- T cells were sorted from Bcl6fl/fl mice and CD4CreBcl6fl/fl 

mice, differentiated in the presence of TGF-β1 and IL-6, or IL-12 alone, or TGF-β1 alone and analysed 

by intracellular cytokine staining after 4 days in culture.  
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Supplementary Figure 11: Workflow of scRNA-seq analysis. 

Scheme depicting the scRNA-seq analysis workflow utilized in this study. Analysis begins with 10X 

(10X Genomics) Cell Ranger processing and cell-level QC (quality control) metric evaluation, followed 

by SCONE data filtering and normalization, Seurat dimensionality reduction, clustering and 

visualization. Results from these analyses are input into VISION for signature calculation and 

consistency testing. These signatures may be used for CSEA testing. Differential abundance analysis is 

performed based on the Seurat clustering, and various forms of differential expression testing, including 

one v. all, “marker” analysis and cluster-specific case v. control analysis are performed using a meta-

analysis approach that supports IDR modelling with scRAD tools. GSEA testing is used to ascribe 

biologic meaning to differential expression results, motivating further subclustering analysis, in which 

a cluster is analysed using an identical analytical procedure. 
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Supplementary Table Legends 

 

Table S1. Summarized information about patients in the present study.  

Clinical characteristics (average age, sex) of all control (IIH, n=22) and multiple sclerosis (MS, n=26) 

patients included in the study after screening are depicted. Numbers of excluded patients for each group 

are also shown. All included patients were divided over three cohorts, cohort 1: CSF samples used for 

single cell RNA-seq. (6 control vs. 6 MS), cohort 2: CSF samples analysed by flow cytometry only (7 

control vs. 11 MS) and cohort 3: CSF samples flow sorted for RNA-seq of CD3+CD4+CXCR5+ TFH 

cells (9 control vs. 9 MS).  

  

Table S2. Standard CSF parameters and MS disease features of patients in the present study.  

CSF parameters and MS disease features of all control (IIH, n=22) and multiple sclerosis (MS, n=26) 

patients included in the study are depicted. All included patients were divided over three cohorts, cohort 

1: CSF samples used for single cell RNA-seq. (6 control vs. 6 MS), cohort 2: CSF samples analysed by 

flow cytometry only (7 control vs. 11 MS) and cohort 3: CSF samples flow sorted for RNA-seq of 

CD3+CD4+CXCR5+ TFH cells (9 control vs. 9 MS). All MS patients were classified if they had a relapse 

at CSF collection, if they had (Gd+) or not had (no Gd) contrast enhancing lesions in brain or spinal 

cord or if they had other MS typical characteristics observed by magnetic resonance imaging (MRI). 

Oligoclonal bands (OCB) in CSF were classified as being either undetectable (type 1), or restricted to 

CSF (type 2), or detected in serum and additionally in CSF (type 3), or not determined (?). The CSF 

barrier function was evaluated as being either unaffected (none), or showing intrathecal IgG synthesis 

(Igonly), or showing barrier dysfunction (barrier only), or showing both intrathecal IgG synthesis and 

barrier dysfunction (barrier & Ig) or being unclassified (unknown). Standard CSF parameters of all 

study patients including CSF concentrations of protein, lactate, glucose, total cells, granulocytes and 

red blood cells (RBC) are also depicted.  

  

Table S3. Technical information of scRNA-seq results. 
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Technical information on scRNA-seq results of all patients (Control, n=4 and MS, n=4) included in the 

study are depicted. Depicted is the number of samples used for scRNA-seq (number of samples for 

10x), the total number of expected cells based on counting cells included in each sample multiplied by 

the approximate capture rate of the 10x system (total number of expected cells), the total number of 

measured cells after sequencing and genome alignment (total number of measured cells), average 

number of measured cells per sample (average number of measured cells), average number of detected 

reads per cell (reads per cell) and average number of detected genes per cell (genes per cell) used for 

downstream analysis. The total and average number of cells measured within the CD4+ T cell (CD4_Tc) 

cluster is also depicted.  

  

Table S4. Merged results of the scRNA-seq analysis.  

Genes most differentially expressed in clusters identified in the first clustering including all cells (All) 

and in the secondary CD4+ T cell clustering (CD4) are listed. Depicted are the Ensembl IDs of the 

Genes tested (Ensembl ID), the common Gene names (Gene Symbol), the cluster analysed (Cluster), 

the median log2 fold change (Median Log2 Fold Change), the irreproducible discovery rate (IDR), the 

statistical significance (Meta-analysis P-value) and the false discovery rate (Meta-analysis FDR). 

Candidate genes were defined as reaching a threshold of either log2 fold change and IDR and FDR, or 

IDR and FDR, or Median Log2 Fold Change and FDR. Additionally, candidate genes from different 

DE analysis comparing one cluster to all others (One vs. All (Marker)) and comparing same clusters 

between Multiple sclerosis patients (MS) and Control patients (IIH) (MS vs. IIH (Exposure)) are 

depicted. 

  

Table S5. Gene set enrichment analysis (GSEA) results for genes differentially expressed by clusters. 

Gene set enrichment analysis (GSEA) was performed on all marker genes for every cluster after the 

first clustering using all cells. Depicted are enriched Gene Sets (Signature), reference links to the GSEA 

data base (Origin), GSEA Enrichment Scores (EScore), statistical significance (PValue), simulated P-

values using bonferroni correction (sim_p_bonferroni), Cluster analysed (Cluster), differential analysis 

type (DEType), direction of Gene set enrichment (Sign) and signature containing collections 
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(signatures_NY_private, c1.all.v6.1.symbols, c2.all.v6.1.symbols, c2.cgp.v6.1.symbols, 

c2.cp.biocarta.v6.1.symbols, c2.cp.kegg.v6.1.symbols, c2.cp.reactome.v6.1.symbols, 

c2.cp.v6.1.symbols, c3.all.v6.1.symbols, c3.mir.v6.1.symbols, c3.tft.v6.1.symbols, 

c4.all.v6.1.symbols, c4.cgn.v6.1.symbols, c4.cm.v6.1.symbols, c5.all.v6.1.symbols, 

c5.bp.v6.1.symbols, c5.cc.v6.1.symbols, c5.mf.v6.1.symbols, c6.all.v6.1.symbols, c7.all.v6.1.symbols, 

h.all.v6.1.symbols, msigdb.v6.1.symbols). 

  

Table S6. Gene set enrichment analysis (GSEA) results for genes differentially expressed in MS vs. 

control samples.  

Gene set enrichment analysis (GSEA) was performed on all differentially expressed (MS vs. control) 

marker genes for every cluster after the first clustering (All). Depicted are enriched Gene Sets 

(Signature), reference links to the GSEA data base (Origin), GSEA Enrichment Scores (EScore), 

statistical significance (P-value), simulated P-values using bonferroni correction (sim_p_bonferroni), 

Cluster analysed (Cluster), differential analysis type (DEType), direction of Gene set enrichment (Sign) 

and signature containing collections (signatures_NY_private, c1.all.v6.1.symbols, c2.all.v6.1.symbols, 

c2.cgp.v6.1.symbols, c2.cp.biocarta.v6.1.symbols, c2.cp.kegg.v6.1.symbols, 

c2.cp.reactome.v6.1.symbols, c2.cp.v6.1.symbols, c3.all.v6.1.symbols, c3.mir.v6.1.symbols, 

c3.tft.v6.1.symbols, c4.all.v6.1.symbols, c4.cgn.v6.1.symbols, c4.cm.v6.1.symbols, 

c5.all.v6.1.symbols, c5.bp.v6.1.symbols, c5.cc.v6.1.symbols, c5.mf.v6.1.symbols, c6.all.v6.1.symbols, 

c7.all.v6.1.symbols, h.all.v6.1.symbols, msigdb.v6.1.symbols). 

  

Table S7. VISION and Cell set enrichment analysis (CSEA) results for T cell signatures. 

Cell set enrichment analysis (CSEA) was performed on all CD4+ T cells after removing residual 

clusters.  Columns in this sheet include i) signature set (Signature), ii) VISION Z-score (VISIONZ), iii) 

Benjamini-Hochberg Q-values from permutation-based VISION P-values (VISIONQ), iv) positive 

signature MS enrichment score (csea_sign1_MS_enriched_e_score), v) simulated P-values for the 

positive MS enrichment score, adjusted using the Bonferroni correction 

(csea_sign1_MS_enriched_sim_p_bonferroni), vi) number of cells in the positive leading edge for 
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enrichment in MS (csea_sign1_MS_enriched_leading_edge_size), vii-ix) analogous columns for 

negative signature MS enrichment (csea_sign-1_MS), x-xii)  analogous columns for positive signature 

control (IIH) enrichment (csea_sign1_IIH), and xiii-xv)  analogous columns for negative signature 

control (IIH) enrichment (csea_sign-1_IIH). 

  

Table S8. Flow sorting related information. 

Statistics of follicular T helper (TFH) cells analysed and sorted out of CSF using fluorescence activated 

cell sorting (FACS) for all control (n=9) and multiple sclerosis (MS, n=9) patients. Depicted are the 

number of processed samples (# samples processed), the number of CSF TFHs analysed (CSF TFH (#)) 

and the average number of TFHs per sample (average ± SD). 

  

Table S9. Differentially expressed genes and gene set enrichment analysis (GSEA) in CSF-derived TFH 

cells in MS vs. control patients. 

Per-gene differential expression (DE) analysis was performed on TFH cells sorted out of the CSF from 

MS and control patients. The limma::topTable results for disease effect estimation are tabulated in the 

“DE” sheet. Columns in this sheet include i) the symbol for the gene tested (Gene Symbol), ii) loge fold-

changes (MS vs. control) in normalized expression (logFC), iii) average normalized loge-expression 

(AveExpr), iv) moderated t-values (t), v) statistical significance (P-Value), vi) Benjamini-Hochberg Q-

value and vii) log-odds that the gene is differentially expressed (B). The B-value is the log-odds that 

the gene is differentially expressed.  

Gene set enrichment analysis (GSEA) was performed on significance scores derived from comparisons 

of TFH cells sorted out of the CSF from MS and Control patients; results are shown in the “GSEA” 

sheet. Columns in this sheet include i) the gene set origin, e.g. an experimental comparison from which 

the gene set is derived (Signature), signature subset, indicating whether the subset is up-regulated or 

down-regulated in the external comparison (Signature subset), gene set enrichment score for genes with 

high significance scores (EScore), simulated P-values, adjusted using the Bonferroni correction for 

multiple testing (sim_p_bonferroni), names of genes driving the gene set enrichment (Core Genes), 

number of genes driving the gene set enrichment (Number of Core Genes). 
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Table S10. Deconvolution results. 

scRNA-sequencing data were used to deconvolute the cell composition of already published bulk 

sequencing data. Depicted are input samples deconvolution was performed on (Input Sample) and the 

percentile composition of the different populations identified by scRNA-seq. Cluster key: aCD8_Tc / 

nCD8_Tc activated / naϊve CD8 T cells, Bc B cells, class_mono classical monocytes, mDC myeloid 

dendritic cells,, nc_mono non-classical monocytes, NK Natural killer cells,, pDC  plasmacytoid 

dendritic cells, plasma plasma cells, Treg regulatory T cells ; statistical significance (P-value), statistical 

correlation (Pearson Correlation) and Root Mean Square Error (RMSE). 
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