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Our adaptive immune system has the remarkable ability to distinguish previously unseen foreign peptides from harmless self.
This self-foreign discrimination was long thought to arise from the silencing of self-reactive T cells during negative selection in
the thymus, but recent data show that negative selection is far from complete. Here we ask how a repertoire containing many
self-reactive T cells can nevertheless discriminate self from foreign. We address this question using realistic-scale computational
models of the T cell repertoire. Our models show that moderate T cell cross-reactivity automatically skews the post-selection
repertoire towards peptides that differ systematically from self. But even when no systematic differences between self and
foreign exist, discrimination remains possible if the peptides presented in the thymus are chosen in a way that minimizes the
co-occurrence of similar, redundant self peptides. Thus, our model predicts that negative selection on a well-chosen subset of self
peptides biases the resulting repertoire towards better detection of both self-similar and -dissimilar pathogens. This effect would
allow the immune system to “learn self by example”, an ability shared with cognitive systems.
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To eliminate pathogens without damaging healthy cells, the1

immune system must discriminate between self and foreign2

(nonself). The innate arm of the immune system is able to do3

so with a limited number of germline-encoded receptors that4

recognize pathogen-associated molecular patterns. By contrast,5

the adaptive arm of the immune system, which is found in all6

jawed vertebrates and is mediated by T and B lymphocytes,7

uses a vastly diverse repertoire of receptors to generate specific8

protective responses against any pathogen it encounters (1, 2).9

For example, humans have a repertoire of at least 107 di↵erent T10

cells (3), each expressing one or two of the>1015 unique receptor11

sequences that can arise from the stochastic recombination of12

V(D)J gene segments and addition of non-templated nucleotides13

(4, 5). These T cell receptors (TCRs) recognize short foreign14

peptides presented on major histocompatibility complex (MHC)15

molecules on the surface of infected or cancerous cells.16

However, the random TCR generation process inevitably17

also produces TCRs that recognize self peptides presented by18

healthy cells. It was long thought that the majority of these19

self-reactive receptors are e↵ectively eliminated during T cell20

development in the thymus through a process termed negative21

selection (6), but recent studies have shown that this process22

is nowhere near as complete as it was thought to be (7–9). In23

fact, given that T cells may only encounter an estimated 103-105
24

di↵erent peptides during negative selection – a small fraction25

of all MHC-binding self peptides – it is not trivial how negative26

selection can achieve self-foreign discrimination at all (10–12).27

Here, we use computational models to investigate under28

which conditions negative selection can promote self-foreign29

discrimination, given that T cells are only exposed to a subset of30

self peptides. We show that to a certain extent, T cell repertoires31

can robustly learn “self” from an incomplete set of examples if32

(1) T cells are moderately cross-reactive, and (2) the subset of33

self peptides presented in the thymus is not random but chosen34

in a way that reduces redundance. 35

Results 36

An artificial immune system discriminates self from for- 37

eign after negative selection. To investigate how incomplete 38

negative selection can still foster e↵ective self-foreign discrim- 39

ination, we devised an “artificial immune system” (AIS) (13). 40

Our AIS is an algorithmic model of a T cell repertoire (14), simi- 41

lar to how an artificial neural network (ANN) is an algorithmic 42

model of the central nervous system. Because it was important 43

to consider T cell repertoires of realistic scale and complexity, 44

we exploited data compression techniques that allow building 45

AISs containing billions of TCRs (15). 46

Like ANNs, AISs are not only used for in silico modelling of 47

the biological system, but also as general-purpose classification 48

algorithms. We took advantage of this property by first using a 49

well-interpretable classification problem outside of immunology 50

to investigate how a TCR repertoire could discriminate a foreign 51

peptide from a self peptide it has not encountered during 52

selection. Specifically, we built an AIS that distinguishes English 53

from other languages based on short strings (letter sequences) 54

of text. This artificial problem mimics the task of self-foreign 55

discrimination because in both cases, classes (languages or 56

proteomes) are to be distinguished based on a limited amount 57

of information (short strings or peptides). A useful property of 58

the language problem is that it can take on a range of di�culties, 59

as very dissimilar languages such as English and the South- 60

African language Xhosa are much easier to distinguish than 61

related languages such as modern and medieval English. 62

Our model belongs to the family of “string-based” AISs 63

(10, 14–16) that represents each TCR as a binding motif, and 64

defines a TCR’s a�nity for a string as the maximum number of 65

adjacent positions where this motif matches the string (Fig. 1A) 66

(Methods in SI Appendix). A TCR is defined to react to all 67
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Fig. 1. Negative selection on a subset of the whole "self" can achieve self-

foreign discrimination. (a) Our model of string recognition represents TCRs
by a binding motif – the string they bind to most strongly (left). Their affinity for
any given string equals the maximum number of adjacent positions where the
binding motif matches the string (right). (b) Simulating negative selection in silico:
(1) TCRs in the unbiased pre-selection repertoire (with all possible 276⇡400
million TCR motifs of 6 characters [a-z and _]) are deleted if their affinity for any
of the training strings exceeds the functional response threshold t. (2) Unseen
English and Xhosa strings are exposed to the post-selection repertoire to find the
number of remaining TCRs reacting to them (that is, TCRs with affinity �t). (c)
Reacting TCRs per million of unseen English and Xhosa strings, before and after
negative selection on 500 English strings. Horizontal lines indicate medians. (d)
Median and interquartile range of English- and Xhosa-reactivity after negative
selection on English strings. (e) Percentage of Xhosa strings among the 10% of
strings with the most reacting TCRs after negative selection on English strings
(mean±standard deviation, SD, of 30 simulations). No discrimination should result
in equal amounts (50%) of English and Xhosa strings in this top 10%. Throughout
this figure, we tested 50 English and 50 Xhosa strings using an affinity threshold t

= 3 for negative selection.

strings for which it has an a�nity of at least some threshold t,68

which represents a functional response threshold rather than69

a mere binding threshold. Crucially, reaction does not require70

a perfect match between the string and TCR motif. Thus, our71

TCRs are cross-reactive and react to multiple, related peptides.72

In contrast to models based on binding energy (17, 18), the73

“motif-based” recognition implemented in our model (Fig. 1A)74

ensures that both peptides recognized by the same TCR and75

TCRs recognizing the same peptide share sequence motifs – in76

line with observations from TCR-specific peptide sets (19–21)77

and peptide-specific TCR repertoires (22, 23).78

To test how well TCR repertoires could discriminate be-79

tween two very dissimilar languages (English and Xhosa) after80

incomplete negative selection, we started with an unbiased81

pre-selection repertoire with equal numbers of TCRs reacting82

to English and Xhosa, and then performed in silico negative83

selection on an English training set by deleting all TCRs reacting84

to any of the (<1000) training strings (Fig. 1B, using a threshold85

t = 3 leading to intermediate cross-reactivity). Although this86

negative selection did not completely abrogate TCR reactivity87

towards English strings outside of the training set, it still biased88

the post-selection repertoire to contain more TCRs reacting to89

Xhosa than to English (Fig. 1C,D).90

Given that peptides to which many TCRs react tend to elicit91

stronger immune responses (24), it is important that these92

most frequently recognized peptides are predominantly foreign.93
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Fig. 2. Discrimination requires moderate TCR cross-reactivity and dissim-

ilar self- and foreign strings. (a) Mean percentage of surviving TCRs reacting
to English and Xhosa strings after negative selection (using threshold t = 3). Plot
represents a different analysis of data shown in Fig. 1D,E. (b) String similarity
visualized in a graph where nodes (strings) are neighbors (connected by edges) if
at least 5/million pre-selection TCRs react to both. (c) Cross-reactivity increases
the number of edges between example English and Xhosa strings (demonstrated
here for a few examples). Edges between strings from different languages are
shown in red. (d) Concordance in the English-Xhosa and English-Medieval
English graphs for different thresholds t. (e) Concordance and discrimination
between English and Xhosa for different thresholds t. Negative selection was
performed on 800 English strings. Datapoint for t = 3 corresponds to the endpoint
of Fig. 1E. (f) Language concordance versus enrichment of foreign strings among
the top 10% most frequently recognized strings after negative selection (t = 3,
selection on 800 English strings). Pearson’s correlation coefficient r = 0.977, with
95% confidence interval [0.890, 0.995]. The control "English" compares two sets
of English strings from the same book that was used for training (Moby Dick),
whereas "English (different book)" compares unseen English strings from the
training book to those from the Bible. The point "Xhosa" corresponds to the point
"t = 3" in Fig. 2E. See also Fig. S1.

The 10% most frequently recognized strings in our simulation 94

were indeed predominantly Xhosa strings (Fig. 1E). The a�nity 95

distribution of these TCR interactions was shifted towards 96

higher a�nities for Xhosa, but only very slightly (Fig. S1A). For 97

sake of simplicity, we therefore focus only on the number of 98

reacting TCRs throughout this paper, rather than considering 99

di↵erent a�nities separately. This choice to consider TCRs with 100

a broad range of a�nities is supported by growing evidence 101

that also lower a�nity TCRs are important contributors to 102

immune responses (25). 103

Discrimination success relies on moderate cross-reactiv- 104

ity and sequence dissimilarity. These results confirm that our 105

AIS can easily distinguish English from Xhosa even after incom- 106

plete negative selection. To investigate in more detail under 107

which conditions this discrimination arises, we analyzed which 108

TCRs were deleted during negative selection on English strings 109

(Fig. 2). TCRs reacting to "unseen" English strings (those absent 110

from the training set TCRs were exposed to during negative 111

selection) had a reduced survival compared to TCRs reacting 112

to Xhosa strings (Fig. 2A). Because TCRs are only deleted when 113
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they react to at least one string in the training set, this implies114

that strings eliciting reactions from the same TCRs tend to115

represent the same language. To visualize this, we created116

graphs in which each node represents a string, and two nodes117

become connected neighbors when at least 5 TCRs per million118

pre-selection TCRs react to both of them (Fig. 2B). Indeed, neigh-119

bor strings are largely from the same language (Fig. 2B, left),120

which is quantified by the concordance, the average proportion121

of neighbors from the same language. To show that the high122

concordance (0.81) of English and Xhosa strings represents123

intrinsic di↵erences between English and Xhosa strings, we124

randomly divided English strings into two groups and con-125

structed a similar graph, which as expected has a concordance126

of only 0.5 (Fig. 2B, right). This confirms that our TCRs can only127

discriminate between two sets of strings that are intrinsically128

di↵erent.129

Our results indicate two key requirements for achieving self-130

foreign discrimination through negative selection on an incom-131

plete subset of self: an appropriate level of TCR cross-reactivity132

towards multiple, related strings, and su�cient dissimilarity133

between self- and foreign.134

To illustrate the importance of cross-reactivity, we set the135

a�nity threshold in our model to t = 6, so that each TCR was136

maximally specific and only reacted to the one string match-137

ing its binding motif perfectly (i.e., no cross-reactivity). The138

corresponding graph contains no neighbors at all (Fig. 2C, left)139

and has a concordance of 0.5 (Fig. 2D,E). Consequently, max-140

imal TCR specificity abolishes self-foreign discrimination in141

our model (Fig. 2E) because without cross-reactivity, negative142

selection cannot delete TCRs for strings that are not part of143

the training set – it therefore deletes very few TCRs (Fig. S1B).144

However, very low specificity (t = 1) is equally problematic as it145

results in a graph where any two strings are neighbors irrespec-146

tive of language (Fig. 2C, right), which leads to low concordance147

even between dissimilar languages (Fig. 2D,E), poor self-foreign148

discrimination (Fig. 2E), and often even deletion of the entire149

repertoire (Fig. S1B). Only intermediate specificities allow TCRs150

to preferentially react to either English or Xhosa strings (Fig. 2C,151

middle). This results in both a high concordance (Fig. 2D,E) and152

a preference for Xhosa-reactivity in the post-selection repertoire153

(Fig. 2E).154

As shown in Fig. 2B, even an optimal level of cross-reactivity155

will not result in a high concordance unless the languages are156

intrinsically di↵erent. The accomplished level of self-foreign157

discrimination therefore depends directly on the similarity158

between self- and foreign sequences. Indeed, when we repeated159

our analysis for a number of other languages with varying160

similarity to English, we found a linear correlation between161

concordance and the acquired level of discrimination (Fig. 2F).162

This was a property of the tested languages rather than the163

specific texts chosen, as our model could not discriminate164

between English strings from di↵erent books (Fig. 2F).165

Sequence similarity hampers discrimination between self-166

and foreign peptides. These results on natural languages sug-167

gest that TCR cross-reactivity and sequence dissimilarity should168

also be important for self-foreign discrimination in the immune169

system. We therefore applied our AIS model to self-foreign dis-170

crimination by CD8+ T cells, which recognize peptides bound171

to the MHC class I (MHC-I) complex with a typical length of172

nine amino acids (AAs). The six residues at positions 3-8 are173

thought to be most relevant for TCR binding (26). Accordingly,174
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Fig. 3. High similarity between self- and foreign peptides hampers their

discrimination by the immune system. (a) TCR binding to peptides on MHC-I
(HLA-A2:01) focuses on the 6 residues at positions 3-8 and resembles the TCR-
string model as in Fig. 1A. (b) Concordance for English versus other languages
(left) compared to that for self versus foreign peptides (right). Language con-
cordances from Fig. 2F are included for comparison. (c) Graph of HIV peptides
and their neighbors. Edges connect peptides that have at least 5/million pre-
selection TCRs in common. (d) Percentage of HIV-peptides among the 10%
most frequently recognized peptides after negative selection (mean±SD of 30
simulations). (e) Mean percentage surviving TCRs for self and HIV peptides after
negative selection.

we modified our TCR model to accommodate 6-mer peptide 175

sequences rather than six-letter strings (Fig. 3A). Setting the 176

a�nity threshold to an intermediate value of t = 4 in this model 177

allowed each TCR to react to roughly one in every 55,000 pep- 178

tides (Fig. S2A) – a cross-reactivity level that reasonably matches 179

an experimental estimate of one in 30,000 (27). Furthermore, at 180

this level of cross-reactivity, peptides elicited reactions from 0 181

to 20 TCRs per million in our simulated repertoires (Fig. S2B), 182

in line with experimental data (28–31). These results suggest 183

that the cross-reactivity level of TCRs roughly matches that of 184

our model at t = 4, well within the "moderate" range allowing 185

discrimination between dissimilar strings (Fig. 2D,E). 186

To examine whether self- and foreign peptides are dissimilar 187

enough to allow self-foreign discrimination, we first predicted 188

MHC-I-binding peptides from the human proteome (32) and 189

used the residues 3-8 as MHC-bound self peptides in our model. 190

To obtain foreign sequences, we predicted MHC binders for 191

a variety of pathogens associated with T cell immunity: the 192

malaria parasite, the bacterium Listeria monocytogenes, and the 193

viruses ebola, hepatitis B, hepatitis C, human cytomegalovirus 194

(HCMV), human immunodeficiency virus (HIV), and vaccinia 195

(Table S1). 196

Graphs of self versus foreign peptides had strikingly low 197

concordances (Fig. 3B)(Methods in SI Appendix), barely exceed- 198

ing the control concordance observed between two random, 199

di↵erent sets of self peptides ("Self", negative control), and 200

lower than the concordance we had observed between modern 201

and medieval English. This was a property of the sequences 202

themselves rather than the chosen threshold t (Fig. S3A). In 203

a graph of all HIV peptides and their neighbors, the majority 204

of HIV peptides had many self neighbors whereas none of 205
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Fig. 4. Improved self representation during negative selection allows self-

foreign discrimination. (a) Self peptides from large clusters delete the same
TCRs as their neighbors and are thus exchangeable during negative selection,
whereas peptides from small clusters are not. (b) Mean percentage of self-
reactive TCRs deleted by optimal training sets of self peptides during negative
selection. TCR deletion with random training sets was computed on the data
from Fig. 3E for comparison. (c) Peptide exchangeability distribution in the full set
of all self peptides compared to that in random and optimal subsets of 100,000
peptides. Exchangeability is defined as the number of self neighbors + 1. (d)
Self-HIV discrimination after selection on optimal training sets. Discrimination
after selection on random training sets (Fig. 3D) is shown for comparison. See
also Fig. S4. (e) Percentage of self peptides with HIV neighbor(s) plotted against
exchangeability (self peptides were divided into 10 equal-number deciles from
low to high exchangeability). Negative selection in panels b and d was performed
with t = 4, and results were plotted as mean±SD of 30 simulations.

them had HIV neighbors (Fig. 3C) – indicating that most HIV206

peptides are more similar to peptides from the human proteome207

than to other HIV peptides.208

This high similarity between self- and foreign peptides sug-209

gests that achieving self-foreign discrimination via negative se-210

lection is di�cult. Indeed, although the realistic cross-reactivity211

at t = 4 allowed some discrimination between self- and HIV212

peptides as shown by a small enrichment of HIV among most213

frequently recognized peptides (Fig. 3D, left), this e↵ect came214

nowhere close to that observed for languages (Fig. 1E), even215

with very large numbers of training self peptides. Consistent216

with this observation, the survival of self-reactive TCRs was217

only slightly lower than that of HIV-reactive TCRs (Fig. 3E, left).218

These results were not specific for HIV peptides, as we obtained219

similarly low levels of self-foreign discrimination for all other220

pathogens tested (Fig. S3B). Self-HIV discrimination was even221

worse for t = 3 and rapidly disappeared completely as TCR222

survival diminished for large training sets (Fig. 3D,E, right), con-223

firming that self-foreign discrimination becomes more di�cult224

when TCRs are too cross-reactive.225

Selection on non-random peptides greatly improves self–226

foreign discrimination. Thus, although incomplete negative227

selection can achieve self-foreign discrimination in principle,228

achieving su�cient discrimination is very di�cult in practice229

because self- and foreign peptides can be extremely similar230

and therefore can be recognized by the same TCRs. Clearly,231

the immune system must overcome this problem in order to232

balance the removal of self-reactivity with the preservation233

of foreign recognition. It has previously been suggested that234

thymic selection should occur on a non-random set of self pep-235

tides to achieve self-foreign discrimination (12). We therefore236

used our model to investigate what an "optimal" set of self237

peptides would look like, and how much this might improve238
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Fig. 5. Thymic enrichment for rare AAs facilitates self-foreign discrimina-

tion by improving self representation during negative selection. (a) Ex-
changeability versus peptide AA frequency score in a random sample of 1000 self
peptides (frequency score is low for peptides with many rare AAs, (Methods in SI
Appendix)). Pearson’s correlation coefficient r = 0.716, with 95% confidence inter-
val [0.684, 0.745]. See also Fig. S5. (b) Discrimination after negative selection
on self peptides chosen with a (weak/strong) bias for rare AAs. Discrimination
after selection on random peptides (Fig. 3D) is included for comparison. Plots
show self-HIV discrimination (left), and self-other self discrimination (right, where
a random sample of self was assigned the label "foreign" before selection on
training sets from the remaining "self" peptides). (c) Self-foreign discrimination
for different pathogens after negative selection on 150,000 self peptides chosen
randomly or with AA bias. See Fig. S6 for the full discrimination curves. Negative
selection in panels b and c was performed with t = 4, and results were plotted as
mean±SD of 30 simulations.

self-foreign discrimination. 239

As a starting point, we based the optimization of the training 240

set on the peptide cluster structure as observed in Fig. 3C. The 241

large clusters in this graph contain many similar self peptides, 242

which can delete the same TCRs during negative selection 243

(Fig. 4A). Exchanging one such peptide for one of its neighbors 244

during selection thus has little e↵ect on the post-selection reper- 245

toire – and presenting both has little added value. By contrast, 246

self peptides in smaller clusters are far less exchangeable (Fig. 4A): 247

their TCRs cannot be removed as easily by other peptides. Thus, 248

negative selection on randomly chosen training sets is ine�- 249

cient: these sets often contain several exchangeable peptides 250

that delete the same TCRs, while simultaneously missing many 251

non-exchangeable peptides and allowing the corresponding 252

self-reactive TCRs to escape. We therefore used combina- 253

torial optimization techniques (Methods in SI Appendix) to 254

compute peptide combinations that deleted as many di↵erent 255

self-reactive TCRs as possible ("optimal" training sets, Fig. 4B). 256

As expected, these optimal training sets contained fewer ex- 257

changeable peptides (Fig. 4C, where exchangeability equals the 258

number of self neighbors plus one). 259

We then tested whether these training sets optimized for 260

inducing tolerance could also establish self-foreign discrimination. 261

This is not guaranteed, as the latter requires not only the removal 262

of self-reactive TCRs, but also the preservation of foreign- 263

reactivity. Nevertheless, our optimal training sets substantially 264

improved self-foreign discrimination (Fig. 4D). This seems to 265

be a consequence of the enrichment for low exchangeability 266

peptides (Fig. 4C), which are less likely to delete HIV-reactive 267

TCRs (Fig. 4E). Importantly, this discrimination still required 268

appropriate TCR cross-reactivity and was absent at t= 3 (Fig. S4). 269

From these results, we conclude that negative selection on a 270

representative set of self peptides can alleviate the problem 271

of self-foreign similarity, but only when TCRs are su�ciently 272
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specific.273

Obviously, our optimal training sets are artificial, and bio-274

logical negative selection cannot calculate which self peptides275

should be present in the thymus. We therefore investigated276

how a representative set of self peptides might reasonably be277

obtained during real negative selection. Analysis of our optimal278

training sets revealed an enrichment for rare AAs compared to279

the total set of self peptides (Fig. S5). Interestingly, peptides with280

many rare AAs were typically less exchangeable (Fig. 5A). This281

finding suggests that training sets enriched for rare AAs – simi-282

lar to our optimal sets – contain fewer exchangeable peptides,283

and might thus result in better self-foreign discrimination.284

To test this hypothesis, we again generated training sets285

of di↵erent sizes, but this time picked our training peptides286

with a probability that depended on the AA composition of287

each peptide (Methods in SI Appendix). These probabilities288

introduced either a weak or a strong bias for self peptides with289

rare AAs, mimicking the AA enrichment pattern observed in290

our optimal training sets. This AA bias substantially improved291

self-foreign discrimination after negative selection, for HIV292

(Fig. 5B, left) and all other pathogens tested (Fig. 5C, S6).293

Interestingly, this strategy also worked when we first set aside294

a random sample of other self peptides as "foreign" before295

selecting training sets from the remaining "self" peptides. In296

this scenario, biased training sets still yielded substantial self-297

"foreign" discrimination, whereas random sets did not (Fig. 5B,298

right). This result demonstrates that negative selection on non-299

random training peptides facilitates self-foreign discrimination300

– even in the extreme case where no inherent di↵erence between301

self and foreign peptides exists.302

Discussion303

Our AIS model explains how negative selection on an incom-304

plete set of self peptides can nonetheless bias a T cell reper-305

toire towards foreign recognition. We demonstrate that a306

non-random subset of self peptides enriched for rare AAs can307

balance the removal of self-reactive TCRs with the preservation308

of foreign-reactive receptors. Importantly, this strategy works309

even when self and foreign peptides are not inherently di↵erent.310

In fact, for the pathogens we considered, the similarity to self311

was so high that it is hard to conceive how any self-foreign312

discrimination could be achieved through negative selection on313

random peptides. By contrast, a "smart" peptide presentation314

strategy could still ensure that the peptides best recognized315

by the immune system are predominantly foreign – even in316

this di�cult scenario. This notion reconciles textbook negative317

selection theory with recent observations that T cells see only a318

fraction of all self peptides during thymic selection, and that319

even healthy individuals have many self-reactive T cells (7).320

Although we demonstrate here how negative selection can321

skew a developing repertoire away from recognition of self, our322

results also point out that this "central tolerance" alone is likely323

insu�cient for reliable self-foreign discrimination. This is in324

line with the consensus that peripheral tolerance mechanisms325

are crucial to prevent and dampen immune responses by those326

self-reactive cells surviving negative selection. Nevertheless327

– under the right conditions – negative selection can at least328

provide a basis for such other mechanisms to build on. The329

idea of a “leaky” central tolerance strengthened by peripheral330

mechanisms is not new (7, 33), and is supported for example331

by studies showing that more nuanced discrimination becomes332

possible when T cells make decisions cooperatively (34, 35). 333

However, our results clearly show that it is not trivial for 334

negative selection to provide even a starting point for self- 335

foreign discrimination. To do so, it must somehow overcome 336

the fundamental problem of similarity between self- and foreign 337

peptides. 338

Our finding that non-random peptide presentation is a 339

prerequisite for e�cient self-foreign discrimination raises the 340

question how the thymus might obtain a preference for pre- 341

senting low-exchangeability peptides. Although it remains 342

unclear exactly which and how many peptides a T cell sees 343

during selection, the importance of the thymic peptidome in 344

shaping the TCR repertoire is evident from the existence of spe- 345

cialized antigen presenting cells, transcription factors such as 346

AIRE, and even special proteasomes controlling thymic peptide 347

presentation (36). We suggest that the biased presentation of 348

low-exchangeability peptides required for self-foreign discrimi- 349

nation might arise from special binding preferences of thymic 350

antigen presentation proteins. As has already been shown for 351

the thymoproteasome during thymic positive selection (37, 38), 352

such binding preferences can enrich for specific subsets of self 353

peptides and thereby impact the ability of a TCR repertoire 354

to recognize self and foreign. While a bias for specific AAs 355

such as described in this paper would be one way to enrich 356

for low-exchangeability peptides, we do not exclude that other 357

binding preferences could have a similar impact on self-foreign 358

discrimination. 359

Notably, our imperfect selection accomplishes self-foreign 360

discrimination by also reducing the recognition of peptides the 361

T cell repertoire has not seen during selection. This capability 362

of the T cell repertoire to generalize beyond given examples is 363

a fundamental property of learning systems (39), and allows 364

the repertoire to perform a cognitive task: learning to distin- 365

guish self from foreign. Even though this learning process 366

mechanistically di↵ers from learning by the central nervous 367

system, its high-level outcome is remarkably similar, and shares 368

many properties with "slow learning" systems as described in 369

psychology and neuroscience (40). 370

Materials and Methods 371

372

Data and code availability. All code used in this paper will be made 373

available at: www.github.com/ingewortel/negative-selection-2018. Data 374

will be made available on www.osf.io. 375

Simulation of negative selection. Our general simulation setup can 376

be outlined as follows: 377

1. Generation of an unbiased TCR repertoire containing all possible 378

motifs of length 6. For details, see Repertoire model of negative 379

selection (Methods in SI Appendix). 380

2. Selection of a training set of either n English strings or n self 381

peptides. See Sequences for details on the sequences used, and 382

Training set selection for details on the manners in which training 383

sets are sampled (Methods in SI Appendix). The training set 384

selection method was random unless mentioned otherwise in the 385

figure legend. The value of n can also be found in the figure 386

legend. 387

3. Negative selection of TCRs on the training set. All TCR motifs that 388

match any of the training sequences in at least t adjacent positions 389

are removed from the repertoire. Unless mentioned otherwise, 390

negative selection was performed with an a�nity threshold t = 3 391

for strings and t = 4 for peptides (see figure legends). All TCRs 392

that remain make up the post-selection repertoire. For details on 393
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computational methods, see Repertoire model of negative selection394

(Methods in SI Appendix).395

4. Analysis of the recognition of test sequences by the post-selection396

repertoire. Test sets always consist of "unseen" sequences that397

were not part of the training set used for negative selection. See398

figure legends for details on the number and source of the test399

sequences used. See Post-selection repertoire analysis (Methods in SI400

Appendix) for details on specific analysis metrics used.401

We repeat steps 2-4 with di↵erent training and test sets for each402

simulation. In the case of "optimal" training sets, which are per definition403

selected only in one way (see Training set selection (Methods in SI404

Appendix) for details), the training set was constant across simulations405

but the test set was varied. Negative selection success as determined406

by these simulations is then assessed in the context of expectations407

based on the similarity between self and foreign sequences (see Sequence408

analysis (Methods in SI Appendix) for details).409

Supporting Methods. Detailed computational methods used in this410

article are available as Supporting Information in the SI Appendix.411

Supporting Information (SI)412

The SI Appendix contains Supporting Methods, Figs. S1 to S6,413

and Table S1.414
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Supporting Information Text12

Supporting Methods13

Sequences. We applied our TCR model to both 6-letter strings and 6-AA peptides. Throughout this methods section, we will14

refer to them as strings and peptides for methods specific to either languages or peptides, or as sequences for methods applying15

to both. With self sequences we mean either human peptides or English strings, and with foreign sequences we mean either16

pathogenic peptides or strings from other languages (see below).17

Strings English training strings ("self") were extracted from Moby Dick (downloaded from www.gutenberg.org/files/2489/2489.txt).18

Independent sets of test strings were extracted from translations of the Gospel of John in the Bible (downloaded from19

www.biblegateway.com). We obtained translations in di�erent languages: English, Medieval English, Latin, and Plautdietsch20

(Indo-European languages), Tagalog and Hiligaynon (Austronesian languages), and Xhosa (Niger-Congo family of languages).21

Recognition of these test strings was always compared to recognition of unseen English control strings from the Moby Dick22

training set. Capital letters were removed and all spaces and punctuation marks were replaced by an underscore (_), yielding23

text with 27 possible characters (26 letters of the latin alphabet and _). Texts were then randomly cut into strings containing24

6 characters each. Please refer to our code repository (see Data and code availability in main text) to obtain the exact input25

text files and the scripts that generate the chunks.26

Peptides Proteomes were obtained from Uniprot (1, 2) (Table S1). Potential HLA-A2:01 binders were predicted using27

NetMHCPan (3) (version 3.0), focusing on peptides of 9 AAs. Using the NetMHCPan default settings, the 2% highest scoring28

9-mers were defined as MHC-I binders. Of these, we selected the 6 residues at positions 3-8 to get the TCR-binding 6-mers,29

and then removed duplicates to get unique 6-mers for each proteome (Table S1).30

Repertoire model of negative selection. A limiting factor for simulating negative selection on large TCR repertoires is compu-31

tational complexity. Our unbiased pre-selection repertoires contain TCRs for every possible binding motif of 6 letters (a-z or32

_) or 6 AAs – resulting in 276 ¥ 400 million TCRs for the language AIS, and 206 = 64 million TCRs for the peptide AIS.33

Each of these TCRs needs to be compared against all sequences in the training set. Our implementation of the contiguous34

a�nity model uses advanced computational methods as described in (4, 5) to compress T cell repertoires and to enable these35

comparisons between large sets of sequences. These methods are available in our code repository (see Data and code availability36

in main text).37

Training set selection. Training sets of n English strings were sampled randomly in each simulation. Training sets of n self38

peptides were sampled from the total ≥260,000 human MHC-I binders in one of three ways: random, optimal, or biased39

sampling (see below for the last two).40

Optimal training peptide selection "Optimal" training sets were designed to remove as many self-reactive TCRs as possible. We41

listed all self-reactive TCR binding motifs that would react to at least one of the ≥260,000 human MHC-I binders for a given42

threshold t, and then selected combinations of minimal numbers of self peptides that would delete a maximal number of these43

self-reactive TCR motifs. We could not find an exact solution to this combinatorial optimization problem, because there is44

a nearly infinite number of ways to select n out of ≥260,000 self peptides – and it is not possible to assess the removal of45

self-reactive TCRs for each of them. We therefore designed a "greedy" algorithm to find an approximative solution instead.46

Briefly, we iteratively select the self peptides that remove the most remaining self-reactive TCRs by repeating two steps:47

1. List the self-reactive TCR motifs that still remain in the repertoire;48

2. Select the self peptide that deletes the most of these remaining self-reactive TCRs. If multiple self peptides delete an49

equal number of remaining TCRs, we pick only those self peptides that do not overlap in the TCRs they delete.50

We stop when all self-reactive TCRs are deleted. The result is an ordered list of self peptides, of which the top n epitopes51

form an "optimal" training set of size n. For t = 3, an optimally chosen 12,025 self peptides (≥ 5% of all self peptides) could52

already remove all self-reactive TCRs, whereas this required 130,407 self peptides (≥50% of all self peptides) at t = 4. For53

simulations with optimal training sets larger than this number, random self peptides were added to the optimal combinations54

to obtain the desired total number n.55

Biased training peptide selection To generate training sets biased for rare AAs, all self peptides were first assigned a score that56

depended on their AA composition:57

Fpep =
6ÿ

p=1

faa,p [1]58

with faa,p the frequency within all self peptides of the AA at position p of the 6-mer peptide. These scores were then59

transformed to a sampling probability Ppep as follows:60

Ppep =
max(F ) ≠ Fpep

max(F ) ≠ min(F ) =
6 · faa,max ≠ Fpep

6 · faa,max ≠ 6 · faa,min
[2]61
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where faa,max is the frequency of the most common AA (L) in all self peptides, and faa,min the frequency of the most rare62

AA (W). Finally, we sample n training peptides from the total set of self peptides using probabilities (Ppep)s, where we use the63

parameter s to control the strength of the bias for rare AAs. Throughout the paper, we used either a weak bias (s = 1) or a64

strong bias (s = 5) as indicated in the figures.65

Sequence analysis.66

String graphs To visualize strings eliciting reactions from the same TCRs, we constructed a graph where each of 1,000 strings67

from both languages (English and Xhosa or English and more English) was a node. We then counted for each combination of68

strings how many TCR motifs (pre-selection) could react to both at t = 3, and connected their nodes with an edge if this69

number was at least 10,000.70

For visualization, we ordered the connected components (clusters) in this graph by their number of nodes, and plotted every71

10th cluster in the final graph.72

Peptide graphs To visualize self and foreign peptides to which the same TCRs react, we again started with a graph with nodes73

for all self- and foreign peptides, and counted for each pair the number of TCRs that could react to both. This time, we used t74

= 4, and connected peptides with an edge if at least 100 TCRs could react to both.75

For visualization of HIV and self peptides, we then selected all connected components (clusters) that contained at least one76

HIV peptide.77

Concordance Concordances were calculated using the full string- and peptide graphs described above (not just the subsets78

used for visualization). For each node, we listed the proportion of self- and foreign neighbors. If a node was isolated and had79

no neighbors, we used the expected value p0,class of this proportion (which equals the proportion of self or foreign nodes in the80

entire graph). For both the self and foreign class of nodes, we then computed the concordance as the mean proportion pclass of81

same-class neighbors (so mean proportion of self neighbors for all self nodes, and mean proportion of foreign neighbors for all82

foreign nodes). Because the ratio between self and foreign peptides/strings was not always equal, we corrected for this ratio as83

follows:84

pcorr,class = ln
pclass

1 ≠ pclass
≠ ln

p0,class
1 ≠ p0,class

[3]85

cclass =
exp(pcorr,class)

exp(pcorr,class) + 1 [4]86

Here, p0,class is the expected proportion of same-class neighbors as described above, and cclass is the ratio-corrected mean87

concordance for that class (self or foreign). This correction ensures that cclass = 0.5 when pclass = p0,class , 0 when there are88

only discordant edges between nodes of a di�erent class, and 1 when there are only concordant edges between nodes of the89

same class. To avoid dividing by zero, we set an exception for situations where pclass = 1:90

if pclass == 1 æ cclass = 1 [5]91

The final, total concordance is then computed as a weighted average of the self- and foreign corrected mean concordance:92

c = p0,self · cself + p0,foreign · cforeign [6]93

AA enrichment The enrichment of AA a (Ea) was computed as94

Ea = ln
fa,opt
fa,self

[7]95

with fa,opt the frequency of AA a within the optimal set of 130,407 self peptides for t = 4 (see Optimal training peptide96

selection), and fa,self its frequency within the total set of 263,216 self peptides (Table S1).97

Exchangeability To compute exchangeability of self peptides, we constructed the graph of all self peptides. We then define98

exchangeability of a peptide as N + 1, where N is the number of neighbors in the peptide graph.99

To compute how likely peptides of a given exchangeability are to delete foreign-reactive TCRs, we sorted self peptides on100

their exchangeability and then grouped them into 10 bins with equal numbers of peptides (deciles). Thus, the first decile101

contains the 10% of peptides with the lowest exchangeabilities, the highest decile the 10% with highest exchangeabilities, etc.102

We then constructed a graph containing all self and HIV peptides, and analyzed for each decile which percentage of the self103

peptides in it had an HIV neighbor in this graph (in other words, which percentage "resembled" an HIV peptide).104

To analyze the relationship between exchangeability and AA composition, we computed both exchangeability and the AA105

composition score Fpep (see Biased training peptide selection) for 1000 randomly selected self peptides, and analyzed the106

association between the two scores.107

Post-selection repertoire analysis.108
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Sequence recognition To assess sequence recognition by the post-selection repertoire, we counted the number of post-selection109

TCRs reacting to each sequence with an a�nity of at least the predefined a�nity threshold t (the same threshold as used for110

negative selection). Recognition was then reported in the number of reacting TCRs per million TCRs in the post-selection111

repertoire. If the post-selection repertoire was empty, we set this number to a value of 0. Reported recognition values are112

always from a single simulation.113

Self-foreign discrimination To assess self-foreign discrimination within a test set containing equal numbers of self and foreign114

sequences across multiple simulations, the number of TCRs reacting to each sequence was counted as mentioned above. All115

sequences were then ranked from high to low numbers of reacting TCRs to obtain the percentage of foreign sequences among116

the 10% most frequently recognized sequences. When there were ties, we used the value of this percentage that would be117

expected after random tie-breaking.118

Affinity distribution To compare TCR a�nities between strings to which many TCRs react and strings with fewer reacting119

TCRs, strings were ranked by number of reacting TCRs as described above and split into the top 10% of most-frequently120

recognized strings and the remaining 90% of strings. For each string, we then counted the number of TCRs reacting to that121

string with a specific a�nity. For both groups, we then computed how many TCRs recognized a string in that group at a given122

a�nity, and report this as a percentage of all TCRs recognizing a string in that group.123

TCR survival/deletion To assess TCR survival during negative selection on training sets of increasing size, we first chose a test124

set of self and/or foreign sequences, and listed all pre-selection TCRs whose a�nity for these sequences was Ø t. We then125

negatively selected our repertoires on training sets that did not contain any of these test sequences, and assessed the percentage126

of the TCRs of interest that survived negative selection. TCR deletion can then be computed as 100 minus the TCR survival127

rate.128

Statistical analysis. Central tendency and spread of asymmetrically distributed continuous variables (sequence recognition in129

TCRs/million) are described using median and interquartile range. For symmetrically distributed continuous variables (%130

foreign sequences among 10% most frequently recognized sequences, % TCR survival), we use mean and standard deviation131

(SD). Concordances/AA enrichment scores are computed as a single number for a complete set of sequences and therefore132

have no measure of spread. The Pearson’s correlation coe�cient and 95% confidence interval were computed using the cor.test133

function of the R stats package with default settings (R version 3.3.2, 2016-10-31, RRID:SCR_001905).134

We did not perform frequentist statistical testing, since we can generate as many simulation runs as needed to ensure that135

any interpreted di�erences are not simply due to random chance.136
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Table S1. List of proteomes used to extract MHC-I binders. See also Methods.

Organism Proteome details Proteins ID Download
date (d/m/y)

Unique
6-mers (#)

Ebola virus Mayinga, Zaire, 1976 9 UP000007209 27/09/2017 140
Human cyto-megalovirus (HCMV) Human herpesvirus 5

AD169 Isolate
Unknown X17403

190 UP000008991 27/09/2017 2,090

Hepatitis B
virus

Genotype D subtype
ayw (isolate France/
Tiollais/1979)

7 UP000007930 27/09/2017 65

Hepatitis C
virus

H77 isolate Unknown
AF009606

2 UP000000518 27/09/2017 112

Human immunodeficiency virus (HIV) Type 1 group M subtype
B (isolate HXB2)

9 UP000002241 27/09/2017 69

Vaccinia virus Strain Copenhagen 257 UP000008269 27/09/2017 1,955
Zika virus MR 766 Isolate

Unknown AY632535
1 UP000054557 27/09/2017 118

Listeria monocytogenes serovar 1/2a
(strain ATCC
BAA-679 / EGD-e )

2,844 UP000000817 27/09/2017 31,251

Plasmodium ovale (Malaria) Wallikeri 8,636 UP000078550 27/09/2017 89,408
Homo sapiens (human) - 20,230 UP000005640 01/06/2017 263,216
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Fig. S1. An AIS of string recognition allows simulation of negative selection.
(a) Affinity distribution of surviving TCRs reacting to 50 English and 50 Xhosa strings after negative selection. Plot shows TCR counts (of specified affinity) per million total
TCRs in either the top 10% of most frequently recognized strings, or the remaining bottom 90% of strings. (b) Average TCR deletion rate as a function of the affinity threshold t
and the number of training strings used (colored lines). See also Fig. 2A, where we plot these data to show TCR survival as a function of the training set size at t = 3.
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Fig. S2. A simple model of TCR-peptide recognition reproduces features of real TCR repertoires.
(a) Cross-reactivity at different affinity thresholds t. At t = 4, a TCR reacts to 1 in every 55,000 peptides, on average. (b) Reanalysis of the data shown in Fig. 3: Typical numbers
of TCRs reacting to HIV (blue) and self (gray) peptides after negative selection with t = 4. Plot shows median and interquartile range of reacting TCRS/million. Typical values lie
between 0 and 20 TCRs per million, depending on the number of training peptides used for negative selection.
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Fig. S3. Self-foreign discrimination is poor for all thresholds t and all pathogens tested.
(a) Concordance (% of same-class neighbors) in the graph of self and foreign peptides is low for all values of t and for all pathogens tested. (b) Self-foreign discrimination
after negative selection at t = 4 is low for all pathogens tested. Plot shows mean±SD of the percentage foreign peptides among most frequently recognized peptides (30
simulations).
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Fig. S4. Improved self representation fails to enhance self-foreign discrimination when cross-reactivity is too high.
Plot shows mean of the percentage HIV peptides among most frequently recognized peptides after negative selection (t = 3, 30 simulations). Negative selection was performed
on random (solid line, data from Fig. 3D included for comparison) or optimal (dashed line) training sets.
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depletion.

10 of 12 Inge M. N. Wortel, Can Keşmir, Rob J. de Boer, Judith N. Mandl, Johannes Textor

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/403428doi: bioRxiv preprint 

https://doi.org/10.1101/403428
http://creativecommons.org/licenses/by/4.0/


50

75

100

0 50 100 150 200 250
# training peptides (x 1000)

%
 fo

re
ig

n 
in

 to
p 

10
%

50

75

100

0 50 100 150 200 250
# training peptides (x 1000)

%
 fo

re
ig

n 
in

 to
p 

10
%

50

75

100

0 50 100 150 200 250
# training peptides (x 1000)

%
 fo

re
ig

n 
in

 to
p 

10
%

50

75

100

0 50 100 150 200 250
# training peptides (x 1000)

%
 fo

re
ig

n 
in

 to
p 

10
%

50

75

100

0 50 100 150 200 250
# training peptides (x 1000)

%
 fo

re
ig

n 
in

 to
p 

10
%

50

75

100

0 50 100 150 200 250
# training peptides (x 1000)

%
 fo

re
ig

n 
in

 to
p 

10
%

50

75

100

0 50 100 150 200 250
# training peptides (x 1000)

%
 fo

re
ig

n 
in

 to
p 

10
%

50

75

100

0 50 100 150 200 250
# training peptides (x 1000)

%
 fo

re
ig

n 
in

 to
p 

10
%

AA bias in training set: No bias (random)

Weak bias for rare AAs
Strong bias for rare AAs

Hepatitis B Hepatitis C HCMV Zika

Malaria Ebola Vaccinia Listeria

Training set size

Fig. S6. Increased presentation of rare AAs during negative selection improves self-foreign discrimination for all pathogens tested.
Plot shows mean±SD of the percentage foreign peptides among most frequently recognized peptides after negative selection (t = 4, 30 simulations). Training peptides were
either chosen randomly (solid line, data from Fig. S3B included for comparison) or with a weak/strong bias for peptides with rare AAs (dashed/dotted lines).
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