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Abstract 

This article presents novel networks that demonstrate how neurons can be 

connected to process information.  The networks perform the same functions as standard 

electronic logic circuits, but they have different architectures because a neuron's logic 

capability is different from the logic gates commonly used in electronic computational 

systems.  With only the capabilities of neuron excitation and inhibition, the networks 

generate detailed phenomena of short-term memory and electroencephalograms.  A single 

neuron can operate as a functionally complete logic primitive.  As few as two neurons can 

be connected to form a robust flip-flop.  Neurons in a memory bank of flip-flops produce 

the seven characteristics of neuron activity that are associated with memory formation, 

retention, retrieval, termination, and errors.  Neural flip-flops also predict seven more 

phenomena that are testable by the same methods that led to the discovery of the first 

seven.  Three neurons can form an oscillator, and basic flip-flops can function as toggles.  

With input from an oscillator, a toggle oscillates at half the frequency of the input.  A 

cascade consisting of an oscillator and four toggles connected in sequence can produce the 

synchronized firing found in electroencephalograms by enabling neural structures to 

change states simultaneously.  The means and variances of five EEG frequency bands are 

given as explicit functions of the mean and variance of the neuron delay times in all such 

cascades' initial oscillators.  The delay times' two parameters determine the specific 

frequencies that separate the EEG bands and the peak frequency within each band.  

Cascaded oscillators determine the octave relationships between the bands' boundaries and 

peaks, and they suggest selective advantages for synchronization and for synchronization 

in different frequency bands.  A simple experiment is described to test for the predicted 

relationship between the distribution parameters of neuron delay times and EEG 

frequencies.  Any of the networks can be constructed with neurons and tested for many 

predicted behaviors. 
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Introduction 

DEEP neural networks 

This is the fourth in a series of articles that show how neurons can be connected to 

process information.  The first three articles [1-3] explored the analog properties of neuron 

signals in combinational processing of information, i.e., logic functions whose outputs 

depend only on the current state of the inputs.  The present article considers the digital 

(Boolean logic) properties of neuron signals in sequential logic operations, whose outputs 

are functions of both the current inputs and the past sequence of inputs.  Neural models for 

flip-flops and oscillators are shown to produce detailed characteristics of short-term 

memory and electroencephalograms (EEGs).  These phenomena have been known but 

unexplained for decades.   

The networks proposed in these four articles are dynamic, explicit, evolutionary, 

and predictive (DEEP).  The networks' dynamic operation means the only changes are the 

levels of neuron activity.  No material change is required in the structure of the brain, nor 

is any change required in the way cells or synapses function.  All connections between 

neurons are shown explicitly, and all assumptions of neuron capabilities are stated 

explicitly.  Only minimal neuron capabilities are assumed, and no network capabilities are 

assumed.  The networks are evolutionary in the sense that they suggest selective 

advantages for the phenomena they generate.  This includes phenomena whose functions 

are uncertain, such as the matched periods of neural structure activity found in EEGs 

(a.k.a. brainwaves).  (The advantage of simultaneous enabling of neural structures by 

cascaded oscillators is timing error avoidance.)  Finally, the networks are predictive of 

nervous system phenomena.  That is, based on the explicit connections and neuron 

capabilities, it can be demonstrated that the models generate known nervous system 

phenomena, and they may predict testable phenomena that are as yet unknown.   
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Explicit neuron connections and capabilities can lead to micro explanations of 

macro phenomena, and to numerous predictions of major phenomena that are quite 

specific.  For example, the hypothesis that cascaded oscillators produce EEG frequencies 

implies that the boundary separating the EEG alpha and beta frequency bands is  

125/{μd + √[(μd)
2
 + (σd)

2
ln(4)]} Hz,  

where μd and σd are the mean and standard deviation (in ms) of the normal distribution of 

delay times of neurons that make up the initial ring oscillators in the cascades.  The 

precision and number of such predictions make hypotheses eminently falsifiable.   

How neurons are connected remains one of the most important unanswered 

questions in biology [4].  The DEEP properties are necessary for a model to demonstrate 

how neurons might actually be connected to process information in the "real time" of most 

brain functions (a few milliseconds).  The networks presented here and in the three 

previous papers [1-3] are apparently the only models of nervous system activity that have 

these properties.  The purpose of this article is to call attention to the dearth of DEEP 

models in the literature and to demonstrate that designing such models is possible.  DEEP 

models are needed to begin to make progress in discovering how synaptic connections are 

organized.   

Unexplained phenomena and previous models 

Single neuron logic capability 

McCulloch and Pitts' seminal paper [5] proposed that the brain is made up of logic 

gates.  This idea has had an enormous influence on artificial intelligence, but the paper's 

"… concept of simplified Boolean neurons had a limited impact on neuroscience." [6].  

More than 70 years later, the nervous system's fundamental computational abilities are still 

unclear [7].  In that time span, many theoretical models have been proposed for neuron 
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responses as mathematical or logic functions, but the modern view of these models follows 

"the adage that all models are wrong, but some are useful" [8].   

The neuron response models that are useful in AI are assumed to have  

sophisticated mathematical capabilities.  This makes it possible to simulate the models on a 

computer with impressive results.  However, there is little or no evidence that actual 

neurons can carry out the particular mathematical functions assumed for the models.   

A prominent example of a neuron response model assumes a neuron has modifiable 

weights that are applied to signals at its synapses.  The neuron then adds these weighted 

inputs in a nonlinear way to produce an output.  Apparently there is no evidence that 

neurons have these capabilities.  In addition, because the weights are modified over time 

with repeated inputs, the method is not dynamic and therefore cannot model fast functions 

such as short-term memory.   

Perhaps more importantly, sophisticated neuron capabilities are unnecessary for the 

requirements of information processing.  The model used here shows that neurons with one 

inhibitory input that can suppress one excitatory input are sufficient for all information 

processing.  Apparently there is no other claim in the literature that a single neuron can 

function as a specific logic primitive (even a functionally incomplete logic primitive) based 

on minimal neuron capabilities.   

Short-term memory 

Memory tests have shown that certain neurons fire continuously while information 

is held in short-term memory.  This activity was found in neurons in the visual, auditory, 

and sensorimotor cortexes of monkeys while corresponding sensory information is held in 

memory [9, 10].  Similar activity has been found more recently in humans [11].   
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In the experiments, seven characteristics of neural activity were associated with 

memory formation, retention, retrieval, termination, and errors:  1) Before the stimulus was 

presented, the sampled neuron discharged at a low, baseline level.  2) When the stimulus 

was presented, or shortly after, the neuron began to fire at a high frequency.  3) The high 

frequency firing continued after the stimulus was removed.  4) The response was still high 

when the memory was demonstrated to be correct.  5) The response returned to the 

background level shortly after the test.  6) In the trials where the subject failed the memory 

test, the high level firing had stopped or 7) had never begun.   

Several models have been proposed for memory mechanisms composed of neurons, 

but apparently none produces the seven phenomena described above.  It is also apparent 

that no memory model has been proposed that has the DEEP properties.  The neural flip-

flops and memory banks presented here produce all of the phenomena.   

Electroencephalograms 

Electroencephalograms show widespread rhythms, or brainwaves, that consist of 

many neurons firing with matched periods.  The spectrum of frequencies has been 

partitioned into bands according to the behavioral and mental state associated with the 

frequencies in each band.  Within each band the distribution of frequencies is unimodal 

[12-15].  The ratios of consecutive EEG band boundaries [16] and the ratios of consecutive 

EEG band peak frequencies [12-15] are 2. 

The EEG phenomena raise several questions.  What causes a neuron to fire with a 

regular period for many seconds?  What is the function of such long-term, periodic firing?  

What produces and what is the function of the widespread synchronization of periodic 

firing found in EEGs?  What produces and what is the function of the wide distribution of 

EEG frequencies in bands?  What produces the unimodal distribution in each band and the 

octave relationships between the bands' peaks and boundaries?   
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Answers to a few of these questions have been proposed, but there has been no 

explicit model that can explain more than one or two phenomena.  Most models are based 

on "black box" networks or broad assumptions of neuron capabilities.  Apparently none 

has the DEEP properties.  Below are two prominent examples of proposed oscillator 

models. 

Pacemaker cells are natural oscillators that cause involuntary muscles and other 

tissues to contract or dilate.  They are spontaneously active neurons with a specialized cell 

membrane that allows sodium and potassium to cross and generate regular, slow action 

potentials (around 100 spikes per minute) [17, 18].  Modulating input controls the spike 

frequency.  Except for generating periodic signals, pacemaker cells do not offer answers to 

any of the questions above.  It is not clear, for example, how pacemaker cells could 

generate the wide distribution of EEG frequencies, their unimodal distribution in bands, or 

the octave relationships of the bands.   

The Kuramoto model [19, 20] provides a widely accepted explanation of 

synchronized firing found in EEGs .  The model assumes, without supporting evidence and 

without an explanation of a mechanism or function for this behavior, that the neurons' 

signals oscillate naturally, that these oscillations are nearly identical, and that each neuron 

is linked to all the others.  Moreover, the model does not appear to answer any of the above 

questions besides how synchronization occurs.   

The cascaded oscillators model proposed here can produce the synchronized firing 

found in EEGs by enabling neural structures' state changes simultaneously.  It will be 

shown that the model provides answers to all of the questions above.   In addition, the 

distribution of EEG frequencies in each band is entirely determined by just two 

parameters: the mean and variance of the initial oscillators' neuron delay times.  This 
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distribution includes the specific frequencies that separate the EEG bands and the peak 

frequency within each band.   

The models in brief 

The neural networks presented here do not build on previous neural models, 

including those in [1-3].  However, the networks are similar to standard logic circuits 

designed for electronic computational systems, and they perform the same functions.  The 

new networks are also significantly different from the standard architectures (designs 

specifying components and connections) because a neuron's logic function, described 

immediately below, is virtually never used in electronic systems.   

Single neuron logic gate 

Recognizing a neuron's capability of functioning as a logic primitive makes a 

useful connection between neuroscience and the field of logic circuit design in electronic 

computational systems.   

All neurons considered here have one excitatory and one inhibitory input. 

Previously it was shown than such a neuron can perform the AND-NOT logic operation, 

i.e., X AND NOT Y [2].  In simplest terms, this is because the neuron is active when it has 

excitatory input and does not have inhibitory input.  This neuron logic capability is 

discussed more thoroughly in two sections on neuron response.  The AND-NOT operation 

is not to be confused with the NAND operation (NOT(X AND Y)) that is commonly used 

in electronic systems.   

If the truth value of X is TRUE, then the truth value of X AND NOT Y is NOT Y.  

This means a neuron with constant excitatory input is a logic NOT gate.  A NOT gate is 

commonly called an inverter since it inverts the value of the single variable input. 
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The AND-NOT gate together with a NOT gate make up a functionally complete 

set.  So with access to a high excitatory input, the AND-NOT operation is functionally 

complete, meaning any logic function can be performed by a network of such logic gates.  

In other words, sufficiently many neurons operating as AND-NOT gates can perform all of 

the brain's processing of information.   

Neural flip-flops 

Flip-flops are the basic building blocks of sequential logic systems.  Information is 

stored in an electronic flip-flop by a brief input signal that makes a different component 

produce a high output signal.  A neural flip-flop (NFF) functions the same way, but the 

components are neurons.  Here it is shown that a few AND-NOT gates can be connected to 

form two standard flip-flops, the Set-Reset (SR) and JK.  Both are commonly used as 

memory elements in electronic computational systems, and the JK flip-flop can be 

configured to function as a toggle.  A toggle is a flip-flop with one input that inverts the 

flip-flop's memory state each time the input is high. 

Cascaded oscillators 

As mentioned above, an AND-NOT gate can be configured to invert an input signal 

(high input to low output and vice versa).  An odd number of three or more inverters 

connected sequentially in a ring produces periodic bursts as each gate inverts the next one.  

The odd number of inverters makes the network state unstable, resulting in the oscillation 

of each inverter's output.  The signal produced by each gate has a regularly repeating 

pattern of a burst of high activity followed by an interval of low activity.   

With input from an oscillator, a toggle functions as another oscillator.  Because two 

high inputs are required for each cycle (one to set the memory state, another to reset it), a 

toggle-as-oscillator produces a signal whose frequency is exactly half that of the toggle's 
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input.   One of the outputs of a toggle-as-oscillator can provide input to another toggle, 

making it an oscillator.  A ring oscillator and several toggles can thus be connected as a 

cascade of oscillators, with each oscillating at half the frequency of its input.   

Testable predictions 

This article ends with several testable predictions made by the models, briefly 

outlined here.   

Any of the proposed networks could be constructed with actual neurons and tested 

for specific predicted behavior.   

As noted above, memory tests have shown that certain neurons fire continuously 

while information is held in short-term memory, and NFFs produce all seven 

characteristics of these neurons' activity.  NFFs predict seven additional phenomena 

regarding this type of cell, along with a neighboring cell.  These predictions can be tested 

by the same methods that were used in discovering the first seven phenomena.   

The pair of cells with outputs labeled M and M in the figures are predicted to have 

1) close proximity, 2) reciprocal 3) inhibitory inputs, 4) complementary outputs, and 5) 

noise-reducing responses to the inputs.  When information is changed in memory, 6) the 

cell with high output changes first with 7) the other changing a few milliseconds later.   

The hypothesis that cascaded oscillators produce EEG frequencies implies the 

oscillators and EEG bands have the same distributions of frequencies.  The oscillators' 

frequencies means and variances are shown here to be functions of the mean and variance 

of neuron delay times.  The means and variances of neuron delay times and EEG band 

frequencies can be estimated from random samples.  Using standard tests for equal means 

and variances, the EEG sample statistics can be compared to the EEG parameters predicted 

by the delay time statistics.   
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Analysis 

Figure symbols  

For several reasons, the neural networks in the figures are illustrated with standard 

(ANSI/IEEE) logic symbols rather than symbols commonly used in neuroscience 

schematic diagrams.  A comparison is shown in Fig 1. 

 

Fig 1.  Network symbols.  A. A logic circuit illustrated with standard logic symbols.  Each 

of the six components represents a logic function that can be implemented with electronic 

hardware or with a single neuron.  B. The same logic circuit illustrated with symbols 

commonly used in neuroscience schematic diagrams.  

The symbols in Fig 1A can be interpreted in two ways.  As logic symbols, the 

rectangle with one rounded side represents the AND logic function, and a circle represents 

negation.  So the networks in the figures can be constructed with ordinary electronic 

components or simulated with electronic circuit software.  Second, it will be shown that 
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the logic gate represented by an AND symbol and a circle can be implemented by a single 

neuron, with a circle representing inhibitory input and no circle representing excitatory 

input.  As illustrated in Fig 1B, inhibition is often represented by a small closed circle and 

excitation by a closed triangle, but there does not seem to be an accepted standard of 

symbols for networks of neurons.   

The circles in Fig 1A are a small exception to standard symbols.  A circle 

representing negation normally comes after a logic gate.  Standard notation would include 

a triangle before the circles in the figures to represent a buffer gate, whose output equals 

the single input.   The triangle is omitted here to emphasize that the AND gate with a circle 

is considered a single logic gate or a single neuron.   

The standard logic symbols normally represent Boolean logic, which for most 

electronic computational systems means digital signal processing.  Neurons can convey 

analog signals, either with signals of graded strength or with the strength of signals 

consisting of spikes measured by spike frequency.  It will be shown that the neural 

networks in the figures can generate robust digital signals, i.e., signals with only high and 

low strengths (except during transition from one to the other).   

The similarities and differences between the novel diagrams of networks designed 

for neurons and diagrams of standard logic functions implemented electronically are easier 

to see if they are both illustrated with the same symbols.  As mentioned in the introduction, 

although the new networks produce the same results as standard architectures, there are 

significant design differences because neurons function as logic gates that are different 

from commonly used electronic gates.   

The single, branching output channels in Fig 1A are more realistic depictions of 

axons than the multiple output channels of Fig 1B.   
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Finally, diagrams in standard engineering form clarify the connectivity, the logic 

function of each component, the distinction between feedback and feed-forward signals, 

and the overall direction of signal processing.   

Binary neuron signals 

Neuron signal strength, or intensity, is normalized here by dividing it by the 

maximum possible intensity for the given level of adaptation.  This puts intensities in the 

interval from 0 to 1, with 0 meaning no signal and 1 meaning the maximum intensity.  The 

number is called the response intensity or simply the response of the neuron.  If 1 and 0 

stand for the truth values TRUE and FALSE, respectively, neurons can process 

information contained in neural signals by functioning as logic operators.  The responses 1 

and 0 are also referred to collectively as binary signals and separately as high and low 

signals.  Normalization is only for convenience.  Numbers labeled Max & Min would do as 

well as 1 and 0.   

As noted above, the strength of a signal consisting of action potentials, or spikes, 

can be measured by spike frequency.  A brief high signal consists of a burst of spikes at the 

maximum spiking rate.  For a signal that oscillates between high and low, the frequency of 

the oscillation is the frequency of bursts, not the frequency of spikes. 

For binary signals, the response of a neuron with two inputs is assumed to be as 

shown in Table 1.  Of the 16 possible binary functions of two variables, this table 

represents the only one that is consistent with the customary meanings of "excitation" and 

"inhibition."  Table 1 is also a logic truth table, with the last column representing the truth 

values of the statement X AND NOT Y.   
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Excitatory X Inhibitory Y Response 

0 0 0 

0 1 0 

1 0 1 

1 1 0 

Table 1.  Neuron response to binary inputs. 

The networks presented here require a continuously high excitatory input.  In the 

figures, this input is represented by the logic value "TRUE."  If the figure represents an 

electronic logic circuit, the high input is normally provided by the power supply.  If the 

figure represents a neural network, the high input can be accomplished by neurons in at 

least four ways.  1) A continuously high signal could be provided by a cell that has 

excitatory inputs from many cells that fire independently [21].  2) Neurons that are active 

spontaneously and continuously without excitatory input are known to exist [22, 23].  A 

network neuron that requires a high excitatory input could receive it from a spontaneously 

active neuron, or 3) the neuron itself could be spontaneously active.  4) It will be seen that 

the high input could be provided by one of a flip-flop's outputs that is continuously high.   

Noise in neuron signals 

All results for the networks presented here follow from the responses to binary 

signals in Table 1 and the algebra of Boolean logic applied to the networks' connections.  

Although binary signals are common in modeling neuron response, it has apparently not 

been demonstrated that neurons are capable of maintaining such signals in the presence of 

noise.  Analog signals (intermediate strengths between 0 and 1) and noise-reducing 

responses are considered here only to show how the networks in the figures can have this 

capability.   
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Evidence exists that some neurons have at least a minimal capability of reducing 

moderate levels of additive noise in binary inputs.  First, some neurons are known to have 

sigmoid responses to single inputs, including inhibitory inputs [24-26].  A sigmoid 

response reduces moderate levels of additive noise in a binary signal by producing an 

output that decreases an input near 0 and increases an input near 1.  It is not clear whether a 

single neuron has been tested for sigmoid responses to both excitatory and inhibitory 

inputs.  That would be sufficient for the noise-reducing requirements of the NFFs here.  

Second, without some noise-reducing capability, no network would be able to sustain the 

high rate of firing known to be associated with short-term memory [9-11].  The cumulative 

effect of additive noise would quickly attenuate the high output.   

Noise reduction in a response to both excitatory and inhibitory inputs can be 

accomplished by a function of two variables that generalizes a sigmoid function's features.  

The noise reduction need only be slight for the proposed NFFs because they have 

continuous feedback loops that repeatedly reduce the effect of noise with each iteration of 

feedback.   

Let F(X, Y) represent a neuron's response to an excitatory input X and an inhibitory 

input Y.  The function must be bounded by 0 and 1, the minimum and maximum possible 

neuron responses, and satisfy the values in Table 1 for binary inputs.  For other points (X, 

Y) in the unit square, suppose F satisfies  

1.  F(X, Y) > X - Y for inputs (X, Y) near (1, 0) and  

2.  F(X, Y) < X - Y or F(X, Y) = 0 for inputs (X, Y) near the other three vertices of 

the unit square. 

The neuron responses of Table 1 are max{0, X-Y} (the greater of 0 and X-Y).  For 

binary inputs with moderate levels of additive noise that makes them non-binary, 
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conditions 1 and 2 make the output either equal to 0 or closer to the intended output of 

Table 1 than max{0, X-Y}.   

Conditions 1 and 2 are sufficient to suppress noise in the proposed NFFs.  Neurons 

that make up the NFFs are assumed to have these minimal noise-reducing properties.  The 

level of noise that can be tolerated by the NFFs depends on the minimum distance from a 

vertex of the unit square to a point outside the region in the unit square where condition 1 

or 2 holds.   

An example function is given here.  For any sigmoid function f from f(0) = 0 to f(1) 

= 1, the following function has the noise-reducing properties 1 and 2 and also satisfies 

Table 1:   

F(X, Y) = f(X) - f(Y), bounded below by 0.   

This function is plausible as an approximation of a neuron response because it is 

sigmoid in each variable and some neurons are known to have sigmoid responses to single 

inputs, as mentioned above.  The same sigmoid function applied to X and Y is not 

necessary to satisfy conditions 1 and 2.  The function F could be the difference of two 

different sigmoid functions.   

The function is illustrated in Fig 2 for a specific sigmoid function.  The sine 

function of Fig 2A was chosen rather than any of the more common examples of sigmoid 

functions to demonstrate that a highly nonlinear function is not necessary for robust 

maintenance of binary signals.  On half of the unit square, where Y ≥ X, Fig 2B shows that 

F has the value 0.  This reflects the property that a large inhibitory input generally 

suppresses a smaller excitatory input.   
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Fig 2.  Noise-reducing AND-NOT function.  The graph shows an example of a neuron 

response to analog inputs that reduces moderate levels of additive noise in binary inputs.  

A. A sigmoid function f(x) = (1/2)sin(π(x - 1/2)) + 1/2.  B. Graph of a function that has the 

noise-reducing properties 1 and 2.  The function is F(X, Y) = f(X) - f(Y), bounded by 0.  

Wireframe: Graph of the response function Z = F(X, Y).  Green and red: A triangle in the 

plane Z = X - Y.  Red: Approximate intersection of the plane and the graph of F.  Purple: 

Approximate region in the unit square where Z > X - Y.  Blue: Region in the unit square 

where Z < X - Y or Z = 0.   

The response function F(X, Y) in Fig 2 is used for the network simulations as 

follows.  The whole number i represents time, and the time unit is neuron delay time.  That 

is, each number i represents i neuron delay times.  The variables are initialized at time i = 

0.  At time i > 0, the output Zi of each cell that has excitatory and inhibitory inputs Xi-1 and 

Yi-1 at time i-1 is:  

3.  Zi = F(Xi-1, Yi-1)  

= max{0, [(1/2)sin(π(Xi-1 - 1/2)) + 1/2] - [(1/2)sin(π(Yi-1 - 1/2)) + 1/2]}. 
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Conditions 1 and 2 do not indicate capabilities of sophisticated mathematics.  Fig 3 

shows that a single transistor and three resistors can be configured to satisfy the conditions.  

The network output was simulated in engineering software.  The inputs X and Y vary from 

0V to 5V in steps of 0.05V.  A 5V signal commonly stands for logic value 1, and ground 

stands for logic value 0.   

 

 

Fig 3.  Single transistor AND-NOT gate that reduces noise.  This minimal logic circuit 

satisfies the noise-reducing conditions 1 and 2.  A. A logic circuit consisting of one 

transistor and three resistors.  B. Engineering software simulation.  Wireframe: Graph of 

the response Z as a function of the inputs X and Y.  Green and red: A triangle in the plane 

Z = X - Y.  Red: Intersection of the plane and the graph of the response function.  Purple: 

Region in the unit square where Z > X - Y.  Blue: Region in the unit square where Z < X - 

Y or Z = 0.   

Logic gates and flip-flops 

Fig 4 shows two logic primitives and several flip-flops.  All are composed of the 

first type of logic primitive in Fig 4A, which can be implemented by a single neuron.   
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Fig 4.  Logic gates and flip-flops.  A. A symbol for an AND-NOT logic gate, with output 

X AND NOT Y.  The symbol can also represent a neuron with one excitatory input and 

one inhibitory input.  B. An AND-NOT gate configured as a NOT gate, or inverter.  C. 

Active low set-reset (SR) flip-flop.  D. Active high SR flip-flop.  E. Flip-flop enabled by 

input from an oscillator.  F. JK flip-flop or toggle.  If S and R are high simultaneously, the 

flip-flop is inverted.   

If X and Y are statements with truth values TRUE or FALSE, the statement "X 

AND NOT Y" is TRUE if and only if X is TRUE and Y is FALSE.  This logic primitive is 
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illustrated in Fig 4A.  The figure can also represent a neuron with one excitatory input and 

one inhibitory input, whose response to binary inputs is X AND NOT Y by Table 1.  The 

logic primitive NOT X is TRUE if and only if X is FALSE.  Fig 4B shows that an AND-

NOT gate with a continuously high input functions as a NOT gate.   

The AND-NOT logic primitive has efficiency and power that have been 

underappreciated.  It is in the minority of logic primitives that are functionally complete.  

With analog signals, AND-NOT gates can make up a powerful fuzzy logic decoder whose 

architecture is radically different from, and more efficient than, standard electronic decoder 

architectures [2, 27, 28].  Implemented with neural AND-NOT gates, these fuzzy decoders 

generate detailed neural correlates of the major phenomena of color vision and olfaction [1, 

2].  Analogously to the single-neuron AND-NOT gate, the gate can be implemented 

electronically with a single transistor and one resistor [27].  Any mechanism that can 

activate and inhibit like mechanisms and has access to a high activating input is a 

functionally complete AND-NOT gate.  It may not be coincidence that the components of 

disparate natural signaling systems have these capabilities, e.g., immune system cells [29-

32] and regulatory DNA [33, 34] in addition to transistors and neurons.   

The most common type of memory element used to store one bit of information in 

electronic computational systems is a latch or flip-flop.  The more formal name is bistable 

multivibrator, meaning it has two stable states that can alternate repeatedly.  A distinction 

is sometimes made between a "flip-flop" and a "latch," with the latter term reserved for 

asynchronous memory mechanisms that are not controlled by an oscillator.  The more 

familiar "flip-flop" will be used here for all cases.   

A flip-flop stores a discrete bit of information in an output encoded as 0 or 1. This 

output is labeled M in Fig 4.  The value of M is the flip-flop state or memory bit.  The 

information is stored by means of a brief input signal that activates or inactivates the 
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memory bit.  Input S sets the state to M = 1, and R resets it to M = 0.  Continuous feedback 

maintains a stable state.  A change in the state inverts the state.   

Two basic types of flip-flops are the Set-Reset (SR) and JK.  Fig 4C shows an 

active low SR flip-flop.  The S and R inputs are normally high.  A brief low input S sets 

the memory bit M to 1, and a brief low input R resets it to 0.  Adding inverters to the inputs 

produces the active high SR flip-flop of Fig 4D.  The S and R inputs are normally low.  A 

brief high input S sets the memory bit M to 1, and a brief high input R resets it to 0.   

Fig 4E shows a flip-flop with an enabling input.  The S and R inputs in Fig 4D have 

been replaced by AND-NOT gates that allow the S or R input to be transmitted only when 

the enabling input is low.  In synchronized signaling systems, various logic circuits are 

enabled simultaneously by an oscillator to avoid timing errors.   

In Fig 4F, the enabling input in Fig 4E has been replaced by input from the flip-flop 

outputs.  A disadvantage of the SR flip-flop is that if S and R are high simultaneously, the 

outputs are unpredictable.  The advantage of the JK flip-flop in Fig 4F is that if S and R are 

both high simultaneously, the flip-flop state is inverted because the most recent inverting 

input is inhibited by one of the outputs.  This means the JK flip-flop can be configured as a 

toggle by linking the Set and Reset inputs, as illustrated in the figure.  A problem is that 

the toggle functions correctly only for a short duration of high input.  If the duration is too 

long, the outputs will oscillate.   

Neural flip-flop simulation  

The simulation in Fig 5 shows that the operation of the NFF in Fig 4D is robust in 

the presence of additive noise in the inputs.  The simulation was done in a spreadsheet with 

the outputs of each cell computed by equation 3.  At time i = 0, the outputs are initialized 

at M0 = 0 and 0M = 1.  (If both are initialized at 0, they will oscillate until either S or R is 
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high.)  Low level additive noise and baseline activity in the inputs are simulated by a 

computer-generated random number between 0.01 and 0.1.  The noise is offset by 0.01 so 

it does not obscure the high and low outputs in the graphs.  Each of the two larger noise 

bursts in Set and Reset is simulated by the sum of two sine functions and the computer-

generated noise.  The higher Set and Reset signals that successfully invert the memory 

state are simulated by a sine function plus noise.  The slow rise time of these inputs, over 

several neuron delay times, is exaggerated to make the robust operation of the network 

clear.  The high Enabling input TRUE is simulated by 1 minus noise.   

 

 

 

Fig 5.  Simulation of an NFF operation with noise in the inputs.  The simulation of the 

NFF in Fig 4D shows the effect of baseline noise on the memory bit is negligible, and 

temporary bursts of larger noise have no lasting effect.   

Memory bank  

If information stored in short-term memory is no longer needed, active neurons 

consume energy without serving any useful purpose.  An energy-saving function can be 

accomplished with NFFs.  Fig 6 shows a memory bank of three NFFs of Fig 4D, with a 

fourth serving as a switch to turn the memory bank on and off.  The memory elements are 
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enabled by excitatory input from the switch.  A large memory bank could be organized as a 

tree, with switches at the branch points and memory elements at the leaves, so that at any 

time only the necessary memory elements are enabled.   

 

 

Fig 6.  Memory bank.  Three NFFs (Fig 4D) enabled by a fourth NFF serving as an on-off 

switch.   

Oscillators 

An oscillator is the basic element of a timing mechanism.  An odd number of three 

or more inverters connected sequentially in a ring produces periodic bursts as each gate 

inverts the next one.  All inverters in the ring produce oscillations with the same frequency.  

The signals have approximately the same burst duration and their phases are approximately 

uniformly distributed over one cycle.  Their common period is twice the sum of the 

inverters' delay times.  (The sum is doubled because each component inverts twice per 
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cycle.)  A ring oscillator is the simplest type of oscillator implemented with logic gates, 

and the simplest ring oscillator consists of three inverters.   

As described in the introduction, an oscillator can be connected in sequence with 

toggles to form a cascade of oscillators, with each toggle oscillating at half the frequency 

of its input.  The master-slave toggle is the customary choice for cascaded oscillators 

because of its ability to invert no more than once regardless of the high input duration.  

However, it is shown here that the problem of JK toggles inverting more than once with a 

long high input can be resolved by using an early output in the JK toggle's signal pathway 

as the input to the next toggle.  The two initial neurons have the same pulse duration as the 

toggle's input.  This means an entire cascade can be composed of a ring oscillator and JK 

toggles, which require half as many components as master-slave toggles.  This 

configuration is illustrated in Fig 7.  The use of JK toggles as cascaded oscillators may be 

new.   
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Fig 7.  Three cascaded oscillators.  The cascade consists of a ring oscillator followed by 

two JK toggles connected in sequence.  The ring oscillator is composed of three inverters 

of Fig 4B, with an enabling first input.  The toggles are as in Fig 4F.  The input to the 

second toggle comes from one of the first gates in the first toggle so that the duration of the 

high signal remains the same throughout the cascade. 

Cascaded oscillator simulation 

The simulation in Fig 8 illustrates the main properties of the cascaded oscillators in 

Fig 7.  Like the simulation in Fig 5, this was done in a spreadsheet with the outputs of each 

cell computed by equation 3.  At time i = 0, the outputs are initialized in a stable state. 
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Noise is simulated as a random number between 0 and 0.1.  The Enabling input begins as 

baseline noise and transitions between 0 and 1 as a sine function plus noise.  During the 

interval when the enabling input is high, it is 1 minus noise.   

 

Fig 8.  Simulation of three cascaded oscillators.  The simulation illustrates the main 

properties of the cascaded oscillators in Fig 7:  The period of the ring oscillator's signal is 

twice the sum of the three neurons' delay times.  In each toggle, the period of every 

neuron's output is twice the period of the toggle's input.  The pulse duration of each 

toggle's two initial neurons is the same as the pulse duration of the toggle's input.  Using 

one of these signals as input to next JK toggle in the cascade prevents it from inverting 

more than once during the input's cycle.   

Frequency distributions of cascaded neural oscillators 

A normal distribution with mean μ and standard deviation σ will be denoted by 

N(μ, σ).  The normal probability density function (PDF), whose graph is commonly known 

as the bell curve, is: 

4.  f(x) = exp[-(x-μ)
2
/(2σ

2
)]/√(2πσ

2
) 
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Since delay times of neurons are determined by several factors, delay times should 

be approximately normally distributed (by the central limit theorem).  The normal 

distribution of neuron delay times with mean μd and standard deviation σd is N(μd, σd).   

As noted earlier, a ring oscillator's period is twice the sum of the inverters' delay 

times.  If X1, …, Xn are the delay times of n neural inverters in a ring oscillator, the 

oscillator's period is Y = 2(X1 + …+ Xn).  The neurons' delay times are independent and 

identically distributed as N(μd, σd), so by the elementary properties of PDFs, the ring 

oscillator's period Y is normally distributed as  

 5.  N(μr, σr) = N(2nμd, 2√nσd).   

Five EEG frequency bands are considered in this article: gamma, beta, alpha, theta, 

and delta.  Some researchers have found more bands or divided the bands into sub-bands 

depending on the focus of their research, but these five are discussed most often in the 

literature.  To obtain five oscillations with cascaded oscillators, four toggles are needed in 

addition to the initial ring oscillator.  These toggles' periods are 2Y, 4Y, 8Y, and 16Y.  

Again by elementary properties of PDFs, these random variables are also normally 

distributed with mean and standard deviation double that of the input.  This is the octave 

relationship between the periods' distributions.   

With all of the cascaded oscillators' PDF parameters given by equation 5 and the 

octave relationship, and the PDFs given by equation 4, the four intersections of each pair 

of consecutive PDFs can be found by elementary algebra.  For i = 1, …, 4 (i = 1 

representing the ring oscillator), the intersection of PDFi and PDFi + 1 is: 

 6.  Intersection(i) = (2
i
/3){μr + √[μr

2
 + 6σr

2
ln(2)]} ms  

= (2
i+1

/3){nμd + √[(nμd)
 2
 + 6nσd

2
ln(2)]} ms.   
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The factor 2
i
 shows the intersections also have the octave relationship. 

For small networks of neurons with chemical synapses, nearly all of the delay 

occurs at the synapses.  Several studies have measured neuron delay times [e.g., 35, 36], 

but the literature apparently does not have empirical estimates of the parameters of the 

delay times' distribution.  However, a description of the range is “at least 0.3 ms, usually 1 

to 5 ms or longer” [22].  Although the description is far from precise, delay time 

parameters can be estimated.   

The description of the range has two parts.  The first part “at least 0.3 ms" seems to 

refer to all observations.  The second part "usually 1 to 5 ms or longer" seems to describe 

the ranges of typical samples, with "5 ms or longer" representing the ranges' right 

endpoints.  In that case, the interval [1 ms, 7 ms] is at least a reasonable, rough estimate of 

the range of a moderately sized sample.   

If only the range of a sample (minimum value, m, and maximum, M) is known, the 

midpoint can be used as an estimate of the mean of a distribution.  Simulations have shown 

that (M - m)/4 is the best estimator of the standard deviation for moderately sized samples 

[37].  Based on this and the estimated range [1 ms, 7 ms], neuron delay times are estimated 

to be normally distributed as  

 7.  N(μd, σd) = N(4 ms, 1.5 ms).   

About 99.3% of this distribution is greater than 0.3 ms.  This agrees well with the 

description “at least 0.3 ms.”  About 73% lies between 1 and 5 ms, and 95% is between 1 

and 7 ms.  This agrees reasonably well with the description “usually 1 to 5 ms or longer.”   

The hypothesis that cascaded oscillators produce EEG frequencies implies the 

initial ring oscillator must have the minimum of three inverters, because an oscillator with 

more inverters would be too slow to generate EEG oscillations in the gamma band.  (This 
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in turn implies, unsurprisingly, that the brain evolved to enable some information to be 

processed as fast as possible.)  By substituting the parameters of equation 7 into equation 

5, the period of a three-inverter ring oscillator is estimated to be normally distributed as  

 8.  N(μr, σr) = N(24 ms, 3√3 ms). 

This period PDF (equation 4) and the period PDFs of four cascaded toggle/oscillators 

(from the octave relationship) are shown in Fig 9.  The PDF intersections are found by 

substituting the parameters in equation 7 or 8 into equation 6.   

 

 

Fig 9.  Frequency distribution of cascaded oscillators.  The graphs are the estimated 

PDFs of the periods of a three-neuron ring oscillator and four cascaded toggles.  The PDFs 
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are derived from the estimated distribution of neuron delay times.  The intersections and 

means (in Hz) are labeled in blue and yellow, respectively.  Also shown in red and green 

are frequencies that are commonly cited as partition points separating the EEG frequency 

bands and peak frequencies of three of the bands.  The five intervals defined by the 

intersections of consecutive PDFs are labeled with Greek letters to distinguish them from 

EEG frequency bands, which are commonly written in the Roman alphabet.   

Synchronous logic systems 

Logic systems have a timing problem in ensuring the various subcircuits change 

states in the correct chronological sequence.  Synchronous logic systems generally have 

simpler circuit architecture and fewer errors than asynchronous systems.  This is the reason 

nearly all electronic logic systems are synchronized by an enabling pulse to each 

component circuit, so that whenever any components change states, they change 

simultaneously.  The pulse in such systems is usually produced by an oscillator.  The 

enabling input in Fig 4E and oscillators in Fig 7 illustrate how such synchronization is 

possible with neural networks.   

Timing problems are greater in sequential logic than in combinational logic, and 

greater in parallel processing than in serial processing.  Much of the information 

processing in the brain involves sequential logic and virtually all of it is parallel.  The 

selective pressure for synchronization in the brain would have been high, and the neural 

implementation demonstrated here is quite simple. 

The processing speed in a synchronous system depends largely on the enabling 

oscillator’s speed.  Electronic processors generally operate at a single speed.  A large 

system like the brain that performs many diverse functions may have several different 

processing speed requirements.  The tradeoff for greater processing speed is a higher error 

rate.  Functions that can tolerate a few errors, and that need fast results with many 
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simultaneous small computations, require high processing speeds.  Functions that are less 

dependent on speed or massive computation, or that require few errors, or whose 

component networks are large and complex and therefore slow to change state, call for 

slower processing.   

Electroencephalogram frequencies 

The EEG frequency bands and associated behavioral and mental states are 

consistent with the function of multiple frequencies that was suggested in the preceding 

paragraph.  Gamma waves (high frequencies) are associated with vision and hearing, 

which make sense out of massive data input in a few milliseconds.  Beta waves are 

associated with purposeful mental effort, which may involve less data input while 

requiring few errors and complex operations.  Alpha waves are associated with relaxed 

wakefulness, theta waves with working memory and drowsiness, and delta waves with 

drowsiness and sleep.  These categories require successively slower information 

processing, and they have corresponding EEG bands of lower frequencies. 

Cascaded oscillators can produce this neural activity.  A neural oscillator can 

synchronize state changes in neural structures by enabling them simultaneously.  The 

enabling oscillator pulse by itself does not produce any state changes.  It only forces states 

to change simultaneously when they do change.  So the initial ring oscillator's high 

frequency signal could simply be connected directly and permanently to the enabling gates 

(as illustrated in Fig 4E) of networks in the visual and auditory cortexes, the first toggle's 

signal to the prefrontal cortex for purposeful mental effort, etc.  A large number of neural 

structures synchronized in this way by cascaded oscillators would exhibit the bands of 

matched periods found in EEGs.  
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Cascaded oscillators hypothesis 

The cascaded oscillators hypothesis is that the brain structures' matched periods 

that are found in EEGs are the result of the structures' synchronization by cascaded neural 

oscillators.  The main implication of the hypothesis is that the distribution of EEG 

frequencies in each band is the same as the distribution of the corresponding oscillator's 

frequencies (Fig 9).   

Two implications of the cascaded oscillators hypothesis are considered here.  1) 

The EEG frequency band boundaries are the intersections of the oscillators' PDFs.  2) The 

EEG band peaks occur at the means of the oscillators' PDFs.  These implications are 

independent; i.e., neither follows from the other.  It follows from implications 1) and 2) 

that the ratios of consecutive EEG band boundaries and the ratios of consecutive EEG band 

peak frequencies are 2. 

The graphs in Fig 10 compare estimates of EEG band peaks and boundaries with 

the means and intersections of estimated oscillator PDFs in Fig 9.  The graphs strongly 

suggest that the oscillators hypothesis is consistent with the available data.  Following the 

EEG convention, oscillations are measured in frequencies rather than periods.  For 

convenient comparison, the data in Fig 10 are shown together in Table 2.  The linear 

regression results are in Table 3.   
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Fig 10.  Neural oscillator PDF means and intersections compared with EEG band 

peaks and boundaries.  A. The octave relationship of the means and intersections of 

cascaded oscillator PDFs illustrated by an exponential function in log form.  B. The 

oscillator graph in A compared to a log linear regression line for commonly cited EEG 

band peak frequencies and boundaries between bands.  Numbers in parentheses show how 

many times each frequency was cited.  C. The effect of different neuron delay time 

distributions.  The oscillator PDFs' means and intersections are shown with the previously 

estimated delay parameters of μd = 4 ms and σd = 1.5 ms increased and decreased by 1 ms.  
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D. The possible effect of rounding errors.  The EEG regression line is shown with the 

Theta-Delta boundary estimates of 4 Hz replaced by 3.7 Hz.   

 

 

EEG band 
Oscillators 

prediction 

Fig 10A 

EEG 

regression 

Fig 10B 

EEG 

regression 

Fig 10D 

Gamma 41.7 38.8 39.9 

 29.9 28.5 28.9 

Beta 20.8 20.2 20.2 

 14.9 14.8 14.7 

Alpha 10.4 10.5 10.3 

 7.46 7.69 7.50 

Theta 5.21 5.45 5.25 

 3.73 4.00 3.82 

Delta  2.60 2.83 2.68 

Distance of 10B regression from 10A  0.221 

Distance of 10D regression from 10A 0.133 

Table 2.  Fig 10 data.  The EEG data are given in Hz.  Distances in the last two rows are 

the square root of the sum of the squared differences of the column values in log2 linear 

form.   
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Fig 10A: Y = X + 1.38 Fig 10B Fig 10D 

Equation of linear regression: Y = 0.944X + 1.50 Y = 0.973X + 1.42 

Number of data pairs: 

 

57 57 

Sum of the squared deviations: 

 

0.929 0.969 

Standard error of the estimate: 

 

0.130 0.133 

Standard error of the slope: 0.016 0.016 

Standard error of the intercept: 0.036 0.037 

Correlation coefficient: 

 

0.992 0.993 

Table 3.  Linear regression results for Fig 10.   

The following analysis for Fig 10 uses three properties of exponential functions:   

 9.  In log form, the exponential function y = A2
x
 is log2(y) = x + log2(A).   

 10.  The inverse function is x = log2(y/A).   

 11.  If x2 - x1 is a whole number n, then y2/y1 = 2
n
.  If y1 and and y2 represent 

frequencies of periodic functions, the frequencies are n "octaves" apart. 

By the octave relationship of the means and intersections of the PDFs in Fig 9, they 

all lie on an exponential function with base two:   

y = 2.6042(2
x
). 

The value 2.6042 Hz (=(1000 ms/sec)/(384 ms/cycle)) was chosen as the constant because 

EEG oscillations are customarily measured in frequencies and 2.6042 Hz is the smallest 

frequency in Fig 9.   
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Fig 10A shows the oscillator PDF means and intersections of Fig 9 graphed as an 

exponential function y = 2.6042(2
x
) in log2 linear form.  By equation 9, the function in log 

form is log2(y) = x + log2(2.6042).  The x coordinates of the points are computed from 

equation 10.  The whole number differences between the x coordinates for the means and 

intersections reflect the frequencies' octave relationships, according to equation 11.   

Fig 10B compares the graph of Fig 10A with a regression line for several 

frequencies that are commonly cited as partition points separating the EEG frequency 

bands and peak frequencies of three of the bands.  The regression is based on 57 data 

points [12-15, 38-55].  (Estimates of peak frequencies apparently have not been found for 

the lower frequency delta and theta bands [49].)  Since the oscillators hypothesis implies 

the EEG frequency distributions are the same as the cascaded oscillators, the same x 

coordinates are assumed for the EEG data.   

Fig 10C shows how sensitive the distribution of oscillator frequencies is to small 

differences in neuron delay time parameters μd and σd.  The distribution is especially 

sensitive to small differences in estimates of the mean delay time μd.  Equation 5 shows the 

ring oscillator PDF mean, and therefore the y-intercepts of the lines in Fig 10C, are 

determined by μd (with n = 3).  The graphs in Fig 10C show that if the average neuron 

delay time μd differs from 4 ms by as little as 1 ms, the cascaded oscillator means and 

intersections lie outside the entire range of cited estimates of EEG peak locations & band 

boundaries.  Since the oscillators hypothesis implies the oscillator means and intersections 

equal the EEG peaks and boundaries, the mean neuron delay alone makes the hypothesis 

easily falsifiable. 

Fig 10D illustrates the effect that errors in the estimates of EEG band boundaries 

can have on the estimates' regression line.  The diverse values cited as band boundaries 

show the difficulty in obtaining accurate estimates.  There are several possible causes.  
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EEG data are obtained in the noisy environment of the brain.  The cascaded oscillators 

hypothesis implies that the probability of an EEG frequency occurring near an intersection 

of two oscillator PDFs is small compared to a frequency occurring near a PDF peak.  Both 

of these factors imply that a large amount of data may be needed to obtain a significant 

estimate of a boundary point.   

Possibly most importantly, rounding errors that result from the common practice of 

stating EEG band boundaries as whole number frequencies (Fig 10B) could have a large 

effect on the regression line.  The errors described in the preceding paragraph are unbiased, 

so their effects could be minimized with large samples.  This is not the case with rounding 

errors because the errors are biased in the direction of the integer nearest the value being 

estimated.   

For example, the cascaded oscillators hypothesis' estimate of the delta-theta 

boundary is near 3.7 Hz (Figs 9 and 10A), but nearly all of the cited boundary estimates in 

Fig 10B were 4 Hz.  (It may be significant that one of the cited estimates for the boundary 

was 3.5 Hz, the only non-integer in the whole data set.)  If the 12 cited values of 4 Hz in 

Fig 10B were obtained by rounding actual experimental findings near 3.7 Hz, correcting 

this error alone would increase the slope of the regression line from 0.944 to 0.973, 

substantially closer to the predicted value of 1.  This regression line is illustrated in Fig 

10D.  In addition, the regression line's new y-intercept is closer to the predicted y-intercept 

in Fig 10A.  The new slope and intercept together move the regression's estimated EEG 

band peaks and boundaries substantially closer to the predicted oscillator PDF means and 

intersections.   

The two lines in Fig 10B show the EEG frequency values predicted by the 

oscillator hypothesis are close to the EEG linear regression estimates.  The closeness can 

be measured by the square root of the sum of the squared differences of the nine pairs of 
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values (in log2 linear form), i.e., the Euclidean distance between two points with nine 

coordinates.  By this measure, the correction of a possible rounding error shown in Fig 

10D nearly cuts the distance in half.  The distance between the regression estimates in Fig 

10B and the oscillator predictions of Fig 10A is 0.221.  For Fig 10D the distance is 0.133.  

These values are shown in Table 2.   

Carefully documented statistics for EEG band peaks and boundaries are not easily 

obtained.  Various frequencies are routinely cited in the literature without a source.  Some 

frequencies that were cited several times may have been based on the same source.  But the 

cascaded oscillators' predicted values of Fig 10A do fall within or near the range of values 

cited for each EEG band peak and boundary, as illustrated in Fig 10B.  The regressions in 

Figs 11B and 11D and the small values of both distances in Table 3 show the oscillator 

hypothesis predictions are close to observed EEG values.  The log2 scale and the two 

regression lines' slopes near 1 suggest that peak locations and successive boundary points 

increase by a factor of two, as predicted by the oscillators hypothesis.  Although the 

apparent octave relationship between EEG frequency bands "has been widely reported but 

rarely commented upon" [16], the regression in Fig 10B is apparently the first test of the 

octave relationship.   

Results and explanations of known phenomena 

Memory 

NFFs are a plausible mechanism for the brain's short-term memory.  Flip-flops are 

the main elements for random access (working) memory in electronic systems.  The 

simulation shown in Fig 5 demonstrated that with minimal neuron noise-reducing 

capabilities, NFFs can be robust in storing information.  Because NFFs function 

dynamically, information can be stored quickly.  The time required to set or reset an NFF 

is the time a signal takes to pass through two to four neurons, roughly 10-20 ms.  NFFs are 
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inexpensive in material requirements because they require only a few cells and because 

storing information requires no physical change except neurons' activation level.  NFFs 

consume energy continuously while they are holding information, but this is consistent 

with the brain’s high energy consumption and it may be one of the selective pressures that 

resulted in static mechanisms for long-term memory.   

Direct electrophysiological evidence has shown that NFF memory banks (Fig 6) 

can generate neural correlates of neuron firing associated with memory.  Memory tests in 

monkeys lasting up to 30 seconds found that certain neurons respond in the visual, 

auditory, or sensorimotor cortexes of monkeys while corresponding sensory information is 

held in memory [9, 10].  Similar neuron responses have recently been found in humans 

[11].  For all of the seven memory characteristics, one of the two outputs of an NFF in a 

memory bank is identical to the neuron's response.   

1) Before the stimulus was presented, the sampled neuron discharged at a low, 

baseline level.  This is one of the two NFF output neurons before the NFF state is inverted.  

For convenience, label it M before the NFF is set.  2) When the stimulus was presented, or 

shortly after, the neuron began to fire at a high frequency.  This is the output M after the 

NFF is set by the input S.  3) The high frequency firing continued after the stimulus was 

removed.  This is the stored memory bit M after the NFF input S returns to its normal low 

value.  4) The response was still high when the memory was demonstrated to be correct.  

This is the high value of M holding information in memory.  5) The response returned to 

the background level shortly after the test.  The memory bank is turned off when the stored 

information is no longer needed, disabling all of the outputs.  6) In the trials where the 

subject failed the memory test, the high level firing had stopped or 7) had never begun.  In 

instances where the high level firing had stopped, the memory bank may have been turned 

off before the memory was tested, or a distraction may have caused the NFF to be 

overwritten with new information, or noise or other errors may have inverted the NFF.  In 
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instances where the high level firing had never begun, the NFF was not set to record the 

information or the NFF recorded it incorrectly (for one of many possible reasons, e.g., the 

subject was not paying attention).  For each of these possibilities, the NFF would correctly 

predict both the failed memory test and the corresponding observed neuron behavior. 

Electroencephalograms  

The cascaded oscillators hypothesis answers the EEG questions raised in the 

introduction.  The hypothesis is that cascaded neural oscillators synchronize neural 

structures' state changes by enabling them simultaneously.  Here are the answers that 

follow from the hypothesis. 

What causes a neuron to fire with a regular period for many seconds?  Neurons fire 

with a regular period because they are enabled by an oscillator.  What is the function of 

such long-term, periodic firing?  The periodic firing continues for a time because the 

neurons are processing information each time they are enabled.   

What produces and what is the function of the widespread synchronization found in 

EEGs?  Many neural structures enabled simultaneously by the same oscillator produce the 

synchronization.  The function of synchronization is timing error avoidance in processing 

information.   

What produces and what is the function of the wide distribution of EEG 

frequencies in bands?  The frequencies in each EEG band are produced by a different 

oscillator.  The function of multiple oscillators is meeting the needs of different brain 

functions in the tradeoff between speed and accuracy.   

What produces the unimodal distribution in each band and the octave relationships 

between the peaks and boundaries?  The unimodal distributions are due to the normal 

distribution of neuron delay times in the initial ring oscillators in cascades of oscillators.  
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This makes the distribution of frequencies of each oscillator normal.  The ratio of 

consecutive boundaries and peak locations is 2 because consecutive cascaded oscillators 

increase the oscillation period by a factor of 2. 

Two implications of the cascaded oscillators hypothesis were considered here:   

The EEG frequency band boundaries are the intersections of the cascaded oscillators' 

PDFs, and the peaks within the bands occur at the means of the PDFs.  These results imply 

that EEG peaks and bands have an octave relationship.  Fig 10 and the accompanying 

analysis showed these implications appear to be consistent with empirical measurements.   

Testable predictions  

Neural flip-flops  

As stated earlier, one of the outputs of an NFF in a memory bank produces all 

seven characteristics of neural activity associated with short-term memory.  An NFF's two 

outputs M and M together predict seven more properties that could further test whether 

NFFs are used for short-term memory.  It should be possible to find these predicted 

phenomena by the same techniques used to find the original seven phenomena since either 

M or M should be the cell already found in short-term memory.  The other should be 

nearby. 

1) The outputs M and M are complements of each other; i.e., when one is high the 

other is low.  So not only is one neuron firing continuously while information is held in 

memory, as already found experimentally, there should also be another neuron with 

complementary output.  2) The two cells have reciprocal input (every flip-flop in Fig 4).  

3) Because the two cells have reciprocal input and are part of a small network, they should 

be in close proximity.  4) The reciprocal inputs are inhibitory (Fig 4).  5) The two cells 

have responses that satisfy inequalities 1 and 2.  6) When the cells change states, the high 
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state changes first.  This is because the change in the cell with the high state causes the 

change in the cell with the low input.  This can be seen in every flip-flop in Fig 4.  The 

change order is difficult to see in the Fig 5 simulation because of the small time scale and 

the slow rise time of the Set and Reset inputs, but the simulation does have one neuron 

delay time between the completion of the two outputs' state changes.  7) The other cell's 

output then changes from low to high within a few milliseconds.  This happens quickly 

because reciprocal input from the first change causes the second within approximately one 

neuron delay time, regardless of how long information is held in memory.   

Constructed neural networks 

Any of the networks in the figures could be constructed with actual neurons and 

tested for the predicted behavior.  The neurons only need to have the property that high 

inhibitory input suppresses excitatory input.  A neuron response that satisfies the inequality 

conditions 1 and 2 is sufficient for robust operation of the networks in the presence of 

noise, but the conditions may not be necessary. 

The two-neuron NFF of Fig 4C and the three-neuron ring oscillator of Fig 7 may be 

the simplest to construct and test because they are composed of a small number of neurons.  

The NFFs are predicted to have outputs that are inverted by a brief input from S or R.  

(Recall Fig 4C is active low.)  The outputs should also exhibit the seven known properties 

of neural firing associated with memory and the seven properties predicted for NFFs in the 

preceding section.  The predicted behavior for the ring oscillator is oscillating outputs for 

all three neurons with a period that is twice the sum of the neurons' delay times, and phases 

uniformly distributed over one cycle. 
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Cascaded oscillators hypothesis 

Fig 10 and the accompanying analysis offered enough evidence for the oscillators 

hypothesis to warrant further research.  More carefully documented examination of EEG 

frequencies and neuron delay times are needed for a simple, rigorous test of the oscillators 

hypothesis.  The hypothesis implies an exact relationship between the distribution of 

neuron delay times and the distribution of EEG frequencies.  With random samples of 

delay times and EEG frequencies, the EEG distributions can be compared with the 

predicted distributions by the standard tests for equal means and variances.  Such samples 

may already exist in some database. 

The oscillator hypothesis implies the EEG gamma band has the same distribution 

of frequencies as the initial ring oscillator in a cascade, N(μr, σr).  Equation 5 gives the ring 

oscillator period parameters in terms of neuron delay time parameters: μr = 2nμd, and σr = 

2√nσd.  The number of neurons n in the ring oscillator almost certainly has to be 3 to 

produce the fast frequencies in the gamma band.  Subsequent cascaded toggles' periods are 

also normally distributed with mean and standard deviation double that of the input.  The 

oscillators hypothesis implies the other EEG bands have the same distributions as these 

toggles.   

Neuron delay time mean and variance can be estimated from a random sample of 

neuron delay times.  The frequency mean and variance for one or more EEG bands can be 

estimated from a random sample of EEG frequencies observed along with the behavioral 

and mental state associated with a band.  The equality of the frequency distribution of an 

EEG band and the distribution predicted by equation 5 and the octave relationship can then 

be tested by the standard tests for equal means and variances.   

Although it is possible that EEG frequencies are produced by cascades with initial 

ring oscillators made up of specialized neurons whose delay times are different from the 
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general population of neurons, this appears to be unlikely.  Fig 10B shows the EEG 

frequency bands are at least close to the values predicted by the description of the range of 

all neuron delay times that was used here to estimate oscillator neuron delay time 

parameters.  In addition, neurons in general and oscillator neurons in particular would have 

both evolved under selective pressure to function as fast as possible.   

Summary of results 

The dynamic, explicit neural networks presented in Figs 4, 6, and 7 generate 13 

EEG phenomena and the seven phenomena of neural firing associated with short-term 

memory. The networks also suggest selective advantages for both the synchronization of 

neural firing and synchronization in different frequency bands that are found in EEGs 

(Results and explanations of known phenomena section).  Apparently no explanation of 

any of these phenomena has been offered before. The networks predict seven testable 

phenomena of neural firing associated with short-term memory, an exact relation between 

the distribution of neuron delay times and the distributions of the five main bands of EEG 

frequencies, and numerous behavioral phenomena of simple neural networks that can be 

constructed with neurons and tested (Testable predictions section). 
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