
1 
 

Extrinsic and Intrinsic Dynamics in Movement Intermittency 1 

Damar Susilaradeya1, Wei Xu1, Thomas M Hall1, Ferran Galán1,2, Kai Alter1, Andrew Jackson1 2 

1. Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, 3 

UK 4 

2. Current address: Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, CH-5 

1202 Genève  6 

Abstract 7 

What determines how we move in the world? Motor neuroscience often focusses either on intrinsic 8 

rhythmical properties of motor circuits or extrinsic sensorimotor feedback loops. Here we show that 9 

the interplay of both intrinsic and extrinsic dynamics is required to explain the intermittency observed 10 

in continuous tracking movements. Using spatiotemporal perturbations in humans, we demonstrate 11 

that apparently discrete submovements made 2-3 times per second reflect constructive interference 12 

between motor errors and continuous feedback corrections that are filtered by intrinsic circuitry in 13 

the motor system. Local field potentials in monkey motor cortex revealed characteristic signatures of 14 

a Kalman filter giving rise to both low-frequency cortical cycles during movement, and delta 15 

oscillations during sleep. We interpret these results within the framework of optimal feedback control, 16 

and suggest that the intrinsic rhythmicity of motor cortical networks reflects an internal model of 17 

external dynamics which is used for state estimation during feedback-guided movement. 18 
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Introduction 21 

Many visually-guided movements are characterized by intermittent speed fluctuations. For example 22 

while tracking slowly-moving targets, humans make around 2-3 submovements per second. Although 23 

first described over a century ago (Woodworth, 1899; Craik, 1947; Vince, 1948) the cause of 24 

movement intermittency remains debated. Submovements often disappear in the absence of vision 25 

(Miall et al., 1993a) and are influenced by feedback delays (Miall, 1996), suggesting their timing 26 

depends on extrinsic properties of visuomotor feedback loops. However, rhythmicity is also reported 27 

in the absence of feedback (Doeringer and Hogan, 1998), and it has been suggested that an internal 28 

refractory period, clock or oscillator parses complex movements into discrete isochronal segments 29 

(Viviani and Flash, 1995; Russell and Sternad, 2001; Loram et al., 2006; Hogan and Sternad, 2012). 30 

Cyclical dynamics within motor cortical networks with a time period of 300-500ms may reflect the 31 

neural correlates of such an intrinsic oscillator (Churchland et al., 2012; Hall et al., 2014). During 32 

continuous tracking, each submovement is phase-locked to a single cortical cycle, giving rise to low-33 

frequency coherence between cortical oscillations and movement speed (Jerbi et al., 2007; Hall et al., 34 

2014; Pereira et al., 2017). Moreover, this rhythmicity appears conserved across a wide range of 35 

behaviors and even shares a common dynamical structure with delta oscillations during sleep (Hall et 36 

al., 2014). It has been proposed that recurrent networks express these intrinsic dynamics as an ‘engine 37 

of movement’ responsible for internal generation and timing of the descending motor command 38 

(Churchland et al., 2012). Nevertheless, the interplay between intrinsic rhythmicity and extrinsic 39 

feedback remains poorly understood. For example, if feedback delays influence submovement timing 40 

they might be expected also to alter the frequency of cortical cycles. However, this seems 41 

incompatible with conserved intrinsic dynamics evident across multiple behavioral contexts including 42 

sleep. Moreover, the precise computational role of such intrinsic circuitry remains uncertain. 43 
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In recent years, stochastic optimal control theory has emerged as an influential computational 44 

approach to understanding human movement, due to recognition of the impact of noise in both motor 45 

and sensory signals on behavior (Todorov and Jordan, 2002; Scott, 2004). In the presence of delayed, 46 

uncertain measurements, feedback should act on optimal estimates of the discrepancy between 47 

desired goals and current motor states. Optimal feedback control (OFC) explains many features of 48 

movement but it is unclear whether optimality principles alone can account for movement 49 

intermittency. Various modifications to OFC have been proposed, for example explicitly including a 50 

refractory period between submovements (Gawthrop et al., 2011), but theoretical justification for 51 

these additions is lacking. Here we present evidence from visuomotor tracking by humans and non-52 

human primates in support of an OFC-based model of movement intermittency that does not require 53 

explicit parsing of submovements. Instead, continuous integration of external feedback with internal 54 

state estimation provides a framework for understanding both extrinsic and intrinsic contributions to 55 

intermittency. This can account for many puzzling features of submovements, and provides a 56 

parsimonious explanation for conserved cyclical dynamics in motor cortex networks during behavior 57 

and sleep. 58 

 59 

Results 60 

Submovements reflect constructive interference between motor noise and delayed feedback 61 

corrections 62 

Human subjects generated bimanual isometric index finger forces to track targets that moved in 2D 63 

circular trajectories with constant speed (Fig. 1A). We measured intermittency in the angular velocity 64 

of the cursor (Fig. 1B, C), using spectral analysis to quantify submovement frequencies. Under normal 65 

feedback conditions, power spectra generally exhibited a principal peak at around 2 Hz (Fig. 1D) and 66 

this frequency was only slightly affected by target speed (Figure S1), consistent with previous 67 

descriptions of movement intermittency (Miall, 1996). However, submovement frequencies were 68 

markedly altered when visual feedback of the cursor was delayed relative to finger forces. With delays 69 

of 100 and 200 ms, the frequency of the primary peak reduced to around 1.4 and 1 Hz respectively 70 

(Fig. 1D, Fig. S1, Fig. S2), suggesting submovement timing was not determined by a fixed internal clock 71 

but depended instead on extrinsic feedback properties. Interestingly, a further peak appeared at 72 

approximately three times the frequency of the primary peak and, with increased delays of 300 and 73 

400 ms, a 5th harmonic was observed. The time-periods of the first, third and fifth harmonics were 74 

linearly related to extrinsic delay times with gradients of 1.89 ± 0.20, 0.59 ± 0.04 and 0.33 ± 0.11 75 

respectively (Fig. 1E, Table S1). 76 

These results are consistent with a feedback controller responding to broad-spectrum (stochastic) 77 

tracking errors introduced by noise in the motor output, for which the response is delayed by time 𝜏 78 

(Fig. 1F). In signal processing terms, subtracting a delayed version from the original signal is known as 79 

comb filtering. For motor noise components with a time period, 𝑇 = 𝜏
1⁄ , 𝜏

2⁄ , 𝜏
3⁄ …, delayed 80 

feedback accurately reflects current errors, resulting in regularly spaced notches in the amplitude 81 

response of the system (Fig. 1G) and attenuation from the resultant cursor movement through 82 

destructive interference. By contrast, for motor noise with a time-period, 𝑇 = 2𝜏
1⁄ , 2𝜏

3⁄ , 2𝜏
5⁄ …, 83 

delayed feedback is exactly out-of-phase with the current error. Thus, corrective movements 84 

exacerbate these components through constructive interference leading to spectral peaks at 85 

frequencies: 86 

 𝑓 = 1
𝑇⁄ = 𝑁

2(𝜏int + 𝜏ext)⁄  with 𝑁 = 1, 3, 5 …      (Equ. 1) 87 
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Submovement frequencies in our data approximately matched this model assuming the total feedback 88 

delay comprised the experimental manipulation 𝜏ext added to a constant physiological response 89 

latency 𝜏int of around 300 ms (Table S1), comparable to visual reaction times. 90 

Note that in this interpretation, intermittency arises not from active generation of discrete 91 

submovement events but as a byproduct of continuous, linear feedback control with inherent time 92 

delays. Submovement frequencies need not be present in the smooth target movement, nor do they 93 

arise from controller non-linearities. Instead these frequencies reflect components of broad-band 94 

motor noise that are exacerbated by delayed feedback corrections. To seek further evidence that 95 

intermittency arises from constructive interference between motor noise and delayed feedback 96 

corrections, we generated artificial errors during target tracking by adding spatial perturbations to the 97 

cursor displayed to subjects. Within individual trials, a sinusoidal displacement was applied in a 98 

direction aligned to target motion and at a frequency between 1-5 Hz. Perturbation amplitudes were 99 

scaled to have equivalent peak angular velocities (equal to the angular velocity of the target). Our 100 

hypothesis was that artificial errors at submovement frequencies would be harder to track (because 101 

of constructive interference) than perturbations at frequencies absent from the velocity spectrum. 102 

 103 

  104 

Figure 1. Movement intermittency during visuomotor tracking depends on feedback delays. (A) 105 

Schematic of human tracking task. Bimanual isometric finger forces control 2D cursor position to track 106 

slow, circular target motion. Kinematic analyses use the angular velocity of the cursor subtended at 107 

the screen center screen. (B) Example force (top), angular error (middle) and cursor angular velocity 108 

(bottom) traces during target tracking with no feedback delay. Submovements are evident as 109 

intermittent fluctuations in angular velocity. (C) Example movement traces with 400 ms feedback 110 

delay. (D) Power spectra of cursor angular velocity with different feedback delays between 0–400 ms. 111 

Average of 8 subjects, shading indicates standard error of mean (s.e.m.). See also Figure S2. (E) 112 

Submovement periods (reciprocal of the peak frequency for each harmonic) for all subjects with 113 

different feedback delays. See also Table S1. (F) Schematic of a simple delayed feedback controller. 114 

(G) Amplitude response of the system shown in (F), known as a comb filter. 115 

Figure 1—source data 1. This spreadsheet contains the frequencies of spectral peaks and associated 116 

regression analysis shown in Figure 1D,E. These data can be opened with Microsoft Excel or with open-117 

source alternatives such as OpenOffice. 118 
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Figure 2A shows example tracking behavior with a 2 Hz perturbation. Note that the peak angular 119 

velocity of force responses (black line, calculated from the subject’s finger forces) occurred around 120 

the same time as the peak angular velocity of the perturbation (green line). As a result, the angular 121 

velocity of the cursor (yellow line, reflecting the combination of the subject’s forces with the 122 

perturbation) exhibited pronounced oscillations that were larger than the perturbation. Figure 2B 123 

shows performance in the same task when visual feedback was delayed by 200 ms. In this condition, 124 

peaks in force velocity coincided with perturbation troughs, attenuating the disturbance to cursor 125 

velocity. Figure 2C,D and Figure S3 overlay cursor velocity spectra in the presence of each perturbation 126 

frequency (with feedback delays of 0 and 200 ms). As previously, in the absence of feedback delay the 127 

frequency of submovements was around 2 Hz. Correspondingly, perturbations at 2 Hz induced a large 128 

peak in the cursor velocity spectrum, indicating that the artificial error was not effectively tracked. By 129 

contrast, with a feedback delay of 200 ms the cursor velocity spectrum with a 2 Hz perturbation was 130 

attenuated. The largest spectral peaks were instead associated with 1 and 3 Hz perturbations, 131 

matching the frequencies of submovements in this delay condition. Figure 2E shows the amplitude 132 

response of cursor movements (the relative amplitude of cursor movements phase-locked to the 133 

perturbation) at each frequency for both delay conditions. Cursor amplitude responses greater than 134 

unity at 2 Hz (with no delay), and at 1 and 3 Hz (with 200 ms delay) indicate exacerbation of 135 

intermittencies introduced by artificial errors at submovement frequencies. Analysis of variance 136 

(ANOVA) with two factors (delay time and perturbation frequency) revealed a highly significant 137 

interaction (n=8 subjects, F4,70=110.2, P<0.0001), confirming the interdependence of feedback delays 138 

and frequencies of constructive/destructive interference. 139 

Feedback responses reflect filtered visual discrepancies 140 

It is clear from the velocity spectra in Figure 1D that not all submovement harmonics predicted by the 141 

comb filter model were present with the same amplitude within our tracking data. Rather, 142 

intermittency peaks for each delay condition were embedded within a broad low-pass envelope. Next 143 

we considered the origin of this delay-independent envelope. Our first hypothesis was that this might 144 

reflect the spectral content of motor noise during tracking. However we could reject this as the sole 145 

contributing factor by examining the force amplitude response to perturbations (the relative 146 

amplitude of force responses phase-locked to the perturbation). Figures 2F,G and Figure S4 show 147 

power spectra of the angular velocity derived from subject’s forces, under feedback delays of 0 and 148 

200 ms. Figure 2H shows the corresponding force amplitude response at each frequency. Analyzed in 149 

this way, amplitude responses were largely independent of extrinsic delay. However, as with 150 

submovement peaks, feedback responses were also attenuated at higher frequencies. A two-factor 151 

ANOVA confirmed a significant main effect of frequency (n=8 subjects, F4,70=36.3, P<0.0001) but not 152 

delay time (F1,70=3.1, P=0.08), and only a weakly significant interaction (F4,70=2.9, P=0.03). Moreover, 153 

the phase delay of force responses was reduced at low frequencies (Fig. 2I). As with the amplitude 154 

response, there was a significant effect of frequency (F4,70=9.5, P<0.0001) but not extrinsic delay (F1,70 155 

=2.6, P=0.12) on this phase delay, and no significant interaction (F4,70=0.7, P=0.6). In other words, 156 

feedback corrections to artificial noise with equal amplitude at different frequencies revealed 157 

characteristic signatures of a filter that was independent of extrinsic feedback delays. Moreover, this 158 

intrinsic filter had the appropriate bandwidth to account for attenuation of intermittency at higher 159 

frequencies. 160 

  161 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 29, 2018. ; https://doi.org/10.1101/402552doi: bioRxiv preprint 

https://doi.org/10.1101/402552
http://creativecommons.org/licenses/by/4.0/


5 
 

 162 

Figure 2. Frequency responses and phase delays to artificial motor errors. (A) Example force (black) 163 

and cursor (yellow) angular velocity traces in the presence of a 2 Hz perturbation (green). No feedback 164 

delay is added. The force response and perturbation sum to produce large fluctuations in cursor 165 

velocity. (B) Comparable data with a feedback delay of 200 ms. In this condition, force responses 166 

cancel the perturbation leading to an attenuation of intermittency. (C) Power spectra of cursor angular 167 

velocity with 1–5 Hz perturbations and no feedback delay. Average of 8 subjects. See also Figure S3. 168 

(D) Power spectra of cursor angular velocity with 1–5 Hz perturbations and 200 ms feedback delay.  169 

(E) Cursor amplitude response to 1–5 Hz perturbations with no feedback delay (blue) and 200 ms 170 

feedback delay (red) for individual subjects. Also shown is average ± s.e.m. of 8 subjects. (F) Power 171 

spectra of force angular velocity with 1–5 Hz perturbations and no feedback delay. See also Figure S4. 172 

(G) Power spectra of force angular velocity with 1–5 Hz perturbations and 200 ms feedback delay. (H) 173 

Force amplitude response to 1–5 Hz perturbations with no feedback delay (blue) and 200 ms feedback 174 

delay (red). Also shown is average ± s.e.m. of 8 subjects. (I) Intrinsic phase delay of force response to 175 

1–5 Hz perturbations with no feedback delay (blue) and 200 ms feedback delay (red). Also shown is 176 

average ± s.e.m. of 8 subjects.  (J) Power spectrum of finger forces generated in the feedforward task 177 

with auditory cues at 1-5 Hz. Average of 8 subjects. See also Figure S5. (K) Force amplitude response 178 

to auditory cues in the feedforward task. Also shown is average ± s.e.m. of 8 subjects. 179 

Figure 2—source data 2. This spreadsheet contains the cursor/force/feedforward amplitude response 180 

and phase delay data shown in Figure 2E,H,I,K. These data can be opened with Microsoft Excel or with 181 

open-source alternatives such as OpenOffice. 182 
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Next we considered whether this attenuation was a property of motor pathways, for example 183 

reflecting filtering by the musculoskeletal system. However, it is well-known that the frequencies of 184 

feedforward movements can readily exceed submovement frequencies observed during feedback-185 

guided behavior (Kunesch et al., 1989). We confirmed this by asking subjects to produce force 186 

fluctuations of a defined amplitude, but without providing a moving target to track. Instead we used 187 

auditory cues (a metronome) to indicate the required movement frequency. In this case, subjects 188 

could generate force fluctuations up to 5 Hz with little attenuation (Fig. 2J,K and Fig. S5). Therefore 189 

we concluded that filtering during visuomotor tracking was not inherent to the motor pathway and 190 

considered instead whether it could be a property of the feedback loop. 191 

 192 

Filtered feedback corrections are consistent with optimal state estimation 193 

The visual system can perceive relatively high frequencies (up to flicker-fusion frequencies above 10 194 

Hz). However, for movements in the physical world, it is unlikely that high-frequency tracking 195 

discrepancies reflect genuine motor errors, since this would imply implausibly large accelerations of 196 

the body. Given inherent uncertainties in sensation, an optimal state estimator should attribute such 197 

errors to sensory noise (as this is unconstrained by Newtonian dynamics). Formally, the task of 198 

distinguishing the true state of the world from uncertain, delayed measurements can be achieved by 199 

a Kalman filter which continuously integrates new evidence with updated estimates of the current 200 

state evolving according to a model of the external dynamics (Fig. 3A). For simplicity we assumed the 201 

1D position of the body (cursor) should move with constant velocity relative to the slow, predictable 202 

target unless acted upon by accelerative forces, leading to a two-dimensional state transition model: 203 

 [
𝑥𝑘

𝑣𝑘
] = [

1 ∆𝑡
0 1

] [
𝑥𝑘−1

𝑣𝑘−1
] + [

0
∆𝑡

] 𝑎𝑘      (Equ. 2) 204 

where 𝑥𝑘 and 𝑣𝑘 are the relative position and velocity of the cursor at time-step 𝑘, ∆𝑡 is the interval 205 

between time-steps, and the process noise 𝑎𝑘~𝑁(0, 𝜎𝑎
2). Visual feedback, 𝑦𝑘, was assumed to 206 

comprise a noisy measurement of relative position: 207 

 𝑦𝑘 = 𝑥𝑘 + 휀𝑘         (Equ. 3) 208 

with measurement noise 휀𝑘~𝑁(0, 𝜎𝜀
2). Optimal estimates of relative position and velocity, 𝑥𝑘 and 𝑣𝑘 209 

are given by a steady-state Kalman filter of the form: 210 

 [
𝑥𝑘

𝑣𝑘
] = [

1 − 𝐾pos ∆𝑡

−𝐾vel 1
] [

𝑥𝑘−1

𝑣𝑘−1
] + [

𝐾pos

𝐾vel
] 𝑦𝑘−1     (Equ. 4) 211 

The innovation gains 𝐾pos and 𝐾vel depend only on the ratio of process to measurement noise, 𝜌 =212 
𝜎𝑎

𝜎𝜀
⁄ , which in turn determines the cut-off frequency above which measurements are filtered 213 

(2𝜋𝑓~√𝜌). Figure 3B,C shows the amplitude response for position and velocity estimates. Note that 214 

these are out of phase with each other, and therefore broadband input results in a complex cross-215 

spectral density between them. The imaginary component of this cross-spectrum exhibits a 216 

characteristic resonance peak (Fig. 3D). Feedback delays can be accommodated by projecting the state 217 

estimate forward in time: 218 

 �̂�𝑘 = [1 𝜏int] [
𝑥𝑘

𝑣𝑘
]        (Equ. 5) 219 

  220 
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 221 

 222 

Figure 3. State estimation with a Kalman filter. (A) Left: Schematic of a Kalman filter. Noisy 223 

measurements are combined with an internal model of the external dynamics to update an optimal 224 

estimate of current state. Right: A dynamical system for optimal estimation of position, based on an 225 

internal model of position and velocity. (B, C) Magnitude response of transfer function from 226 

measurement to position and velocity estimates for the Kalman filter with different ratios of process 227 

to measurement noise (𝜌). (D) Imaginary component of cross-spectrum between position and velocity 228 

transfer functions. (E) Phase delay of optimal estimate of position based on delayed measurement of 229 

position. (F) Schematic of optimal feedback controller model incorporating state estimation and a 230 

Smith Predictor architecture to accommodate feedback delays. (G) Simplified rearrangement of (F), 231 

showing the feedforward relationship between motor noise and force output. This rearrangement is 232 

possible because the Smith Predictor prevents motor corrections reverberating multiple times around 233 

the feedback loop.  234 
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The phase delay of the optimal position estimate for the current state, �̂�𝑘, falls towards zero at low 235 

frequencies, consistent with successful prediction on the basis of delayed measurement (Fig. 3E). This 236 

steady-state Kalman filter was incorporated within a 1D feedback controller (Fig. 3F; see Methods for 237 

details) which also included an internal feedback loop to cancel the sensory consequences of motor 238 

commands. This architecture, known as a Smith Predictor (Miall et al., 1993b; Abe and Yamanaka, 239 

2003), prevents corrections from reverberating around the external feedback loop, such that the 240 

resultant closed-loop behavior is formally equivalent to the simpler feedforward system shown in 241 

Figure 3G. This rearrangement provides a useful intuition about our behavioral results. Tracking errors 242 

(due to motor noise) drive feedback corrections that are delayed, corrupted (by sensory noise) and 243 

filtered (by intrinsic dynamics). The power spectrum of the resultant movement reflects 244 

constructive/destructive interference between feedback corrections and the original tracking error. 245 

This simple model readily accounted for the main features of our human data, including the cursor 246 

amplitude response to perturbations (Fig. 4A-E), and the low-pass filtering (Fig. 4F-H) and phase delay 247 

(Fig. 4I) of force responses. Moreover, because of frequency-dependent phase delays introduced by 248 

state estimation, the model predicted that precise frequencies of submovement peaks should deviate 249 

slightly from those calculated using a constant physiological response latency. This effect was 250 

confirmed in our behavioral data by calculating (with Equ. 1) the intrinsic delay time corresponding to 251 

each spectral harmonic under all feedback delays (Fig. 1D). This intrinsic delay time was positively 252 

correlated with the frequency of the harmonic (n=11 spectral peaks, R=0.85, P=0.0009; Fig. 4J). Finally, 253 

overall tracking performance (as measured by the root mean squared positional error over time) 254 

matched well with subjects’ actual performance across conditions (Fig. 4K). Note that irrespective of 255 

delay, the lowest frequency perturbation was associated with the greatest positional error (since 256 

perturbations had equal peak-to-peak velocity and were therefore larger in amplitude at low 257 

frequencies). However, performance was most affected by the 1 Hz perturbation with a 200 ms delay, 258 

corresponding to a frequency of constructive interference. 259 

In summary, amplitude and phase responses to perturbations during human visuomotor tracking 260 

provide compelling evidence for intrinsic filtering of measurement noise from feedback corrections, 261 

while a plausible computational justification is provided by optimal state estimation. Moreover, while 262 

this interpretation is derived from computational principles, the schematic on the right of Fig. 3A 263 

suggests how a steady-state Kalman filter could be implemented by neural circuitry. Two neural 264 

populations representing position and velocity should evolve according to Equ. 4 and thus exhibit a 265 

resonance peak in their imaginary cross-spectrum. To seek further evidence for the neural 266 

implementation of such a filter we turned to intracortical recordings in non-human primates. 267 

  268 
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 269 

Figure 4. OFC model reproduces human behavioral data. (A) Simulated tracking performance of the 270 

OFC model with a 2 Hz sinusoidal perturbation and no feedback delay. (B) Simulated tracking 271 

performance of the OFC model with a 2 Hz sinusoidal perturbation and 200 ms feedback delay. (C) 272 

Power spectrum of simulated cursor velocity with 1–5 Hz perturbations and no feedback delay. (D) 273 

Power spectrum of simulated cursor velocity with 1–5 Hz perturbations and 200 ms feedback delay. 274 

(E) Simulated cursor amplitude response to 1–5 Hz perturbations with no feedback delay (blue) and 275 

200 ms feedback delay (red). (F) Power spectrum of simulated force velocity with 1–5 Hz perturbations 276 

and no feedback delay. (G) Power spectrum of simulated force velocity with 1-5 Hz perturbations and 277 

200 ms feedback delay. (H) Simulated force amplitude response to 1–5 Hz perturbations with no 278 

feedback delay (blue) and 200 ms feedback delay (red). (I) Simulated intrinsic phase delay of force 279 

responses to 1–5 Hz perturbations with no feedback delay (blue) and 200 ms feedback delay (red). (J) 280 

Intrinsic delay times corresponding to all submovement peaks/harmonics in Figure 1D, plotted against 281 

the frequency of the peak. Error bars indicate s.e.m. across 8 subjects. (K) Top: Positional inaccuracy 282 

of human tracking for all conditions quantified as root mean squared error (RMSE). Average ± s.e.m. 283 

of 8 subjects. Bottom: RMSE of simulated tracking for all conditions. 284 

  285 
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Movement intermittency in a non-human primate tracking task 286 

We were interested in whether cyclical motor cortex dynamics could reflect the neural correlates of 287 

the two interacting neural populations described above, and thereby account for filtering of feedback 288 

responses during visuomotor tracking. We therefore analyzed local field potential (LFP) recordings 289 

from monkey primary motor cortex (M1) during a center-out isometric wrist torque task that we have 290 

used previously to characterize both submovement kinematics and population dynamics (Hall et al., 291 

2014). Figure 5 shows example tracking behavior (Fig. 5A), radial cursor velocity (Fig. 5B) and 292 

multichannel LFPs (Fig. 5C) as monkeys moved to peripheral targets under two feedback delay 293 

conditions. Movement intermittency was apparent as regular submovement peaks in the radial cursor 294 

velocity. Moreover LFPs exhibited low-frequency oscillations during movement, with a variety of 295 

phase-shifts present on different channels. Principal component analysis (PCA) yielded two orthogonal 296 

components of the cortical cycle (Fig. 5E), and the close coupling with submovements was revealed 297 

by overlaying the cursor velocity profile onto, in this case, the second principal component (PC) (Fig. 298 

5E). 299 

 300 

 301 

Figure 5. Movement intermittency in a non-human primate tracking task. (A) Radial cursor position 302 

during a typical trial of the center-out isometric wrist torque task under two different feedback delay 303 

conditions. Data from Monkey U. (B) Radial cursor velocity. Arrowheads indicate time of 304 

submovements identified as positive peaks in radial cursor velocity >150%/s. (C) Low-pass filtered, 305 

mean-subtracted LFPs from M1. (D) First two principal components (PCs) of the LFP. (E) The second 306 

LFP-PC overlaid on the radial cursor velocity. 307 

 308 

As with humans, in the absence of feedback delay the cursor velocity (after removing task-locked 309 

components, see Methods) was dominated by a single spectral peak around 2-3 Hz (Fig. 6A,E; top 310 

red traces). A broad peak at approximately the same frequency was also observed in average LFP 311 

power spectra (Fig. 6B,F), while coherence analysis confirmed consistent phase-coupling between 312 
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LFPs and cursor velocity (Fig. 6C,G). We also calculated imaginary coherence spectra between pairs 313 

of LFPs (see Methods) to separate local signal components with a consistent, non-zero phase 314 

difference from in-phase components (e.g. due to volume conduction from distant sources), which 315 

revealed more clearly the 2-3 Hz LFP oscillation (Fig. 6D,H). An obvious interpretation of these 316 

results could be that oscillatory activity in the motor system drives submovements in a feedforward 317 

manner. In this case we would expect the frequency of the cortical oscillation to reliably reflect the 318 

intermittency observed in behavior. 319 

 320 

 321 

Figure 6. Frequency-domain analysis reveals delay-dependent and delay-independent spectral 322 

features. (A) Power spectrum of radial cursor speed with 0–600 ms feedback delay. Traces have been 323 

off-set for clarity. Arrows indicate expected frequencies of peaks from OFC model. Data from Monkey 324 

U. (B) Average power spectrum of M1 LFPs. (C) Average coherence spectrum between radial cursor 325 

speed and all M1 LFPs. (D) Average imaginary coherence spectrum between all pairs of M1 LFPs. (E-326 

H) As above, but for Monkey S. (I-L) Simulated power and coherence spectra produced by the OFC 327 

model. 328 
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Feedback delays dissociate intrinsic and extrinsic contributions to intermittency 329 

With increasing feedback delays, submovement peaks in monkeys (Fig. 6A,E) exhibited a pattern 330 

similar to that seen with human subjects. The fundamental frequency was reduced, while odd 331 

harmonics grew more pronounced as they came below about 4 Hz. Moreover, coherence spectra 332 

between cursor velocity and LFP (Fig. 6C,G) revealed peaks at both fundamental and harmonic 333 

frequencies. Surprisingly however, the power spectrum of the LFP (Fig. 6B,F) was unaffected by 334 

feedback delay, with a single broad peak in the delta band persisting throughout. Moreover, imaginary 335 

coherence spectra between pairs of LFPs were also unchanged (Fig. 6D,H). These results appear 336 

incompatible with the hypothesis that motor cortical oscillations drive movement intermittency, and 337 

instead demonstrate a dissociation between delay-dependent submovements and the conserved 338 

rhythmicity of LFPs. 339 

We next identified submovements from peaks in the radial cursor speed, in order to examine the 340 

temporal profile of their associated LFPs. Submovement-triggered averages (SmTAs) of LFPs exhibited 341 

multiphasic potentials around the time of movement, as well as a second feature following 342 

submovements with a latency that depended on extrinsic delay (Fig. 7A, Fig. S6A). This feature was 343 

revealed more clearly by reducing the dimensionality of the LFPs with PCA (Fig. 7B, Fig. S6B). Note that 344 

if submovements reflect interference between stochastic motor errors and feedback corrections, a 345 

submovement in the positive direction can arise from two underlying causes. First, it may be a positive 346 

correction to a preceding negative error. In this case, cortical activity associated with the feedback 347 

correction should occur around time zero. Second, the submovement may itself be a positive error 348 

which is followed by a negative correction, and the associated cortical activity will hence be delayed 349 

by the feedback latency. Since the SmTA pools submovements arising from both causes, this accounts 350 

for two features with opposite polarity separated by the feedback delay. Note also that SmTAs of 351 

cursor velocity similarly overlay (negative) tracking errors preceding (positive) feedback corrections, 352 

and (negative) feedback corrections following (positive) tracking errors, evident as symmetrical 353 

troughs on either side of the central submovement peak (Fig. 7C, Fig. S6C). 354 

Importantly however, LFP oscillations around the time of submovements appeared largely unaffected 355 

by delay. To visualize this, we projected the SmTAs of multichannel LFPs onto the same PC plane. For 356 

all delay conditions, LFPs traced a single cycle with the same directional of rotation and comparable 357 

angular velocity (Fig. 7D, Fig. S6D). The period of these cycles (approx. 300 ms) matched the frequency 358 

of imaginary coherence between LFPs (approx. 3 Hz), as expected since signals with a consistent phase 359 

difference will be orthogonalized by PCA and appear as cyclical trajectories in the PC plane. In other 360 

words, although the precise frequency of submovements depends on extrinsic delays in visual 361 

feedback, the constant frequency of associated LFP cycles reveals conserved intrinsic dynamics within 362 

population activity in the motor cortex. Note also that the resonant frequency of these dynamics 363 

matches the intrinsic filtering of feedback responses observed in our human experiments. 364 

  365 
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 366 

Figure 7. Submovement-triggered averages of M1 LFPs. (A) Average low-pass filtered LFPs from M1, 367 

aligned to the peak speed of submovements with 0–600 ms feedback delay. Arrows indicate second 368 

feature following submovement by an extrinsic delay-dependent latency. Data from Monkey S. See 369 

also Figure S6. (B) Average of first two LFP-PCs aligned to submovements. (C) Average low-pass filtered 370 

cursor speed, aligned to submovements. Arrows indicate symmetrical velocity troughs at extrinsic 371 

delay-dependent latencies. (D) Average submovement-triggered LFP-PC trajectories, plotted over 200 372 

ms either side of the time of peak submovement speed (indicated by circles). (E-H) Simulated 373 

submovement-triggered averages produced by the OFC model. 374 

 375 

Modelling submovement-related LFP cycles and delta oscillations in sleep 376 

These various observations can be understood using the same computational model that explained 377 

our human behavioral data (Figure S7). For simplicity, we simulated two out-of-phase components 378 

within the LFP from the total synaptic input to each of the two neural population in the state 379 

estimator. We also added common low-frequency background noise to represent volume conduction 380 

from distant sources. The simulated LFPs exhibited a broad (delay-independent) spectral peak arising 381 

from the dynamics of the recurrent network (Fig. 6J). By contrast, the resultant cursor velocity 382 

comprised the summation of motor noise and (delayed) feedback corrections, and therefore 383 

contained sharper (delay-dependent) spectral peaks due to constructive/destructive interference (Fig. 384 

6I). Note however that coherence was nonetheless observed between LFPs and cursor velocity (Fig. 385 

6K). Time-domain SmTAs of the simulated data also reproduced features of the experimental 386 

recordings, including delay-dependent peaks/troughs reflecting extrinsic feedback delays (Fig. 7E-G). 387 

Meanwhile, the conserved intrinsic dynamics coupling simulated neural populations resulted in 388 

consistent cyclical LFP trajectories around the time of movement (Fig. 7H) and an imaginary cross-389 

spectrum with a single delay-independent resonance (Fig. 6L). 390 
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 391 
 392 

Figure 8. Simulated LFP dynamics during movement and sedation. (A) K-complex events in LFP from 393 

M1 recorded under ketamine sedation. (B) Average low-pass filtered multichannel LFPs aligned to K-394 

complex events. LFPs are color-coded according to phase relative to submovements, but exhibit a 395 

similar pattern relative to K complexes. (C) Average LFP-PC trajectories aligned to K-complexes, 396 

plotted over 200 ms either side of the time of K-complex (indicated by circle), using the PC plane 397 

calculated from recordings during awake behavior. (D) Average cursor speed aligned to the peak speed 398 

of submovements. (E) Average low-pass filtered multichannel LFPs aligned to submovements. (F) 399 

Average submovement-triggered LFP-PC trajectories, plotted over 200 ms either side of the time of 400 

submovements (indicated by circle). (G) A K-complex under sedation is simulated by an impulse 401 

excitation of the OFC model, without connection to the external world. (H) Impulse response of the 402 

simulated LFP-PCs. (I) LFP-PC trajectories associated with simulated K-complexes. (J) Simulated 403 

submovement-triggered average cursor speed from the OFC model with no feedback delay. (K) 404 

Simulated submovement-triggered average LFP-PCs. (L) Simulated submovement-triggered LFP-PC 405 

trajectories. Panels A-F reproduced from Figure 4A,C,D in Hall et al. (2014) under the CC BY 3.0 license 406 

(https://creativecommons.org/licenses/by/3.0/). 407 

 408 

Finally we examined whether the model could also account for cortical oscillations in the absence of 409 

behavior. Previously we have described a common dynamical structure within both cortical cycles 410 

during movement and low-frequency oscillations during sleep and sedation (Hall et al., 2014). In 411 

particular, K-complex events under ketamine sedation (Fig. 8A), thought to reflect transitions between 412 

down- and up-states of the cortex, are associated with brief bursts of delta oscillation (Fig. 8B) (Amzica 413 

and Steriade, 1997). The relative phases of multichannel LFPs aligned to these events matches those 414 

seen during submovements (Fig. 8D,E). As a result, when projected onto the PC plane, LFPs trace 415 

similar cycles during both K-complexes (Fig. 8C) and submovements (Fig. 8F). We modelled the 416 

sedated condition by disconnecting motor and sensory connections between the feedback controller 417 

and the external world, instead providing a pulsatile input to the state estimator simulating a down- 418 

to up-state transition (Fig. 8G). Effectively, transient excitation of the state estimator elicited an 419 

impulse response reflecting its intrinsic dynamics. The simulated LFPs generated a burst of delta-420 
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frequency oscillation around the K-complex (Fig. 8H) which resembled submovement-related activity 421 

(Fig. 8J,K). Projecting this activity onto the same PC plane revealed consistent cycles during simulated 422 

K-complexes (Fig. 8I) and submovements (Fig. 8L). Thus it appears that our computational model 423 

incorporating the intrinsic dynamics of motor cortical networks could also account for the conserved 424 

structure of low-frequency LFPs during movement and delta oscillations in sleep. 425 

 426 

Discussion 427 

Submovement kinematics are influenced by both extrinsic and intrinsic dynamics 428 

Previous theories of intermittency have focused on either extrinsic or intrinsic explanations for the 429 

regularity of submovements, but little consensus has emerged over this fundamental feature of 430 

movement. There is good evidence for a common low-frequency oscillatory structure to motor cortex 431 

activity across multiple behavioral states (Churchland et al., 2012; Hall et al., 2014; Russo et al., 2018) 432 

but also an influence of feedback delays on submovement timing (Miall, 1996). Experimentally 433 

manipulating visual feedback with artificial time delays and spatial perturbations allowed us to 434 

dissociate both contributions to submovement kinematics. We found that precise frequencies of 435 

submovement peaks were determined by constructive and destructive interference between broad-436 

band motor errors and continuous, delayed feedback corrections. However, these peaks were 437 

embedded within a delay-independent envelope that arose from intrinsic filtering of feedback 438 

corrections. The dissociation of extrinsic and intrinsic dynamics was also evident in cortical LFPs during 439 

tracking movements. Both delay-dependent feedback corrections and delay-independent cycles were 440 

observed in submovement-triggered averages of LFPs. Moreover, while coherence between LFPs and 441 

cursor movement exhibited delay-dependent spectral peaks, the imaginary coherence between 442 

multichannel LFPs revealed a consistent dynamical structure across behaviors. 443 

These apparently contradictory results could be explained by an OFC model that implemented state 444 

estimation via a steady-state Kalman filter to separate process (motor) noise from measurement 445 

(sensory) noise. One free parameter was tuned to achieve correspondence between simulated and 446 

experimental data, namely the ratio of process to measurement noise which determined the intrinsic 447 

resonance frequency around 2-3 Hz. It would be interesting in future to vary these noise 448 

characteristics experimentally (e.g. by artificially degrading visual acuity or by extensively training 449 

subjects) and examine the effect on perturbation responses. One possible outcome would be a change 450 

to the observed resonance, although this seems to contradict the ubiquity of 2-3 Hz cortical dynamics. 451 

Alternatively there may be other computational advantages to maintaining a consistent cortical 452 

rhythm. For example, it is notable that 2-3 Hz intrinsic dynamics matched the frequency of the primary 453 

submovement peak under unperturbed external feedback conditions, thus accentuating the 454 

fundamental submovement frequency around 2 Hz while suppressing higher harmonics. This may be 455 

beneficial in allowing other aspects of the visuomotor machinery to be synchronized to a single 456 

rhythm, for example eye movements which are influenced by hand movement during tracking tasks 457 

(Koken and Erkelens, 1992). 458 

 459 

Modelling isometric visuomotor tracking 460 

Several further assumptions of our modelling warrant discussion. First, to prevent control instabilities 461 

associated with feedback delays we incorporated an accurate forward model of the (delayed) sensory 462 

consequences of motor commands within a Smith Predictor architecture. We did not include adaptive 463 
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processes to calibrate the delay model, but this could be readily achieved by minimizing discrepancies 464 

between an efference copy of motor commands and observed cursor movements. The accuracy of 465 

tracking performance under different delay conditions (without cursor perturbations) suggests that 466 

subjects could readily adapt such a forward model and this role has previously been ascribed to the 467 

cerebellum (Miall et al., 1993b; Streng et al., 2018). By contrast, to account for the delay-independent 468 

perturbation responses, we maintained the same intrinsic cortical dynamics throughout, even though 469 

an optimal state estimator should similarly incorporate knowledge of feedback delays (see Equ. 5). 470 

Note however that adaptation of the state estimator presents a harder computational problem, since 471 

no available signals directly relate the state of the external world to delayed sensory information. Even 472 

when we imposed predictable sinusoidal perturbations, we saw no evidence that subjects learnt to 473 

compensate for feedback delays by altering the timing of their corrective responses within a single 474 

trial. Nevertheless, it would again be interesting to examine whether state estimator dynamics might 475 

adapt on a slower time-scale after extensive training with delayed feedback. 476 

Finally, we were puzzled that force amplitude responses to cursor perturbations were uniformly less 477 

than unity, which initially appears suboptimal for rejecting even slow perturbations. We first 478 

considered that proprioceptive information (which is in conflict with vision during cursor 479 

perturbations) might cause subjects to underestimate the true displacement of the cursor. However, 480 

sub-unity amplitude responses were also observed in separate experiments (not shown) when 481 

sinusoidal displacements were added to the target position. In this situation there was no discrepancy 482 

between vision and proprioception, yet subjects consistently undershot corrections to all but the 483 

lowest frequency perturbations (even in the absence of any delay). In our OFC model we instead 484 

reduced amplitude responses by penalizing large changes to the motor command. This cost function 485 

was minimized by proportional-integral (PI) control, which has been used in the past to model human 486 

movement (Kleinman, 1974). It is more common in current optimal control models to apply cost 487 

functions that penalize the absolute motor command leading to proportional feedback policies 488 

(Todorov and Jordan, 2002), under the assumption that this minimizes signal-dependent noise in 489 

muscles (Jones et al., 2002). However, the trajectory variability observed in our isometric tracking task 490 

appeared more correlated with large changes in finger forces rather than force magnitude (Figure S8), 491 

providing empirical support for our choice of cost function. Derivative-dependent motor noise was 492 

also evident as increased variability at high frequencies in our feedforward task (Figure S5). Since 493 

submovements result from constructive interference between tracking errors and feedback 494 

corrections, derivative-dependent motor noise also provides a counterintuitive but necessary 495 

explanation for why the amplitude of submovements increases with target speed (Figure S1). 496 

Increased intermittency cannot be a direct consequence of faster target motion, since the frequency 497 

content of this motion is nevertheless low by comparison to submovements. Rather, faster tracking 498 

requires a larger change in the motor command, leading to increased broad-band motor noise which, 499 

after constructive interference with feedback corrections, results in more pronounced peaks at 500 

submovement frequencies. 501 

 502 

State estimation by motor cortical population dynamics 503 

PCA of multichannel LFPs in monkey motor cortex revealed two underlying components, which we 504 

interpret as arising from distinct but coupled neural populations. The cyclical movement-related 505 

dynamics of these components resembled those described for M1 firing rates (Churchland et al., 506 

2012), which have previously been implicated in feedforward generation of movement. Specifically, it 507 

was proposed that preparatory activity first develops along ‘output-null’ dimensions of the neural 508 

state space before, at movement onset, evolving via intrinsic dynamics into orthogonal ‘output-509 
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potent’ dimensions that drive muscles (Churchland et al., 2010). However, this purely feedforward 510 

view cannot account for our isometric tracking data, since manipulation of feedback delays dissociated 511 

delay-dependent submovements from delay-independent rotational dynamics. Instead we interpret 512 

these intrinsic dynamics as implementing a state estimator during continuous feedback control. We 513 

used Newtonian dynamics to construct a simple two-dimensional state transition model based on 514 

both the cursor-target discrepancy and its first derivative. While this undoubtedly neglects the true 515 

complexity of muscle and limb biomechanics, simulations based on this plausible first approximation 516 

reproduced both the amplitude response and phase delay to sinusoidal cursor perturbations in 517 

humans, and the population dynamics of LFP cycles in the monkey. Note that this account also offers 518 

a natural explanation of why preparatory and movement-related activity lies along distinct state-space 519 

dimensions, since the static discrepancy present during preparation is encoded differently to the 520 

changing discrepancy that exists during movement. At the same time, the lawful relationship between 521 

discrepancy and its derivative couples these dimensions within the state estimator and is evident as 522 

consistent rotational dynamics across different tasks and behavioral states. 523 

It may seem unusual to ascribe the role of state estimation to M1 when this function is usually 524 

attributed to parietal (Mulliken et al., 2008) and premotor areas (where rotational dynamics have also 525 

been reported, albeit at a lower frequency (Churchland et al., 2012; Hall et al., 2014). We suggest that 526 

the computations involved in optimal visuomotor tracking are likely distributed across multiple 527 

cortical areas including (but not limited to) M1, with local circuitry reflecting multiple dynamical 528 

models of the various sensory and efference copy signals that must be integrated for accurate control. 529 

Indeed, while we neglected to model the computations involved in accurately estimating our slow and 530 

predictable target motion, state estimation using Kalman filters has also been suggested as a 531 

mechanism by which the visual system can estimate the position of moving visual stimuli (Kwon et al., 532 

2015). 533 

An alternative explanation for consistent rotational dynamics has recently been proposed by Russo et 534 

al. (2018), based on the behavior of recurrent neural networks trained to produce different feed-535 

forward muscle patterns whilst minimizing ‘tangling’ between neural trajectories. It is interesting to 536 

compare this with our OFC-based interpretation, since both are motivated by the problem of 537 

maintaining accurate behavior in the presence of noise. Minimizing tangling leads to network 538 

architectures that are robust to intrinsic noise in individual neurons, while OFC focusses on optimizing 539 

movements in the face of unreliable motor commands and noisy sensory signals. Given this conceptual 540 

link, it is perhaps unsurprising if recurrent neural network approaches learn implementations of 541 

computational architectures such as Kalman filters that minimize the influence of noise on behavior. 542 

In future it may be productive to incorporate sensory feedback into recurrent neural network models 543 

of movement, as well as including intrinsic sources of neural noise in optimal control models. The 544 

convergence of these frameworks may further help to reveal how computational principles are 545 

implemented in the human motor system. 546 
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Materials and Methods 561 

Human experiments 562 

Subjects 563 

Based on pilot studies we decided in advance to use a sample size of eight subjects in each experiment. 564 

In total, we recruited 11 adult subjects in total at the Institute of Neuroscience, Newcastle University. 565 

Eight subjects (3 females; age 23–33; 1 left-handed) participated in both Experiment 1 (feedback 566 

delay) and Experiment 2 (feedback delay and spatial perturbation). Eight subjects (3 females; age 23–567 

33; all right-handed) participated in Experiment 3 (feedforward task); 6 of these subjects also 568 

participated in experiments 1 and 2. Eight subjects (3 females; age 23–33; all right-handed) 569 

participated in the experiment shown in Figure S8; 7 out of these subjects also participated in 570 

Experiment 3. All experiments were approved by the local ethics committee at Newcastle University 571 

and performed after informed consent, which was given in accordance with the Declaration of 572 

Helsinki. 573 

Human tracking task 574 

Subjects tracked a (red) target on a computer monitor by exerting bimanual isometric index finger 575 

forces on two sensors (FSG15N1A; Honeywell). The target underwent uniform, slow circular motion 576 

with a pseudorandom order of clockwise and anticlockwise directions across trials. Finger forces were 577 

sampled at 50 samples/s (USB-6343; National Instruments) and mapped to (yellow) cursor position by 578 

projecting onto two diagonal screen axis. In addition, a feedback delay (𝜏ext) was interposed between 579 

force and cursor movement. The feedback delay was kept constant through the duration of each trial 580 

(lasting 20 s). We express screen coordinates in terms of the radius of target motion, 𝑟target = 100%. 581 

Tracking the target rotation thus required generating sinusoidal motion in the range of -100% to 582 

+100%, corresponding to finger forces of 0 to 3.26N, with a 90° phase-shift between each hand. At the 583 

end of each trial subjects were given a numerical score from 0-1000 indicating how accurately they 584 

tracked the target. Subjects were instructed to attempt to maximize this score, which was calculated 585 

as: 586 

 𝑆𝑐𝑜𝑟𝑒 =
1000 

𝑇
× ∫ (1 − 𝑒−

|𝒓cursor(𝑡)−𝒓target(𝑡)|

𝛿 )
𝑇

0
𝑑𝑡    (Equ. 6) 587 

where 𝒓cursor(𝑡) and 𝒓target(𝑡) are the 2D positions of the cursor and target respectively, and 𝛿 =588 

50%. Apart from the experiment shown in Figure S8, all experiments used a frequency of target 589 

rotation, 𝑓target = 0.2 rotations per second. 590 

Experiment 1 used five delay conditions (𝜏ext = 0, 100, 200, 300, or 400 ms). Subjects performed a 591 

total of 70 trials, comprising 14 of each condition presented in pseudorandom order. 592 
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For Experiment 2, spatial perturbations were added to the cursor position as well as time delays. The 593 

perturbations were equivalent to sinusoidal modulation of the target angular velocity, but were 594 

instead added to the cursor. Expressed in polar coordinates 𝒓 = 〈𝑟, ∠𝜃〉 relative to the center of the 595 

screen, the target and cursor positions were thus given by: 596 

 𝒓target(𝑡) = 〈𝑟target, ∠ 𝜔target𝑡〉       (Equ. 7) 597 

 𝒓pert(𝑡) = 〈𝑟target, ∠ 𝜔target𝑡 +
𝜔target

𝜔pert
sin 𝜔pert𝑡〉 − 𝒓target(𝑡)   (Equ. 8) 598 

 𝒓cursor(𝑡) = 〈𝑟force(𝑡), ∠𝜃force(𝑡)〉 + 𝒓pert(𝑡)     (Equ. 9) 599 

where 𝜔target = 2𝜋𝑓target is the angular velocity of the target around the centre of the screen, 600 

𝜔pert = 2𝜋𝑓pert is the angular frequency of the perturbation, and 〈𝑟force(𝑡), ∠𝜃force(𝑡)〉 is the 601 

unperturbed cursor position calculated from the subject’s forces at time 𝑡 − 𝜏ext. 602 

Kinematic analyses were based on the time-varying angular velocity of the cursor subtended at the 603 

center of the screen: 604 

 𝜔cursor(𝑡) =
𝑑

𝑑𝑡
𝜃cursor(𝑡)       (Equ. 10) 605 

For spatial perturbation experiments, we also calculated the angular velocity of the unperturbed 606 

cursor position subtended at the center of the screen: 607 

 𝜔force(𝑡) =
𝑑

𝑑𝑡
𝜃force(𝑡)        (Equ. 11) 608 

Note that since 𝑟force ≈ 𝑟target, the perturbation effectively adds a sinusoidal component to the 609 

angular velocity of the cursor: 610 

 𝜔cursor(𝑡) ≈ 𝜔force(𝑡) + 𝜔targetcos𝜔pert𝑡     (Equ. 12) 611 

Six different spatial perturbations (𝑓pert = 0, 1, 2, 3, 4, 5 Hz) combined with two feedback delays (𝜏ext 612 

= 0, 200 ms) yielded 12 conditions. Subjects performed a total of 144 trials, comprising 12 trials per 613 

condition in pseudorandom order. 614 

Human feedforward task 615 

In Experiment 3, we used a unimanual isometric task in which subjects were asked to make sinusoidal 616 

forces with their right index finger. Subjects received visual feedback of the cursor, but no target was 617 

shown. Instead subjects were shown two amplitude boundaries to move between, and the frequency 618 

of movement was cued with auditory beeps at frequencies of 1, 2, 3, 4 and 5 Hz. Subjects performed 619 

a total of 15 trials, comprising three 20 s trials per frequency condition. 620 

 621 

Monkey experiments 622 

Subjects 623 

We used two purpose-bred female rhesus macaques (monkey S: 6 years old, 6.6 kg; monkey U: 6 years 624 

old, 8.8 kg). Animal experiments were approved by the local Animal Welfare Ethical Review Board and 625 

performed under appropriate UK Home Office licenses in accordance with the Animals (Scientific 626 

Procedures) Act 1986. 627 

Monkey tracking task 628 
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Monkeys moved a 2D computer cursor by generating isometric flexion-extension (vertical) and radial-629 

ulnar (horizontal) torques at the wrist, measured by a 6-axis force/torque transducer (Nano25; ATI 630 

Industrial Automation). Centre-out targets were presented at 8 peripheral positions in a 631 

pseudorandom order. Targets were positioned at 70% of the distance to the screen edge (100% 632 

corresponding to torque of 0.67 Nm). The diameter of the target and cursor ranged between 14-36%. 633 

A successful trial required maintaining an overlap between cursor and peripheral target for 0.6 s after 634 

which the monkeys returned to the center of the screen to receive a food reward. Visual feedback of 635 

the cursor was delayed by 𝜏ext = 0, 200, 400, 600 ms throughout separate blocks of 50-70 trials each. 636 

Monkey S performed the task with the right hand. Monkey U initially used the right hand and was 637 

then retrained for a second period of data collection with the left hand. 638 

LFP recording 639 

LFPs were recorded using custom arrays of 12 moveable 50 µm diameter tungsten microwires 640 

(impedance ~200 kΩ at 1 kHz) chronically implanted in contralateral wrist area of M1 under 641 

sevoflurane anesthesia with postoperative analgesics and antibiotics. Head-free recordings were 642 

made using unity-gain headstages followed by wide-band amplification and sampling at 24.4 643 

kilosamples/s (System 3; Tucker-Davis Technologies). LFPs were digitally low-pass filtered at 200 Hz 644 

and recorded at 488 samples/second. 645 

Analysis of kinematics and neural data was performed on data recorded over 8 different days 646 

comprising of 56 task blocks in Monkey S (no delay: 24 blocks; 200 ms delay: 13; 400 ms delay: 13; 600 647 

ms delay: 6), and 89 recording days comprising of 356 task blocks in Monkey U (no delay: 89; 200 ms 648 

delay: 89; 400 ms delay: 89; 600 ms delay: 89). Each task block comprised 50 (monkey S) or 70 trials 649 

(monkey U). 650 

 651 

Analysis Methods 652 

Human data analysis 653 

Spectral analysis used fast Fourier transforms (FFTs) performed on non-overlapping 512 sample-point 654 

windows (approx. 10s) taken from the middle of each trial. Submovement peaks in the power spectra 655 

were measured after smoothing with a seven-point moving-average. 656 

For perturbation experiments, we additionally defined two complex transfer functions 𝐻cursor and 657 

𝐻force: 658 

 𝐻cursor(𝑖𝜔pert) =
2

𝜔target𝑇
∫ 𝜔cursor(𝑡)𝑒−𝑖𝜔pert𝑡𝑑𝑡

𝑇

0
    (Equ. 13) 659 

 𝐻force(𝑖𝜔pert) =
2

𝜔target𝑇
∫ 𝜔force(𝑡)𝑒−𝑖𝜔pert𝑡𝑑𝑡

𝑇

0
    (Equ. 14) 660 

Cursor and force amplitude responses to perturbations were calculated as the magnitude of the 661 

corresponding transfer functions, and the intrinsic phase delay of force responses was given by: 662 

 𝜏𝜑(𝑖𝜔pert) = −
arg[𝐻force(𝑖𝜔pert)]

𝜔pert
− 𝜏ext      (Equ. 15) 663 

Additionally, tracking performance was quantified off-line using the root-mean-squared Euclidean 664 

distance between cursor and target. 665 

Monkey data analysis 666 
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We differentiated the magnitude of the absolute 2D torque (expressed as a percentage of the distance 667 

to the edge of the screen) to obtain the radial cursor velocity. LFP channels were subjected to visual 668 

inspection to reject noisy channels prior to mean-subtraction. For time-domain analysis, LFPs and 669 

cursor velocities were low-pass filtered at 10 Hz. Submovements were defined as a peak radial cursor 670 

speed exceeding 100%/s (monkey S) and 150%/s (monkey U). For frequency-domain analysis, we took 671 

unfiltered sections of 1024 sample points from each trial (approx. 1.5 s before to 0.5 s after the end 672 

of the peripheral hold period). We subtracted the trial-averaged profile from each section before 673 

concatenating to yield long data sections without any consistent low-frequency components related 674 

to the periodicity of the task. FFTs were calculated with overlapping Hanning windows (214 sample 675 

points ≈ 34 s; 75% overlap), from which we derived the following spectra: 676 

Cursor power: 𝑃Cursor(𝑓) =
∑ 𝐹𝑐𝑢𝑟𝑠𝑜𝑟(𝑓,𝑚).𝐹𝑐𝑢𝑟𝑠𝑜𝑟(𝑓,𝑚)∗𝑀

𝑚=1

𝑀
  677 

LFP power: 𝑃LFP 𝑖(𝑓) =
∑ 𝐹LFP 𝑖(𝑓,𝑚).𝐹LFP 𝑖(𝑓,𝑚)∗𝑀

𝑚=1

𝑀
 678 

LFP-cursor coherence: 𝐶𝑜ℎLFP 𝑖−Cursor =
|∑ 𝐹LFP 𝑖(𝑓,𝑚).𝐹cursor(𝑓,𝑚)∗𝑀

𝑚=1 |
2

𝑀.𝑃Cursor(𝑓).𝑃LFP 𝑖(𝑓)
 679 

LFP-LFP imaginary coherence: 𝐼𝑚 𝐶𝑜ℎLFP 𝑖−LFP 𝑗 =
(Im[∑ 𝐹LFP 𝑖(𝑓,𝑚).𝐹LFP 𝑗(𝑓,𝑚)∗𝑀

𝑚=1 ])
2

𝑀.𝑃LFP 𝑖(𝑓).𝑃LFP 𝑗(𝑓)
 680 

where 𝐹LFP 𝑖(𝑓, 𝑚) and 𝐹Cursor(𝑓, 𝑚) represent Fourier coefficients at frequency 𝑓 and window 𝑚 =681 

(1. . 𝑀) from LFP channel 𝑖 and cursor velocity respectively. All spectra were smoothed with a 16-point 682 

Hanning window. In addition, LFP power and LFP-cursor coherence were averaged across all LFP 683 

channels, while LFP-LFP imaginary coherence was averaged over all pairs of LFPs. 684 

 685 

Modelling 686 

Although both human and monkey tasks involved 2D isometric control, for simplicity we modelled 687 

only a 1D controller and assumed a one-to-one mapping from control signal, 𝑢𝑘 to position, 𝑥𝑘. We 688 

neglected target motion and designed the controller to minimize the influence of stochastic motor 689 

errors using delayed, noisy feedback of position. We set the model time step ∆𝑡 = 0.01 s, intrinsic 690 

feedback delay 𝜏int = 0.26 s, and the ratio of process/measurement noise 𝜌 = 250 s-2 unless otherwise 691 

stated. Steady-state Kalman gains were calculated using the function kalman in MATLAB, and the 692 

resultant discrete time dynamic system (Equ. 4) was implemented by two integrating neuronal 693 

populations representing 𝑥𝑘 and 𝑣𝑘, receiving a synaptic input on each time-step equal to: 694 

 [
Δ𝑥𝑘

Δ𝑣𝑘
] = [

−𝐾pos ∆𝑡

−𝐾vel 0
] [

𝑥𝑘−1

𝑣𝑘−1
] + [

𝐾pos

𝐾vel
] 𝑦𝑘      (Equ. 16) 695 

Two LFP components were simulated by normalizing Δ𝑥𝑘 and Δ𝑣𝑘 to unity variance, before adding 696 

background common noise with a 1 𝑓⁄  spectrum. 697 

The motor command 𝑢𝑘 was generated on each time step using the Smith Predictor architecture 698 

shown in Fig. 3F. Based on our observation that trajectory variability was maximal at times when force 699 

output was changing (Figure S8), we used an linear quadratic regulator (LQR) control framework to 700 

minimize a quadratic cost function, 𝐽, incorporating the rate of change in motor command, 
∆𝑢𝑘

∆𝑡
: 701 

 𝐽 = ∑ (𝑞𝑥𝑘
2 + 𝑟 (

∆𝑢𝑘

∆𝑡
)

2
)𝑘        (Equ. 17) 702 
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For a state transition matrix in the form: 703 

 [
𝑥𝑘

𝑣𝑘
] = [

1 ∆𝑡
0 1

] [
𝑥𝑘−1

𝑣𝑘−1
] + [

0
1

]
∆𝑢𝑘

∆𝑡
      (Equ. 18) 704 

𝐽 is minimized by a state feedback policy of the form: 705 

 
∆𝑢𝑘

∆𝑡
= − [

𝐾I

𝐾P
] . [

𝑥𝑘

𝑣𝑘
]        (Equ. 19) 706 

which can be integrated to yield a PI controller: 707 

 𝑢𝑘 = ∑ ∆𝑢𝑖
𝑘
𝑗=1  708 

       = −𝐾P ∑ 𝑣𝑘∆𝑡𝑘
𝑗=1 − 𝐾I ∑ 𝑥𝑗∆𝑡𝑘

𝑗=1  709 

       = −𝐾P𝑥𝑘 − 𝐾I ∑ 𝑥𝑗∆𝑡𝑘
𝑗=1        (Equ. 20) 710 

We found the proportional and integral gains 𝐾P and 𝐾I using the function lqr in MATLAB with 𝑞 = 1 711 

and 𝑟 = ∆𝑡2. In the full model, this controller acted on the optimal estimate of position, �̂�𝑘, after 712 

incorporating the delay feedback loop of the Smith Predictor. Note that the transfer function of a PI 713 

controller inside the fast feedback loop of the Smith Predictor is given by (Abe and Yamanaka, 2003): 714 

 𝐻PI(𝑖𝜔) =
𝐾P+

𝐾I
𝑖𝜔⁄

1+𝐾P+
𝐾I

𝑖𝜔⁄
        (Equ. 21) 715 

which equals 1 for 𝜔 = 0 but tends to 
𝐾P

1+𝐾P
 at higher frequencies. Therefore this effectively reduces 716 

the response amplitude to perturbations. The full transfer function of the intrinsic dynamics, including 717 

time-delay is given by: 718 

 𝐻force(𝑖𝜔) = 𝑒−𝑖𝜔(𝜏int+𝜏ext)𝐻PI(𝑖𝜔). 𝐻𝑦→�̂�(𝑖𝜔)     (Equ. 22) 719 

 𝐻cursor(𝑖𝜔) = 1 − 𝐻force(𝑖𝜔)       (Equ. 23) 720 

where 𝐻𝑦→�̂�(𝑖𝜔) is the transfer function of the Kalman filter relating delayed position measurement 721 

to optimal position estimate. 722 

 723 

Data and software availability 724 

Datasets from the human and monkey experiments, sample analysis code and modelling associated 725 
with this work are available on Dryad doi:10.5061/dryad.53sq7kn.  726 
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Supplemental Information 793 

 794 

Table S1. The dependency of submovement period on feedback delay. Shown in the table are the 795 
gradients and intercepts of regression lines fitted to each harmonic group in Figure 1E. The time period of each 796 
spectral peak was regressed against feedback delay. Shown in square brackets are 95% confidence intervals of 797 
these values. Also shown is the estimated intrinsic time delay calculated using Equ. 1. 798 

 799 

Harmonic 
(N) 

Predicted 
slope = 2/N 

Measured 
slope 

Measured 
intercept (ms) 

R2 P τint = Intercept*N/2 

1 2 1.89 
[1.69,2.09] 

589 ms 
[539,638] 

0.90 <0.00001 294 ms 
[270,319] 

3 0.67 0.59 
[0.53,0.65] 

226 ms 
[211,242] 

0.94 <0.00001 340 ms 
[316,362] 

5 0.4 0.33 
[0.22,0.45] 

146 ms 
[106,185] 

0.75 <0.00001 364 ms 
[266,463] 

 800 
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 801 

Figure S1. Effect of target speed on movement intermittency. (A) Power spectra of cursor angular 802 

velocity for individual subjects with slow (0.1 cycles/s) or fast (0.2 cycles/s) target rotation, and no 803 

feedback delay. (B) Power spectra of cursor angular velocity with slow or fast target rotation, and 200 804 

ms feedback delay. (C,D) Average power, showing mean ± s.e.m. for 8 subjects. (E) Average ± s.e.m. 805 

frequencies of peak cursor velocity in each condition. P values calculated using a paired t-test. 806 
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 807 

Figure S2. Individual subject power spectra of cursor velocity with different feedback delays. Power 808 

spectra of cursor angular velocity for individual subjects with 0–400 ms feedback delay. The average 809 

over subjects is shown in Figure 1D. 810 
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 811 

Figure S3. Individual subject power spectra of cursor velocity with perturbations. (A) Power spectra 812 

of cursor angular velocity for individual subjects with 1–5 Hz perturbations and no feedback delay. The 813 

average over subjects is shown in Figure 2C. (B) Power spectra of cursor angular velocity for individual 814 

subjects with 1–5 Hz perturbations and 200 ms feedback delay. The average over subjects is shown in 815 

Figure 2D. 816 
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 817 

Figure S4. Individual subject power spectra of force velocity with perturbations. (A) Power spectra 818 

of force angular velocity for individual subjects with 1–5 Hz perturbations and no feedback delay. The 819 

average over subjects is shown in Figure 2F. (B) Power spectra of force angular velocity for individual  820 

subjects with 1–5 Hz perturbations and 200 ms feedback delay. The average over subjects is shown in 821 

Figure 2G. 822 
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 823 

Figure S5. Feedforward task. (A) Schematic of the feedforward isometric task. Subjects generated 824 

sinusoidal forces within a set range, at a frequency indicated by an auditory cue. (B-D) Performance 825 

of an example subject for frequencies between 1-5 Hz. (E) Power spectrum of force for individual 826 

subjects. The average over all subjects is shown in Figure 2J. 827 
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 828 

Figure S6. Submovement-triggered averages of M1 LFPs for Monkey U. (A) Average low-pass filtered 829 

LFPs from M1, aligned to the peak speed of submovements with 0–600 ms feedback delay. Arrows 830 

indicate second feature following submovement by an extrinsic delay-dependent latency. Data from 831 

Monkey U. (B) Average of first two LFP-PCs aligned to submovements. (C) Average low-pass filtered 832 

cursor speed, aligned to submovements. Arrows indicate symmetrical velocity troughs at extrinsic 833 

delay-dependent latencies. (D) Average submovement-triggered LFP-PC trajectories, plotted over 200 834 

ms either side of the time of peak submovement speed (indicated by circles). 835 
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 836 

Figure S7. Schematic of delay-dependent and delay-independent relationships in OFC model. The 837 

boxes show how the various frequency-domain and submovement-triggered average (SmTA) 838 

relationships are explained by the OFC model. Top row, from left to right: Broad spectrum motor noise 839 

drives intrinsic dynamics resulting in a delay-independent LFP cross-spectral resonance. The delayed 840 

motor command is combined with the original motor noise leading to delay-dependent comb filtering 841 

evident in LFP-Cursor coherence and Cursor power spectrum. Bottom row, from left to right: 842 

submovements can arise from a positive noise peak at time-zero, or as a correction to a preceding 843 

negative noise trough. Due to intrinsic dynamics, LFPs trace consistent cyclical trajectories locked to 844 

submovements. SmTA of LFPs contains potentials associated with noise peak/troughs after feedback 845 

delay. SmTA of cursor velocity combines noise with delayed feedback corrections to yield a central 846 

submovement flanked by symmetrical troughs.  847 
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 848 

Figure S8. Trajectory variability depends on change in isometric force. (A) Simulated pattern of trial-849 

to-trial variability if motor noise is proportional to absolute force. (B) Simulated pattern of trial-to-trial 850 

variability if motor noise is proportional to derivative of force. (C) Variability of a typical subject during 851 

counter clockwise tracking. 2D cursor position over multiple trials and associated covariance ellipses 852 

are shown for 16 target positions. (D) Average and s.e.m. of standard deviation of force along each 853 

finger axis for the 16 target positions. Note that variability is maximal at times of maximal change in 854 

associated finger force (dashed lines). 855 
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