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Abstract:  30 

Few studies have comprehensively investigated the temporal variability in soil microbial 31 

communities despite widespread recognition that the belowground environment is 32 

dynamic. In part, this stems from the challenges associated with the high degree of 33 

spatial heterogeneity in soil microbial communities1 and because the presence of relic 34 

DNA2 may mask temporal dynamics. Here we disentangle the relationships among 35 

spatial, temporal, and relic DNA effects on microbial communities in soils collected from 36 

contrasting hillslopes in Colorado, USA. These sites were chosen because they have 37 

distinct soil microbial communities and experience strong seasonal changes in 38 

precipitation and temperature regimes. We intensively sampled plots on each hillslope 39 

over one year to discriminate between temporal variability, the intra-plot spatial 40 

heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We 41 

show that the intra-plot spatial variability in microbial community composition was strong 42 

and independent of relic DNA effects and these spatial patterns persisted throughout 43 

the study. When controlling for intra-plot spatial variability, we identified significant 44 

temporal variability in both plots, particularly after relic DNA was removed, suggesting 45 

that relic DNA hinders the detection of important temporal dynamics in soil microbial 46 
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communities. We also identified microbial taxa that exhibited shared temporal 47 

responses and we show that these responses were often predictable from temporal 48 

changes in soil conditions. These findings highlight approaches that can be used to 49 

better characterize temporal shifts in soil microbial communities, information that is 50 

critical for predicting the environmental preferences of individual soil microbial taxa and 51 

identifying linkages between soil microbial community composition and belowground 52 

dynamics. 53 

  54 

Introduction:  55 

 Information on the temporal dynamics of microbial communities over different 56 

time scales can be used to better understand the factors influencing the structure of 57 

microbial communities and their contributions to ecosystem processes. We know that 58 

the microbial communities found in the human gut3, leaf litter4, marine5, and freshwater6 59 

habitats can exhibit a high degree of temporal variation. Although the magnitude and 60 

timing of this temporal variation in community composition can vary depending on the 61 

environment and taxon in question, such temporal variability is often predictable from 62 

environmental factors7. For example, ocean microbial communities display predictable 63 

periodic oscillations over time (seasonality) that has been linked to regular changes in 64 

biotic and abiotic factors, including phytoplankton dynamics and physicochemical 65 

factors (reviewed in refs 5,8). These changes in environmental conditions influence the 66 

nature of biotic interactions within these ecosystems and can have important 67 

ramifications for understanding the functional attributes of microbial communities and 68 

the ecosystem services they provide9-11. 69 

 Understanding how temporal changes in environmental conditions influence soil 70 

microbial communities is necessary to accurately model how microbial communities 71 

contribute to soil processes and for using microbes as bio-indicators of changes in 72 

belowground conditions such as carbon and nutrient availability – parameters that are 73 

often difficult to measure directly. However, results from previous studies of temporal 74 

variability in soil microbial communities are idiosyncratic. While some studies show soil 75 

microbial communities exhibit measurable temporal variation in response to 76 

experimental warming12,13 and seasonal patterns in temperature and moisture14-18, other 77 

studies show no or minimal variation over time, despite marked changes in 78 

environmental conditions7,19,20. One possible explanation for the discrepancies across 79 

studies is that the spatial heterogeneity in soil microbial communities – even across 80 

short distances – can be sufficiently large to obscure temporal patterns. This hypothesis 81 

is supported by numerous studies demonstrating that the spatial variability in soil 82 

microbial communities (even across locations only a few meters apart) can be large (for 83 

example, ref. 1). Another explanation is that relic DNA – legacy DNA from dead 84 

microbes that can persist in soil – may dampen the observed temporal variability by 85 

effectively hiding the true temporal dynamics of soil microbial communities. Relic DNA is 86 

abundant in soil2,21, and models suggest that during microbial community turnover relic 87 

DNA can mask changes in community structure21.  88 

 We conducted a yearlong study aimed at disentangling the spatial and relic DNA 89 

effects on temporal dynamics in belowground microbial communities. Our study sites 90 

were soils on opposing hillslope aspects of a montane ecosystem within the Colorado 91 

Front Range of the Rocky Mountains. We intensively sampled two 9 m × 9 m plots, 92 
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divided into 3 m × 3 m sub-plots, located in the Gordon Gulch subcatchment within the 93 

Boulder Creek Critical Zone Observatory (BcCZO) every 40-55 days from November 94 

2015 to November 2016 (Fig. 1; nine time points total). We chose these locations 95 

because the soil microbial communities on the two hillslopes are compositionally 96 

distinct2, relic DNA is abundant (40-60% of the total soil DNA pool, ref. 2), and the two 97 

sites undergo strong seasonal changes in moisture and temperature22. Moreover, the 98 

temperature and moisture regimes are distinct across the two slopes22, providing us 99 

with naturally contrasting systems in which to investigate temporal dynamics in 100 

belowground microbial communities. We characterized the microbial communities at 101 

each site using 16S rRNA gene and internal transcribed spacer 1 (ITS) marker 102 

sequencing to profile the prokaryotic and fungal communities, respectively. Here, we 103 

unravel the relationships between spatial and temporal variability in microbial 104 

community composition, and show the effects of relic DNA on these apparent sources of 105 

variability. Further, we use this information on temporal dynamics to identify groups of 106 

microbes that share temporal patterns and similar responses to changes in 107 

environmental conditions, information that provides novel insight into the ecologies of 108 

understudied soil microbial taxa.  109 

 110 

Results & Discussion:  111 

Spatial variation in soil microbial communities is unaffected by relic DNA and 112 

stronger than temporal variation. Consistent with previous studies conducted at these 113 

sites2, and other studies describing the spatial variability of soil microbial communities1, 114 

the prokaryotic and fungal communities on the south-facing hillslope (SFS) were distinct 115 

from those on the north-facing hillslope (NFS), regardless of the time point sampled or 116 

whether relic DNA was removed (Supplementary Fig. 1). Most notably, the SFS had 117 

higher relative abundances of the archaeal phylum Crenarchaeota (all of which were 118 

classified as probable ammonia-oxidizing ‘Candidatus Nitrososphaera’), and the 119 

bacterial phyla Nitrospirae and Verrucomicrobia (Supplementary Fig. 2). Beyond these 120 

expected slope-scale differences, we observed significant intra-plot spatial 121 

heterogeneity in microbial community composition that persisted throughout the course 122 

of the experiment, and this intra-plot heterogeneity was evident irrespective of whether 123 

relic DNA was removed. Before removing relic DNA, there was significant spatial 124 

variability across the sub-plots in both prokaryotic and fungal communities on the NFS 125 

(Fig. 2 a,e; PERMANOVA R2=0.192 and R2=0.328; P≤0.001, respectively). Significant 126 

spatial differences were still apparent on the NFS for both prokaryotes and fungi after 127 

relic DNA was removed (Fig. 2 c,g; PERMANOVA R2=0.180 and R2=0.287; P≤0.001, 128 

respectively). We also found significant spatial variability on the SFS in samples that 129 

were not treated to remove relic DNA, but this spatial effect was much more 130 

pronounced than the NFS, with a clear partitioning between sub-plots 5, 6, 8 and 9 (see 131 

‘Plot Design’ in Fig. 1a for numbering) from the remainder of the sub-plots (Fig. 2 b,f; 132 

PERMANOVA R2=0.511, P≤0.001 for prokaryotes and R2=0.331, P≤0.001 for fungi). 133 

Similar to the NFS, these strong spatial patterns remained after relic DNA was removed 134 

(Fig. 2 d,h; PERMANOVA R2=0.498 for prokaryotes and R2=0.290 for fungi; P≤0.001). 135 

These data show that the spatial variability in soil microbial community composition on 136 

the meter scale persists over time and that the presence of relic DNA does not affect 137 

our ability to detect this persistent spatial variation.  138 
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 139 

Removing relic DNA enhanced our ability to detect temporal changes in soil 140 

microbial communities. We investigated the temporal variability in belowground 141 

microbial communities, and the effect of relic DNA on this temporal variability, on a sub-142 

plot basis to control for the aforementioned high degree of intra-plot spatial variability 143 

and discriminate between temporal and spatial sources of variation in microbial 144 

community structure. When limiting PERMANOVA permutations to within sub-plots over 145 

time, we found significant temporal variability for both prokaryotes and fungi in both 146 

untreated control soils (PERMANOVA R2 =0.187 P≤0.001 for prokaryotes and R2 =0.147 147 

P≤0.001 for fungi on the NFS; and R2 =0.123 P≤0.001 for prokaryotes and R2 =0.123 148 

P≤0.001 for fungi on the SFS) and soils that were treated to remove relic DNA 149 

(PERMANOVA R2 =0.177 P≤0.001 for prokaryotes and R2 =0.141 P≤0.001 for fungi on 150 

the NFS; and R2 =0.108 P≤0.001 for prokaryotes and R2 =0.157 P≤0.001 for fungi on 151 

the SFS). However, on average, the fungal communities on both slopes, and prokaryotic 152 

communities on the NFS were significantly more dissimilar over time after relic DNA 153 

was removed, compared to untreated control soils that contained relic DNA (Fig. 3; 154 

Kruskal-Wallis test P≤0.05). These results indicate that, while temporal signals in soil 155 

microbial communities can be identified in the presence of relic DNA, the removal of 156 

‘legacy’ DNA from dead microbes that can persist in soil significantly enhances the 157 

ability to detect important temporal variation in the composition of soil microbial 158 

communities. 159 

 160 

Temporal variability in distinct assemblages of prokaryotes and fungi are 161 

predictable from soil variables. Characterizing shifts in the relative abundances of 162 

individual microbial taxa in temporally dynamic soil systems can give important insight 163 

into the ecologies of individual taxa and, more generally, the environmental factors that 164 

influence belowground communities. Thus, we next sought to identify specific groups of 165 

taxa that exhibited correlated changes in relative abundances over time in soils after 166 

relic DNA was removed. To do this, we used local similarity analysis (LSA)23 to identify 167 

strong (local similarity score ≥0.7) and significant (q-value ≤0.001) positive pairwise 168 

microbe-microbe temporal correlations. We constructed and analyzed networks from 169 

these correlations and extracted distinct groups (modules) of microbes from NFS and 170 

SFS networks using modularity analysis24 (Fig. 4). On the NFS, the mean normalized 171 

relative abundances of 292 microbial taxa (184 bacteria and 108 fungi) were 172 

significantly correlated with at least one other taxon over time (Fig. 4a). These 173 

correlated taxa clustered into seven modules – the mean normalized relative 174 

abundances of four of these modules changed significantly with time and displayed 175 

distinct temporal trajectories (Fig. 4b). On the SFS, 291 taxa (1 archaeon, 191 bacteria 176 

and 99 fungi) were included in the network, and clustered into six modules (Fig. 4c). 177 

The relative abundances of three of these six SFS modules changed significantly with 178 

time (Fig. 4d).  179 

 A large proportion of the temporal variation in the mean normalized relative 180 

abundances of the modules that were found to change significantly over time could be 181 

explained by temporal variation in measured soil or environmental characteristics. At 182 

each time point, we measured a suite of soil and environmental parameters, including: 183 

snow depth, soil temperature and moisture, extractable inorganic nitrogen (NO3
- + 184 
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NH4
+), salinity (electrical conductivity), extractable phosphorus (P), pH, and the 185 

chromophoric properties of water-soluble organic matter (WSOM; a metric of organic 186 

matter lability25). These measured soil characteristics explained 12 to 76% of the 187 

variance in the mean normalized relative abundance of a given module (Supplementary 188 

Fig. 3). We identified two sets of modules that differed in the specific factors that 189 

predicted temporal variation. The first set of modules, containing modules 0, 3, 7 and 190 

12, were best predicted by climactic variables, most notably soil temperature and 191 

moisture and snow depth (Supplementary Fig. 3). These results are in line with previous 192 

studies demonstrating how changes in soil temperature12,16-18, moisture26 and snow 193 

pack14 can influence belowground microbial communities. In contrast, modules 1, 2 and 194 

11 were best explained by changes in inorganic nutrient concentrations (nitrogen and 195 

phosphorus; Supplementary Fig. 3). While nitrogen and phosphorus inputs can have 196 

predictable27 and lasting4 effects on microbial community structure, we have a more 197 

limited understanding of how short-term seasonal variation in the availability of these 198 

nutrients can influence microbial community dynamics, despite evidence that 199 

belowground microbial communities are important mediators of soil nutrient 200 

dynamics28,29. Our results show that a subset of soil microbes organize into modules 201 

that are responsive to these subtle changes in nitrogen and phosphorus availability. 202 

Variability in WSOM constituents did not contribute significantly to temporal variability in 203 

environmental conditions (Supplementary Fig. 4) and thus, we excluded these 204 

measures from the models describing the temporal variability of the modules. Given that 205 

previous work at these sites showed a high degree of spatial variation in WSOM 206 

distributions25,30, we suspect that the pronounced spatial variability in WSOM 207 

distributions may have obscured our ability to detect significant effects of WSOM 208 

characteristics on the temporal dynamics of the soil microbial communities. 209 

 The construction of modules based on shared temporal patterns allowed us to 210 

identify biotic or abiotic factors that are correlated with shifts in the relative abundances 211 

of individual taxa. For example, similar to studies showing that ammonia-oxidizing 212 

archaea are particularly sensitive to changes in temperature31 and pH32,33, we found that 213 

both temperature and pH were good predictors of the temporal distribution of module 214 

12, which contained ammonia-oxidizing thaumarchaea (Fig. 4d and Supplementary Fig. 215 

3). Because nitrification is often a coupled process – the oxidation of ammonium to 216 

nitrite by ammonia oxidizers, and the subsequent oxidation of nitrite to nitrate by nitrite 217 

oxidizers – we were surprised that probable nitrite-oxidizing Nitrospirae were not 218 

temporally correlated with these thaumarchaea, but were instead a part of a distinct 219 

module (module 8; Fig. 4d) that did not change significantly over time. As observed in 220 

some marine systems34,35, we suspect that nitrification in SFS soils may be periodically 221 

uncoupled, though more work is necessary to test this hypothesis.  222 

Our study also provides insight into the short-term temporal variation of 223 

ectomycorrhizal communities, the environmental factors that influence these patterns 224 

and other fungal and prokaryotic taxa that co-vary with ectomycorrhizal fungi. 225 

Ectomycorrhizal fungi were found on both slopes and partitioned into several modules 226 

that were significantly variable over time (modules 0, 1, 2, 3, 7, 11, and 12 in Fig. 4; 227 

Supplementary Table 1). Interestingly, some of these modules were best predicted by 228 

climactic variables (Supplementary Fig. 3; for example, those ectomycorrhizal fungi 229 

found in modules 3 and 7). Modules 3 and 7 had peak abundances in the summer 230 
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months (Fig. 4), suggesting that the abundances of these ectomycorrhizal taxa were 231 

elevated during months when plant productivity peaks. However, other ectomycorrhizal 232 

fungi were found in modules best predicted by nutrient availability. These findings 233 

indicate a degree of temporal niche partitioning in ectomycorrhizal fungal communities 234 

on both slopes in response to distinct environmental conditions (Supplementary Fig. 3) 235 

 236 

Conclusions:  237 

 This study provides new evidence that the temporal dynamics of groups of 238 

prokaryotes and fungi are predictable in terrestrial ecosystems, and that a more detailed 239 

characterization of the temporal variability in soil microbial communities is critical to 240 

understanding the dynamic nature of the soil microbiome. The extensive spatial and 241 

temporal sampling design of our study allowed us to disentangle the relationships 242 

among spatial heterogeneity in microbial communities, temporal dynamics of these 243 

communities, and the effect of relic DNA on these temporal patterns. Unsurprisingly, 244 

spatial variation in community structure at both the hillslope scale, and the meter scale 245 

(intra-plot) was the dominant source of variability in this study and relic DNA had no 246 

significant effect on these patterns (Supplementary Fig. 1 and Fig. 2).  247 

 When controlling for this spatial variability, we were able to detect significant 248 

temporal shifts in microbial community composition, regardless of whether relic DNA 249 

was removed or not. We emphasize that the magnitude of the temporal variation in soil 250 

microbial communities was consistently lower than the spatial variation, even between 251 

sub-plots located only a few meters apart. This spatial variability in surface soil microbial 252 

communities was relatively stable over time, suggesting that efforts to describe spatial 253 

variation in overall community composition do not necessarily need to include samples 254 

collected across multiple time points.  255 

We also provide new evidence that the removal of relic DNA enhances our ability to 256 

detect temporal patterns in the belowground communities. These findings support our 257 

previous hypothesis2, and predictions based on modeling21, that relic DNA can conceal 258 

temporal patterns in soil microbial communities. The presence of relic DNA, even in high 259 

amounts, does not automatically lead to relic DNA biases in other ecosystems21. 260 

However, our data do suggest that relic DNA has important effects on studies of 261 

temporal variation in soil microbial communities (and possibly in other ecosystems), and 262 

that the consequences of failing to remove relic DNA would not be apparent from single 263 

time point samples. 264 

 The belowground environment is one of the most complex and dynamic microbial 265 

habitats on Earth. By controlling for spatial and relic DNA effects on temporal variability 266 

in these soil microbial communities, we identified groups of microbes that have similar 267 

temporal dynamics and the factors that predicted their temporal distributions. A deeper 268 

understanding of relationships between soil microbiota can help resolve both the roles 269 

of individual taxa and potential ‘ecological clusters’ with emergent function. For 270 

example, taxa that covary may exhibit similar niche preferences and compete for growth 271 

substrates. In contrast, taxa belonging to a given module may broadly cue in on similar 272 

environmental signals but occupy distinct substrate niches36. Alternatively, microbes that 273 

are correlated over time may interact through cross-feeding of metabolic substrates or 274 

co-utilization of leaky functions37 - either directly or in a time-lagged manner. 275 

Understanding the basis for shared temporal dynamics is important as microbial 276 
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interactions are crucial in shaping microbial communities38 but difficult to measure 277 

directly39. Future investigations that combine cell culture, synthetic microbial 278 

communities and genomics may help resolve the specific drivers of these co-occurrence 279 

patterns36,40.  280 

 281 

Methods: 282 

 Site description, plot design and sampling procedure: The two plots were set up 283 

on opposing slopes alongside an instrumented transect near the rain-snow transition at 284 

~2,530 meters elevation (approximately 40.01°N, 105.47°W), chosen on the expectation 285 

that there would be a high level of temporal variability in soil microbial communities as a 286 

result of intra-annual changes in soil moisture and temperature22. The north-facing slope 287 

(NFS) and south-facing slope (SFS) have distinct soil and vegetation characteristics and 288 

experience different water delivery patterns, particularly during snowmelt22 (Fig. 1). The 289 

NFS and SFS soils are Ustic dystrocryept (Catamount series) and Lithic haplstoll, 290 

respectively41. Soil moisture and temperature were variable over the course of the study 291 

and followed expected seasonal trends (Fig. 1). In general, the NFS had a higher soil 292 

moisture and a lower temperature than the SFS (Fig. 1). The NFS is vegetated with 293 

moderately dense Pinus contorta (Lodgepole pines) and develops a snowpack during 294 

the winter that melts in spring. In contrast, the SFS is much more sparsely vegetated 295 

with Pinus ponderosa (Ponderosa pines), intervening grasses and Arctostaphylos uva-296 

ursi (kinnikinnick) shrubs and experiences pulses of snowmelt throughout the winter and 297 

spring. We sampled ~10-15 random soil cores (0-5 cm, mineral soils only; 1” core 298 

diameter) within each sub-plot at each of the nine time points. The soil cores from each 299 

sub-plot were pooled, sieved to 2 mm and homogenized at each time point and 300 

partitioned for microbial community and nutrient analyses. Sample dates are reported in 301 

Supplementary Table 2. Sampling for the July 2016 sample was delayed by ~7 days 302 

because a nearby wildfire prevented site access.  303 

 304 

 Continuous environmental measurements: Several automated measurements 305 

were collected every 10 minutes at a meteorological station located near the sample 306 

sites (see ‘Data availability’ for data source information). Each slope was instrumented 307 

with a soil temperature sensor (Campbell Scientific T-107 temperature probe), and a 308 

soil water content reflectometer (Campbell Scientific CS616) located 5 cm below 309 

ground. The daily averages from these sensors on each slope are illustrated in Fig. 310 

1b,c. When modelling the relative mean importance of temperature and volumetric 311 

water content to module temporal distributions, we used the average of daily mean 312 

values from these sensors between sample dates, except for the first time point, which 313 

is the mean from the preceding 34 days. Snow depth was measured using digital 314 

ultrasonic snow depth sensors (Judd Communications Inc.) fitted with CR1000 315 

dataloggers (Campbell Scientific). Snow depth is reported as mean daily snow depth 316 

between sampling points from three sensors on each slope (NFS at snow pole 3, 317 

sensors 1-3 and SFS snow pole 10, sensors 9, 11 and 15). 318 

 319 

 Discrete environmental measurements: Inorganic N pools were measured for 320 

each sub-plot at each time point except for the January 2016 sample on the NFS, sub-321 

plots 1 and 2 and SFS sub-plot 3, where insufficient soil was collected. Sieved soils for 322 
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inorganic N analyses were stored at 4°C for <72 h. Inorganic N pools were extracted 323 

from 10 g field-moist soil in 100 mL 2M potassium chloride with periodic shaking for 18 324 

h and filtered through cellulose Whatman 1 filters. Ammonium (NH4
+) was measured 325 

from these extracts on a BioTek Synergy 2 with a detection limit of 0.009 mg N L -1 and 326 

nitrate (NO3
-) was measured on an OI Analytical FS-IV with a detection limit of 0.5603 327 

μg N L- 1. Dissolved inorganic nitrogen (DIN) was calculated as the sum of NH4
+ and 328 

NO3
-.  329 

Water-soluble organic matter (WSOM) was analyzed for each sub-plot at each time 330 

point except for the following plots, where insufficient sample was collected: NFS 331 

February 2016 (all sub-plots), July 2016 sub-plot 1, August 2016 sub-plots 1-7, 332 

November 2016 sub-plots 1, 2 and 5; and SFS February 2016 sub-plots 1, 8 and 9 and 333 

April 2016 sub-plot 5. Sieved soils were stored at -20°C until WSOM extraction. WSOM 334 

was extracted by leaching 10 g of soil with 50 ml 0.5 M K2SO4 following the methods 335 

described in25. The spectroscopically-active portion of the WSOM was characterized 336 

with UV-Vis and fluorescence spectroscopy. Samples were diluted to minimize the inner 337 

filter effect42 and the UV-Vis absorbance was measured from 200-800 nm in 1 nm 338 

increments using an Agilent 8453 Spectrophotometer with a 1 cm path 339 

length. Dissolved organic carbon (DOC) and total nitrogen were measured on a 340 

Shimadzu TOC-V. SUVA254, a proxy for the aromaticity of the WSOM, was calculated 341 

as the absorbance at 254 nm normalized by the DOC concentration43. Fluorescence 342 

scans were collected on a Horiba Jobin Yvon Fluoromax-4 with a 1 cm quartz cuvette 343 

and normalized to Raman units44. The fluorescence index (FI) 45 and humification index 344 

(HIX)46 were calculated from the fluorescence scans using Parallel Factor Analysis 345 

(PARAFAC) to further resolve discrete components representing different classes of 346 

fluorophores25.  347 

Other standard soil characteristics were measured at each time point by pooling 348 

equal masses of soil from each sub-plot plot on each slope. These measurements 349 

included: pH, electrical conductivity (mmhos cm-1) and P (ppm). Standard soil chemical 350 

analyses were performed at the Colorado State University Soil Water and Plant Testing 351 

Laboratory using their standard protocols. 352 

 Relic DNA removal and DNA extraction: Relic DNA was removed as described 353 

previously2. Briefly, 0.03 g of each soil from each sub-plot pool was sub-sampled, 354 

resuspended in 3.0 mL phosphate buffered saline (PBS) (1% weight/vol slurry) and 355 

either treated with 40 µM propidium monoazide (PMA) in the dark, or left untreated as a 356 

control. Both treated and untreated samples were vortexed in the dark for 4 minutes and 357 

exposed to a 650-watt light for 4 × 30 s light:30 s dark cycles to activate PMA in treated 358 

samples. Light-exposed samples were frozen at -20°C until DNA extraction. DNA was 359 

extracted from 800 µL of PMA treated and untreated soil slurries using a PowerSoil-htp 360 

96 well soil DNA Isolation kit (MoBio) following the manufacturer’s instructions, except 361 

770 µL was used in the C2 step. All samples and 27 ‘no soil’ negative controls were 362 

randomized into these 96 well DNA extraction plates and extracted simultaneously.  363 

 Amplicon sequencing and analytical methods: For sequence-based analyses of 364 

16S rRNA and ITS marker regions, we used the approaches described previously2. 365 

Briefly, we amplified each sample in duplicate in 25 μl PCR reactions containing: 12.5 μl 366 

of Promega GoTaq Hot Start Colorless Master Mix; 0.5 μl of each barcoded primer 367 

(bacterial 16S: 515F 5'-GTGCCAGCMGCCGCGGTAA-3' & 806R 5'-368 
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GGACTACHVGGGTWTCTAAT-3’; fungal ITS: 5′-CTTGGTCATTTAGAGGAAGTAA-3′ & 369 

ITS2 5′-GCTGCGTTCTTCATCGATGC-3′); 10.5 μl water; 1 μl of template DNA. 370 

Program: 94°C for 5 min, followed by 35 cycles of (94°C 45 s; 50°C 60 s; 72°C 90 s) 371 

and a final extension 72°C 10 min. Duplicate PCR reactions for each sample were 372 

pooled, cleaned and normalized using the ThermoFisher Scientific SequalPrep 373 

Normalization Plate kit. Cleaned and normalized amplicons were pooled, spiked with 374 

15% phiX and sequenced on an Illumina MiSeq using v2 500-cycle paired end kits. The 375 

samples were sequenced in four batches total – two for prokaryotes and two for fungi. 376 

The first two sequencing runs (one each for prokaryotes and fungi) contained all 377 

treatments and control samples up to and including the May 2016 samples. The last two 378 

sequencing runs (one each for prokaryotes and fungi) two contained samples collected 379 

on July 2016 and thereafter, plus control samples. We analyzed the ‘no soil’ controls to 380 

determine whether there were potential sequencing batch effects across the runs for 381 

prokaryotes or for fungi that could be detected in the community composition of these 382 

controls. We found no significant difference in the ‘no soil’ controls for prokaryotes 383 

(rarified to 89 reads to include all controls; PERMANOVA R2=0.028; P=0.677) or fungi 384 

(not rarified to include all controls; PERMANOVA R2=0.028 P=0.613) that would be 385 

indicative of batch effects. Reads were processed as described in (ref. 27). Briefly, raw 386 

amplicon sequences were demultiplexed according to the raw barcodes and processed 387 

with the UPARSE pipeline47. A database of ≥97% similar sequence clusters was 388 

constructed in USEARCH (Version 8)48 by merging paired end reads, using a “maxee” 389 

value of 0.5 when quality filtering sequences, dereplicating identical sequences, 390 

removing singleton sequences, clustering sequences after singleton removal, and 391 

filtering out cluster representative sequences that were not ≥75% similar to any 392 

sequence in Greengenes (for prokaryotes; Version 13_8)49 or UNITE (for fungi)50 393 

databases. Demultiplexed sequences were mapped against the de novo constructed 394 

databases to generate counts of sequences matching clusters (i.e. taxa) for each 395 

sample. Taxonomy was assigned to each taxon using the RDP classifier with a 396 

threshold of 0.551 and trained on the Greengenes or UNITE databases. To normalize the 397 

sequencing depth across samples, samples were rarefied to 10,159 and 5,000 398 

sequences per sample for the 16S rRNA and ITS analyses, respectively. Functional 399 

predictions for fungal taxa were obtained using FUNGuild52. 400 

Statistical analyses: Calculations of community dissimilarity and all other analyses 401 

were conducted on a reduced dataset because of the spatial and temporal 402 

heterogeneity. That is, we wanted to understand the temporal variation of microbes that 403 

are consistently present across the sub-plots and over time. When comparing slope 404 

differences, we included only taxa that were present on at least one slope i) with a 405 

mean read abundance of greater than 81 or 40 reads after rarefaction, for prokaryotes 406 

and fungi, respectively across all samples (an average of one (prokaryotes) or 0.5 407 

(fungi) reads per sub-plot, per time point); and were ii) present in more than 27 samples 408 

(1/3 of all samples). Second, we investigated only those taxa that were, on average, 409 

≥ 0.1% of the community across all samples. When investigating within-plot differences, 410 

we focused on only the taxa within that plot that met the above parameters. We 411 

emphasize that these filtering steps were deliberately stringent to enable robust 412 

temporal analyses of taxa that are consistently present both spatially and temporally. 413 

Bray-Curtis distances were calculated on this subset using the mctoolsr R package. 414 
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Bray–Curtis dissimilarities were calculated on square root transformed taxon relative 415 

abundances.  416 

Temporal analyses and network construction: We identified significant temporal 417 

correlations in the relative abundances of individual taxa derived from soils that were 418 

treated to remove relic DNA using extended Local Similarity Analysis (eLSA)23 with the 419 

following parameters: lsa_compute -s 9 -r 9 -p perm. We defined significant 420 

temporal associations as those with a local similarity (LS) score ≥0.7 (i.e.-strong to very 421 

strong correlations) and a q value ≤ 0.001. Pairs of significantly correlated taxa were 422 

analyzed in Gephi (version 0.8.2). Network modularity was calculated by implementing 423 

the ‘modularity’ function24 built in within Gephi, with a resolution setting of 1.0 for both 424 

slopes. Node IDs (individual taxa) belonging to the same module were extracted to 425 

delineate temporal patterns. Normalized relative abundances for each node ID were 426 

calculated using the tRank command in the multic R package.  427 

Random forest analysis: For each slope, we used Random Forest53 modeling to first 428 

identify those measured environmental and soil variables that were significant (P ≤ 0.05) 429 

predictors of time, using time as a response variable (Supplementary Fig. 4). These 430 

significant environmental factors are expected to predict changes in module abundance 431 

over time (Supplementary Fig. 3). We then conducted a second round of Random 432 

Forests analysis with the significant environmental predictors to identify the most 433 

important environmental factors or soil characteristics that predicted the mean 434 

normalized relative abundances of each module (see ref. 54 for a similar approach). The 435 

importance (increase in mean square error %) and significance of each predictor was 436 

computed for each tree and averaged over the forest (9999 trees) using the rfPermute 437 

R package. Significant predictors were defined as those with a P value ≤ 0.05. Samples 438 

for which environmental and soil characteristics were missing because of insufficient 439 

sample were excluded from random forest and spearman correlation analysis.  440 

 441 

Data Availability: Raw DNA sequence data, the corresponding mapfile and all soil and 442 

environmental characteristics are available on figshare.com: 443 

10.6084/m9.figshare.6710087. Snow depth data are available through the Boulder 444 

Creek Critical Zone Observatory website: 445 

http://criticalzone.org/boulder/data/dataset/2423/. Temperature data for the NFS and 446 

SFS are available through the Boulder Creek Critical Zone Observatory website 447 

http://criticalzone.org/boulder/data/dataset/2426/. 448 

 449 
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Figures: 616 

 617 

Figure 1: Overview of the Gordon Gulch sampling sites and environmental 618 

conditions across the sampling sites. (a) Conceptual diagram of sampling site location 619 

and plot design, reproduced with modification from29. The North facing slope (NFS) plot 620 

was centered at 40°0'44.759"N 105°28'9.123”W. The South facing slope (SFS) plot was 621 

centered at 40°0'48.551"N 105°28'8.355"W. Inset in (a) is an illustration of plot design. A 622 

single plot is comprised of nine 3 m × 3 m sub-plots. Numbers represent replicate sub-623 

plots as described in the main text. Daily mean soil volumetric water content and soil 624 

temperature from in situ sensors at 5 cm depth for the NFS (b) and SFS (c) during the 625 

course of the experiment. Small circles on the temperature plots in (b) and (c) indicate 626 

sampling dates. 627 

 628 

 629 

 630 
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 631 

Figure 2: Intra-plot spatial variability in soil microbial communities persists over time 632 

on both slopes regardless of whether relic DNA is removed. NMDS plots showing the 633 

prokaryotic (a-d) or fungal (e-h) communities on the north facing slope (a,c,e,g) and 634 

south facing slope (b,d,f,h). Points are colored by sub-plot number (plot layout is 635 

illustrated in Figure 1 in the main text). Hulls connect the outermost points on each 636 

slope. PERMANOVA statistics are listed on each panel. 637 

  638 
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 639 

Figure 3: Soils without relic DNA were found to harbor microbial communities that 640 

are more dissimilar over time than in control soils containing relic DNA. (a) Prokaryotes 641 

(b) Fungi. Points are the mean community dissimilarity for a given sub-plot across all 642 

time points (n=9) for samples after relic DNA removal (no relic DNA) or untreated 643 

samples (control). Box plots illustrate interquartile range ± 1.5 × interquartile range. The 644 

horizontal line in each box plot is the median. Outliers (>1.5 × interquartile range) are 645 

shown as points outside of whiskers. Kruskal-Wallis test (K-W) P values are shown. 646 

 647 
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 648 

Figure 4: Cross-domain temporal dynamics in belowground microbial communities 649 

reveals temporal niche structure. Correlation networks based on significant microbe-650 

microbe temporal correlations for the NFS (a) and SFS (c). Nodes in (a) & (c) are 651 

individual prokaryotic or fungal taxa. Lines between nodes represent significant (q value 652 

≤ 0.001) and strong (local similarity score ≥ 0.7) positive temporal correlations. The 653 

sizes of nodes are proportional to the number of correlations to other nodes (the 654 

degree), whereby larger nodes have more connections. Colors represent distinct 655 

modules, as determined using the modularity algorithm described in ref. 24. Boxed 656 

numbers in networks are arbitrary module numbers and match those in panels (b) and 657 

(d). Modularity analysis of each network revealed clusters of microbes that have similar 658 

temporal patterns. These temporal patterns were plotted for the NFS (b) and SFS (d). 659 

Points in (b) and (c) are the mean Van der Waerden (VdW) normalized relative 660 

abundance of all taxa in a given module. Error bars show ± SEM. The number of nodes 661 

included in each module and the PERMANOVA P value describing the relationship of 662 
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the normalized relative abundances in relation to time are shown. P values marked with 663 

asterisks are significant at P≤0.001. Background is shaded by season: orange=autumn; 664 

blue=winter; green=spring; yellow=summer. See Supplementary Table 1 for taxonomic 665 

module membership. 666 
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