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Abstract 13 

Correlation-based analysis of paired microbiome-metabolome datasets is becoming a 14 

widespread research approach, aiming to comprehensively identify microbial drivers of 15 

metabolic variation. To date, however, the limitations of this approach have not been 16 

comprehensively evaluated. To address this challenge, we introduce a mathematical 17 

framework to quantify the contribution of each taxon to metabolite variation based on 18 

uptake and secretion fluxes. We additionally use a multi-species metabolic model to 19 

simulate simplified gut communities, generating idealized microbiome-metabolome 20 

datasets. We then compare observed taxon-metabolite correlations in these datasets to 21 

calculated ground-truth taxonomic contribution values. We find that in simulations of both 22 

a model 10-species community and of complex human gut microbiota, correlation-based 23 

analysis poorly identifies key contributors, with extremely low predictive value despite the 24 

idealized setting. We further demonstrate that the predictive value of correlation analysis 25 

is strongly influenced by both metabolite and taxon properties, as well as exogenous 26 

environmental variation. We finally discuss the practical implications of our findings for 27 

interpreting microbiome-metabolome studies. 28 

  29 
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Importance 30 

Identifying the key microbial taxa responsible for metabolic differences between 31 

microbiomes is an important step towards understanding and manipulating microbiome 32 

metabolism. To achieve this goal, researchers commonly conduct microbiome-33 

metabolome association studies, comprehensively measuring both the composition of 34 

species and the concentration of metabolites across a set of microbial community 35 

samples, and then testing for correlations between microbes and metabolites. Here, we 36 

evaluated the utility of this general approach by first developing a rigorous mathematical 37 

definition of the contribution of each microbial taxon to metabolite variation, and then 38 

examining these contributions in simulated datasets of microbial community metabolism. 39 

We found that standard correlation-based analysis of our simulated microbiome-40 

metabolome datasets identifies true contributions with very low predictive value, and that 41 

its performance depends strongly on specific properties of both metabolites and 42 

microbes, as well as on the surrounding environment. Combined, our findings can guide 43 

future interpretation and validation of microbiome-metabolome studies.  44 

  45 
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Introduction 46 

Microbial communities have a tremendous impact on their surroundings, ranging from the 47 

degradation of environmental toxins (1) to the production of climate change-relevant 48 

metabolites (2). Host-associated communities, in particular, have a substantial impact on 49 

their hosts, and often produce a diverse set of metabolites that interact with numerous 50 

host pathways. In humans, such microbiome-derived metabolites have been identified as 51 

contributing factors to a wide array of diseases including heart disease (3), autism (4), 52 

non-alcoholic fatty liver disease (5), colon cancer (6), inflammatory bowel disease (7), 53 

and susceptibility to infection (8). Characterizing the ways microbial communities 54 

modulate their environments and the relationship between community structure and 55 

metabolic impact is therefore a major, timely, and complex challenge with promising 56 

implications for human health, as well as to environmental stewardship, agriculture, and 57 

industry. 58 

 59 

When facing this challenge, perhaps the most important task is identifying specific 60 

community members that drive variation in metabolites of interest. Taxa responsible for 61 

observed metabolic differences across communities may be ideal targets for interventions 62 

aiming to modify metabolic phenotypes. Their identification, however, can be a daunting 63 

task. Complex microbial communities are often composed of hundreds or thousands of 64 

poorly characterized species, each with a unique and frequently unknown complement of 65 

metabolic capacities. Even when multiple species are known to possess the potential to 66 

synthesize or degrade a metabolite of interest, the metabolic activity of each species (and 67 

consequently, its contribution to metabolic variation) may be different (9). Moreover, 68 
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community ecology, interspecies interactions, and nutrient availability (e.g., via diet) can 69 

all regulate and influence the metabolic activity of each species, rendering the link 70 

between community members and metabolic products extremely complex and 71 

challenging to infer (10–12).  72 

 73 

To address this challenge and to identify community members that play an important role 74 

in metabolic variation, a growing number of studies are now comprehensively assaying 75 

multiple facets of community structure across samples, including, most notably, 76 

taxonomic and metabolite compositions (13). For example, to investigate the links 77 

between taxonomic shifts and metabolic phenotypes in the healthy vaginal microbiome 78 

and in bacterial vaginosis, a recent study used a combination of 16S rRNA qPCR, 79 

sequencing, and both global and targeted metabolomics (14). Another study, aiming to 80 

identify taxonomic and metabolic features of resistance and susceptibility to C. dificile 81 

infection in the mouse gut similarly applied 16S rRNA sequencing and global 82 

metabolomics (15). In another example, researchers characterized metabolic and 83 

microbial features of periodontitis in the oral microbiome before and after treatment, 84 

combining 16S rRNA sequencing, shotgun metagenomic sequencing, and metabolomics 85 

(16).  These are just a few examples of a plethora of recent microbiome-metabolome 86 

studies, investigating the metabolic effects of microbiome variation in the contexts of 87 

chronic and infectious disease, agriculture, precision medicine, nutrition, fermented food 88 

science, and more (17–24). Such multi-omic studies are also a major focus of several 89 

large-scale initiatives to study both host-associated and environmental microbiomes (25, 90 

26).  91 
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 92 

Given the taxonomic and metabolomic profiles obtained via such microbiome-93 

metabolome assays, the vast majority of studies rely on simple univariate correlation-94 

based analyses to link variation in community ecology to variation in metabolic activity 95 

(11, 14, 15, 27–30). Such analyses specifically aim to identify species whose abundance 96 

across samples is correlated with the concentration of metabolites, often assuming that 97 

highly significant correlations reflect a direct mechanistic link between the taxon and 98 

metabolite in question. These studies further regularly assume that positive correlations 99 

imply synthesis and negative correlations imply degradation, or that targeting the microbe 100 

in question could be used to modulate the concentrations of the metabolites with which it 101 

is correlated. For example, a recent study characterizing the microbiome and metabolome 102 

in Spleen-yang-deficiency syndrome (29) concluded that a positive correlation between 103 

Bacteroides and mannose likely resulted from extracellular degradation of mannan into 104 

mannose by that taxon. Similarly, a study of antibiotic perturbations to the microbiome 105 

and metabolome stated that the presence of several weak positive and negative 106 

correlations between genera and arginine supported the conclusion that arginine levels 107 

may be affected by many community members with high functional redundancy (27).  108 

 109 

Yet, to date, the extent to which a correlation-based analysis effectively detects direct 110 

metabolic relationships between taxa and metabolites is unclear. Obviously, a strong 111 

correlation between the abundance of a certain species and the concentration of a 112 

metabolite across samples could reflect direct synthesis or degradation of the metabolite 113 

by that species, but could also arise due to environmental effects, precursor availability, 114 
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selection, random chance, or co-occurrence between species. Similarly, cross-feeding, 115 

external host processes, and varying enzymatic regulation can mask a correlation even 116 

when this species does in fact contribute to observed metabolite variation. Indeed, 117 

previous studies have suggested that microbe-metabolite correlations must have a high 118 

rate of false positives (31), and a recent experimental study pairing microbiome-119 

metabolome correlation analysis with in vitro monoculture validations found anecdotally 120 

that several observed correlations were in fact false positives (32). The limitations of 121 

correlation analysis have also been discussed and well-characterized in other data types 122 

(for example (33, 34)). Importantly, however, the extent of such limitations in the context 123 

of microbiome-metabolome studies, the way they are shaped by microbial community 124 

metabolism, and their impact on data interpretation in this context have not been 125 

systematically evaluated.  126 

 127 

Importantly, two crucial challenges hinder a comprehensive and systematic evaluation of 128 

correlation-based analysis. The first is the lack of a rigorous general definition of a 129 

microbe’s contribution to metabolite variability. While establishing the main taxonomic 130 

contributors to metabolite variation may be straightforward for specialized, well-131 

characterized metabolites that are synthesized by just a single taxon, it can be much less 132 

clear for metabolites that can be synthesized (and/or degraded or modified) by many 133 

different taxa in the community. The second challenge is the absence of ground truth data 134 

on the nature of microbe-metabolite relationships. While limited data on the taxa driving 135 

metabolite shifts can be obtained from comparative mono- and co-culture studies (32, 35, 136 

36), large-scale and comprehensive datasets that link species and metabolite 137 
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abundances in the context of a complex community, for which the precise impact of each 138 

species on observed metabolite variation is known, are currently not available.  139 

 140 

In this study, we address these two challenges, combining a novel framework for 141 

quantifying microbial contributions with a model-based simulated dataset. Specifically, we 142 

first introduce a generalizable and rigorous mathematical framework for decomposing 143 

observed metabolite variation and quantifying the contribution of each community 144 

member to this variation based on uptake and secretion fluxes. Second, we use a 145 

dynamic multi-species genome-scale metabolic model to simulate the metabolism of 146 

microbial communities of varying complexity and to generate idealized datasets of paired 147 

taxonomic and metabolomic abundances, with complete information on metabolite fluxes, 148 

microbial growth, interspecies interactions, and environmental influences. Applying our 149 

mathematical framework to these simulated datasets, we could then compare calculated 150 

contribution values to observed taxon-metabolite correlations and evaluate the ability of 151 

correlation-based analyses to identify key microbial contributors. We were additionally 152 

able to investigate factors that shape the relationship between community composition 153 

and metabolism in depth and to identify specific properties and mechanisms that impact 154 

the performance of microbiome-metabolome correlation studies.  155 

 156 

Notably, given the objectives of this study, we intentionally focus on characterizing 157 

microbiome-metabolome relationship in a model-based, tractable, and well-defined 158 

setting. Indeed, our metabolic model may not perfectly capture all the complex and 159 

diverse mechanisms that are at play in host-associated communities; however, 160 
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considering the scope of this study, accurately modeling the metabolism of a specific 161 

community may not be crucial. Rather, for our analysis, we want our simulated data to 162 

recapitulate broad trends observed in naturally occurring microbial ecosystems, as indeed 163 

has been observed in similar models (37–41). Moreover, utilizing this model-based 164 

approach allows us to dissect the relationship between community composition and 165 

metabolic phenotypes without the complexities inherent to in vivo communities (including 166 

spatial heterogeneity, measurement error, inter-microbial signaling, or strain-level 167 

variation), and with variation in the concentrations of environmental metabolites resulting 168 

exclusively from microbial metabolic activity. Analyzing the ability of a correlation-based 169 

analysis to detect true microbial drivers of metabolite variation in these simplified, best-170 

case settings provides a baseline for the expected performances of such analyses in real 171 

microbiome-metabolome studies.   172 

  173 
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Results 174 

Quantifying the impact of individual microbial species on variation in metabolite 175 

concentrations 176 

In this study, we consider a microbial community as an idealized system, consisting of a 177 

population of multiple microbial species in a shared, well-mixed, biochemical 178 

environment. Each species uptakes necessary metabolites from the shared environment, 179 

performs a variety of metabolic processes to promote its growth, and secretes certain 180 

metabolites back into the shared environment. We additionally assume that certain 181 

nutrients flow into the environment and that microbial cells and metabolites are diluted 182 

over time. These processes can represent, for example, the inflow of dietary nutrients 183 

and the transit through the gut in the context of the gut microbiome. For simplicity, we 184 

primarily consider a constant inflow and dilution rate, as in a chemostat setting. 185 

Accordingly, a microbiome-metabolome study can be conceived as analyzing a set of 186 

several such communities (at a certain point in time), each with a different composition of 187 

microbial species and correspondingly variable environmental metabolite concentrations. 188 

We focus initially on a controlled setting with identical nutrient inflow across all 189 

microbiomes, but later examine the impacts of differences in nutrient inflow between 190 

communities. 191 

 192 

Given this setting, we first sought to establish a rigorous and quantitative framework for 193 

defining the impact of each microbial species (or any taxonomic grouping) in the 194 

community on the variation observed in the concentration of a given metabolite across 195 

community samples. We focused on species that directly modulate the environmental 196 
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concentration of a given metabolite via synthesis or degradation, ignoring indirect effects 197 

via, for example, the synthesis of a precursor substrate that could impact the metabolic 198 

activity of other species. We noted that the total concentration of a metabolite in the 199 

environment can be represented as the sum of cumulative synthesis or degradation fluxes 200 

of this metabolite by each of the n species in the community, as well as cumulative 201 

environmental fluxes (e.g., total nutrient inflow and dilution). Formally, the metabolite 202 

concentration, M, can therefore be expressed as a sum of n dependent random variables 203 

mi, where each mi denotes the overall synthesis or degradation of the metabolite by each 204 

species, along with an additional random variable menv, denoting the overall impact of 205 

environmental processes.  206 

 207 

𝑀 =#𝑚%	 +	𝑚()*

)

%+,

 208 

 209 

As discussed above, when analyzing microbiome-metabolome datasets, the goal is often 210 

to identify taxa responsible for changes in the concentration of a metabolite of interest 211 

across a set of samples. Accordingly, here we wish to quantify the contribution of each 212 

species to the variance in the concentration of that metabolite across samples. 213 

Specifically, in the formulation 214 

above, var(M) depends on the variance in the constituent microbial and environmental 215 

factors, as well as the covariance between these components. This variance can then be 216 

linearly separated into n+1 terms, representing the contribution of each species (denoted 217 

𝑐%), and of any 218 

environmental nutrient fluxes (denoted 𝑐()*) to the total variation in the metabolite:  219 
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 220 

𝑣𝑎𝑟(𝑀) =#𝑐% + 𝑐()*	;
)

%+,

	𝑐% = 𝑣𝑎𝑟(𝑚%) +#𝑐𝑜𝑣5𝑚%,𝑚78 + 𝑐𝑜𝑣(𝑚%,𝑚()*)
79%

 221 

 222 

If the nutrient inflow is constant across samples, its effect can be ignored and its 223 

contribution to the variance 𝑐()* is 0. Additionally, in a chemostat setting, the dilution of 224 

each metabolite can be accounted for in the calculation of each contribution, as it depends 225 

strictly on the dilution rate and on previous metabolite concentrations (Methods). Finally, 226 

in order to compare species contributions across metabolites and to represents the 227 

relative share of the total variance of a given metabolite that is attributable to species I, 228 

we defined the relative contribution to variance �̂�% of each species i to metabolite M by 229 

normalizing contribution values by the metabolite’s total variance:  230 

�̂�% =
𝑐%

𝑣𝑎𝑟(𝑀)					232 

 231 

This framework for calculating microbial contribution values provides a systematic 233 

measure of the causal impact of each taxon on observed variation in the environmental 234 

concentration of each metabolite, distilling the effect of complex ecological and metabolic 235 

interactions to a concise and interpretable set of quantities. Moreover, the obtained 236 

contribution profile is a linear decomposition of observed metabolic variation, wherein the 237 

sum of contributions of all species equals the observed variation in the metabolite. 238 

Notably, when a species’ activity has large negative covariances with the activities of 239 

other community members, contribution values can be negative. Such negative 240 

contribution values indicate that a species’ secretion or uptake of that metabolite varies 241 
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in a way that mitigates the activity of others. Correspondingly, contribution values can be 242 

greater than 1, reflecting scenarios in which a species in fact generates more variation of 243 

this metabolite than is ultimately observed, but that its impact is mitigated by other 244 

species.  245 

 246 

It is also worth noting that our analytical decomposition of contributions to variance is 247 

mathematically equivalent to calculating the Shapley values for the variance in metabolite 248 

concentrations (see Methods and Figure S1). Shapley value analysis is a game theory 249 

technique that defines an individual’s contribution to a collective outcome, and has been 250 

shown to be the only general definition that is efficient, linear, symmetric, and assigns 251 

zero values to null contributors (42). A similar, Shapley value-based approach was 252 

recently applied to address the related problem of identifying the primary taxonomic 253 

contributors to differential functional abundances in metagenomic data (43). 254 

 255 

A multi-species metabolic model for generating complex microbiome-256 

metabolome data  257 

We next set out to generate a large-scale dataset of microbiome-metabolome profiles 258 

with complete information about metabolite uptake and secretion fluxes. To this end, we 259 

used a multi-species metabolic model to simulate the growth, dynamics, metabolism, and 260 

environment of a simple microbial community. This model is based on a previously 261 

introduced genome-scale framework for modeling the metabolism of multi-species 262 

communities and for tracking the metabolic activity of each community member over time 263 

(44, 45). Briefly, this framework assumes that each species optimizes its growth selfishly 264 
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given available nutrients in the shared environment and predicts the metabolic activity for 265 

each species in short time increments using Flux Balance Analysis (46). After each 266 

increment, the model uses the predicted metabolic activities of the various species to 267 

update the biomass of each species and the concentration of metabolites in the shared 268 

environment (hence, potentially impacting the growth and metabolism of other species in 269 

subsequent time steps). Importantly, this model allows for the natural emergence of 270 

metabolic competition and exchange between species, as well as selection for taxa with 271 

the most efficient growth rate in a given nutrient environment. Full details of this model 272 

and simulation parameters can be found in the Methods.  273 

 274 

We specifically modeled a simplified gut community that was previously explored 275 

experimentally (47). This community includes 10 representative gut species, spanning 276 

the major clades found in the human gut and collectively encoding the key metabolic 277 

processes taking place in this environment, including breakdown of complex dietary 278 

polysaccharides, amino acid fermentation, and removal of fermentation end products via 279 

sulfate reduction and acetogenesis. Genome-scale metabolic models of these 10 species 280 

were obtained from the AGORA collection (40) – a recently introduced set of high-quality 281 

gut-specific metabolic models. To mimic the experimental gnotobiotic mouse setting (47), 282 

we simulate growth in a chemostat, with a nutrient inflow mimicking the content of a 283 

standard corn-based mouse chow, and a dilution rate consistent with mouse transit time 284 

and gut volume. While maintaining this nutritional environment, we systematically 285 

explored the landscape of possible community compositions, varying the initial relative 286 

abundance of each species from 10% to 60% (with a consistent total abundance equal to 287 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/402040doi: bioRxiv preprint 

https://doi.org/10.1101/402040
http://creativecommons.org/licenses/by-nc-nd/4.0/


the community carrying capacity), resulting in a total of 61 different community 288 

compositions. For the analysis below, we simulated growth for 144 hours (as 576 15-289 

minute time steps). For most community compositions considered, this simulation time 290 

consisted of an initial stabilization period followed by a transition to a near-steady-state 291 

equilibrium with little change in community composition (Figure 1A). Notably, across the 292 

various simulations, some species maintained high abundances throughout the course of 293 

the simulation, while others reverted to lower levels.  294 

 295 

Throughout the course of each simulation, we recorded the abundances of each species, 296 

the secretion and uptake rate of each metabolite by each species (as well as internal 297 

reaction fluxes), and the concentration of each metabolite in the environment (Figure 1A-298 

B), thereby obtaining a comprehensive dataset describing species composition, 299 

metabolic activities, and metabolite concentrations across 61 different communities. To 300 

mirror the typical structure of a microbiome-metabolome cross-sectional dataset, we 301 

specifically considered the abundances of species and the concentrations of metabolites 302 

in the environment at the end of each simulation (i.e., after the final time point; see Figure 303 

1). 60 of the 68 metabolites present in the nutrient inflow exhibited at least some variation 304 

across communities, as did 18 additional microbially-produced metabolites. Metabolite 305 

variation was generally low (median coefficient of variation 0.021), reflecting a relatively 306 

stable nutrient environment, yet 25 metabolites (32%) did have a coefficient of variation 307 

greater than 0.1. For downstream analysis, we excluded metabolites without substantial 308 

measurable variance across samples, filtering those with variance at or below the 25th 309 

percentile. This resulted in a dataset of 52 variable metabolites, of which 14 are purely 310 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/402040doi: bioRxiv preprint 

https://doi.org/10.1101/402040
http://creativecommons.org/licenses/by-nc-nd/4.0/


microbially-produced metabolites, 9 are microbially-produced but also present in the 311 

nutrient inflow, and 29 are introduced only through the nutrient inflow. Of these 52 variable 312 

metabolites, 47 are utilized by any member of the community (including 18 that are cross-313 

fed in at least one simulation). The final species compositions and the final concentrations 314 

of several key metabolites across all simulations are shown in Figure 2A-F, and ordination 315 

plots of species and metabolite data are shown in Figure S2. 316 

 317 
Exploring this dataset, we found that species composition and metabolite concentrations 318 

exhibited complex patterns and biologically reasonable distributions (Figure S3) (49). 319 

Several metabolic processes known to occur in the mammalian gut were replicated by 320 

our simulations, including, for example, conversion of acetate to butyrate by E. rectale 321 

(48), and production of key microbial metabolites such as 4-aminobutyric acid (GABA), 322 

indole, and succinate. Cross-feeding relationships were observed frequently (18 323 

metabolites), including cross-feeding of 6 amino acids, whose exchange is widespread in 324 

host-associated microbiota (50). Additionally, we ran several sets of simulations with 325 

introduced fluctuations in the nutrient inflow concentrations, and found that the resulting 326 

species compositions partially recapitulated the diet responses observed by Faith et al. 327 

(47) (Supplementary Results). 328 

 329 
Clearly, the model and simulations described above represent a gross simplification of 330 

the microbiome’s structure, dynamics, and function. Importantly, however, this 331 

simplification is also an important strength. Specifically, the data obtained from these 332 

simulations provide a unique opportunity to examine the relationship between community 333 

dynamics and metabolic activity in a realistic, yet tractable model of community 334 
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metabolism where complete information about the activity and fluxes of each microbial 335 

species is available (Figure S4). Indeed, our multi-species model captures many of the 336 

intricacies of bacterial genome-scale metabolism and the interconnectedness (both within 337 

and between species) of multiple metabolic processes, yet without additional complexities 338 

inherent to in vivo communities. Furthermore, in our simulations, variation in the 339 

concentrations of environmental metabolites results exclusively from microbial metabolic 340 

activity, with no variation in nutrient inflow or other non-microbial sources, providing a 341 

controlled setting for evaluating the relationship between community members and 342 

metabolite concentrations.  343 

 344 

Metabolite variation is driven by diverse microbial mechanisms 345 

Given the simulated dataset described above (for which uptake and secretion fluxes are 346 

known), we applied our contribution framework to calculate the contribution of each 347 

species to the variation observed in each of the 52 variable metabolites (Figure S5). The 348 

resulting contribution values can be used as ground-truth information about the link 349 

between microbial activity and environmental metabolites.  350 

 351 

To highlight the nature and utility of such contribution values, and to demonstrate how 352 

metabolic fluxes translate into contribution profiles, we first describe our results for several 353 

example metabolites (Figure 2). Putrescine, an amino acid fermentation product, is an 354 

example of the simplest case, in which one microbial species – E. coli – synthesizes a 355 

metabolite that is not utilized or modified by other community members. Variation in the 356 

environmental concentration of putrescine was hence fully determined by the level of 357 
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secretion from E. coli, which is therefore assigned a relative contribution of 1 (Figure 2B). 358 

Tetradecanoic acid, in contrast, was introduced (at a constant rate) via the nutrient inflow 359 

and utilized by the three Bacteroides species in the community to varying degree 360 

(primarily by B. ovatus and to a slightly lesser extent by B. thetaiotaomicron). The 361 

calculated contribution values successfully attributed variation in the environmental 362 

concentration of this metabolite to these three species, and correctly captured the 363 

difference in the magnitude between their effects (Figure 2C). Variation in uracil, another 364 

metabolite introduced via the nutrient inflow, was mainly driven by large shifts in its uptake 365 

by B. ovatus, but this effect is partially masked by E. rectale, which reduced its uptake 366 

when B. ovatus’ flux was high and vice versa. Other species also utilized uracil, but at 367 

relatively similar levels across samples, and accordingly with relatively little impact on its 368 

variation. These complex patterns were all captured by the contribution profile obtained 369 

by our framework, with B. ovatus assigned a high positive contribution, E. rectale 370 

assigned an intermediate negative contribution, and other species assigned relatively 371 

negligible contribution values (Figure 2D). More complex species-metabolite relationships 372 

were also accurately and effectively summarized. Contribution values for acetate, for 373 

example, reflected the cross-feeding interactions that underlie variation in its 374 

concentration (Figure 2E). It was introduced to the shared environment by several species 375 

(primarily C. symbiosum), but most of its variation ultimately depended on the level of 376 

uptake by E. rectale. Finally, the contribution profile of succinate demonstrates how 377 

extremely strong interspecies interactions can produce contribution values much greater 378 

than the observed variance (Figure 2F). In the simulated data, this metabolite was 379 

synthesized by B. hydrogenotrophica, but was almost always fully utilized by other 380 
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community members. The calculated contributions suggest that if the synthesis of 381 

succinate by B. hydrogenotrophica would not have been offset by uptake from other 382 

species, the variance in succinate concentration across samples would have been 71.7 383 

times higher than is actually observed. (Note that the difference between positive and 384 

negative is always 1.) 385 

 386 

Examining the complete set of variable metabolites and calculated contribution values 387 

revealed similar patterns of interactions (Figure S5). Specifically, as for the metabolites 388 

discussed above, negative contributions and/or contribution values greater than 1 were 389 

widespread. Nearly all metabolites (50 out of 52) had at least one species with a negative 390 

contribution value, and 36 had at least one species with a contribution value greater than 391 

1. Of the 32 other metabolites with negative contributions, 29 were present in the nutrient 392 

inflow and their negative contributions result from competition between species for their 393 

uptake. This prevalence of negative and extreme values suggests that strong negative 394 

interspecies interactions have substantial impacts on metabolite concentrations, and that 395 

often, observed variation in a given metabolite’s concentration is the complex outcome of 396 

multiple species generating and offsetting much higher variation. 397 

 398 

It is also important to note that while the average metabolic uptake/secretion flux of each 399 

species and the magnitude of its contribution to a given metabolite were generally 400 

significantly correlated (Spearman, p < 0.01 for 49 of the 52 metabolites), the species with 401 

the highest flux was often not the largest contributor to variation (26 of the 52 metabolites). 402 

Similarly, the variance in a species’ flux was significantly correlated with its contribution 403 
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for 48 of the metabolites, but for 9 metabolites the species with the most variable flux was 404 

still not the largest contributor (due to differences in whether variable flux generated by 405 

one species is compensated by variation in the flux of another). These findings suggest 406 

that even if the magnitude and variation of species uptake and secretion fluxes across a 407 

set of microbiome samples are known (rather than just the abundances of species, which 408 

is the only measure usually assayed), metabolic interdependence between species would 409 

still make true contributor species challenging to identify. 410 

 411 

Combined, the observations above highlight the complex relationship between species 412 

activity and measured metabolite concentrations, demonstrating the important role of both 413 

direct and indirect species interactions. This complex relationship, observed even in the 414 

idealized settings of our simulation model, is potentially markedly more complex than 415 

what is assumed by many microbiome-metabolite association-based analyses.  416 

 417 

Correlation analysis fails to detect true microbial contributors to metabolite 418 

variation 419 

Given our observations above, we next set out to comprehensively assess how well 420 

pairwise correlation analysis (commonly used for analyzing microbiome-metabolome 421 

data) can detect true taxonomic contributors to metabolite variance. Put differently, we 422 

evaluated the extent to which a correlation between species abundance and metabolite 423 

concentration across samples captures the true causative contribution of a species’ 424 

metabolic activity to observed metabolite variation.  425 

 426 
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Following numerous microbiome-metabolome studies (14, 23, 28, 51), we considered 427 

identifying species-metabolite relationships as a classification task, aiming to identify for 428 

each metabolite the set of species that are primarily responsible for the variation observed 429 

in its concentration across samples. To this end, we defined key contributor species for 430 

each metabolite as those with a contribution value greater than 10% of the total positive 431 

contribution values. This resulted in a set of 83 species-metabolite key contributor pairs, 432 

representing true links between species activity and metabolite variation. On average, 433 

each metabolite had only 1.6 contributors (Figure S6), although 7.5 species on average 434 

had utilized or synthesized each metabolite at any point. 31.3% of these contributions 435 

occurred via synthesis reactions, 66.3% via utilization, and 2.4% (2 instances) via both 436 

processes. We then calculated the Spearman rank correlations between species 437 

abundances and metabolite concentrations across samples, and used a p-value 438 

threshold of 0.01 to define significant correlation between species and metabolites. This 439 

produced a set of 191 significant species-metabolite correlations, representing putative 440 

species-metabolite links. Scatter plots of these species-metabolite abundance 441 

relationships are shown for several example pairs in Figure S7. 442 

 443 
Comparing this set of significant species-metabolite correlations to the set of species-444 

metabolite key contributors clearly illustrated the difficulty of using univariate associations 445 

to infer mechanistic contributions (Figure 3). Indeed, of the 191 significant species-446 

metabolite correlations, the vast majority (141) were false positives (corresponding to a 447 

positive predictive value of only 26.2%), and did not represent true contributor 448 

relationships (Figure 3A). Moreover, more than a third of these false positive species-449 

metabolite pairs (51 out of 141) had no mechanistic connection; i.e., the species did not 450 
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ever use or produce the metabolite in question. Furthermore, for 12 variable metabolites 451 

(out of 52), none of the key contributors were successfully detected by a correlation 452 

analysis. The overall accuracy was somewhat higher (66.5%), reflecting the high number 453 

of non-contributors that are also not correlated. Using a stricter cutoff (p < 0.0001, 454 

equivalent to a Bonferroni-corrected value of 0.05) only improved the positive predictive 455 

value to 33% and the accuracy to 77.1%. Indeed, a ROC curve analysis (Figure 3B) 456 

produced an area under the curve of 0.72, and overall correlations and scaled contribution 457 

values were only weakly associated (Figure 3C), suggesting that these findings can only 458 

be partially mitigated by changing classification thresholds. Metabolites of different 459 

classes had generally similar correspondence between correlations and contributions 460 

(Figure 3D).  461 

 462 

Notably, key contributors for purely microbially-produced metabolites were not identified 463 

more accurately than those for metabolites in the nutrient inflow (66% versus 67%), which 464 

is perhaps not surprising since we used a constant inflow across samples (but see also 465 

our analysis below with variable inflow). Moreover, the total variance in a metabolite was 466 

not associated with the accuracy or predictive value with which key contributors for that 467 

metabolite were identified (Spearman rho, p > 0.1). Across species, contributions were 468 

identified most accurately for D. piger, which had a relatively low number of contributions 469 

(Figures 3E and S5C), but the positive predictive value was nonetheless <50% for all 470 

species.  471 

 472 

We obtained similar results across several variants of this analysis (Supplementary 473 
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Results, Figures S6, S8, and S9). To assess the impact of dynamic shifts over the 474 

duration of each simulation, we calculated an alternative set of contribution values based 475 

on the net steady-state metabolite flux rates at the final time point of each simulation, 476 

finding extremely similar results as for contributions to cumulative variation in 477 

concentration. We also evaluated the use of an alternative classification task, aiming to 478 

detect all microbes that affect variation in a given metabolite across samples regardless 479 

of whether their effects are ultimately reflected in the observed concentrations (i.e. those 480 

with large positive or negative contributions), again resulting in similar findings 481 

(Supplemental Results, Figure S6). Finally, we profiled the effects of model simulation 482 

parameters on correlation results, including the simulation length and the maximum 483 

enzymatic rate V_max, again finding minimal effects on contribution and correlation 484 

results (Supplementary Results, Figures S8-9).    485 

 486 
Species and metabolite properties explain discrepancies between correlations 487 

and contributions 488 

Our analysis above demonstrated that correlations between species abundances and 489 

metabolite concentrations can often be only poorly associated with true contribution of 490 

species to metabolite variation. We therefore next investigated the origins of such 491 

discrepancies. We examined whether individual metabolites or species are predisposed 492 

to produce a significant species-metabolite correlation when the species in fact does not 493 

contribute to that metabolite variation (i.e., false positives), or to mask such correlation 494 

when the species does in fact contribute to this metabolite variation (i.e., false negatives), 495 

and if so, what species and metabolite properties are linked to those outcomes.  496 

 497 
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To determine whether the identity of the species or metabolite in question can explain 498 

inaccurate identifications of key contributors, we used a regression-based analysis. 499 

Specifically, we considered all species-metabolite non-contributor pairs, and fitted a 500 

logistic regression model to predict whether a species-metabolite pair exhibited significant 501 

correlation (false positive), based on either species identities, metabolite identities, or 502 

both (Methods). We then compared these three models using a likelihood ratio test to 503 

assess whether species and/or metabolite identities are informative. We similarly 504 

considered all species-metabolite key contributor pairs separately, again fitting a logistic 505 

regression model based on species identities, metabolite identities, or both to predict 506 

whether a pair failed to exhibit significant correlation (false negative).  507 

 508 

For non-contributors, we found that false positives can be explained largely by species 509 

identity (likelihood ratio test (LRT) for inclusion of species terms p < 10-13). Incorporating 510 

both species and metabolite identities did not significantly improve the model (LRT for 511 

metabolite terms p=0.72). This finding suggests that false positives – correlations 512 

observed between species and metabolites to which they in fact did not contribute – are 513 

the outcome of interactions at the species level, regardless of the metabolite in question. 514 

This impact of strong interactions between dataset features on association test results 515 

has been described extensively in other data types (33, 34). Indeed, examining the 141 516 

false positives identified above, we found that many can be explained by the relationships 517 

between the three dominant species in this community: E. rectale, B. thetaiotaomicron, 518 

and B. ovatus. These species competed strongly for carbon sources (and utilized their 519 

maximum allocation of sucrose, glucose, and fructose at nearly every step of the 520 
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simulation), and their abundances were therefore negatively correlated. As a result, 521 

metabolites that varied due to the activity of one of these species were also frequently 522 

correlated with the other two. In total, 32 false positive correlations paired one of these 523 

species with a metabolite for which another species in this trio was a key contributor. 524 

More generally, we found that the probability of a false positive correlation for a particular 525 

species and metabolite depended on the species’ correlation with the true key 526 

contributors for that metabolite (p=0.006, Spearman rho between share of false positives 527 

and interspecies correlation; Figure 4A). Moreover, the maximum correlation each 528 

species had with any other species is a strong predictor of its overall specificity, which 529 

varies widely from 33.3% for E. rectale to 92% for D. piger (Spearman rho=-0.84, 530 

p=0.002). We also found that species identity was similarly predictive of whether a 531 

significantly correlated metabolite-species pair represented a true contributor versus a 532 

false positive (Supplementary Results). 533 

 534 

In the case of key contributors, we found that false negative correlations can be explained 535 

largely by metabolite identity (LRT for metabolite terms p=0.002; although the species 536 

involved was also somewhat informative with LRT p=0.08). Put differently, a lack of 537 

correlation between the abundance of a key contributor species and the concentration of 538 

the metabolite to which it contributed was determined mainly by the nature of the 539 

metabolite in question. This lack of correlation between a given metabolite and its 540 

contributors could have resulted from competition or exchange of a metabolite between 541 

multiple species, such that none of the involved species end up strongly associated with 542 

the final outcome on their own. Indeed, across all metabolites, the average correlation 543 
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between a metabolite and its key contributors is negatively associated with its number of 544 

key contributors (Spearman rho=-0.45, p=0.0008). The number of key contributors for 545 

any metabolite was also thus negatively associated with the sensitivity of contributor 546 

detection for that metabolite (Spearman rho=-0.48, p=0.0004; Figure 4B). We further 547 

hypothesized that false negative outcomes might be more common for metabolites with 548 

more or larger negative species contributions, since these, by definition, mask or 549 

compensate for the activity of key contributor species. While all metabolites with a false 550 

negative outcome did have at least one species with a negative contribution value, as 551 

mentioned above, this was true for nearly all analyzed metabolites (50/52), and the 552 

number of negative contributing species was not associated with the occurrence of a false 553 

negative correlation (p=0.86, Wilcoxon rank sum test). Moreover, we also did not observe 554 

any effect of the average concentration of a metabolite on the sensitivity and accuracy of 555 

its detection via correlation analysis, nor of whether it is secreted, utilized, or cross-fed 556 

(Figure 4C). In summary, our analysis suggests that the largest factor explaining whether 557 

a metabolite’s key contributor can be detected by a correlation analysis is simply whether 558 

there are other community members (key contributors) that also impact the observed 559 

concentration of that metabolite. 560 

 561 
Environmental fluctuations in metabolite concentrations impact detection of key 562 

contributors 563 

Our analyses above all focused on a single simulated dataset in which the nutrient inflow 564 

was constant across all samples, meaning that metabolite variation was fully governed 565 

by microbial activity. However, in reality, metabolite variation can and does arise also from 566 

non-microbial sources, potentially affecting both the landscape of key microbial 567 
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contributors and our ability to detect them via correlation-based analyses. To explore the 568 

impact of environmental fluctuations, we therefore ran several sets of additional 569 

simulations with varying degrees of nutrient fluctuation, designed to emulate a range of 570 

levels of experimental diet control and variation in host absorption across the simulated 571 

mouse gut communities. In these simulations, we maintained the same set of 61 initial 572 

species compositions but added small amounts of stochastic noise to the nutrient inflow, 573 

sampling inflow concentrations for each compound in each simulation from a normal 574 

distribution with a mean equal to the compound’s original inflow rate and a standard 575 

deviation ranging from 0.5% to 10% of the mean in 8 increments (Methods). For each of 576 

the resulting 8 datasets, we again calculated contribution values (with the added element 577 

of the nutrient inflow as a potential contributor to variance), identified key contributors, 578 

and compared them with the results of a correlation analysis.  579 

 580 

Examining the obtained contribution values, we found, as expected, that variation in inflow 581 

quantities can outweigh the variation in microbial fluxes, and that as the variation in inflow 582 

increases, its contribution to metabolite variation increased at the expense of the 583 

contributions of community members (Figure 5A). As a result, the number of key 584 

contributions attributed to each species decreased for metabolites in the nutrient inflow 585 

(Figure 5B). Interestingly, however, some species lost their contributions more gradually 586 

than others, and in some cases even became key contributors for additional metabolites 587 

(Figure 5B). For most metabolites, the relative ranking of species with the highest 588 

contribution values was unchanged with increasing fluctuations (Supplementary Results).  589 

 590 
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We next examined how correlation-based detection of key microbial contributors was 591 

affected by these inflow fluctuations. We assigned each of the 52 metabolites in each of 592 

the 9 datasets (the original dataset with no inflow fluctuations and the 8 datasets with 593 

varying degree of fluctuations) to bins according to the level of contribution attributed to 594 

the inflow for this metabolite at that degree of fluctuation (see Methods). We then 595 

evaluated the performance of correlation analysis for each bin separately. The share of 596 

true key contributors naturally decreased rapidly with increasing environmental 597 

contribution, as did the number of significantly correlated species-metabolite pairs (Figure 598 

5C). Importantly, however, the sensitivity of correlations decreased substantially with the 599 

level of contribution attributed to the inflow, but the specificity in fact increased from 67.7% 600 

to 92.3% (Figure 5D). This suggests that while environmental fluctuations disrupted the 601 

signal linking microbial species with the metabolites they impact, they also disrupted 602 

indirect associations between species and metabolites (false positives). Overall, 603 

however, the AUC did not change significantly with increasing environmental contribution 604 

(Figure S10A), and the positive predictive value is similarly relatively stable (and never 605 

rose higher than 37%). Interestingly, the detection of some metabolites not present in the 606 

inflow was also affected by inflow fluctuations in a similar manner (Supplementary Text, 607 

Figure S10B).  608 

 609 

Correlation analysis is similarly limited in simulations of more complex and 610 

diverse human gut microbiota 611 

Our results have illustrated consistent discrepancies between microbe-metabolite 612 

correlations and microbial contributions to metabolite variation in a model ten-species 613 
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community. We lastly addressed the question of whether these findings generalize to 614 

more complex mammalian gut microbiota, communities with many times more taxa and 615 

a more uneven distribution across individuals. To do so, we ran an additional set of 616 

simulations emulating human gut microbiota transplanted into gnotobiotic mice. We first 617 

mapped 16S rRNA sequence variants from the Human Microbiome Project (52) to the 618 

genomes of the AGORA model collection at 97% sequence identity (40), and selected 57 619 

samples with a successful mapping rate greater than 25% relative abundance. The total 620 

share of mapped reads averaged 36.7% across these samples, with a maximum of 621 

73.5%. Despite this variation, mapped reads displayed features typical of Western gut 622 

microbiomes, including a predominance of Bacteroidetes and Firmicutes phyla along with 623 

varying lower abundances of Actinobacteria and Proteobacteria (Figure 6A). The number 624 

of species identified in each sample ranged from 23 to 62, with a median of 42. We ran a 625 

simulation based on each sample by setting the initial species relative abundances 626 

according to the relative abundances of mapped reads, while maintaining the same 627 

physical parameters as previous simulations (see Methods for additional details). We 628 

used nutrient inflow quantities with 1% standard deviation between samples. Initial 629 

species compositions displayed characteristic shifts in abundance over the simulation 630 

time course (Figure S11A). Metabolites were also highly variable, with a median 631 

coefficient of variation of 71% across 222 metabolites (Figure S11B). We calculated 632 

contribution values for this dataset, finding a smaller share of key contributions (only 392 633 

out of 29,082 possible species-metabolite pairs). Only 35.1% of species (46 out of 131) 634 

were identified as key contributors to any metabolite. The genera with the most 635 

contributions were Bacteroides, Ruminococcus, and Enterobacter, which were also three 636 
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of the four most abundant genera in the final dataset (Figure 6B). 637 

 638 

In this noisier and more layered dataset, only a small share of species-metabolite pairs 639 

was significantly correlated. In order to fairly compare with the previous dataset while 640 

accounting for the larger number of hypothesis tests, we defined significance based on 641 

an equivalent Benjamini-Hochberg estimated false discovery rate (0.027) as the p < 0.01 642 

cutoff used for the previous dataset. 2.2% of species-metabolite pairs displayed 643 

significant correlations at this cutoff (p < 0.00058). This level of correlation is comparable 644 

to a recent microbiome-metabolome study of the colon of healthy humans (51), in which 645 

1.4% of OTU-metabolite pairs displayed Spearman correlation coefficients of the same 646 

effect size. In our dataset, correlation analysis detected contributors with high specificity 647 

(98.4%), and an area under the ROC curve of 0.89. However, the positive predictive value 648 

was still only 29.0%, rising as high as 57% with a significance cutoff of p < 10-10. We 649 

compared these classification results with the original dataset, finding that despite the 650 

difference in overall AUC, sensitivity, sensitivity, and predictive value are similar or worse 651 

for the two datasets at commonly used FDR thresholds between 0.1 and 0.01 (Figure 652 

6C), and sensitivity and predictive value are both highly dependent on the choice of 653 

significance threshold. As in the ten-species dataset, a large share of false positive 654 

species-metabolite pairs (65.4%, 291 out of 445) also involved species with no capacity 655 

to impact the metabolite in question.  656 

 657 

The outcomes of correlation analysis were influenced by the same factors as observed in 658 

the model community dataset, but also by several additional characteristics. False 659 
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positive classifications were, again, driven by interspecies covariance: Species 660 

significantly correlated (at 10% FDR) with a true key contributor for a metabolite were 661 

13.6 times more likely to have a false positive correlation with that metabolite than species 662 

with no such link (p < 10-16). Notably, the false positive rate of a given species was also 663 

substantially affected by its prevalence: the number of samples in which a species was 664 

present was negatively associated with its specificity (Spearman rho = -0.57, p=0.002, 665 

Figure S11C), among species with at least 3 key contributions. In other words, widely 666 

prevalent species were more prone to false positive correlations than rarer species.  667 

 668 

False negative contributions were again influenced by properties of both metabolites and 669 

species. As in the ten-species dataset, species contributions to metabolites with more 670 

than one key contributor were 5.2 times more likely to not be correlated than those that 671 

were the sole key contribution for a metabolite (p < 10-10, Fisher exact test). In this dataset, 672 

an elevated share of these metabolites with multiple key contributors were cross-fed 673 

between different species (p=0.00007, Fisher exact test), and correspondingly, key 674 

contributors for cross-fed metabolites were also 1.6 times less likely to be significantly 675 

correlated (p=0.02). Both cross-feeding and false negative outcomes occur variably 676 

across metabolite classes, with nucleotide metabolites having the highest rates of both 677 

phenomena (Figure S11D). Taken overall, our simulations and analysis of this realistic 678 

microbiota simulation demonstrates that correlation analysis can have greater utility in a 679 

microbial community dataset with greater complexity and variability, but the results are 680 

again strongly influenced by properties of individual metabolites and species. 681 

 682 
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 683 

Discussion: Insights and implications for microbiome-684 

metabolome analyses 685 

Above, we have investigated the ability of correlation-based analyses to detect key 686 

microbial contributors responsible for variation in metabolite concentrations across 687 

samples. Our findings suggest that microbe-metabolite correlation analysis may be a 688 

useful approach for exploratory analyses, but they highlight some of the limitations and 689 

caveats of such microbiome-metabolome studies and identify several factors that impact 690 

the relationship between community composition and metabolite concentrations. Below, 691 

we elaborate on a set of practical conclusions and their implications for the analysis and 692 

interpretation of microbiome-metabolome studies.  693 

 694 

Association-based analyses of microbiome-metabolome assays have low 695 

predictive value for detecting direct species-metabolite relationships and require 696 

conservative interpretation. Microbiome-metabolome association studies have been 697 

previously proposed as a powerful tool for the identification of causal mechanisms of 698 

microbiome metabolism (53), and indeed, such studies often present detected 699 

associations as evidence for mechanistic relationships (11, 27, 29). However, our 700 

analysis suggested that the positive predictive value of significant species-metabolite 701 

correlations for identifying true microbial contributors can be extremely low: less than 50% 702 

across all settings, as low as 10% in the context of large environmental fluctuations, and 703 

29% in simulations based directly on human gut composition. Recent experimental 704 
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studies pairing microbiome-metabolite correlation analysis with in vitro monoculture 705 

validations have similarly anecdotally observed many false positive correlations (32). 706 

Additionally, given the somewhat low sensitivity observed in our analysis, a lack of 707 

association is not necessarily sufficient to reject a hypothesis that a particular microbial 708 

taxon impacts a particular metabolite. The choice of correlation threshold should therefore 709 

be chosen carefully, taking into account the complexity of the community and the 710 

environmental context. In general, identified correlations between microbial taxa and 711 

metabolites should be interpreted very conservatively and used mostly to prioritize 712 

microbe-metabolite relationships for follow-up validation studies (e.g., via culture-based 713 

studies or germ-free model organism colonization). One potential approach for improving 714 

the predictive value of such correlation-based analyses is to examine whether they 715 

replicate across multiple conditions. Indeed, we found that a correlation does provide 716 

stronger evidence for a contributor relationship if it persists across different contexts. 717 

Across our 9 simulated datasets with varied environmental fluctuations, the 43 species-718 

metabolite pairs that were significantly correlated in every dataset were 2.1 times more 719 

likely to denote true key contributor relationships than other significant correlations (Fisher 720 

exact test, p=0.05), although their positive predictive value was still relatively low (39.5%). 721 

Of the limited number of significant correlations shared between our original and HMP-722 

based datasets (n=5), all were false positives in both datasets, reiterating the need for 723 

caution. 724 

 725 
The predictive power of correlation-based analysis is species-, metabolite-, and 726 

context- dependent. In our datasets, metabolites varied widely in both contribution 727 

profiles and in their detectability via correlation analysis. In particular, the key contributors 728 
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for metabolites acted upon by fewer species, and potentially those that are not exchanged 729 

between different species, were identified more readily. Moreover, in our simulations of 730 

human gut communities, contributions by less prevalent species were identified much 731 

more accurately than those by widely-found species, indicating that hypotheses based on 732 

associations of rarer species should potentially be prioritized. Correlation analysis may 733 

thus identify microbes involved in specialized secondary metabolic processes (e.g. 734 

products of complex biosynthetic pathways) more readily than those involved in more 735 

widespread processes.. Therefore, correlation-based approaches may be more 736 

informative for analyzing compounds that are specific to a small number of rare taxa, but 737 

accurate dissection of the taxa controlling variation in widely-trafficked metabolites may 738 

require more detailed analysis and experimentation. Similarly, we found that species-739 

metabolite correlations for species that are strongly associated with other taxa (e.g., those 740 

with tight interactions with other community members) are often spurious, suggesting that 741 

such correlations should be regarded less confidently. 742 

 743 
External metabolic fluctuations can strongly impact the detection of microbial 744 

contributions. Our analysis of the impact of environmental fluctuations suggested that 745 

the presence of environmental variability from a diverse set of samples could in fact 746 

increase correlation specificity. We also found that the sensitivity of correlation analysis 747 

rapidly decreased with increasing environmental fluctuations (from 60% to 9%). These 748 

observations suggest that while a tightly controlled environment (e.g., identical diets) is 749 

intuitively expected to increase the strength of microbiome-metabolome studies, its value 750 

depends on the study priorities. Specifically, if the goal is to identify clear-cut microbial 751 

drivers of healthy- and disease-associated metabolite shifts, stochastic variation in 752 
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nutrient availability could be beneficial as it may reduce the rate of false positive 753 

associations. In contrast, for studies searching for a particular microbial taxon’s 754 

involvement in a particular process (e.g. aiming to determine whether an ingested 755 

probiotic impacts aspects of gut metabolism), a more controlled environment may be 756 

favorable. It should, however, be noted that our findings were based on environmental 757 

fluctuations that were uniform and independent, which may not hold for real-life 758 

environmental fluctuations such as diet variation. It is also worth noting that in our 759 

simulations, microbial fluxes for some environmental metabolites could be drowned out 760 

by as little as 0.5% variation in nutrient inflow quantities, while others still had substantial 761 

microbial contributions even with 10% variation in inflow. When interpreting an observed 762 

association, the scale of possible microbial variation relative to external variation should 763 

therefore be taken into account.  764 

 765 

Mechanistic reference information can improve the predictive power of 766 

microbiome-metabolome studies. In our simulated dataset, 36% of the false positive 767 

correlations occurred between a metabolite and a species that was in fact not capable of 768 

uptaking or secreting that metabolite. Ruling out such falsely detected links would 769 

substantially improve the positive predictive value of a correlation-based analysis. One 770 

approach for doing so is by utilizing genomic information, which can be obtained or 771 

predicted for many microbial taxa (54). By coupling such genomic information with 772 

metabolic databases such as KEGG or MetaCyc (55, 56), researchers can filter out 773 

correlation-based links that are likely not feasible causative relationships. Further 774 

improvement can be obtained by integrating such reference information directly into the 775 
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analysis. Indeed, we previously introduced a computational framework, termed MIMOSA 776 

(57), that utilizes a simple community-wide metabolic model to assess whether measured 777 

metabolite variation is consistent with shifts in community metabolic potential, and to 778 

identify potential contributing taxa. MIMOSA has been applied to varied host-associated 779 

microbiomes from varied body sites and from human and mouse hosts (12, 58, 59). 780 

Applying MIMOSA to the simulated ten-species dataset analyzed above (Methods), we 781 

found that it indeed identified key contributors significantly more accurately than a 782 

correlation-based analysis, with an AUC of 0.89 (Figure 6). Notably, in this analysis, we 783 

assumed MIMOSA has access to the correct set of metabolic reactions possessed by 784 

each species. Using standard less-complete information obtained directly from the KEGG 785 

database (as done regularly when using this tool) reduced the number of metabolites that 786 

could be analyzed from 52 to 39, with improved specificity (96%) and positive predictive 787 

value (61%) and an ultimately comparable AUC (0.74). Combined, these findings suggest 788 

that reference model-based approaches can provide stronger evidence for mechanistic 789 

relationships than strictly correlation-based methods, but their use depends on complete 790 

and high-quality metabolic reference databases.  791 

 792 

Future opportunities and challenges  793 

Microbiome-metabolome studies have an important role in microbial ecology research. 794 

They specifically have great potential to dissect the metabolic interactions of complex 795 

microbial communities, and to unify “top down” and “bottom up” microbiome research 796 

approaches by providing mechanistic information at a systems level. Moreover, from a 797 
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translational perspective, microbiome-metabolome studies can inform efforts to design 798 

targeted therapies to alter specific microbial or metabolic features of a community (13). 799 

Such interventions require first identifying putative targets, which in many cases may 800 

entail identifying the key contributor species that drive observed shifts in a particular 801 

beneficial or detrimental metabolic phenotype.  802 

 803 

Importantly, while we show here that a correlation-based analysis may be limited in its 804 

ability to identify these key microbe-metabolite links, this does not necessarily imply an 805 

inherent limitation of microbiome-metabolome data. For example, analyzing our data, we 806 

found that species abundance is in fact a very good proxy for metabolic activity (median 807 

correlation of 0.996 between abundance and flux for all species-metabolite pairs), 808 

meaning that the variance in total species abundance drastically outweighs the individual-809 

level variance in flux rates. When we further examined whether false negative 810 

associations in our original dataset stem from a disconnect between the abundance of a 811 

species and its metabolite uptake or secretion rates, we identified only 2 undetected key 812 

contributor pairs that could be explained by such a discrepancy. This analysis suggests 813 

that taxonomic abundance data is sufficient to explain and model community metabolic 814 

variation to great extent, despite common concerns about potential discrepancies 815 

between community composition and function. It also suggests that metatranscriptomic 816 

expression data may not provide much additional value for this purpose, as other studies 817 

have indicated (54, 60, 61).  818 

 819 
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Given the increasing prevalence of microbiome-metabolome studies, their promise, and 820 

the caveats of association-based research discussed above, further development of 821 

computational and statistical methods for analyzing such datasets is clearly needed. 822 

Possible directions include the use of multi-species dynamic metabolic models that can 823 

replicate experimental observations (62), multivariate approaches for deconvolving 824 

interactions between species and the environment (63, 64), and probabilistic methods 825 

that can integrate prior information while allowing for other unknown mechanisms (31, 826 

65). The conceptual framework of taxon-metabolite contributions, and the use of dynamic 827 

simulations demonstrated here, can both inform the future development and evaluation 828 

of such methods. 829 

 830 

There is also a continued need for gold standards to evaluate new methods. This study 831 

is only a first step in that direction and has analyzed one specific type of research 832 

question: identifying microbial taxa directly responsible for variation in metabolite 833 

concentrations between samples in a cross-sectional study design. Although this focus 834 

describes many recent microbiome-metabolome studies, other studies may address a 835 

wide range of complementary research questions, and correspondingly, the desired 836 

“ground truth” can take different forms. Moreover, depending on the objective, an 837 

alternative definition of a taxon-metabolite relationship may be required. For example, it 838 

may be valuable to identify key contributors that act via alternative mechanisms, such as 839 

by modifying substrate availability or environmental conditions (for example (66)), or to 840 

distinguish metabolite variation arising in response to a perturbation from variation due to 841 

differences in steady-state metabolism between communities. Additionally, our findings 842 
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rely on an in silico system that may not capture many aspects of community ecology and 843 

metabolism, and it is possible that the predictive value of correlation analysis, as well as 844 

of other analytical methods, differs fundamentally in this system as compared to true 845 

biological systems. Further studies should also consider additional variables such as 846 

community diversity, sample size, measurement error, and other types of environmental 847 

variation. Ongoing technology developments in mass spectrometry and stable isotope 848 

probing will ideally enable future evaluation analyses using experimental, quantitative, 849 

species-specific community flux data to define key microbial contributors (67, 68). Such 850 

evaluations can also take advantage of datasets comparing community microbiome-851 

metabolome data with in vitro monoculture or mono-colonization data (32, 35, 36).  852 

 853 

Ultimately, much remains to be learned about the many processes through which 854 

complex microbial communities shape their environment. The first major call for the 855 

application of metabolomics to microbiome research, published 10 years ago (69), noted 856 

that new methods will be necessary to integrate genomic and metabolic data and inform 857 

the prediction of community metabolic properties from metagenomes. Now that 858 

microbiome-metabolome datasets are widely available, ongoing development of analysis 859 

methods for these studies has great potential to generate new knowledge. Moreover, 860 

future work in this area stands to benefit from the utility of dynamic, multiscale metabolic 861 

modeling. Detailed mechanistic simulations are used widely in astronomy, climate 862 

science, and other fields to make methodological choices and assess possible 863 

experimental outcomes when ground truth measurements are unavailable or difficult to 864 

obtain (70, 71). An analogous strategy in microbiome research may be similarly fruitful.   865 
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 866 

 867 

Methods 868 

Derivation of species contributors to variation 869 

We derived an expression representing the contribution of each species to the variance 870 

in the concentration of each metabolite. While we describe this calculation in terms of 871 

species, a similar calculation could be done at the level of phyla, strains, or any grouping 872 

of the community for which metabolite secretion and uptake fluxes are available. 873 

 874 

The concentration of a given metabolite M at the end of a single simulation run is a 875 

function of the uptake and secretion fluxes (responding to the species’ degradation and 876 

synthesis activities) of the n species, the environmental inflow over all time steps min, and 877 

the dilution mout out of the chemostat over all time steps: 878 

𝑀 =#𝑚%

)

%+,

+ 𝑚%) − 𝑚<=> 879 

 880 

The value of mout at a given time step t is the product of the dilution rate D and the 881 

metabolite concentration at the previous time point (see above). This fact can be used to 882 

express mout in terms of all the previously recorded environmental inflow and microbial 883 

activities. The metabolite concentration at any time point t, M(t), is then equal to: 884 

 885 
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𝑀(𝑡) = #@(1 − 𝐷)>CDC,#𝑚%D

)

%+,

E
>C,

D+,

+ 𝑚%)#(1 − 𝐷)D
>C,

D+,

, 886 

 887 

where mik represents the activity of species i at a single time point k. We can then ignore 888 

dilution outflow by replacing each activity value mi in the final concentration calculation 889 

above with a value corrected for the mitigating effect of chemostat dilution over the course 890 

of the simulation up to time t, defined here as mi*. mi* represents the total amount of a 891 

compound secreted or uptaken by species i, minus the share of that quantity that is 892 

eventually diluted out over the course of the simulation. 893 

 894 

𝑚%
∗ = #(1 − 𝐷)>CDC,𝑚%D

>C,

D+,

, 895 

and thus,  896 

𝑀 = 𝑚%) +#𝑚%
∗

)

%+,

 897 

 898 

In this work, we refer to “environmental fluctuations” as the effect of the independently 899 

parameterized nutrient inflow, min, and where not otherwise specified we use mi to imply 900 

mi*, a species activity quantity that accounts for the corresponding subsequent dilution 901 

out of the system.  902 

 903 

Using the expression above, var(M) can then be clearly expressed as a sum of correlated 904 

environmental and microbial random variables:  905 
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)
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)
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)
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)
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 907 

 908 

This expression can then be partitioned additively into n+1 terms representing the 909 

contribution of each microbial species and of fluctuations in the environmental nutrient 910 

inflow. 911 

 912 

𝑐% =#𝑐𝑜𝑣(𝑚%,𝑚7)
)

7+,

+ 𝑐𝑜𝑣(𝑚%,𝑚()*) = 𝑣𝑎𝑟(𝑚%) +#𝑐𝑜𝑣5𝑚%,𝑚78 + 𝑐𝑜𝑣(𝑚%,𝑚()*)
79%

 913 

 914 

Multi-species Dynamic Flux Balance Analysis modeling 915 

In this study, we simulated the growth and metabolism of a community of 10 916 

representative gut species that was previously explored experimentally (47). We 917 

specifically utilized a previously introduced multi-scale framework for modeling the 918 

dynamics and metabolism of multiple microbial species in a well-mixed shared nutrient 919 

environment (44, 72). This framework assumes that each species in the community aims 920 

to maximize its own growth on a short time scale given available nutrients, and uses Flux 921 

Balance Analysis to predict the growth and metabolic activity of each species at this short 922 

time scale (46). The shared environment is then iteratively updated based on the species’ 923 

predicted growth, uptake, and secretion rates, such that metabolic interactions are 924 
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mediated via the environment as a natural byproduct of species activities, rather than 925 

being explicitly modeled (45).   926 

 927 

We used genome-scale metabolic model reconstructions of the 10 community members 928 

from the AGORA collection version 1.01 (40), which have been consistently curated to 929 

remove or modify thermodynamically unfavorable reactions, remove futile cycles, and 930 

confirm growth in anaerobic environments on expected carbon sources, with additional 931 

curation for several biosynthesis pathways. The COBRA toolbox was used to convert 932 

each AGORA model to MATLAB format (73).  The growth and metabolism of the 10-933 

species community were simulated in a chemostat setting in 15-minute time intervals. We 934 

set the chemostat volume to be approximately equal to a mouse gut (0.00134 liter (74)). 935 

We similarly set metabolite inflows to emulate the macronutrient and micronutrient 936 

quantities in a corn-based mouse chow (47) (provided in Supplementary Data 1).   937 

 938 

The simulations were performed following a previously introduced procedure (44), 939 

repeated for each time step tn: First, the maximum uptake rate for all metabolites by all 940 

species, denoted as 𝑣7D for metabolite j and species k, were calculated based on 941 

Michaelis-Menten single-substrate kinetics, with assumed universal values for maximum 942 

rate Vmax and transporter affinity Km for all metabolites (provided in Supplementary Data 943 

1). 𝑣7D was further constrained based on an allocation of the metabolite’s environmental 944 

concentration to each species in proportion with its biomass. Then, the steady state 945 

reaction fluxes for each species k at time point tn were determined by maximizing the 946 

growth rate µk, within the obtained constraints on environmental metabolite uptake. To 947 
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obtain a single and consistent flux solution for each species, the total flux activity for each 948 

species (i.e., the sum of absolute fluxes given the predicted optimal growth rate) was 949 

minimized, under the assumption that organisms prefer to operate their metabolism with 950 

minimal enzymatic cost (75). The optimal flux solutions were solved using linear 951 

programming with GLPK (www.gnu.org/software/glpk). With the resulting flux and growth 952 

rate information, the total biomass of each species k, biok(tn), was updated for the next 953 

time point tn+1, using a standard exponential growth function incorporating dilution: 954 

 955 

𝑏𝑖𝑜D(𝑡)H,) = 𝑏𝑖𝑜D(𝑡))𝑒LM∆> − 𝑏𝑖𝑜D(𝑡))𝐷∆𝑡, 956 

       957 

where D is the dilution rate. We set D to 0.0472 per hour, in order to obtain community 958 

growth rates consistent with the observed average growth rate of the three most abundant 959 

species growing under 47 different carbon conditions (76). The total amount of uptake or 960 

secretion for each species k and metabolite j over a single time step was then calculated 961 

as previously derived (44): 962 

 963 

𝑚OPQ
7D (𝑡)) =

*RM
µM
∗ 	𝑏𝑖𝑜D(𝑡))(𝑒µM∆> − 1), 964 

 965 

where 𝑣7D is the rate of uptake or secretion specified by the FBA solution for that species 966 

and metabolite at that time point, µD is the species growth rate, 𝑏𝑖𝑜D(𝑡)) is the species 967 

abundance, and ∆𝑡 is the size of the time step. Finally, combining the flux solutions of all 968 

species, nutrient inflow, and dilution, along with the steady state assumption of no 969 
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intracellular metabolite accumulation, the concentration of a given metabolite in the 970 

shared nutrient environment at the next time point, Mj(tn+1) can be updated as: 971 

 972 

𝑀7(𝑡)H,) = 𝑀7(𝑡)) + 𝑚OPQ
7 (𝑡)) + 𝑚%)

7 ∆𝑡 − 𝑀7(𝑡))𝐷∆𝑡, 973 

 974 

where 𝑚OPQ
7 (𝑡)) is the metabolic impact from all species considering their abundance and 975 

their uptake and secretion rates of metabolite j, and 	𝑚%)
7

 is the inflow rate of metabolite j. 976 

This process of calculating uptake rates, Flux Balance Analysis solutions, and updated 977 

metabolite concentrations was then repeated iteratively for the duration of the simulation. 978 

 979 

Each simulation was run for a period of 144 hours or 576 time steps. This time period was 980 

long enough for most simulation runs to approach a steady state composition: specifically, 981 

in >65% of the simulations analyzed in our study, the change in abundance in any species 982 

over the final 3 hours was less than 0.01% of the carrying capacity (see below), and all 983 

had no changes greater than 0.3% of the capacity over that period. The concentrations 984 

of species and metabolites, the species growth rates, and the solved rates of all reactions 985 

for each species (including uptake and secretion) were recorded in each step of each 986 

simulation and used for subsequent analyses (Supplementary Data 1 and 2).  987 

 988 

Simulation initialization parameters 989 

We fixed the initial total abundances of microbes to the carrying capacity for this system 990 

and media, which was estimated to be 0.433 units of biomass. This capacity was 991 

calculated as the average final total abundance from a set of simulations with varying 992 
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compositions and low initial abundances. We then varied the relative abundances, 993 

increasing the abundance of one species at a time at the expense of all other species 994 

equally. Specifically, for each species, we ran simulations in which the ratio of that 995 

species’ initial abundance relative to all other species was 2, 3, 4.5, 6, 9, and 13 times 996 

(equating to a range in relative abundance of 10% to 60% for each species). This resulted 997 

in a total of 61 simulation runs (one with all species starting at equal abundance and 6 998 

with increased abundance of each species). We chose this sample size to approximately 999 

represent the sample sizes of published cross-sectional microbiome-metabolome 1000 

association studies (14, 16). We set the initial inflow concentrations to the amount that 1001 

would dilute in over one hour under the calculated inflow rates.  1002 

 1003 

Calculation of contribution values for variable metabolites 1004 

We calculated contribution values for all metabolites with variance in concentration 1005 

above the 25th percentile. We chose this threshold in order to include as many 1006 

metabolites as possible while excluding those that only varied at all in fewer than half of 1007 

the simulation runs, or whose variation would be subject to potential numerical errors. 1008 

 1009 

Comparison with Shapley values 1010 

We implemented an approximate Shapley value algorithm (43) as an alternative strategy 1011 

to calculate contributions for the simulated dataset. Briefly, 15,000 random orderings of 1012 

the 10 species were randomly generated. For each ordering, the variance in metabolite 1013 

activity is calculated for subsets of size 1 to 10, adding in species according to the 1014 

specified ordering. The difference in variance as a given species is added to the subset, 1015 
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denoting the marginal contribution of that species to variation, is recorded. The average 1016 

marginal contribution across all orderings for each species is then defined as its 1017 

contribution to variance. 1018 

 1019 

Species-metabolite correlation analysis 1020 

We calculated Spearman correlations between absolute species abundances (quantified 1021 

as total biomass) and concentrations of variable metabolites. We used absolute 1022 

abundances in order to evaluate the relationships between species and metabolites under 1023 

the hypothetically best possible measurements of both data types. We also compared 1024 

correlation results using relative abundances and found very minimal differences in the 1025 

main simulation dataset: only 7 species-metabolite pairs (1.3%) are significantly 1026 

correlated using absolute abundances but not relative, and only 4 pairs (0.8%) are 1027 

correlated using relative abundances but not absolute.  1028 

 1029 

We used a p-value threshold of 0.01 to classify “significant” associations for binary 1030 

comparisons. For interpretability, we refer to p-values not corrected for multiple 1031 

hypothesis testing, since the number of tests remained constant across nearly all of our 1032 

analyses (520 possible species-metabolite pairs). The 0.01 threshold we use to define 1033 

significantly correlated pairs is equivalent to a Benjamini-Hochberg corrected false 1034 

discovery threshold of 0.027, calculated using the R function p.adjust (77).   1035 

 1036 

Logistic regression modeling of correlation outcomes 1037 

We used logistic regression models to identify factors that can be used to predict whether 1038 
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a non-contributing species-metabolite pair displays a significant correlation (false 1039 

positive), and whether a key contributor species-metabolite pair fails to be correlated 1040 

(false negative). We used the glm function in R to fit models of the log odds of whether a 1041 

non-contributing species is correlated with its corresponding metabolite (false positive or 1042 

true negative), using as predictors grouped indicator values for species and metabolite 1043 

identities. We separately fit another set of logistic regression models to predict whether a 1044 

key contributor species is correlated (true positive or false negative), with the same 1045 

predictors. Models were compared using likelihood ratio tests using the anova function in 1046 

R. 1047 

 1048 

Simulations with varied inflow quantities 1049 

We ran 8 additional sets of simulations with the same set of 61 different initial species 1050 

compositions but with varying degrees of inflow fluctuations. Specifically, the nutrient 1051 

inflow quantities were sampled independently from a normal distribution, with a mean of 1052 

the original inflow concentration and the standard deviation equal to a set percent of the 1053 

mean. The 8 levels of deviation were 0.5%, 1%, 2%, 3%, 4%, 5%, 8%, or 10%. In the 1054 

comparison of correlation results across samples, we evaluated the same set of 52 1055 

variable metabolites as for the original dataset for consistency, although given the added 1056 

noise, additional metabolites met the same variance cutoff we used to define variable 1057 

metabolites.  1058 

  1059 

To evaluate correlation performance as a function of increasing environmental 1060 

contribution, we binned the 38 analyzed inflow metabolites across the 8 datasets based 1061 
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on the size of the environmental contribution to variance for the metabolite in that dataset. 1062 

In other words, metabolites in any dataset with an environmental contribution greater than 1063 

0 but less than 10% of the total positive variance contributions were binned into a single 1064 

category, those with an environmental contribution between 10% and 20% were binned 1065 

into the next category, and so on. We analyzed the 52 metabolites in the original constant-1066 

environment dataset as a separate category, and did the same for the 14 non-inflow 1067 

metabolites in each of the 8 environmentally-varying datasets.  1068 

 1069 

Confidence intervals for AUC values were calculated using the pROC package in R (78), 1070 

using a bootstrap method with 500 resamplings. 1071 

 1072 

Simulations of Human Microbiome Project-based microbiota 1073 

To simulate more complex gut microbiota, we downloaded the 16S rRNA sequence 1074 

variant abundance tables from the Human Microbiome Project (52), processed with 1075 

deblur (79), from Qiita (80). We also downloaded ribosomal RNA sequences for all of the 1076 

818 genomes corresponding with AGORA v1.0.2 models from NCBI RefSeq and 1077 

GenBank using the biomartr R package (81). We used vsearch version 2.8.1 (82) to map 1078 

the HMP sequences to the AGORA ribosomal sequences with 97% identity, with the 1079 

max_rejects parameter set to 0 in order to obtain the highest identity match for each 1080 

sequence variant. We chose to model a subset of 57 samples for which at least 25% of 1081 

their total read counts successfully mapped to an AGORA genome. We normalized 1082 

species abundances based on the 16S rRNA copy number of the corresponding genome, 1083 

and initialized 57 simulations with the starting relative abundances determined based on 1084 
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the AGORA-mapped relative abundances of these samples. We updated the nutrient 1085 

inflow to enable growth by most models. We assessed whether the additional of each 1086 

individual metabolite to the original nutrient inflow had a growth-promoting effect on any 1087 

species, specifying proportions similar to the average European diet in the Virtual 1088 

Metabolic Human database where possible (83). Metabolites that promoted growth in at 1089 

least one species were retained in the revised nutrient inflow, and the process of testing 1090 

for increased growth with the addition of any single metabolite was repeated. After two 1091 

rounds of adding metabolites to the inflow, 15 models, representing 3.4% of the total 1092 

normalized abundance across all samples, still displayed zero growth. We removed these 1093 

from the simulations and used the final updated nutrient inflow with the 131 remaining 1094 

models.  All other simulation parameters were the same as for the original 10-species 1095 

community simulations. When analyzing the role of interspecies correlation in this 1096 

dataset, we excluded species that appear in fewer than 4 samples. 1097 

 1098 

Application of MIMOSA to simulated data and comparison with correlation 1099 

analysis 1100 

We applied MIMOSA v1.0.2 (github.com/borenstein-lab/MIMOSA) (57) to the obtained 1101 

set of metabolite and species abundances. To construct the community metabolic 1102 

network model required by MIMOSA, we merged the 10 species-level models used in the 1103 

simulations into a single stoichiometric matrix. If a reversible reaction only ever proceeded 1104 

in a single direction in any simulation, we encoded it as non-reversible. To apply the 1105 

KEGG-based version of MIMOSA, we converted the model metabolite IDs to KEGG IDs 1106 

(56), downloaded KEGG Orthology gene annotations for the 10 modeled species from 1107 
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the IMG/M database (84), and ran a MIMOSA analysis using the KEGG metabolic 1108 

network model encoded in reaction_mapformula.lst (KEGG version downloaded 2-2018). 1109 

 1110 

Code and data availability 1111 

Code for all the analyses presented in this study is available online in the form of R 1112 

notebooks at https://github.com/borenstein-lab/microbiome-metabolome-evaluation. The 1113 

code and media files for performing dynamic FBA co-culture simulations is available from 1114 

https://borensteinlab.com/download.html. All data generated and analyzed in this study 1115 

and displayed in the figures are included in Supplementary Data 1 through 4. 1116 

 1117 

  1118 
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Figure 1. Simulating multi-omic data with a dynamic multi-species genome-scale framework. (A) 
Community species abundances throughout a single simulation run. Abundances were quantified in units of 

microbial biomass. In this simulation, community composition was initialized with a high relative abundance 

of Eubacterium rectale. For visual clarity, only every eighth time step is illustrated. Species abundances at 

the final time point (highlighted with larger colored circles) were used for calculating species-metabolite 

correlations. (B) Cumulative secretion and uptake of acetate by each community member, throughout the 

same simulation run illustrated in panel A. Acetate was synthesized by several species and consumed by E. 

rectale over the course of the simulation. Total cumulative fluxes (highlighted with larger colored circles) 

were used for calculating species contributions to metabolite variation. The bottom plot illustrates the 

resulting environmental concentration of acetate at each time point. The metabolite concentration at the final 

time point (highlighted with a larger black triangle) was used for calculating species-metabolite correlations.   
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Figure 2. Species abundances, cumulative fluxes, and contributions to variance in metabolite 
concentrations in our simulated dataset. (A) The dataset of species abundances at the final time point of 

61 simulation runs. Each bar represents a simulation run, with the colors indicating relative abundance of each 

species. The abundance profile from the simulation runs highlighted in Figure 1 is indicated with an asterisk. 

(B-F) For five example metabolites, the upper plot shows the total cumulative secretion or uptake of that 

metabolite by each species across all 61 simulation runs (or samples). The lower plot shows the corresponding 

environmental concentration at the final time point. The bar plot on the right shows the contribution values for 

each species and metabolite, calculated from the flux values and describing each species’ linear contribution 

to the overall metabolite variance.  
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Figure 3. Species-metabolite correlations poorly predict species contributions to metabolite 
variation. (A) The number of species-metabolites pairs that were significantly correlated (left bar) or not-

correlated (right bar) and its correspondence with true species-metabolite key contributors (indicated by 

shade of gray). (B) Receiver operating characteristic (ROC) plot, showing the ability of absolute Spearman 

correlation values to classify key contributors among all species-metabolite pairs. (C) Scatter plot of species-

metabolite pairs, showing the poor correspondence between true contribution values (x-axis) and Spearman 

correlation (y-axis). Key contributors are plotted as blue points, others as hollow circles. Dashed lines show 

significant correlations (p<0.01). There are 65 species-metabolite pairs with a contribution value greater than 

3 in magnitude whose values are not shown. (D-E) Accuracy and positive predictive value of Spearman 

correlation analysis for detecting true key contributors across metabolite classes (Panel D) and for each of 

the 10 species (Panel E). 
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Figure 4. Metabolite and species properties explain correlation-contribution discrepancies. (A) Strongly 

correlated species pairs produced more false positive metabolite correlations. In this plot, the color of each tile 

indicates the strength of correlation in the abundances of each pair of species. The size of the outer black 

circle in each cell represents the number of metabolites for which the species on the x-axis is a key contributor 

and the species on the y-axis is not. The size of the inner circle represents the share of those metabolites for 

which a false positive is observed for the species on the y-axis. It can be seen that many false positive 

correlations involve the taxa with the strongest interspecies associations: E. rectale, B. ovatus, and B. 

thetaiotaomicron. (B) Metabolites with more microbial key contributors were more prone to false negative 

correlations. Each column represents an analyzed metabolite, ordered by its number of key microbial 

contributors, which are represented by each tile. The tiles are coded by the correlation outcome for each 

contributor. (C) Correlations detected key contributors equally accurately regardless of whether a metabolite 

is secreted, utilized, or cross-fed by the species. Each point represents the accuracy of correlations for a single 

metabolite across its comparisons with all 10 species. 
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Figure 5. Environmental fluctuations impact correlation-contributor sensitivity and specificity. (A) 

Example set of contribution profiles for a single inflow metabolite, L-valine, with increasing fluctuations in its inflow. 

The relative contribution values for each species and for the inflow are shown for 4 sets simulation runs, each 

with a different degree of fluctuation. The label on each plot describes the relative standard deviation (coefficient 

of variation) of inflow metabolite concentrations for that set of simulations. The microbial contributions to variance 

in L-valine concentrations became relatively smaller with increasing variation from the external environment. (B) 
Shifts in key microbial contributors with increasing environmental inflow fluctuations. The number of key 

contributions of each species to the 52 analyzed metabolites is shown, separately for metabolites present in and 

absent from the nutrient inflow. Microbial contributors to inflow metabolites decreased as environmental 

contributions increased, but this effect varied between taxa. (C) Correlation analysis failed to detect key microbial 

contributors regardless of the size of contribution from external inflow variation. Across all sets of simulations, 

metabolites were binned based on the percent of total positive contribution from the external inflow. The bar plots 

shown have the same format as Figure 3A, showing the number of species-metabolites pairs that were 

significantly correlated (left bar) or not-correlated (right bar) and its correspondence with true species-metabolite 

key contributors (indicated by shade of gray). The first two bars, labeled “Orig” describe the original set of 

simulations (replicating Figure 3A). The next two show the results for non-inflow metabolites across all levels of 

inflow fluctuations. The remaining bars show the results for metabolites with increasing levels of environmental 

contribution. (D) Correlation analysis detected key microbial contributors with increased specificity, decreased 

sensitivity, and generally consistent positive predictive value with increasing contribution from the external inflow. 

Sensitivity, specificity, and positive predictive value are shown for same environmental contribution bins as in 

Panel C. 
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Figure 6. Correlation-contribution discrepancies persist in simulations of complex human gut-based 
microbiota. (A) Species abundances of the 57 Human Microbiome Project (HMP) based-simulations at the 144 

hour time point. Shades of blue indicate species in the phylum Firmicutes; red, Bacteroidetes; green, 

Proteobacteria; and purple, Actinobacteria. (B) Key contributions to metabolite variation across the HMP-based 

dataset, summarized at the level of taxonomic orders and metabolite categories. (C) Performance of correlation 

analysis for identifying key species-metabolite contributors in the HMP-based dataset (solid lines) compared with 

the original 10-species dataset (dashed lines) across varying significance levels, using Benjamini-Hochberg false 

discovery rate (FDR) corrected p-values.  
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Figure 7. MIMOSA identified key microbial contributors more accurately than correlation analysis. (A) The 

number of species-metabolite pairs that were identified as potential contributors (left bar) or not (right bar) by 

MIMOSA, and its correspondence with true key contributors. (B) Receiver operating characteristic (ROC) plot, 

showing the ability of both MIMOSA and absolute Spearman correlation values to classify key contributors among 

all species-metabolite pairs. 
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