bioRxiv preprint doi: https://doi.org/10.1101/401968; this version posted August 28, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Optimizing non-invasive sampling of an

infectious bat virus

John R. Giles!?*, Alison J. Peel?*, Konstans Wells*?, Raina K.
Plowright4c, Hamish McCallum?¢, and Olivier Restif>¢

!Johns Hopkins University Bloomberg School of Public Health,
Department of Epidemiology, Baltimore, MD 21205, USA
2Environmental Futures Research Institute, Griffith University,
Brisbane, Queensland 4111, Australia
3College of Science, Swansea University, Swansea SA2 8PP, UK
“Department of Microbiology and Immunology, Montana State
University, Bozeman, Montana 59717, USA
SDisease Dynamics Unit, Department of Veterinary Medicine,
University of Cambridge, Cambridge, United Kingdom
*Corresponding author: gilesjohnr@ gmail.com
“alisonpeel @ gmail.com
’konswells @ gmail.com
“rplowright@ gmail.com
9h.mccallum @ griffith.edu.au

€or226@cam.ac.uk


https://doi.org/10.1101/401968
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/401968; this version posted August 28, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1 Abstract

2 Notable outbreaks of infectious viruses resulting from spillover events from bats
3 have brought much attention to the ecological origins of bat-borne zoonoses, re-
4 sulting in an increase in ecological and epidemiological studies on bat populations
5 in Africa, Asia, and Australia. The aim of many of these studies is to identify new
6 viral agents with field sampling methods that collect pooled urine samples from
7 large plastic sheets placed under a bat roost. The efficiency of under-roost sam-
8 pling also makes it an attractive method for gathering roost-level prevalence data.
9 However, the method allows multiple individuals to contribute to a pooled sample,
10 potentially introducing positive bias. To assess the ability of under-roost sampling
11 to accurately estimate viral prevalence, we constructed a probabilistic model to
12 explore the relationship between four sampling designs (quadrant, uniform, strat-
13 ified, and random) and estimation bias. We modeled bat density and movement
14 with a Poisson cluster process and spatial kernels, and simulated the four under-
15 roost sheet sampling designs by manipulating a spatial grid of hexagonal tiles. We
16 performed global sensitivity analyses to identify major sources of estimation bias
17 and provide recommendations for field studies that wish to estimate roost-level
18 prevalence. We found that the quadrant-based design had a positive bias 5—7 times
19 higher than other designs due to spatial auto-correlation among sampling sheets
20 and clustering of bats in the roost. The sampling technique is therefore highly
21 sensitive to viral presence; but lacks specificity, providing poor information re-
22 garding dynamics in viral prevalence. Given population sizes of 5000-14000, our
23 simulation results indicate that using a stratified random design to collect 3040
24 urine samples from 80-100 sheets, each with an area of 0.75-1m?, would provide
25 sufficient estimation of true prevalence with minimum sampling bias and false neg-
26 atives. However, acknowledging the general problem of data aggregation, we em-
27 phasize that robust inference of true prevalence from field data require information
28 of underpinning roost sizes. Our findings refine our understanding of the under-
29 roost sampling technique with the aim of increasing its specificity, and suggest that
30 the method be further developed as an efficient non-invasive sampling technique

31 that provides roost-level estimates of viral prevalence within a bat population.
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» Introduction

a3 Recent emergence of bat-borne viruses has motivated an increase in ecological and epi-
s+ demiological studies on bat populations in Africa, Asia, and Australia (Calisher et al.
35 2006, Halpin et al. 2007, Wang and Cowled 2015). Little was known about these
s pathogens at the outset of investigation, so research focused first on discovering the
a7 reservoir host(s), as demonstrated by Hendra virus in Australia (Halpin et al. 2000),
ss  Nipah virus in Malaysia (Chua et al. 2002), SARS in China (Li et al. 2005), Marburg
a9 in Africa (Towner et al. 2009), and Ebola viruses in Africa (Breman et al. 1999) and
s the Philippines (Jayme et al. 2015). Further, considerable effort is now invested into
41 1dentifying additional unknown viral pathogens in bats that have epidemic potential; an
«2 important undertaking that minimizes spillover risk via vaccine development, predict-
43 ing epidemic potential, and developing assays to detect the virus in humans and wildlife
4 (Anthony et al. 2013, Drexler et al. 2012, Quan et al. 2013, Smith and Wang 2013).
45 Discovering a virus and identifying its reservoir host(s) is also the first step in describ-
s 1ing viral dynamics (patterns of viral presence in bat populations over space and time),
47 which provide insights into the broader ecological context surrounding spillover and
48 precursors to the emergence of bat-borne viral diseases in humans (Hayman et al. 2013,
a9 Plowright et al. 2015, Wood et al. 2012).

50 A common approach, in bat-borne disease research, involves the capture of many in-
st dividual bats repeatedly over time, where bats are sampled (e.g. serum, urine, saliva) and
sz tested for viral presence using serology or PCR techniques. Best case scenario, longitu-
ss dinal samples are obtained for multiple individuals, enabling both the discovery of new
s« viruses and description of dynamics in individual-level viral prevalence. Individual-
ss level longitudinal data are more common for high-fidelity cave-roosting bats which can
s be recaptured frequently at the same roosting site (Streicker et al. 2012, Towner et al.
s7 2009). However, these type of longitudinal data are much more difficult to gather from
ss the tree roosting megachiroptera, such as Pteropus and Eidolon genera (Hayman et al.
ss  2012), which are highly-mobile nomadic foragers, making them poor candidates for
s ecological studies that rely on recapture of individuals. Therefore, recent research has
st supplemented the capture of individual bats with a non-invasive sampling technique that
&2 uses plastic sheets to collect urine and feces under bat roosts (Baker et al. 2012, Baker
e3 et al. 2013, Chua 2003, Chua et al. 2002, 2001, Edson et al. 2015a, Field et al. 2011,
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s« 2015, Marsh et al. 2012, Pritchard et al. 2006, Smith et al. 2011, Wacharapluesadee
s etal. 2010).

66 For several viruses of public health interest, urinary excretion is a primary route of
7 transmission (e.g. Nipah virus in Asia and Australia (Middleton et al. 2007, Wachara-
es pluesadee et al. 2005), Hendra virus in Australia (Edson et al. 2015b), and both Heni-
so paviruses (Iehlé et al. 2007) and Marburg virus in Africa (Amman et al. 2012)). The
70 under-roost sampling technique takes advantage of this particular mode of transmis-
71 sion to achieve longitudinal sampling of a bat population at the roost-scale that is both
72 cost-effective and reduces exposure to infectious viruses compared to catching individ-
73 ual bats. Under-roost sheet sampling was initially implemented in 1998 to isolate Nipah
74 and Tioman virus from Pteropus hypomelanus and P. vampyrus in Malaysia (Chua 2003,
75 Chua et al. 2002, 2001). Under-roost sampling designs typically use large sheets placed
76 under roost trees, and urine droplets are pooled into an aggregate sample from the area
77 (or sub-area) of each sheet. Most studies provide minimal description of the sheet sam-
78 pling design, however Edson et al. (2015a), Field et al. (2015), and Wacharapluesadee
79 et al. (2010) describe their methods in greater detail (i.e. sheet dimensions, number of
so sheets, pooling of urine samples). In general, the under-roost sampling technique was
st initially designed to isolate viral agents, not necessarily study viral dynamics, however
&2 a few recent studies have also employed the technique to collect longitudinal data and
ss describe patterns in viral prevalence for Nipah virus in Malaysia (Wacharapluesadee et
s+ al. 2010) and Hendra virus in Australia (Field et al. 2015, Paez et al. 2017). However,
s the extent to which the data are vulnerable to sampling bias has not been explored.

86 The most salient complication is that under-roost sampling estimates individual-
s7 level prevalence with sheet-level prevalence. In this scenario, binomial samples are
ss comprised of urine droplets from an ‘area’, which are pooled to constitute sufficient
ss volume for an array of molecular assays (i.e. PCR and/or whole genome sequencing).
o0 Although this is a necessary compromise, the clustered nature of bat density within a
ot roost acts as a confounder that allows an unknown number of individuals to contribute
2 to a sample. In this manner, under-roost sampling may introduce systematic sampling
s bias in the form of increased sensitivity of viral detection assays.

o4 The increased sensitivity of pooled samples is well-known. Sample pooling was first
ss used during world war II to avoid the ‘expensive and tedious’ process of monitoring

96 syphilis in US soldiers (Dorfman 1943), and since, it has been used as a cost-effective
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o7 method to screen for HIV infection in developing countries (Behets et al. 1990). ‘Herd-
s level testing is also common in surveillance of livestock diseases where a pooled sam-
9o ple is used to determine presence or absence of a disease within the herd (Christensen
100 and Gardner 2000); if the herd is found positive, individual-level samples are then used
101 to identify infected individuals or calculate prevalence more accurately (Litvak et al.
102 1994). In this regard, pooling urine samples as part of the under-roost sampling method
103 1s well-suited for surveillance of bat viruses because the higher sensitivity of pooled
104 sample testing is advantageous when individual-level prevalence is very low (Mufioz-
105 Zanzi et al. 2006). Conversely, the high sensitivity of pooled samples is problematic
106 when used to estimate individual-level prevalence (Cowling et al. 1999)—a classic sta-
107 tistical problem resulting from data aggregation, often referred to as the ‘ecological
s fallacy’ (Robinson 2009).

109 Our aim, therefore, is to contribute the first modeling study to theoretically explore
1o the application of under-roost sheet sampling in a generic tree roosting bat population
11 and quantify the potential sampling bias introduced by different sampling techniques.
112 We focus on tree roosting pteropid bats because they are reservoir hosts of several
13 viruses considered to be a public health risk, and based on their highly mobile popu-
14 lation structure, under-roost sampling techniques are especially useful. Specifically, we
115 explore four questions in detail: 1) Given different under-roost sheet sampling designs,
11e  how accurately is individual-level viral prevalence estimated? 2) What is the estima-
117 tion bias across all values of individual-level prevalence? 3) What are the major drivers
11s  of estimation bias? And 4) If you reduce the size of the sheets on which samples are
119 pooled, and increase their number, can you reduce sampling bias and provide an accept-
120 able estimate of individual-level prevalence? To address these questions, we designed
121 four simulation scenarios comprised of a probabilistic model of bat density within a
122 generic roost of tree roosting pteropid bats and four under-roost sheet sampling designs
123 (quadrant, uniform, stratified, and random). We then explore the parameter space of
124 these scenarios and perform global sensitivity analysis to determine the primary drivers
125 of estimation bias. Our results provide some useful recommendations on how to apply

126 under-roost sampling for the surveillance of infectious bat viruses.


https://doi.org/10.1101/401968
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/401968; this version posted August 28, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

= Methods

»s Modeling bat density in a roost

120 Pteropid bat roosts can be spread out and encompass many trees, with individuals mov-
130 ing frequently within the roost, so we modeled bat density within a generic bat roost
131 with a Poisson cluster process of roosting positions and a spatial Gompertz probability
122 density function that reflects movement within a roosting site. Specifically, bat density
133 within roost area A (a disc with radius r) is constructed in four stages that include: 1)
13« placement of roosting trees within the roost area, 2) clustering of individuals around
135 them, 3) individual-level movement within a tree, and 4) a separate model of roost-wide
136 movement. We used a Thomas cluster process to simulate the spatial clustering of bat
137 positions around trees, using the rThomas function from the spatstat package in
138 the R programming language (Baddeley et al. 2015, R Core Team 2016). Tree locations
139 (parent points) were randomly distributed within A subject to a homogeneous intensity
10 K, given by n;/A, where n, is the number of occupied trees in the roost. The mean
121 number of bats in each roost tree p is simulated by the cluster point process which is
122 Poisson distributed with mean . Individual bat positions are determined according to
143 an isotropic Gaussian kernel centered on each tree with radius 7. Note that even when
144 parameters k, 1y, and y are fixed, the number of bats in the roost NV, will still vary upon
15 each simulation because the Poisson point process is stochastic.

146 Bat movement was modeled at the individual-level and roost-level. To model individual-
147 level movement, we calculated a kernel density estimate for the simulated point process
1as  that sums Gaussian kernels with a radius of 0.5m centered on each bat position. We
149 modeled roost-wide movement with a spatial Gompertz probability density using the
150 dgompertz function from the flexsurv package (Jackson 2014). The distribution
151 of the Gompertz is controlled by shape and rate parameters that determine the function’s
152 curvature and rate of decay respectively. We chose ranges for the these parameters that
153 make the least assumptions about movement, where values are high for a large area at
154 the roost’s center, but decay quickly toward the edges. To make the final kernel density
155 estimate for bat density, we combined models of individual- and roost-level movement

15 and ensured that the function integrated to 1 (Figure 1).
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157 Modeling under-roost sheet sampling

158 We explored the effect of four different under-roost sheet sampling designs: quadrant,
150 uniform, stratified, and random. An efficient way to simulate each sampling design
160 Within two-dimensional circular space uses hexagonal tiles, where the size and combi-
st nation of tiles selected can replicate different sheet-based sampling designs. We calcu-
12 lated the number of bats roosting and moving above a sampling sheet by using the area
163 of each hexagonal polygon to define the space of integration S.

164 We determined the dimensions for the quadrant-based design using common proto-
15 cols for under-roost sheet sampling of Australian fruit bats found in Edson et al. (2015a)
s and Field et al. (2015). Here, 10 large 3.6 x 2.6m sheets were placed under the roost
17 and divided into 1.8 x 1.3m quadrants, where urine samples were pooled within each
168 quadrant (allowing up to 4 samples per large sheet). Considering each quadrant to be
160 its own ‘sheet’, we replicated this sampling design by making a hexagonal grid with
170 each tile area equivalent to a 1.8 x 1.3m rectangular sheet. Groupings of 4 hexagonal
171 tiles then suffice as a large sheet with 4 quadrants. In each simulation, we generated
172 10 sheet positions within A using a simple sequential inhibition point process with the
173 ¥SST function of the spatstat package (Baddeley et al. 2015). To ensure that all
172 sheets retained the same quadrant orientation and that no two sheets were directly adja-
175 cent, we generated sheet positions within a disc of A — 3m and set the inhibitory radius
176 to 3s, where s is the hexagonal cell size. The four cell-centers nearest each of the 10
177 simulated point locations comprised the 40 (10 x 4 quadrants) hexagonal tiles for the
178 quadrant-based design (S1).

179 To test our hypothesis that a larger number of smaller sheets will estimate roost-level
180 prevalence more accurately, we generated hexagonal grids with cell size s that select h
1s1 number of tiles in a uniform, stratified, or random pattern. Both uniform and random
1.2 designs are straightforward, but the stratified sampling design was generated using a
183 sequential inhibition point process, where random points are laid down sequentially, re-
1e« taining only those that are placed further than a specified inhibitory radius r,. This is
1es  similar to a person attempting to lay down sheets randomly with one rule in mind—*“Do
18 not place sheets within r, distance of each other”. We simulated sheet sampling designs
17 with the sheet samp function in the R code provided in Supplementary Information.

1.s  Figure 2 displays an example of a simulation which has generated the previously imple-
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180 mented large-sheet quadrant design and three additional ‘small-sheet’ designs that use

190 a larger number of smaller (1 x 1m) more dispersed sheets.

191 Calculating estimated prevalence

122 Given a roost area A, the polygons produced by the sheet samp function (described
193 above) generate the sheet sampling area S, so that S C A, and Sy, = {51, 52,...,SH},
194 where H is the total number of sampling sheets. We derived bat density from a simu-
195 lated Poisson cluster point process and then estimated its intensity function A(x) for area
196 A. This method uses kernel density as an unbiased estimator of A(z), which includes
197 clustering of bats around trees, individual-level movement within the tree canopy, and
198 Toost-level movement to render S\(x) The expected number of bats roosting and moving
199 above a specific sheet S, placed at position (zy, y5) is the integral of the estimated in-
200 tensity function S\(x) over the sheet area multiplied by the number of bats /V, generated

201 by the stochastic point process.

E[N(Sy)] = ) No\(z)dz (1)

202 Bats in the upper strata of the canopy are less likely to contribute urine to the sheet
203 below because of obstruction by individuals below or factors in the environment (e.g
20« wind, tree branches). Therefore, a urine sample is collected from each of the sheets .S
20s according to a probability of urine contribution and collection p,,, with variation given
26 by N(py,0?). The number of individuals contributing to each pooled sample Cj, is

207 calculated as

C’b:/ puNbS\(x)dx, (2)
Sh

2 where C}, is a vector of length H, containing the number of contributing bats per sheet.
209 Assuming heterogeneous prevalence within the roost, the number of infected bats
210 Dy in the sample is the sum of C}, independent Bernoulli trials with success probability

211 equal to the true prevalence p.

Cy

Dy =" | Bin(1, p)| (3)

- i
=1
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212 Given the number of infected bats D, and the probability of urine collection p,,, we
213 can calculate the probability of obtaining a negative sheet as (1 — p, )”*. Assuming that
214 urine contribution from one infected bat is sufficient to make a sheet sample positive,
215 the infection status of all sheets is a binary vector [ indicating the positivity for the A
216 sheets of S.

0, if D=0
I, = 4)
1, if Dy >1
217 To calculate estimated sheet-level prevalence p, the number of positive sheets » ,If:l I,

218 1s divided by the number of urine samples collected at the roost ng, which is the sum
219 of a binary vector indicating that the urine of more than one individual was contributed
220 and collected for all of the H sheets of S.

Zthl I

Ng

p= )

221 where

H
ne=Y [Cb > 1]h. ©6)

222  Simulation scenarios

223 Each simulated iteration generates an estimated intensity function for bat density and
224 then performs under-roost sampling using each of the four sampling designs. There-
225 fore, each sampling design is tested using the same set of bat density functions, facili-
226 tating comparison. Parameters for sheet size s and number of sheets /' were fixed for
227 the quadrant-based design to replicate the previously implemented field methods de-
228 scribed above. Parameters controlling sampling dimensions for the three small-sheet
229 designs were either fixed or varied over a range of interest depending on the question
230 the scenario was meant to address. A list of parameter values used in each scenario can
231 be found in Table 1. For each iteration we calculated estimated prevalence (described
232 above), along with additional analytic metrics such as the probability of obtaining a

233 negative sheet (1 — p, )7, the occurrence of a false negative (p; = 0|p; > 0), Moran’s I
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23 among sheets (Getis 1995), and the Clark-Evans R clustering coefficient for individual
235 bat roosting positions (Clark and Evans 1954).

236 In the first two scenarios we explored local sensitivity between estimated prevalence
237 and some possible confounders and sources of bias, with values of most parameters
238 fixed. To perform a simple comparison between the four under-roost sheet sampling
239 methods, we fixed all values of bat density and movement to simulate a roost with a
2s0 30m radius and a mean number of 5000 individuals (see scenario 1 in Table 1). We per-
241 formed 1000 simulations with true prevalence p set at a plausible value of 0.1. Estimated
2.2 prevalence values were plotted, along with the probability of obtaining a negative sheet
2.3 for each sampling design. To explore estimation bias over all values of true prevalence,
244 we kept parameter values the same as simulation 1, but we allowed true prevalence to
2e5  vary from O to 1, and then plotted true versus estimated prevalence along with mean
245 estimation bias (scenario 2 in Table 1).

247 In scenarios 3 and 4, we used global sensitivity analysis, as described in Prowse
28 et al. (2016), to identify the main sources of estimation bias and determine the optimal
2e9  application of under-roost sheet sampling. Here, we performed a large number of simu-
250 lations (ng;,s = 10000), and allowed parameter values for each simulation to vary using
251 latin hypercube sampling. We then analyzed the output using boosted regression trees
252 (BRTs; De’ath 2007, Elith et al. 2008) as an emulator to link simulation inputs (varied
253 parameters) with simulation outputs (we used estimation bias and false negative rate as
254 responses). Parameter values were determined using the randomLHS function in the
255 1hs package (Carnell 2016), and BRTs were fitted using the gbm. step function and
256 the gbm and dismo packages (Hijmans et al. 2016, Ridgeway 2016). BRTs were fitted
257 with appropriate error structure (Gaussian or Binomial) and meta-parameters set to en-
253 sure that the number of fitted trees exceeded 1000, following Elith et al. (2008), with tree
25 complexity, learning rate, bagging fraction, and number of cross validation folds set to:
260 4, 0.005, 0.7, and 10 respectively. BRTs act as an effective emulator here because they
261 fit complex non-linear relationships with up to third order interactions (tree complex-
22 ity=4) among model parameters. Relative variable influence and individual response
263 curves for each variable further allow general description of how sensitive estimation
264 bias is to each parameter.

265 In scenario 3, we compare the quadrant-based design with the stratified design while

266 accounting for the variability in all other parameters to determine the main drivers caus-
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267 1ng differences in estimation bias. We chose to use only the stratified design as a candi-
26 date small-sheet design because the first two simulations suggested that the three small-
260 sheet designs produce similar results, and the stratified design is most plausibly repli-
270 cated in the field. Based on preliminary models, it appeared that a small-sheet sampling
271 design which used ~100 sheets with an area of < 1 x 1m? could attain low estimation
272 bias. So, we fixed the parameters controlling sheet dimensions accordingly to facilitate
273 comparison between the quadrant and stratified methods (see simulation 3 in Table 1).

274 To explore the optimal application of the stratified sampling design, we performed
275 a global sensitivity analysis using only the stratified sampling design in scenario 4. All
276 parameters were varied as in scenario 3, however sheet area s, number of sheets H,
277 and distance between sheets (ds; previously fixed at 2m) were also varied over intervals
278 of interest (scenario 4 in Table 1). We used a latin hypercube to sample the parameter
279 space, and then fitted two BRT models using the variables that control the sheet sam-
250 pling design as predictors (i.e. sheet area, number of sheets, distance between sheets,
281 and number of samples). The first model we fitted with Gaussian error and estimation
252 bias as the response, and the second with Binomial error and a binary response indicat-

283 1ng occurrence of a false negative prediction for viral presence.

= Results

285 When we compared the quadrant-based sheet design to the small-sheet designs with
286 fixed model parameters (scenario 1 in Table 1), we found that at a low value of true
257 prevalence (0.1) the quadrant design exhibited strong positive bias and all three small-
258 sheet designs produced similar estimates close to the fixed value of true prevalence (see
280 top row of Figure 3). The differences in estimated values can be partially attributed to
200 the increased number of bats that roost and move above the larger sheets, which de-
201 crease the probability of obtaining a negative sheet (see bottom row of Figure 3). Local
202 sensitivity analysis revealed that, at a low value of true prevalence, prevalence estima-
203 tion for the quadrant-based design is sensitive to spatial auto-correlation among sheets
20« (Moran’s I) and clustering of bat roosting positions (Clark-Evans R) (Figures S2 and
205 S3). However, the small-sheet designs are sensitive to the number of bats in the roost
296 (NNp) (Figure S4). This indicates that, at low values of individual-level prevalence, the

207 quadrant based method remains sensitive to viral presence regardless of the roost popu-

9


https://doi.org/10.1101/401968
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/401968; this version posted August 28, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

208 lation size, but will tend to over-estimate viral prevalence due to the spatial clustering of
299 individuals common to most tree roosting bats. Conversely, small-sheet methods appear
a0 less affected by clustering and spatial auto-correlation among sheets, but they are likely
301 to be less sensitive to viral presence at low population sizes.

302 In scenario 2, where we allowed true prevalence to vary between 0 and 1 (Table 1),
a3 we found that the quadrant design had 5-7 times the positive bias as the small-sheet
s+ designs. The mean estimation bias was 0.21 for the quadrant design, and 0.4, 0.3, and
a5 0.4 for the uniform, stratified, and random designs respectively. This suggests that, for a
a6 roost size of 3000-8000, the estimation bias will consistently be greater for the quadrant
307 design, especially for intermediate values of individual-level prevalence. Additionally,
ss the similarity among the uniform, stratified, and random designs indicates that the exact
a9 spatial pattern of the small-sheet method is not important—estimation bias is improved
a0 by reducing sheet size, increasing the number of sheets, and spreading sheets out within
11 the roost area.

312 Scenario 3 showed significant differences in estimation bias between quadrant and
sz stratified designs, even when we allowed all parameters to vary (Figure 5e). Summary
a4 of simulation output with the BRT emulator showed higher bias for the quadrant de-
a15  sign, which is most strongly influenced by the total number of individual bats sampled
ate  across all sheets(> | Cy; Figures 5a and b). This suggests that the larger sheet area in
s17  the quadrant design allows pooling of urine samples from more individuals, making the
sis prevalence estimates more sensitive to increases in population size. Further, a quadrant-
a9 based design allows up to four ‘independent’ pooled samples to be adjacent each other,
a0 effectively inflating the number of positive sheets, illustrated by higher estimated preva-
221 lence associated with high values of Moran’s I in Figure 5d. In general, both sampling
a2 designs are positively influenced by intermediate values of true prevalence, number of
223 bats in the roost (leading to a greater number of total bats contributing to each sample),
224 and spatial auto-correlation among sheets. However, the influence of these factors is
325 diminished in the stratified design, as shown by the orange points in Figures Sb—f.

326 When we further explored the influence of sheet dimensions for the stratified design
327 (scenario 4 in Table 1), we found that sheet area s and number of samples collected 7
a8 influenced estimation bias and probability of false negatives the most, and the number
a9 of sheets H and distance between sheets d; had less influence (Figure 6). Specifically,

s30 estimation bias increases for sheet area greater than 0.5m?, but the probability of false
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ss1  negatives increases for sheet area less than 0.75m?. Suggesting that sheet areas in the
sz range of 0.5-1m? would provide a balance of the two sources of sampling bias (Fig-
a3 ures 6a and e). The number of sheets had no influence on estimation bias, however,
s+ sampling designs with less than 80 sheets had higher probability of false negatives (Fig-
a3 ures 6b and f). Minimum distance between sheets did not have a significant effect on
ase  either source of sampling bias, however, distances between 2—3m fitted the lowest maxi-
a7 mum probability of false negatives (Figures 6b and f). The number of samples collected
sss N exhibited the largest influence among sheet dimension parameters. Estimation bias
ase increased with a larger number of collected samples, with the possibility for under-
a0 estimation when under 20 samples were obtained (Figure 6d), and the probability of
a1 false negatives increased below 30—40 samples (Figure 6h). In general, these results in-
a2 dicate that collecting 30—40 pooled urine samples with a stratified sheet sampling design
s that uses 80—100 sheets, each with an area of 0.5-1m?, that are separated by a minimum
as  distance of 2-3m, would provide optimal application of the under-roost sampling tech-
a5 nique that minimizes error introduced by estimation bias and false negatives. Further,
as  we calculated the proportion of simulations matching the parameters stated above and
a7 found that, given a roost population size greater than 5000, 89% of simulations had
as  at least 30 sheets that collected a urine sample, and 64% collected at least 40 samples
ag  (Figure S5).

= Discussion

351 Under-roost sampling of bat viruses has been employed previously in Africa, Asia, and
a2 Australia, however little attention has been given to the effects of sampling bias or op-
353 timization of sampling designs. We present the first modeling study to theoretically in-
354 vestigate under-roost sampling in detail. The simulation scenarios we developed enable
355 inference on the relationship between individual-level prevalence and roost-level preva-
a6 lence estimated for a generic population of tree roosting bats. Specifically, our results
357 provide three key insights that will help to refine the application of under-roost sampling
sss  in the surveillance of infectious viruses in wild bat populations. First, sampling designs
5o which use large sheets (larger than ~1m?), and/or sheet-quadrants to pool urine sam-
s0 ples are sensitive to viral presence, but they potentially over-estimate viral prevalence

st with a bias up to 7 times greater than a design with a greater number of smaller sam-
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sz pling sheets (Figure 4). Second, estimation bias is affected by the number of individuals
a3 allowed to contribute to a pooled sample and spatial auto-correlation among sampling
s« sheets, however these sources of bias can be reduced by adjusting the sheet sampling
a5 design (Figure 5). And third, assuming a roost population size of over 5000, estima-
a6 tion bias can be sufficiently reduced by collecting 30-40 pooled urine samples using a
se7  stratified sheet sampling design that uses 80—100 sheets, each with an area of 0.75-1m?,
sss that are separated by 1-3m (Figures 6 and S5). Our insights from simulation models
so provide well-informed hypotheses about the optimal sheet design for under-roost sam-
a0 pling, which facilitates further development within a model-guided fieldwork approach
anr (Restif et al. 2012).

ar2 Our recommendations to optimize under-roost sampling differ from those previously
a3 implemented in the field in that they reduce the size of sheet area, increase the number
ara  of sheets, and disperse them about the roost area. In relation to the best-described meth-
a7 ods in the literature, this is roughly equivalent to halving the size of sheet quadrants in
a7e  Edson et al. (2015a) and Field et al. (2015) to make 80 0.9 x 0.8m sheets, and then sep-
a77 arating each of them by 1-3m. Or relative to Wacharapluesadee et al. (2010), the sheets
azs  could remain 1.5 x 1.5m (or be reduced to 1 X 1m), but the total number of sheets could
a9 be increased by 3—4 times. However, we acknowledge that our recommendations are
ss0 derived from simulation models that generalize a broad array of roost areas and popula-
st tion sizes that do not take into account local topography around a roost. Local factors at
ss2 the roosting site (e.g. physical obstructions, understory vegetation, slope) must be con-
ss3  sidered when applying sampling designs in the field. Further, ‘optimal’ application of
ss¢ an under-roost sampling design is still inherently limited to pooled sheet-level estimates
sss  of prevalence. As our results show, this makes it difficult to entirely remove positive
ass  bias associated with such data aggregation, however it can be mitigated with a sheet
a7 design that reduces the area of urine pooling and limits spatial auto-correlation among
sss  sheets.

389 We hypothesize that under-roost sampling designs as they have been applied in the
a0 past are poorly suited to studying viral dynamics because of positive sampling bias. For
st example, Pdez et al. (2017) analyzed data from an under-roost sampling study (Field
32 etal. 2015), and noted that a large amount of variation in viral prevalence was explained
a3 by differences in sampling sheets, indicating that population structure within roosts or
s« sampling bias may have introduced additional variation in estimated prevalence. In light

12
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a5 of the results from our simulation models, pooling urine samples drawn from large sheet
ase areas effectively inflates the number of Bernoulli trials in each Binomial sample. This
37 may be observed as overestimation when the pooled samples are subsequently used to
ses calculate prevalence in such studies. Therefore, collecting pooled urine samples from
a9 a smaller sheet area may reduce the number of bats contributing to a sample and the
a0 potential for overestimation, with the caveat that smaller sheets are less likely to collect
st urine samples, necessitating a larger number of sheets placed under the roost.

402 We have shown that sheet design in under-roost sampling can have a significant
a3 impact on both the estimation of viral prevalence and the false negative rate when deter-
s04« mining viral presence. The sampling design employed, therefore, depends on the aim of
s05  the study, because viral discovery and studies on dynamics require different approaches.
a6 Research focusing on viral discovery requires field methods that reduce the probability
a7 of a false negative in regard to viral presence (sensitivity). Studies on dynamics must
a8 estimate prevalence with low bias, requiring samples that are accurately classified as
a9 present and absent (specificity). Further, the volume of urine sample required by the
a0 diagnostic test will determine how large the sheet area must be when pooling urine
a1 samples. For instance, if you are only interested in the presence or absence of viral
sz RNA in a sample, RT-PCR requires a mere 50-150uL sample, allowing a few droplets
a3 from a rather contained area to be taken. If however, a larger volume is required for se-
s14  quencing or multiple assays, then up to 1-2mL may be required, necessitating a larger
s15 pooled sample from a greater area that is more susceptible to bias associated with data
a6 aggregation (Robinson 2009). Therefore, if a study includes multiple aims, an efficient
s17 adaptation of a small-sheet design includes pooling urine over multiple spatial scales,
s1s with samples pooled over a large area to test for viral presence with high sensitivity and
a9 samples pooled over a small area for estimating individual-level prevalence with high
s20 specificity. For example, a researcher might put down 100 1 x 1m sheets, and collect 40
221 100 pLL small pooled samples from 30—40 separate sheets. The remaining urine can be
222 pooled across multiple sheets to form larger pooled samples that provide higher sensitiv-
a23 ity to viral presence. This approach is similar to the aforementioned herd-level testing in
s24  veterinary epidemiology (Christensen and Gardner 2000), where a herd of livestock is
a5 first tested by pooling multiple samples as a low-cost test with high sensitivity. If virus
226 1S found in the large-scale pooled samples, then many the small-scale pooled samples

227 can be used to accurately estimate prevalence.
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428 Our simulation models and recommendations for a small-sheet sampling design pro-
29 vide an important contribution that facilitates future research. Specifically, we propose
30 that under-roost sampling can be further developed with two important avenues of re-
s31 search: 1) a comparative field study to quantify differences in sheet sampling designs in
.32 a model-guided field work approach (Restif et al. 2012), and ii) modeling studies that
s33  incorporate previous work on estimating individual-level prevalence from pooled sam-
a3 ples (Cowling et al. 1999, Hauck 1991) to investigate bias correction for existing and
a5 future field data. Given the challenges associated with under-roost sampling, it remains
36 an attractive supplement to catching and sampling individual bats. If applied in a man-
a7 ner suited for study aims, it can achieve longitudinal sampling of a bat population at the
s3s roost-scale that is both cost effective and reduces exposure to infectious viruses. Further
a9 development of the sampling technique into a replicable sampling method is also advan-
a0 tageous, because it enables population level surveillance of infectious viruses in bats,
a1 which provide insights into ecological processes that drive spillover and emergence of

a2 bat-borne viruses over large spatial scales.
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Figure 2: Examples of one simulation of each of the four under-roost sheet sampling
designs explored in this study generated for a roost with a 30m radius. The quadrant
design (top left), which follows methods found in previously published studies (Edson
et al. 2015a, Field et al. 2011, 2015), is comprised of 10 3.6 x 2.6m sheets divided into
1.8 x 1.6m quadrants to produce 40 (10 x 4) quadrant-sized sheet areas for pooling
urine samples. The other three designs (uniform, stratified, and random) are all ‘small-
sheet’ designs that reduce sheet area, increase sheet number, and disperse sheets about
the roost area. The small-sheet designs plotted above each contain 100 1m? sheets. The
stratified design is generated using a sequential inhibition process with and inhibitory
radius of 2m.
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Figure 4: Results of 1000 simulations performed over all possible values of true preva-
lence for four different under-roost sheet sampling designs (see scenario 2 in Table 1).
The dashed red line indicates p = p, and mean estimation bias for all simulations is
printed in the lower right corner of each plot.
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Figure 5: Results of the global sensitivity analysis performed in scenario 3, where the
quadrant (blue points) and stratified (orange points) designs are compared to determine
what drives differences in estimation bias between the two designs. Table 1 shows the
parameters used in the simulation. The barplot (a) shows the relative influence of each
parameter determined by a boosted regression tree emulator. Plots e—f show the value
of estimation bias fitted by the emulator as a function of five influential parameters.
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Figure S1: Example of construction how sheet areas are defined using the quadrant-
based under-roost sheet sampling technique. The schematic shows a grid of hexagonal
tiles filling a circular roost area. Cell centroids are marked with a black cross. One large
sheet with four quadrants is made by selecting a sheet location (black point) and then
selecting the four nearest centroids.

29


https://doi.org/10.1101/401968
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/401968; this version posted August 28, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

—

©

2

S o

(0]

> I

= | I

g o I

) |

c L

(o))

£ o« |

£ o

©

- T

-8 I

— I

o N _] I

2z ©° ! 8

= ! —T

o — [ o

o I B

o v _] o) ,—*—l :

- O o B —

Re] [ | ] |

> ° - e ==
|

o I

c JR N ]

s < _| —1

s © | i T T

=

quadrant random  stratified  uniform

Figure S2: Boxplots showing the variation in Moran’s I calculated as part of the local
sensitivity analysis in Simulation 1. The amount of spatial autocorrelation in the prob-
ability of obtaining a negative sheet is shown on the y-axis, and the four under-roost
sheet sampling designs on the x-axis.
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Figure S3: Scatterplots showing the variation in the Clark-Evans R clustering coefficient
calculated as part of the local sensitivity analysis in scenario 1. The Clark-Evans R gives
a measure of how clustered bat roosting positions are within the simulated roost. For
each of the four sheet sampling designs, the estimated values of viral prevalence (p)
is plotted on the y-axis, and the Clark-Evans R (ceR) is plotted on the x-axis. Linear
model trend lines are shown in red and the value of true prevalence (p) set in the local
sensitivity analysis is the dashed gray line.
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Figure S4: Scatterplots showing the variation in the number of total bats in the roost
(Ny) calculated as part of the local sensitivity analysis in scenario 1. For each of the
four sheet sampling designs, the estimated values of viral prevalence (p) is plotted on
the y-axis, and the number of bats (/V;) is plotted on the x-axis. Linear model trend lines
are shown in red and the value of true prevalence (p) set in the local sensitivity analysis
is the dashed gray line.
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Figure S5: Distribution of the number of samples collected for simulations that use a
stratified sheet sampling design at a roost of > 5000 individuals, where the number of
sheets n is 80—100, the area of the sheets s is 0.75—1m?, and the distance between the
sheets is 1-3m. Based on our results, 89% of simulations had at least 30 sheets that
collected a urine sample, and 64% that collected at least 40 samples.
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