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Abstract1

Notable outbreaks of infectious viruses resulting from spillover events from bats2

have brought much attention to the ecological origins of bat-borne zoonoses, re-3

sulting in an increase in ecological and epidemiological studies on bat populations4

in Africa, Asia, and Australia. The aim of many of these studies is to identify new5

viral agents with field sampling methods that collect pooled urine samples from6

large plastic sheets placed under a bat roost. The efficiency of under-roost sam-7

pling also makes it an attractive method for gathering roost-level prevalence data.8

However, the method allows multiple individuals to contribute to a pooled sample,9

potentially introducing positive bias. To assess the ability of under-roost sampling10

to accurately estimate viral prevalence, we constructed a probabilistic model to11

explore the relationship between four sampling designs (quadrant, uniform, strat-12

ified, and random) and estimation bias. We modeled bat density and movement13

with a Poisson cluster process and spatial kernels, and simulated the four under-14

roost sheet sampling designs by manipulating a spatial grid of hexagonal tiles. We15

performed global sensitivity analyses to identify major sources of estimation bias16

and provide recommendations for field studies that wish to estimate roost-level17

prevalence. We found that the quadrant-based design had a positive bias 5–7 times18

higher than other designs due to spatial auto-correlation among sampling sheets19

and clustering of bats in the roost. The sampling technique is therefore highly20

sensitive to viral presence; but lacks specificity, providing poor information re-21

garding dynamics in viral prevalence. Given population sizes of 5000–14000, our22

simulation results indicate that using a stratified random design to collect 30–4023

urine samples from 80–100 sheets, each with an area of 0.75–1m2, would provide24

sufficient estimation of true prevalence with minimum sampling bias and false neg-25

atives. However, acknowledging the general problem of data aggregation, we em-26

phasize that robust inference of true prevalence from field data require information27

of underpinning roost sizes. Our findings refine our understanding of the under-28

roost sampling technique with the aim of increasing its specificity, and suggest that29

the method be further developed as an efficient non-invasive sampling technique30

that provides roost-level estimates of viral prevalence within a bat population.31
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Introduction32

Recent emergence of bat-borne viruses has motivated an increase in ecological and epi-33

demiological studies on bat populations in Africa, Asia, and Australia (Calisher et al.34

2006, Halpin et al. 2007, Wang and Cowled 2015). Little was known about these35

pathogens at the outset of investigation, so research focused first on discovering the36

reservoir host(s), as demonstrated by Hendra virus in Australia (Halpin et al. 2000),37

Nipah virus in Malaysia (Chua et al. 2002), SARS in China (Li et al. 2005), Marburg38

in Africa (Towner et al. 2009), and Ebola viruses in Africa (Breman et al. 1999) and39

the Philippines (Jayme et al. 2015). Further, considerable effort is now invested into40

identifying additional unknown viral pathogens in bats that have epidemic potential; an41

important undertaking that minimizes spillover risk via vaccine development, predict-42

ing epidemic potential, and developing assays to detect the virus in humans and wildlife43

(Anthony et al. 2013, Drexler et al. 2012, Quan et al. 2013, Smith and Wang 2013).44

Discovering a virus and identifying its reservoir host(s) is also the first step in describ-45

ing viral dynamics (patterns of viral presence in bat populations over space and time),46

which provide insights into the broader ecological context surrounding spillover and47

precursors to the emergence of bat-borne viral diseases in humans (Hayman et al. 2013,48

Plowright et al. 2015, Wood et al. 2012).49

A common approach, in bat-borne disease research, involves the capture of many in-50

dividual bats repeatedly over time, where bats are sampled (e.g. serum, urine, saliva) and51

tested for viral presence using serology or PCR techniques. Best case scenario, longitu-52

dinal samples are obtained for multiple individuals, enabling both the discovery of new53

viruses and description of dynamics in individual-level viral prevalence. Individual-54

level longitudinal data are more common for high-fidelity cave-roosting bats which can55

be recaptured frequently at the same roosting site (Streicker et al. 2012, Towner et al.56

2009). However, these type of longitudinal data are much more difficult to gather from57

the tree roosting megachiroptera, such as Pteropus and Eidolon genera (Hayman et al.58

2012), which are highly-mobile nomadic foragers, making them poor candidates for59

ecological studies that rely on recapture of individuals. Therefore, recent research has60

supplemented the capture of individual bats with a non-invasive sampling technique that61

uses plastic sheets to collect urine and feces under bat roosts (Baker et al. 2012, Baker62

et al. 2013, Chua 2003, Chua et al. 2002, 2001, Edson et al. 2015a, Field et al. 2011,63
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2015, Marsh et al. 2012, Pritchard et al. 2006, Smith et al. 2011, Wacharapluesadee64

et al. 2010).65

For several viruses of public health interest, urinary excretion is a primary route of66

transmission (e.g. Nipah virus in Asia and Australia (Middleton et al. 2007, Wachara-67

pluesadee et al. 2005), Hendra virus in Australia (Edson et al. 2015b), and both Heni-68

paviruses (Iehlé et al. 2007) and Marburg virus in Africa (Amman et al. 2012)). The69

under-roost sampling technique takes advantage of this particular mode of transmis-70

sion to achieve longitudinal sampling of a bat population at the roost-scale that is both71

cost-effective and reduces exposure to infectious viruses compared to catching individ-72

ual bats. Under-roost sheet sampling was initially implemented in 1998 to isolate Nipah73

and Tioman virus from Pteropus hypomelanus and P. vampyrus in Malaysia (Chua 2003,74

Chua et al. 2002, 2001). Under-roost sampling designs typically use large sheets placed75

under roost trees, and urine droplets are pooled into an aggregate sample from the area76

(or sub-area) of each sheet. Most studies provide minimal description of the sheet sam-77

pling design, however Edson et al. (2015a), Field et al. (2015), and Wacharapluesadee78

et al. (2010) describe their methods in greater detail (i.e. sheet dimensions, number of79

sheets, pooling of urine samples). In general, the under-roost sampling technique was80

initially designed to isolate viral agents, not necessarily study viral dynamics, however81

a few recent studies have also employed the technique to collect longitudinal data and82

describe patterns in viral prevalence for Nipah virus in Malaysia (Wacharapluesadee et83

al. 2010) and Hendra virus in Australia (Field et al. 2015, Páez et al. 2017). However,84

the extent to which the data are vulnerable to sampling bias has not been explored.85

The most salient complication is that under-roost sampling estimates individual-86

level prevalence with sheet-level prevalence. In this scenario, binomial samples are87

comprised of urine droplets from an ‘area’, which are pooled to constitute sufficient88

volume for an array of molecular assays (i.e. PCR and/or whole genome sequencing).89

Although this is a necessary compromise, the clustered nature of bat density within a90

roost acts as a confounder that allows an unknown number of individuals to contribute91

to a sample. In this manner, under-roost sampling may introduce systematic sampling92

bias in the form of increased sensitivity of viral detection assays.93

The increased sensitivity of pooled samples is well-known. Sample pooling was first94

used during world war II to avoid the ‘expensive and tedious’ process of monitoring95

syphilis in US soldiers (Dorfman 1943), and since, it has been used as a cost-effective96
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method to screen for HIV infection in developing countries (Behets et al. 1990). ‘Herd-97

level’ testing is also common in surveillance of livestock diseases where a pooled sam-98

ple is used to determine presence or absence of a disease within the herd (Christensen99

and Gardner 2000); if the herd is found positive, individual-level samples are then used100

to identify infected individuals or calculate prevalence more accurately (Litvak et al.101

1994). In this regard, pooling urine samples as part of the under-roost sampling method102

is well-suited for surveillance of bat viruses because the higher sensitivity of pooled103

sample testing is advantageous when individual-level prevalence is very low (Muñoz-104

Zanzi et al. 2006). Conversely, the high sensitivity of pooled samples is problematic105

when used to estimate individual-level prevalence (Cowling et al. 1999)—a classic sta-106

tistical problem resulting from data aggregation, often referred to as the ‘ecological107

fallacy’ (Robinson 2009).108

Our aim, therefore, is to contribute the first modeling study to theoretically explore109

the application of under-roost sheet sampling in a generic tree roosting bat population110

and quantify the potential sampling bias introduced by different sampling techniques.111

We focus on tree roosting pteropid bats because they are reservoir hosts of several112

viruses considered to be a public health risk, and based on their highly mobile popu-113

lation structure, under-roost sampling techniques are especially useful. Specifically, we114

explore four questions in detail: 1) Given different under-roost sheet sampling designs,115

how accurately is individual-level viral prevalence estimated? 2) What is the estima-116

tion bias across all values of individual-level prevalence? 3) What are the major drivers117

of estimation bias? And 4) If you reduce the size of the sheets on which samples are118

pooled, and increase their number, can you reduce sampling bias and provide an accept-119

able estimate of individual-level prevalence? To address these questions, we designed120

four simulation scenarios comprised of a probabilistic model of bat density within a121

generic roost of tree roosting pteropid bats and four under-roost sheet sampling designs122

(quadrant, uniform, stratified, and random). We then explore the parameter space of123

these scenarios and perform global sensitivity analysis to determine the primary drivers124

of estimation bias. Our results provide some useful recommendations on how to apply125

under-roost sampling for the surveillance of infectious bat viruses.126
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Methods127

Modeling bat density in a roost128

Pteropid bat roosts can be spread out and encompass many trees, with individuals mov-129

ing frequently within the roost, so we modeled bat density within a generic bat roost130

with a Poisson cluster process of roosting positions and a spatial Gompertz probability131

density function that reflects movement within a roosting site. Specifically, bat density132

within roost area A (a disc with radius r) is constructed in four stages that include: 1)133

placement of roosting trees within the roost area, 2) clustering of individuals around134

them, 3) individual-level movement within a tree, and 4) a separate model of roost-wide135

movement. We used a Thomas cluster process to simulate the spatial clustering of bat136

positions around trees, using the rThomas function from the spatstat package in137

the R programming language (Baddeley et al. 2015, R Core Team 2016). Tree locations138

(parent points) were randomly distributed within A subject to a homogeneous intensity139

κ, given by nt/A, where nt is the number of occupied trees in the roost. The mean140

number of bats in each roost tree µ is simulated by the cluster point process which is141

Poisson distributed with mean µ. Individual bat positions are determined according to142

an isotropic Gaussian kernel centered on each tree with radius rt. Note that even when143

parameters κ, rt, and µ are fixed, the number of bats in the roost Nb will still vary upon144

each simulation because the Poisson point process is stochastic.145

Bat movement was modeled at the individual-level and roost-level. To model individual-146

level movement, we calculated a kernel density estimate for the simulated point process147

that sums Gaussian kernels with a radius of 0.5m centered on each bat position. We148

modeled roost-wide movement with a spatial Gompertz probability density using the149

dgompertz function from the flexsurv package (Jackson 2014). The distribution150

of the Gompertz is controlled by shape and rate parameters that determine the function’s151

curvature and rate of decay respectively. We chose ranges for the these parameters that152

make the least assumptions about movement, where values are high for a large area at153

the roost’s center, but decay quickly toward the edges. To make the final kernel density154

estimate for bat density, we combined models of individual- and roost-level movement155

and ensured that the function integrated to 1 (Figure 1).156
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Modeling under-roost sheet sampling157

We explored the effect of four different under-roost sheet sampling designs: quadrant,158

uniform, stratified, and random. An efficient way to simulate each sampling design159

within two-dimensional circular space uses hexagonal tiles, where the size and combi-160

nation of tiles selected can replicate different sheet-based sampling designs. We calcu-161

lated the number of bats roosting and moving above a sampling sheet by using the area162

of each hexagonal polygon to define the space of integration S.163

We determined the dimensions for the quadrant-based design using common proto-164

cols for under-roost sheet sampling of Australian fruit bats found in Edson et al. (2015a)165

and Field et al. (2015). Here, 10 large 3.6 × 2.6m sheets were placed under the roost166

and divided into 1.8 × 1.3m quadrants, where urine samples were pooled within each167

quadrant (allowing up to 4 samples per large sheet). Considering each quadrant to be168

its own ‘sheet’, we replicated this sampling design by making a hexagonal grid with169

each tile area equivalent to a 1.8 × 1.3m rectangular sheet. Groupings of 4 hexagonal170

tiles then suffice as a large sheet with 4 quadrants. In each simulation, we generated171

10 sheet positions within A using a simple sequential inhibition point process with the172

rSSI function of the spatstat package (Baddeley et al. 2015). To ensure that all173

sheets retained the same quadrant orientation and that no two sheets were directly adja-174

cent, we generated sheet positions within a disc of A− 3m and set the inhibitory radius175

to 3s, where s is the hexagonal cell size. The four cell-centers nearest each of the 10176

simulated point locations comprised the 40 (10 × 4 quadrants) hexagonal tiles for the177

quadrant-based design (S1).178

To test our hypothesis that a larger number of smaller sheets will estimate roost-level179

prevalence more accurately, we generated hexagonal grids with cell size s that select h180

number of tiles in a uniform, stratified, or random pattern. Both uniform and random181

designs are straightforward, but the stratified sampling design was generated using a182

sequential inhibition point process, where random points are laid down sequentially, re-183

taining only those that are placed further than a specified inhibitory radius rs. This is184

similar to a person attempting to lay down sheets randomly with one rule in mind—“Do185

not place sheets within rs distance of each other”. We simulated sheet sampling designs186

with the sheetsamp function in the R code provided in Supplementary Information.187

Figure 2 displays an example of a simulation which has generated the previously imple-188
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mented large-sheet quadrant design and three additional ‘small-sheet’ designs that use189

a larger number of smaller (1× 1m) more dispersed sheets.190

Calculating estimated prevalence191

Given a roost area A, the polygons produced by the sheetsamp function (described192

above) generate the sheet sampling area S, so that S ⊂ A, and Sh = {S1, S2, ..., SH},193

where H is the total number of sampling sheets. We derived bat density from a simu-194

lated Poisson cluster point process and then estimated its intensity function λ(x) for area195

A. This method uses kernel density as an unbiased estimator of λ(x), which includes196

clustering of bats around trees, individual-level movement within the tree canopy, and197

roost-level movement to render λ̃(x). The expected number of bats roosting and moving198

above a specific sheet Sh placed at position (xh, yh) is the integral of the estimated in-199

tensity function λ̃(x) over the sheet area multiplied by the number of bats Nb generated200

by the stochastic point process.201

E[N(Sh)] =

∫
Sh

Nbλ̃(x)dx (1)

Bats in the upper strata of the canopy are less likely to contribute urine to the sheet202

below because of obstruction by individuals below or factors in the environment (e.g203

wind, tree branches). Therefore, a urine sample is collected from each of the sheets S204

according to a probability of urine contribution and collection pu, with variation given205

by N(pu, σ
2). The number of individuals contributing to each pooled sample Cb is206

calculated as207

Cb =

∫
Sh

puNbλ̃(x)dx, (2)

where Cb is a vector of length H , containing the number of contributing bats per sheet.208

Assuming heterogeneous prevalence within the roost, the number of infected bats209

Db in the sample is the sum of Cb independent Bernoulli trials with success probability210

equal to the true prevalence p.211

Db =

Cb∑
i=1

[
Bin

(
1, p

)]
i

(3)
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Given the number of infected bats Db and the probability of urine collection pu, we212

can calculate the probability of obtaining a negative sheet as (1− pu)Db . Assuming that213

urine contribution from one infected bat is sufficient to make a sheet sample positive,214

the infection status of all sheets is a binary vector Ih indicating the positivity for the H215

sheets of S.216

Ih =

0, if Db = 0

1, if Db ≥ 1
(4)

To calculate estimated sheet-level prevalence p̂, the number of positive sheets
∑H

h=1 Ih217

is divided by the number of urine samples collected at the roost ns, which is the sum218

of a binary vector indicating that the urine of more than one individual was contributed219

and collected for all of the H sheets of S.220

p̂ =

∑H
h=1 Ih
ns

, (5)

where221

ns =
H∑

h=1

[
Cb ≥ 1

]
h
. (6)

Simulation scenarios222

Each simulated iteration generates an estimated intensity function for bat density and223

then performs under-roost sampling using each of the four sampling designs. There-224

fore, each sampling design is tested using the same set of bat density functions, facili-225

tating comparison. Parameters for sheet size s and number of sheets H were fixed for226

the quadrant-based design to replicate the previously implemented field methods de-227

scribed above. Parameters controlling sampling dimensions for the three small-sheet228

designs were either fixed or varied over a range of interest depending on the question229

the scenario was meant to address. A list of parameter values used in each scenario can230

be found in Table 1. For each iteration we calculated estimated prevalence (described231

above), along with additional analytic metrics such as the probability of obtaining a232

negative sheet (1− pu)Db , the occurrence of a false negative (p̂i = 0|pi > 0), Moran’s I233
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among sheets (Getis 1995), and the Clark-Evans R clustering coefficient for individual234

bat roosting positions (Clark and Evans 1954).235

In the first two scenarios we explored local sensitivity between estimated prevalence236

and some possible confounders and sources of bias, with values of most parameters237

fixed. To perform a simple comparison between the four under-roost sheet sampling238

methods, we fixed all values of bat density and movement to simulate a roost with a239

30m radius and a mean number of 5000 individuals (see scenario 1 in Table 1). We per-240

formed 1000 simulations with true prevalence p set at a plausible value of 0.1. Estimated241

prevalence values were plotted, along with the probability of obtaining a negative sheet242

for each sampling design. To explore estimation bias over all values of true prevalence,243

we kept parameter values the same as simulation 1, but we allowed true prevalence to244

vary from 0 to 1, and then plotted true versus estimated prevalence along with mean245

estimation bias (scenario 2 in Table 1).246

In scenarios 3 and 4, we used global sensitivity analysis, as described in Prowse247

et al. (2016), to identify the main sources of estimation bias and determine the optimal248

application of under-roost sheet sampling. Here, we performed a large number of simu-249

lations (nsims = 10000), and allowed parameter values for each simulation to vary using250

latin hypercube sampling. We then analyzed the output using boosted regression trees251

(BRTs; De’ath 2007, Elith et al. 2008) as an emulator to link simulation inputs (varied252

parameters) with simulation outputs (we used estimation bias and false negative rate as253

responses). Parameter values were determined using the randomLHS function in the254

lhs package (Carnell 2016), and BRTs were fitted using the gbm.step function and255

the gbm and dismo packages (Hijmans et al. 2016, Ridgeway 2016). BRTs were fitted256

with appropriate error structure (Gaussian or Binomial) and meta-parameters set to en-257

sure that the number of fitted trees exceeded 1000, following Elith et al. (2008), with tree258

complexity, learning rate, bagging fraction, and number of cross validation folds set to:259

4, 0.005, 0.7, and 10 respectively. BRTs act as an effective emulator here because they260

fit complex non-linear relationships with up to third order interactions (tree complex-261

ity=4) among model parameters. Relative variable influence and individual response262

curves for each variable further allow general description of how sensitive estimation263

bias is to each parameter.264

In scenario 3, we compare the quadrant-based design with the stratified design while265

accounting for the variability in all other parameters to determine the main drivers caus-266
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ing differences in estimation bias. We chose to use only the stratified design as a candi-267

date small-sheet design because the first two simulations suggested that the three small-268

sheet designs produce similar results, and the stratified design is most plausibly repli-269

cated in the field. Based on preliminary models, it appeared that a small-sheet sampling270

design which used ∼100 sheets with an area of ≤ 1 × 1m2 could attain low estimation271

bias. So, we fixed the parameters controlling sheet dimensions accordingly to facilitate272

comparison between the quadrant and stratified methods (see simulation 3 in Table 1).273

To explore the optimal application of the stratified sampling design, we performed274

a global sensitivity analysis using only the stratified sampling design in scenario 4. All275

parameters were varied as in scenario 3, however sheet area s, number of sheets H ,276

and distance between sheets (ds; previously fixed at 2m) were also varied over intervals277

of interest (scenario 4 in Table 1). We used a latin hypercube to sample the parameter278

space, and then fitted two BRT models using the variables that control the sheet sam-279

pling design as predictors (i.e. sheet area, number of sheets, distance between sheets,280

and number of samples). The first model we fitted with Gaussian error and estimation281

bias as the response, and the second with Binomial error and a binary response indicat-282

ing occurrence of a false negative prediction for viral presence.283

Results284

When we compared the quadrant-based sheet design to the small-sheet designs with285

fixed model parameters (scenario 1 in Table 1), we found that at a low value of true286

prevalence (0.1) the quadrant design exhibited strong positive bias and all three small-287

sheet designs produced similar estimates close to the fixed value of true prevalence (see288

top row of Figure 3). The differences in estimated values can be partially attributed to289

the increased number of bats that roost and move above the larger sheets, which de-290

crease the probability of obtaining a negative sheet (see bottom row of Figure 3). Local291

sensitivity analysis revealed that, at a low value of true prevalence, prevalence estima-292

tion for the quadrant-based design is sensitive to spatial auto-correlation among sheets293

(Moran’s I) and clustering of bat roosting positions (Clark-Evans R) (Figures S2 and294

S3). However, the small-sheet designs are sensitive to the number of bats in the roost295

(Nb) (Figure S4). This indicates that, at low values of individual-level prevalence, the296

quadrant based method remains sensitive to viral presence regardless of the roost popu-297
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lation size, but will tend to over-estimate viral prevalence due to the spatial clustering of298

individuals common to most tree roosting bats. Conversely, small-sheet methods appear299

less affected by clustering and spatial auto-correlation among sheets, but they are likely300

to be less sensitive to viral presence at low population sizes.301

In scenario 2, where we allowed true prevalence to vary between 0 and 1 (Table 1),302

we found that the quadrant design had 5–7 times the positive bias as the small-sheet303

designs. The mean estimation bias was 0.21 for the quadrant design, and 0.4, 0.3, and304

0.4 for the uniform, stratified, and random designs respectively. This suggests that, for a305

roost size of 3000–8000, the estimation bias will consistently be greater for the quadrant306

design, especially for intermediate values of individual-level prevalence. Additionally,307

the similarity among the uniform, stratified, and random designs indicates that the exact308

spatial pattern of the small-sheet method is not important—estimation bias is improved309

by reducing sheet size, increasing the number of sheets, and spreading sheets out within310

the roost area.311

Scenario 3 showed significant differences in estimation bias between quadrant and312

stratified designs, even when we allowed all parameters to vary (Figure 5e). Summary313

of simulation output with the BRT emulator showed higher bias for the quadrant de-314

sign, which is most strongly influenced by the total number of individual bats sampled315

across all sheets(
∑
Cb; Figures 5a and b). This suggests that the larger sheet area in316

the quadrant design allows pooling of urine samples from more individuals, making the317

prevalence estimates more sensitive to increases in population size. Further, a quadrant-318

based design allows up to four ‘independent’ pooled samples to be adjacent each other,319

effectively inflating the number of positive sheets, illustrated by higher estimated preva-320

lence associated with high values of Moran’s I in Figure 5d. In general, both sampling321

designs are positively influenced by intermediate values of true prevalence, number of322

bats in the roost (leading to a greater number of total bats contributing to each sample),323

and spatial auto-correlation among sheets. However, the influence of these factors is324

diminished in the stratified design, as shown by the orange points in Figures 5b–f.325

When we further explored the influence of sheet dimensions for the stratified design326

(scenario 4 in Table 1), we found that sheet area s and number of samples collected ns327

influenced estimation bias and probability of false negatives the most, and the number328

of sheets H and distance between sheets ds had less influence (Figure 6). Specifically,329

estimation bias increases for sheet area greater than 0.5m2, but the probability of false330

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2018. ; https://doi.org/10.1101/401968doi: bioRxiv preprint 

https://doi.org/10.1101/401968
http://creativecommons.org/licenses/by-nc-nd/4.0/


negatives increases for sheet area less than 0.75m2. Suggesting that sheet areas in the331

range of 0.5–1m2 would provide a balance of the two sources of sampling bias (Fig-332

ures 6a and e). The number of sheets had no influence on estimation bias, however,333

sampling designs with less than 80 sheets had higher probability of false negatives (Fig-334

ures 6b and f). Minimum distance between sheets did not have a significant effect on335

either source of sampling bias, however, distances between 2–3m fitted the lowest maxi-336

mum probability of false negatives (Figures 6b and f). The number of samples collected337

ns exhibited the largest influence among sheet dimension parameters. Estimation bias338

increased with a larger number of collected samples, with the possibility for under-339

estimation when under 20 samples were obtained (Figure 6d), and the probability of340

false negatives increased below 30–40 samples (Figure 6h). In general, these results in-341

dicate that collecting 30–40 pooled urine samples with a stratified sheet sampling design342

that uses 80–100 sheets, each with an area of 0.5–1m2, that are separated by a minimum343

distance of 2–3m, would provide optimal application of the under-roost sampling tech-344

nique that minimizes error introduced by estimation bias and false negatives. Further,345

we calculated the proportion of simulations matching the parameters stated above and346

found that, given a roost population size greater than 5000, 89% of simulations had347

at least 30 sheets that collected a urine sample, and 64% collected at least 40 samples348

(Figure S5).349

Discussion350

Under-roost sampling of bat viruses has been employed previously in Africa, Asia, and351

Australia, however little attention has been given to the effects of sampling bias or op-352

timization of sampling designs. We present the first modeling study to theoretically in-353

vestigate under-roost sampling in detail. The simulation scenarios we developed enable354

inference on the relationship between individual-level prevalence and roost-level preva-355

lence estimated for a generic population of tree roosting bats. Specifically, our results356

provide three key insights that will help to refine the application of under-roost sampling357

in the surveillance of infectious viruses in wild bat populations. First, sampling designs358

which use large sheets (larger than ∼1m2), and/or sheet-quadrants to pool urine sam-359

ples are sensitive to viral presence, but they potentially over-estimate viral prevalence360

with a bias up to 7 times greater than a design with a greater number of smaller sam-361
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pling sheets (Figure 4). Second, estimation bias is affected by the number of individuals362

allowed to contribute to a pooled sample and spatial auto-correlation among sampling363

sheets, however these sources of bias can be reduced by adjusting the sheet sampling364

design (Figure 5). And third, assuming a roost population size of over 5000, estima-365

tion bias can be sufficiently reduced by collecting 30–40 pooled urine samples using a366

stratified sheet sampling design that uses 80–100 sheets, each with an area of 0.75–1m2,367

that are separated by 1–3m (Figures 6 and S5). Our insights from simulation models368

provide well-informed hypotheses about the optimal sheet design for under-roost sam-369

pling, which facilitates further development within a model-guided fieldwork approach370

(Restif et al. 2012).371

Our recommendations to optimize under-roost sampling differ from those previously372

implemented in the field in that they reduce the size of sheet area, increase the number373

of sheets, and disperse them about the roost area. In relation to the best-described meth-374

ods in the literature, this is roughly equivalent to halving the size of sheet quadrants in375

Edson et al. (2015a) and Field et al. (2015) to make 80 0.9× 0.8m sheets, and then sep-376

arating each of them by 1–3m. Or relative to Wacharapluesadee et al. (2010), the sheets377

could remain 1.5× 1.5m (or be reduced to 1× 1m), but the total number of sheets could378

be increased by 3–4 times. However, we acknowledge that our recommendations are379

derived from simulation models that generalize a broad array of roost areas and popula-380

tion sizes that do not take into account local topography around a roost. Local factors at381

the roosting site (e.g. physical obstructions, understory vegetation, slope) must be con-382

sidered when applying sampling designs in the field. Further, ‘optimal’ application of383

an under-roost sampling design is still inherently limited to pooled sheet-level estimates384

of prevalence. As our results show, this makes it difficult to entirely remove positive385

bias associated with such data aggregation, however it can be mitigated with a sheet386

design that reduces the area of urine pooling and limits spatial auto-correlation among387

sheets.388

We hypothesize that under-roost sampling designs as they have been applied in the389

past are poorly suited to studying viral dynamics because of positive sampling bias. For390

example, Páez et al. (2017) analyzed data from an under-roost sampling study (Field391

et al. 2015), and noted that a large amount of variation in viral prevalence was explained392

by differences in sampling sheets, indicating that population structure within roosts or393

sampling bias may have introduced additional variation in estimated prevalence. In light394
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of the results from our simulation models, pooling urine samples drawn from large sheet395

areas effectively inflates the number of Bernoulli trials in each Binomial sample. This396

may be observed as overestimation when the pooled samples are subsequently used to397

calculate prevalence in such studies. Therefore, collecting pooled urine samples from398

a smaller sheet area may reduce the number of bats contributing to a sample and the399

potential for overestimation, with the caveat that smaller sheets are less likely to collect400

urine samples, necessitating a larger number of sheets placed under the roost.401

We have shown that sheet design in under-roost sampling can have a significant402

impact on both the estimation of viral prevalence and the false negative rate when deter-403

mining viral presence. The sampling design employed, therefore, depends on the aim of404

the study, because viral discovery and studies on dynamics require different approaches.405

Research focusing on viral discovery requires field methods that reduce the probability406

of a false negative in regard to viral presence (sensitivity). Studies on dynamics must407

estimate prevalence with low bias, requiring samples that are accurately classified as408

present and absent (specificity). Further, the volume of urine sample required by the409

diagnostic test will determine how large the sheet area must be when pooling urine410

samples. For instance, if you are only interested in the presence or absence of viral411

RNA in a sample, RT-PCR requires a mere 50-150µL sample, allowing a few droplets412

from a rather contained area to be taken. If however, a larger volume is required for se-413

quencing or multiple assays, then up to 1–2mL may be required, necessitating a larger414

pooled sample from a greater area that is more susceptible to bias associated with data415

aggregation (Robinson 2009). Therefore, if a study includes multiple aims, an efficient416

adaptation of a small-sheet design includes pooling urine over multiple spatial scales,417

with samples pooled over a large area to test for viral presence with high sensitivity and418

samples pooled over a small area for estimating individual-level prevalence with high419

specificity. For example, a researcher might put down 100 1× 1m sheets, and collect 40420

100 µL small pooled samples from 30–40 separate sheets. The remaining urine can be421

pooled across multiple sheets to form larger pooled samples that provide higher sensitiv-422

ity to viral presence. This approach is similar to the aforementioned herd-level testing in423

veterinary epidemiology (Christensen and Gardner 2000), where a herd of livestock is424

first tested by pooling multiple samples as a low-cost test with high sensitivity. If virus425

is found in the large-scale pooled samples, then many the small-scale pooled samples426

can be used to accurately estimate prevalence.427
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Our simulation models and recommendations for a small-sheet sampling design pro-428

vide an important contribution that facilitates future research. Specifically, we propose429

that under-roost sampling can be further developed with two important avenues of re-430

search: i) a comparative field study to quantify differences in sheet sampling designs in431

a model-guided field work approach (Restif et al. 2012), and ii) modeling studies that432

incorporate previous work on estimating individual-level prevalence from pooled sam-433

ples (Cowling et al. 1999, Hauck 1991) to investigate bias correction for existing and434

future field data. Given the challenges associated with under-roost sampling, it remains435

an attractive supplement to catching and sampling individual bats. If applied in a man-436

ner suited for study aims, it can achieve longitudinal sampling of a bat population at the437

roost-scale that is both cost effective and reduces exposure to infectious viruses. Further438

development of the sampling technique into a replicable sampling method is also advan-439

tageous, because it enables population level surveillance of infectious viruses in bats,440

which provide insights into ecological processes that drive spillover and emergence of441

bat-borne viruses over large spatial scales.442
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Quadrant
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Figure 2: Examples of one simulation of each of the four under-roost sheet sampling
designs explored in this study generated for a roost with a 30m radius. The quadrant
design (top left), which follows methods found in previously published studies (Edson
et al. 2015a, Field et al. 2011, 2015), is comprised of 10 3.6× 2.6m sheets divided into
1.8 × 1.6m quadrants to produce 40 (10 × 4) quadrant-sized sheet areas for pooling
urine samples. The other three designs (uniform, stratified, and random) are all ‘small-
sheet’ designs that reduce sheet area, increase sheet number, and disperse sheets about
the roost area. The small-sheet designs plotted above each contain 100 1m2 sheets. The
stratified design is generated using a sequential inhibition process with and inhibitory
radius of 2m.
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Figure 4: Results of 1000 simulations performed over all possible values of true preva-
lence for four different under-roost sheet sampling designs (see scenario 2 in Table 1).
The dashed red line indicates p̂ = p, and mean estimation bias for all simulations is
printed in the lower right corner of each plot.
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Figure 5: Results of the global sensitivity analysis performed in scenario 3, where the
quadrant (blue points) and stratified (orange points) designs are compared to determine
what drives differences in estimation bias between the two designs. Table 1 shows the
parameters used in the simulation. The barplot (a) shows the relative influence of each
parameter determined by a boosted regression tree emulator. Plots e–f show the value
of estimation bias fitted by the emulator as a function of five influential parameters.
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Optimizing non-invasive sampling of an infectious bat virus615
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Figure S1: Example of construction how sheet areas are defined using the quadrant-
based under-roost sheet sampling technique. The schematic shows a grid of hexagonal
tiles filling a circular roost area. Cell centroids are marked with a black cross. One large
sheet with four quadrants is made by selecting a sheet location (black point) and then
selecting the four nearest centroids.
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Figure S2: Boxplots showing the variation in Moran’s I calculated as part of the local
sensitivity analysis in Simulation 1. The amount of spatial autocorrelation in the prob-
ability of obtaining a negative sheet is shown on the y-axis, and the four under-roost
sheet sampling designs on the x-axis.
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Figure S3: Scatterplots showing the variation in the Clark-Evans R clustering coefficient
calculated as part of the local sensitivity analysis in scenario 1. The Clark-Evans R gives
a measure of how clustered bat roosting positions are within the simulated roost. For
each of the four sheet sampling designs, the estimated values of viral prevalence (p̂)
is plotted on the y-axis, and the Clark-Evans R (ceR) is plotted on the x-axis. Linear
model trend lines are shown in red and the value of true prevalence (p) set in the local
sensitivity analysis is the dashed gray line.
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Figure S4: Scatterplots showing the variation in the number of total bats in the roost
(Nb) calculated as part of the local sensitivity analysis in scenario 1. For each of the
four sheet sampling designs, the estimated values of viral prevalence (p̂) is plotted on
the y-axis, and the number of bats (Nb) is plotted on the x-axis. Linear model trend lines
are shown in red and the value of true prevalence (p) set in the local sensitivity analysis
is the dashed gray line.
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Figure S5: Distribution of the number of samples collected for simulations that use a
stratified sheet sampling design at a roost of > 5000 individuals, where the number of
sheets ns is 80–100, the area of the sheets s is 0.75–1m2, and the distance between the
sheets is 1–3m. Based on our results, 89% of simulations had at least 30 sheets that
collected a urine sample, and 64% that collected at least 40 samples.
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