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Abstract 
Cell-free gene expression using purified components or cell extracts has become an important 
platform for synthetic biology that is finding a growing number of practical applications. 
Unfortunately, at cell-relevant reactor volumes, cell-free expression suffers from excessive 
variability (noise) such that protein concentrations may vary by more than an order of magnitude 
across a population of identically constructed reaction chambers. Consensus opinion holds that 
variability in expression is due to the stochastic distribution of expression resources (DNA, 
RNAP, ribosomes, etc.) across the population of reaction chambers. In contrast, here we find 
that chamber-to-chamber variation in the expression efficiency generates the large variability in 
protein production. Through analysis and modeling, we show that chambers self-organize into 
expression centers that control expression efficiency. Chambers that organize into many 
centers, each having relatively few expression resources, exhibit high expression efficiency. 
Conversely, chambers that organize into just a few centers where each center has an 
abundance of resources, exhibit low expression efficiency. A particularly surprising finding is 
that diluting expression resources reduces the chamber-to-chamber variation in protein 
production. Chambers with dilute pools of expression resources exhibit higher expression 
efficiency and lower expression noise than those with more concentrated expression resources. 
In addition to demonstrating the means to tune expression noise, these results demonstrate that 
in cell-free systems, self-organization may exert even more influence over expression than the 
abundance of the molecular components of transcription and translation. These observations in 
cell-free platform may elucidate how self-organized, membrane-less structures emerge and 
function in cells.  
 
 

Introduction 
Cell-free gene expression using purified components or cell extracts has increasingly become a 
viable platform for synthetic biology. Cell-free synthetic biology applications include prototyping 
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gene circuit elements1,2, viral biosensors3, enzymes4, and characterizing gene regulatory 
elements of non-model microbial hosts5. Beyond these immediate applications, a broader goal 
is the realization of ever more complex cell-free systems6 that may ultimately approach cell-like 
capabilities7. However, these higher aspirations are stymied by the inability to achieve 
reproducible behavior from seemingly identical cell-free expression reactors, especially at cell-
relevant reactor volumes8–11. Indeed, even in simple, single-gene, expression experiments, 
protein concentrations may vary by more than an order of magnitude across a population of 
identically constructed reaction chambers12,13. The consensus opinion from previous work is that 
stochastic distribution of expression resources (RNAP, ribosomes, etc.) across the population of 
reaction chambers leads to the broad distribution in the produced protein concentration12,14,15 
(stochastic seeding hypothesis; Fig. 1A). This view would hold that identical chambers with 
exactly equivalent concentration of resources would produce a very narrow distribution of 
protein (Fig. 1B). However, this hypothesis has not been rigorously tested, perhaps due to the 
experimental difficulty of removing the stochasticity from the distribution of expression resources 
to cell-sized reaction chambers16. 
 
The stochastic seeding of expression resources is most often modeled as binomial selection of 
plasmid DNA and protein synthesis components from a well-mixed, bulk reaction mixture16,17. 
Plasmid DNA typically has the fewest number of encapsulated copies, followed by proteins (e.g. 
polymerase, ribosome), and finally small molecules (e.g. nucleotides, amino acids) with the 
greatest abundance. Accordingly, the expected encapsulated distribution is most broad for DNA 
and most narrow for small molecules, so it is often assumed that the DNA distribution is 
responsible for the variation in the expressed protein concentration14,15,18. Support for this 
hypothesis is found in the correlation between the amount of DNA and the amount of protein 
made in bulk (i.e. large volume) cell-free reactions2,19. Yet surprisingly, over a broad range of 
DNA concentrations, there is no12, or at best little13,20, correlation between the amount of 
encapsulated DNA and the amount of protein produced in reactions confined to cell-like 
volumes (lipid vesicles, water in oil droplets). This puzzling result and a recent review of 
measured and expected extrinsic noise in confined, cell-free expression16 cast doubt on the 
stochastic seeding hypothesis while suggesting that spatial effects (e.g. reactor volume) may 
play an important role in expression variability. Cell-free expression experiments in cell-sized 
containers8–10 and superresolution imaging of cells21,22 are elucidating the importance of spatial 
effects in gene expression behavior23,24. The cell studies show that membrane-less spatial 
organization plays important roles in gene regulation in prokaryotes25 and perhaps eukaryotes26, 
and recent work demonstrates that the same may be true for cell-free expression in confined 
and crowded environments8,9,27. 
 
Here we show that self-organization of expression centers controls expression more than the 
abundance of the molecular components of transcription and translation in confined, cell-free 
synthetic biology. In cell-free expression confined in vesicles, we found that variability in protein 
expression was largely unrelated to the stochastic seeding of expression resources. Instead, 
this expression noise emerged from vesicle-to-vesicle variation in how expression resources 
within each vesicle were distributed across sets of expression centers (i.e. regions of correlated 
gene expression). Vesicles that organized into many expression centers, each having relatively 
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few expression resources, exhibited high expression efficiency and high protein concentration. 
Conversely, vesicles that organized into just a few centers where each center had an 
abundance of resources, exhibited low expression efficiency and low protein concentration. A 
particularly surprising finding was that dilution of expression resources reduced the vesicle-to-
vesicle variation in protein production. Vesicles with dilute pools of expression resources were 
more likely to exhibit high expression efficiency and low expression noise than those with more 
concentrated expression resources. The results presented here are similar to recent 
experimental results that show sub-regions in E. coli control the location and rates of gene 
expression21. Likewise, regulated phase transitions may induce similar sub-regions in eukaryotic 
cells28. The cell-free platforms reported here provide a flexible experimental system for 
understanding the emergence of self-organized structure in gene expression in confined 
volumes, and may offer insights into how these features arise and function in cells.  
 
 

Results and Discussion 
To explore the relationship between initial expression resource concentration and final 
expressed protein concentration, we tracked cell-free expression of Yellow Fluorescent Protein 
(YFP) from pEToppYB plasmids and the PURE expression system confined in POPC vesicles 
(Fig. 2A; Methods). In addition, each vesicle contained a population of fluorescent molecules 
(AF647 conjugated to transferrin) that were captured at the time of vesicle formation. 
Fluorescent images were obtained using a confocal microscope to track protein (YFP) 
expression and AF647 fluorescence for three hours (Fig. 2B; Methods). The diameter of each 
vesicle was recorded to allow calculation of the reaction volume. Time traces were truncated to 
90 minutes to allow noise analysis of expression29–31. As seen in previous experiments32,33, the 
YFP fluorescent intensity increased over time before reaching a plateau that was indicative of 
protein synthesis stopping, not equilibrium between protein synthesis and decay30,34. The AF647 
signal decreased exponentially with time as the fluorophore was photobleached (Fig. 2B inset). 
Photobleaching over the course of the experiment reduced AF647 fluorescence 37.3% and YFP 
fluorescence 24.8%. The experiments produced a distribution of encapsulated AF647 at the 
beginning of the experiment that was indicative of the expected distribution of expression 
resource concentrations across the population of vesicles (Fig. 2C). The distribution of the final 
YFP fluorescence intensities was indicative of the distribution of the final expressed protein 
concentrations across the population of vesicles (Fig. 2C). 
 
We performed experiments using 3 different concentrations of the PURE expression system 
that covered a 3-to-1 concentration range (1x, 0.5x, 0.33x). The 0.5x and 0.33x concentrations 
were made by adding nuclease-free water to the 1x PURE solution. For each PURE system 
concentration, we measured distributions of final YFP concentration (Fig. 3A). The mean final 
YFP concentration went down linearly as expression resources were diluted (Fig. 3C). While all 
three PURE system concentrations resulted in relatively broad YFP concentration distributions, 
the coefficient of variation (CV=standard deviation/mean) of these distributions decreased as 
the expression resources were diluted (CV of 0.38, 0.28, and 0.20 for 1x, 0.5x, and 0.33x, 
respectively). Strikingly, there was significant overlap between the YFP distributions resulting 
from the different PURE dilutions (Bhattacharyya distance between 1x and 0.5x = 0.83; between 
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1x and 0.33x = 0.57; and between 0.5x and 0.33x = 0.88). Many of the resource poor (0.33x) 
vesicles resulted in higher YFP concentrations than many of the resource rich (1x) vesicles (Fig. 
3A). To ensure these effects were not related to the relatively broad distribution of vesicle sizes 
(~100-3300	µm3), we also considered a subset of the vesicles with a narrow range of vesicle 
volumes (500-700	µm3) and observed essentially the same behavior as seen with the entire 
vesicle population (SI Fig. 1). 
 
To quantify how the distribution of expression resources concentrations varied with the dilution 
of the PURE system, we performed experiments using 3 different concentrations (also 1x, 0.5x, 
and 0.33x) of the AF647 fluorescent marker (Fig. 3B). Like the mean final YFP concentrations, 
the mean concentration of AF647 went down linearly with dilution (Fig. 3C). In contrast to the 
YFP distributions, the AF647 distributions did not narrow as the AF647 was diluted (CV=0.25, 
0.28, and 0.24, respectively for 1x, 0.5x, and 0.33x). Furthermore, compared to the YFP 
distributions, there was much less overlap in the AF647 distributions (Bhattacharyya distance 
between 1x and 0.5x = 0.37; between 1x and 0.33x = 0.18; between 0.5x and 0.33x = 0.66). In 
addition, to confirm previous reports12,13,20 that variations in the amount of plasmid DNA 
captured in vesicles had little effect on the amount of protein produced, we varied the 
concentration of the pEToppYB plasmid from 0.1x to 10x and saw no correlation between DNA 
and final YFP concentrations (SI Fig. 2).  
 
These dilution experiments demonstrated that YFP expression (mean and noise) behavior was 
quite different than the resource concentration behavior. The dilution of resources by a factor of 
3 (0.33x compared to 1x) only reduced the mean protein population by a factor of 1.85 (Fig. 3C). 
Furthermore, as indicated by the AF647 measurements, dilution did not change the width of the 
resource concentration distributions (Fig. 3B), yet significantly narrowed the YFP distribution 
(Fig. 3A). With this lack of correlation between resource and expressed protein concentrations, 
the stochastic seeding of expression resources cannot be the driving force behind the large 
variation in the protein concentrations. Instead, the results here suggest that there is a large 
vesicle-to-vesicle variation in how efficiently resources are used. Many of the resource poor 
(0.33x) vesicles were efficient enough to express more protein than inefficient, resource rich 
(1x) vesicles (Fig. 3A). Because of this large vesicle-to-vesicle variation in expression efficiency, 
even a hypothetical population of identical vesicles with exactly the same concentration of 
expression resources would lead to a broad distribution of protein production (Fig. 1B).  
 
Interestingly, expression efficiency (E; defined here as 𝐸 = #$

#%
, where 𝜇' = mean resource 

concentration and 𝜇( = final YFP concentration) increased as resource concentration 
decreased (Fig. 3D). Furthermore, as expression became more efficient, the YFP distributions 
narrowed (i.e. noise was reduced). The reduced noise in YFP – even as the YFP concentration 
dropped – is at odds with the typical behavior where 𝐶𝑉 ∝ ,

-#$
 . The implication is that dilution of 

expression resources changed expression in a way that inverted the relationship between the 
mean and the variance of YFP concentration, which is most often modeled as8,31,35,36 
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𝜇( = 𝐵𝑓0 
(1) 

𝐶𝑉 = 1
1
𝑓0
= 1

𝐵
𝜇(

 

 
where B and 𝑓0 are parameters that describe the expression pattern. In the 2-state model of 
expression bursting from an individual gene – the episodic process where protein is produced in 
bursts separated by periods of little or no expression – B is the burst size (average number of 
protein molecules created per burst) and 𝑓0 is the burst frequency (number of bursts per unit 
time29,37). It is possible for CV to decrease even as the protein concentration drops if there is a 
large enough drop in the B parameter. 
 
Using the equations above, burst size (𝐵 = 𝜇(𝐶𝑉3; also known as the Fano factor) and 
frequency (𝑓0 =

,
567

) were calculated from the YFP concentration distributions. Intriguingly, burst 
size increased but frequency decreased with increasing resource concentration (Fig. 3E). To 
confirm this burst size and burst frequency relationship, we also examined the noise in the 90-
minute time trajectories of expression in individual vesicles using our previously reported 
methods8,9 (Methods). The burst size and frequency obtained by temporal analysis gave similar 
results to those found from the final YFP concentration distributions (SI Fig. 3).  
 
In contrast to bursting from a single gene, in the multi-plasmid system described here, the burst 
frequency may be thought of as the number of statistically independent expression centers (Fig. 
4A). An expression center might be defined by a single plasmid, or conversely, may arise from 
correlated expression from a group of plasmids and their associated mRNA molecules. The 
burst size may be thought of as the average intensity of expression from each of these centers 
– i.e. the average number of protein molecules synthesized from an individual mRNA or 
correlated ensemble of mRNA. Intuitively, one could think of an individual vesicle self-organizing 
into a number of expression centers (Fig. 4A) where expression in the centers are uncorrelated 
with each other. The number of expression centers within a vesicle determines the burst 
frequency, while the activity level of the bursting centers sets the burst size (Fig. 4A). High burst 
frequency and low burst size indicates a vesicle that sparsely distributed expression resources 
over a large number of expression centers. Conversely, low burst frequency and high burst size 
indicates a vesicle that concentrated resources in just a few centers. In studies related to the 
results reported here, we recently reported how spatial effects such as confinement8 and 
macromolecular crowding9 affect burst size and burst frequency. These reports support a model 
where the statistically independent expression centers are spatially distinct regions where many 
resources are primarily associated with a gene and/or spatially localized mRNA population. It is 
possible that expression centers are structurally similar to transcription factor hubs22 in 
Drosophila embryos or super-enhancers proposed in eukaryotes26 and functionally similar to 
separate resource pools in E.coli25. 
 
Importantly, the results presented here demonstrate that the expression pattern selected by an 
individual vesicle determines its expression efficiency. To explore how the distribution of 
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resources affected expression efficiency, we built a model of expression from an individual 
expression center where resource molecules (e.g. polymerases or ribosomes) bound DNA or 
mRNA molecules in a reversible reaction. Protein expression proceeded from the resource-
DNA/RNA complex (Fig. 4B). The rate of protein expression (𝜐) in this model is well-
approximated by the Michaelis-Menten equation  
 

𝜐 =
𝑉9:;[𝑅]
𝐾@ + [𝑅]

 

 
where 𝑉9:; is the maximum rate of protein production, [𝑅] is the resource concentration, and 𝐾@ 
is the value of [𝑅] where 𝜐 = 6BCD

3
. As [𝑅] increases within a given expression center, the protein 

production rate (i.e. the burst size) increases. However, there is diminishing marginal utility as 
each additional resource molecule added to the bursting center increases 𝜐 by a smaller 
amount than the previously added resource molecule (Fig. 4C). The efficiency of a bursting 
center is 	
 

𝐸 ∝
𝜐
[𝑅]

=
𝑉9:;

𝐾@ + [𝑅]
 

 
which monotonically decreases as [𝑅] increases (Fig. 4D). So the net effect of a distribution of 
resources into a smaller number of bursting centers is to increase the burst size, but at the cost 
of decreasing expression efficiency. As a result, vesicles with only a few expression centers will 
result in low expression efficiency as it will force a high concentration of resources into each of 
the few centers. Conversely, vesicles with many expression centers will result in high 
expression efficiency as the resources are sparsely distributed across the many centers.  
 
Experiments with macromolecular crowding agents report the direct observation of 
transcriptional expression centers and provide evidence that the centers nucleate and grow due 
to the hindered diffusion of mRNA and polysomes9,10. However, the total (i.e. including 
translation) expression behavior of these transcriptional centers is unknown, and it is unclear if, 
or how, such centers form in less crowded environments. However, in recent work we showed 
that increasing the population of expression resources leads to bigger burst sizes instead of the 
nucleation of new expression centers8. One possible interpretation of this result is that there is 
cooperativity at play in expression center formation, and that the capture of resources by a 
center makes the capture of additional resources more likely. Such positive feedback exists 
between transcription and translation with E. coli promoters38, and likely exists with T7 as well9.  
 
The results presented here demonstrate that self-organization controls expression even more 
than the abundance of the molecular components of transcription and translation in confined 
cell-free gene expression. However, the corollary – that expression noise can be set by design – 
may be an equally important observation. In particular, expression noise is an essential feature 
in many probabilistic fate-determining gene circuits31,39,40, and allows for quick adaptation to 
changing environments39,41. The independent control of expression mean and noise was 
accomplished through promoter design42,43 or with drugs44 in cell-based systems. However, the 
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central feature of cell-free synthetic biology is the ability to define the gene expression 
environment (e.g. confinement volume, degree of macromolecular crowding, composition of cell 
extract45, etc). Recent work8–10 demonstrated the use of confinement or macromolecular 
crowding to control expression noise. The results presented here demonstrate that manipulation 
of the concentration of expression resources may provide even finer control of expression noise. 
 
Spatial organization is a defining attribute of cells and organisms, and may be as central to 
function as the genetic material46. Yet, cell-free synthetic biology has focused much more on 
specific molecular interactions that affect gene expression than on spatial considerations. Such 
an approach may have been appropriate for bulk reactions focused on maximizing protein 
production47. However, at cell-relevant levels of confinement, self-organization may lead to 
unanticipated and counterintuitive behavior. For example, here we showed that expression 
variation was largely unrelated to stochastic seeding of expression resources. Even more 
surprisingly, we found that the dilution of expression resources significantly reduced expression 
noise. Neither of these effects were primarily related to specific molecular interactions, but 
instead were sensitive to how spatial distribution of resources was changed by the 
concentration of resources. As cell-free systems are pushed to even higher levels of functional 
density, with the associated increase in macromolecular crowding and weak, non-specific 
interactions, more surprising behaviors are likely to emerge. Reaching the goal of cell-free 
synthetic biology that approaches cell-like capabilities will require uncovering and understanding 
these behaviors, and ultimately, to harness these behaviors to enable function. 
 
 

Methods 
Vesicle Preparation 
Vesicle were made using the oil-in-water emulsion technique48,49 (Fig. 2A). This method 
encapsulated a protein expressing inner solution in vesicles separated from an osmotically 
balanced outer solution. The inner solution was prepared using 10 µL Solution A and 7.5 µL 
Solution B of the PURE system; 5 µL of sucrose solution (1 M); 0.25 µL of Transferrin-
AlexaFluor 647; 0.125 µL of RNAsin (40 U/µL); 0.418 µL (1.67 nM) of YFP encoding pEToppYB 
plasmid14 (200 ng; 478.2 ng/µL); and nuclease-free water to bring the total volume of solution to 
30 µL. The inner solution was vortexed in 330 µL of paraffin oil containing 30 mg of POPC for 
60 seconds. The resulting emulsion was layered above the outer solution and centrifuged at 
13,000 g for 20 minutes at room temperature. 
 
Outer Solution Preparation 
The outer solution for vesicles was mixed from frozen stocks before each experiment. 1.5 µL 
Amino acid solution, 11.3 µL of ATP (100 mM), 7.5 µL of GTP (100 mM), 0.75 µL of CTP (500 
mM), 0.75 µL of UTP (500 mM), 1.8 µL of spermidine (250 mM), 3.75 µL of creatine phosphate 
(1 M), 4.5 µL of Dithiothreitol (100 mM), 0.75 µL of Folinic Acid (0.5 M), 24 µL of potassium 
glutamate (3.5 M), 11.3 µL of magnesium acetate (0.5 M), 30 µL of HEPES (1 M), 60 µL of 
glucose (1 M), and 141.8 µL of autoclaved type I pure water for a total volume of 300 µL. 
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Vesicle Imaging 
The pellet of vesicles was collected with 100 µL of the outer solution and pipetted onto a no. 1.5 
glass bottom petri dish. The lid was placed on the petri dish to minimize airflow and evaporation 
of the 100 µL outer solution and vesicle drop. The petri dish was placed on Zeiss LSM710 
confocal scanning microscope with an incubation chamber warmed to 37° C and imaged every 
3 minutes in a z-stack with a 20x air objective. YFP was excited with a 488 nm laser and 
fluorescent emission was collected from 515-584 nm. Similarly, AF647 was excited with a 633 
nm laser and fluorescent emission was collected from 638-756 nm. Z-stacks were made of ~21 
slices at 1 µm intervals, and the aperture for each slice was 1.00 Airy Units (open enough to 
allow ~1.5 µm depth of light). The time the vesicles sat on the microscope before imaging was 
minimized (less than 15 minutes), allowing for imaging for most of the duration of protein 
expression. 
 
Data Acquisition and Analysis 
Average fluorescent intensity and diameter were measured with the FIJI TrackMate50 (v3.8.0) 
plugin. TrackMate found spots with an estimated blob diameter of 10 µm using the Laplacian of 
Gaussian detector. Spots that were found with an estimated diameter <5 µm, >19 µm, or 
contrast <0 were removed from the data set. We used the simple Linear Assignment Problem 
(LAP) tracker to link spots across z-stacks in time to create traces. Traces that had missing 
frames, traveled >5µm between frames, or tracked for <45 of the 60 frames were removed from 
the data set. Fluorescent concentrations and estimated diameters were measured for each 
vesicle at each time point. The estimated diameter varied slightly between frames, so the 
diameter used for each vesicle was taken to be the average of the estimated diameters over the 
entire time trace. Protein abundance (population in arbitrary units) was found by multiplying the 
average fluorescent intensity by the volume. Temporal analysis of noise was done as described 
previously8. In short, fluorescent intensity time traces were corrected for background 
fluorescence. The deterministic trend of protein expression was removed from each trace to 
isolate the noise component. The coefficient of variation squared (CV2) was measured for each 
noise trace. We used the fluorescence value at the end of the experiment with equation 1 to 
calculate the burst size and frequency. We measured fluorescent signal from AF647 at the 
beginning of the experiment as a proxy for resource encapsulation statistics.  
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Figure 1. (A) (Upper) Expression resource (represented in red here) concentration varies in 
vesicles due to the stochastic capture of molecules during vesicle formation. (Lower) The 
stochastic seeding hypothesis holds that variability in protein production in vesicles is the direct 
result of resource concentration variation. (B) If the resource concentration hypothesis were 
true, a population of vesicles identical in size and resource concentration would lead to low 
variability in protein production (right). Conversely, high variability in protein production (left) is 
not consistent with the resource concentration hypothesis. 
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Figure 2. (A) YFP expressing vesicles were formed using water-in-oil emulsion technique. The 
PURE system, pEToppYP (YFP expressing plasmid), and AF647 conjugated to transferring 
were encapsulated in POPC vesicles. Vesicles were imaged at 37° C. (B) AF647 (top) and YFP 
(bottom) fluorescence were tracked with a 20x air objective for 3 hours. AF647 signal 
photobleached (inset) while YFP signal increased (inset) before reaching a plateau. (C) 
Distributions of average AF647 fluorescent intensity per vesicle at the beginning of the 
experiment and the distribution of average YFP fluorescent intensity at the end of the 
experiment. 
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Figure 3. (A) Normalized distributions of final YFP concentrations in populations of vesicles with 
1x (Red), 0.5x (Blue) and 0.33x (Purple) expression resource concentrations. (B) Normalized 
distributions of AF647 concentrations in populations of vesicles with 1x (Red), 0.5x (Blue) and 
0.33x (Purple) AF647 concentrations. (C) Population average of fluorescent intensity for YFP 
and AF647 as the PURE system or the AF647 respectively were diluted compared to the 1x 
condition. Error bars are standard error of the mean. (D) Expression efficiency as the PURE 
system was diluted. Error bars are standard error of the mean. (E) Expression burst size and 
burst frequency as the PURE system was diluted. Lines are linear fits. 
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Figure 4. (A) A vesicle self-organizes into a number of expression domains. At the extremes, a 
vesicle may organize into a small number of expression domains each rich in resources, or a 
large number of domains each poor in resources. (B) A model of an individual domain with a 
single template reversibly binding resources to produce protein. (C) The rate of protein 
production (Michaelis–Menten model) asymptotically approaches the maximum rate as the 
number of resources increases. (D) The efficiency of protein production decreases as the 
number of resources increases. 
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