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Abstract

Dengue virus causes over 96 million cases worldwide per year and is ex-
panding rapidly in geographic range, especially in urban areas. Containment
activities are an essential part of reducing the public health burden caused
by dengue, but systematic evidence on the comparative efficacy of activities
from the field is lacking. To our knowledge, the effect of containment activi-
ties on local (sub-city) scale disease dynamics has never been systematically
characterized using empirical containment and case data. We combine data
from a comprehensive dengue containment monitoring system with confirmed
dengue case data from the local government hospitals to estimate the efficacy
of seven common containment activities in two urban areas in Pakistan. We
use a modified version of the time series Suspected Infected Recovered frame-
work to estimate how the reproductive number, R0, of the outbreak changed
in relation to deployment of each containment activity. We also estimate the
spatial dependence of cases based on deployment of each containment activ-
ity. Both analyses suggest that activities aimed at the adult phase of the
mosquito lifecycle have the highest efficacy, with fogging having the largest
quantifiable effect in reducing cases immediately after deployment. In ex-
amining the efficacy of containment activities contemporaneously deployed
in the same locations, results here can guide recommendations for future
deployment of resources during dengue outbreaks in urban settings.
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1. Introduction1

Dengue is a global threat; rapidly spreading with more than one half2

of the world’s population at risk for infection [1, 2]. Dengue virus is the3

most ubiquitous human arbovirus. It is transmitted primarily by Aedes ae-4

gypti mosquitoes, a vector which also transmits several other global threats5

including Zika, chikungunya and yellow fever [3]. Today, severe dengue is6

a leading cause of hospitalization and death among children and adults in7

urban areas in Asia, and Central and South America [4]. Dengue dispro-8

portionately affects urban areas in developing countries, which often have9

limited resources for containment and intervention activities [5, 6].10

To date, the most common approach to reducing the burden of dengue11

is through prevention and containment of the vector population [7, 8]. Con-12

tainment activities focused on vector control broadly fall into three cate-13

gories: (i) activities targeted at reducing mosquito breeding sites (source14

reduction); (ii) activities targeted at the larval stage of the vector; and (iii)15

activities targeted at the adult stage of the vector [9]. While recent work16

has advanced efforts such as vaccines, genetically modified mosquitoes and17

Wolbachia-infected mosquitoes [10], these interventions are generally seen as18

a complement to containment activities [11], and may be prohibitively costly19

for many countries [12].20

Despite the widespread use of containment activities, costing millions of21

dollars each year, the evidence base of how these activities reduce dengue22

risk is very limited. Existing research has largely focused on small controlled23

trials that estimate the effect of a containment activity by comparing treated24

and untreated populations [13, 14, 15, 16, 17]. Given the systematized na-25

ture of such studies, they generally focus on a small number of containment26

activities in a local, controlled environment; therefore the results may not be27

directly applicable to real-world settings, where external factors may impact28

the efficacy of the containment activities [18]. Further, nearly all efforts to29

quantify the effect of activities on vector control use markers of vector pres-30

ence (e.g., household/container indices, Breteau indices) as the main outcome31

of measure, and do not incorporate disease incidence directly [19]. However,32

the link between vector measurements and dengue risk is poorly understood33

and a recent systematic review found little evidence of entomological indices34

such as the Breteau index being statistically associated with risks of dengue35

transmission [20, 21].36

Here, we harness data from a novel containment monitoring system in37
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two cities in Pakistan which has produced data on millions of instances of38

seven different types of containment activities, each linked with precise geo-39

location information. In parallel, there is detailed geo-location information on40

when and where dengue cases occurred in the cities. This provides a unique41

opportunity to estimate the impact of the different containment activities on42

the spatial distribution of cases, which we do using two statistical frameworks.43

This study, as far as we are aware, considers the largest number of44

dengue containment activity types and instances alongside real field case45

data. Though the application and results are derived for dengue fever, this46

approach and findings can be informative for containment activity deploy-47

ment for other arboviruses. Broadly, the results provide insight which can48

be used to help shape increasingly important decisions for resource alloca-49

tion in Pakistan and other countries at risk of dengue and other vector-borne50

diseases.51

2. Results52

To quantify the impact of containment activities on disease incidence, we53

use data on 10,888 confirmed geocoded dengue cases reported in the cities54

of Rawalpindi (N=7,890 between January 1, 2014 and December 31, 2017,55

Fig. S3 and Fig. S5) and Lahore (N=2,998 between January 1, 2012 and56

December 31, 2017, Fig. S2 and Fig. S4). After a major dengue outbreak57

in 2011, the city of Lahore experienced two mild outbreaks in 2013 and 201658

while Rawalpindi has experienced outbreaks in each year since 2014. In59

addition, the date and precise location of 3,977,159 containment activities60

was recorded from the two locations (1,610,941 between January 1, 201461

and December 31, 2017 from Rawalpindi and 2,366,218 between January 1,62

2012 and December 31, 2017 from Lahore) (Fig. S4, Fig. S5, Methods,63

Supplementary Text and Table S1).64

2.1. Spatial Signature of Containment Activities65

To understand the spatial effect of containment activities, we adapt an66

approach previously used to assess dengue spatial dependence at small spa-67

tial levels [22, 23]. The spatial dependence metric, τ , quantifies how the68

location and time of a case relates to the location and time of other cases.69

Specifically, τi(d1, d2, t1, t2) is the relative probability of a case being reported70

in the distance window between d1 and d2, for cases i, within 30 days (t2 - t1,71

where t1 is the day when the case i developed first symptoms) compared to72
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Figure 1: Spatial dependence of cases occurring within 30 days (cases from Lahore and
Rawalpindi). The spatial window of the analysis (d2 − d1) is maintained at 500 m when
d2 is greater than 500 m, and observations are made by sliding the window at intervals of
100 m. For d2 less than 500 m, d1 is equal to zero and observations are made by increasing
d2 at intervals of 100 m. Spatial dependence estimates are plotted at midpoint of the
spatial window. The time window t2 − t1 is set to 30 days. 95% CI from bootstrapping
100 replications is shown as green shaded area around estimate.

the expected probability of a case if there is no spatial dependence (the case73

clustering process is independent of space and time). Importantly, both the74

numerator and denominator of this metric are dependent on the spatiotem-75

poral distribution of cases appearing in the same area and time-window,76

therefore controlling for exogenous heterogeneities that could create spatial77

or temporal clustering (e.g., variation in population density, hospital and78

healthcare use and reporting rates, and dengue seasonality). All details are79

explained in Methods and follow previous work [22].80

We first calculate the spatial dependence between cases overall, and then81

specifically for cases in each of Rawalpindi and Lahore (Methods). Overall,82

when considering combined patients from both cities, we observe a 2.25 times83

(95% CI 2.16-2.33) increased probability of observing a case occurring within84

50 m (d1=0 m and d2=100 m) radius and within 30 days of an index case,85

relative to the probability of a case occurring if clustering is independent in86

space and time, highlighting a strong spatial dependence between cases (Fig.87

1). This falls to 1.37 (95% CI 1.33-1.40) at a distance of 1.25 km (d1=1 km88

and d2=1.5 km) and 1.0 (95% CI 0.98-1.02) at a distance of 4.55 km (d1=4.389

km and d2=4.8 km). When calculating spatial dependence separately for90

cases in each city, we observed a 2.21 times (95% CI 2.14-2.28) and 1.4691
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Figure 2: Variation in the effect of containment activity, ξact, versus the distance (in
meters) from index cases using combined data from Rawalpindi and Lahore. Values of
ξact are calculated using control and containment cases which appear in an m=1000 m
radius of each other. The spatial window of the analysis (d2 − d1) is maintained at 500
m when d2 is greater than 500 m, and observations are made by sliding the window at
intervals of 100 m. For d2 less than 500 m, d1 is equal to zero and observations are made by
increasing d2 at intervals of 100 m. Spatial dependence estimates are plotted at midpoint
of the spatial window. Values below 1 show a lower probability of new cases appearing
around a case in proximity of a containment activity, compared to a control case. The
time window t2 − t1 is set to 30 days. 95% CI from bootstrapping 100 replications are
shown as shaded areas around estimates. Activities targeted at adult stage of mosquito
are shaded red, activities targeted at larval stage shaded orange, and activities targeted
at source reduction are shaded green.

.

times (95% CI 1.29-1.59) increased probability of observing a case occurring92

within 50 m (d1=0 m and d2=100 m) radius and within 30 days of an index93

case (Fig. S6) in Rawalpindi and Lahore, respectively. The lower level of94

spatial dependence in Lahore, as compared to Rawalpindi, suggests variation95

in spatial dependence of cases, across different locations and times, should96

be accounted for when studying the effect of containment activities.97

We then study the result of different containment activities on the spatial98

dependence between cases. Of the 9,268 geo-tagged cases in Rawalpindi and99

Lahore between 2014 and 2017, 531 were assigned IRS, followed by larviciding100

(n=275) and fogging (n=162) (Table S2). A total of 742 cases had multiple101

containment activities in their spatio-temporal proximity and hence were102

not used as index cases in the study. As underlying spatial dependence may103

differ by different areas in the city or at different times during an epidemic104

season, for each case where a containment activity was performed, we identify105

a matched control where no activity occurred. Matched-controls occurred106

within 30 days and 1000 m of the containment-case but which were not in107

immediate vicinity of any containment activities. We define ξa(d1, d2), as the108

ratio of the spatial dependence in distance window d1 and d2, as measured109

through τ , for cases which were in proximity of containment activity a, to110

the same measure for the matched control. Values of ξa below 1 signify that111
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the relative probability of new cases appearing around a case which was in112

proximity of a containment activity is lower compared to that of a control113

case, after adjusting for underlying clustering in space and time, which is114

consistent with a positive impact from the containment activity. Values of115

ξa around 1 indicate no impact of the activity.116

We calculate the ξa values for each containment activity, a, using com-117

bined data from both cities and for each city separately (Fig. 2, Fig. S7 and118

Fig. S8). When considering combined data, we find a consistent reduction in119

probability of new dengue cases in proximity of indoor residual spray (IRS)120

and fogging (Fig. 2). There was a 0.9 reduced probability of a case occurring121

within 50 m (d1=0 m and d2=100 m) and in the next 30 days of cases for122

which IRS occurred immediately after and in the immediate vicinity (95%123

CI: 0.81-0.99) (details in Methods). For fogging, this value was 0.80 (95%124

CI: 0.66-0.96). By 750 m (d1=500 m and d2=1000 m) for IRS and 1050 m125

(d1=800 m and d2=1300 m) for fogging, there was no difference (ξa=0.99) in126

probability of new cases around the containment cases and the controls (Ta-127

ble S3). In contrast to fogging and IRS, there was no consistent reduction in128

probability of new cases in proximity of any other containment activity (Fig.129

2). This lack of effect is most clearly visible for larviciding which had the130

most number of cases amongst activities which had no effect (n=275). Due131

to the low number of cases in proximity of tap fixing (n=25), the resulting132

plot for this activity indicate structural uncertainty and are not interpretable.133

Findings were consistent when we varied the maximum distance of matched134

controls (Fig. S9) and when considering cities separately (Fig. S7, Fig. S8135

and Table S2).136
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Figure 3: Variation in reproductive number (R0) of dengue, with variation in instances
of containment activity, estimated from the model trained using data from (N=10 spatial
units) in Lahore between 2012 and 2017, and (N=14 spatial units) in Rawalpindi between
2014 and 2017. X-axis represents the total number of containment activities performed,
in a spatial unit, in a lagged time step and any residual effect from previous weeks.
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2.2. Impact of Containment Activities on R0137

To understand the effect of containment activities on the transmission138

potential of the outbreak and cases over time, we fit a Time Series Suscep-139

tible Infected Recovered (TSIR) model for sub-city spatial units from both140

cities (Methods) using the adjusted reported cases. Additionally, we create141

separate TSIR models for each city (Supplementary Text).142

This modeling approach is useful as it allows us to account for envi-143

ronmental drivers, which are very pertinent in dengue epidemiology, and it144

assesses transmission potential through a standardized metric, R0. In both145

Lahore and Rawalpindi, we observe high dengue activity during the post146

monsoon months, September-November, which highlights the importance of147

climate in the reproduction of dengue vector (Fig. S2 and Fig. S3). Given148

that nearly half of dengue cases are asymptomatic and given that our dataset149

primarily comprises of data from public hospitals, we adjust the reported150

cases for under-reporting (Methods and Supplementary Text) [1]. We also151

assessed sensitivity of results based on this reporting rate; showing no changes152

in the overall results (Fig. S14).153

Each city is divided into spatial units (N=10 for Lahore and N=14 for154

Rawalpindi), based on administrative boundaries to model localized dengue155

transmission. We included containment activities, environmental data (tem-156

perature and rainfall), and population density as part of the model to identify157

the effect of each of these parameters. Appropriate delays, to account for vec-158

tor life cycle and transmission of virus from vector to human were added, and159

the residual effect of containment activities was accounted for, to model re-160

alistic transmission of dengue accurately infer the effect of each parameter161

(Supplementary Text). To access the utility of containment data, we train162

additional variants of the TSIR model using only environmental parameters163

and population density.164

The model trained on data from spatial units from both cities, using only165

environmental parameters and population density, provided a good fit (ad-166

justed R2 = 0.63), and the addition of containment activities to the model167

improved the fit (adjusted R2 = 0.65). For the model trained only on data168

from spatial units in Rawalpindi, the addition of containment activities im-169

proved the adjusted R2 from 0.78 to 0.81. Similarly, for Lahore the model170

incorporating containment activities improved the adjusted R2 from 0.73 to171

0.76 (Akaike information criterion (AIC) values also reported in Table S7).172

Overall, for the model trained on combined data, the reproductive num-173

ber was 2.82 (at mean temperature and precipitation values; 25.5 Celsius174
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and rainfall for 2 days during a 2 week period), if all containment activity175

coefficients are set to zero. For Lahore the R0 was 1.59 (at 26 Celsius and 2176

days of rainfall), and for Rawalpindi the R0 was 1.79 (at 24.9 Celsius and 2177

days of rainfall).178

Our results illustrate varied relationships between an increase in the179

amount of containment activities and cases over time, for each activity as it180

was deployed in Lahore and Rawalpindi, and using R0 (Fig. 3, Fig. S12 and181

Fig. S13). We quantify the amount of a containment activity in instances,182

where an instance during a single time-step (2 weeks in our study) represents183

the sum of the number of activities performed during the time-step, and the184

residual effect of any activities performed in previous weeks (Supplementary185

Text). For example for fogging, which has no residual effect, an instance at186

time t represents only the number of activities performed in a spatial unit187

at t. In contrast, for IRS which has a residual effect, instances at time t188

represent the sum of the number of IRS activities performed at time t and189

the residual effect of IRS activities performed in the previous six time-steps190

(the residual effect of IRS is three months).191

Of the adulticides, we find an increase in IRS to be related to a decrease192

in R0 of dengue in both Lahore and Rawalpindi, as well as when data from193

both cities is modelled as part of a single model. Specifically, additional194

deployment of approximately 4,800 IRS activities in a spatial unit was related195

to a 0.1 decrease in the R0 of dengue. In contrast, fogging was related196

to a decrease in the R0 of dengue only in Lahore. Among containment197

activities targeted at the larval stage of mosquitoes, larviciding showed no198

effect on R0 in either city or when data from both cities was trained together,199

while fish seeding was only related to a decrease in R0 when data from both200

cities was trained in a single model. Among source reduction activities, tap201

fixing was related to a decrease in R0 in Lahore and in the model with202

combined data from both cities. Tire shredding was related to a decrease203

in R0 in Rawalpindi, and when analyzing combined data from both cities,204

but the effect of this activity was not statistically significant in Rawalpindi.205

Dewatering was only related to a decrease in R0 when data from both cities206

was trained in a single model. Results across all models are summarized in207

Table S4.208
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3. Discussion209

Data from the dengue containment activity monitoring system deployed210

in the Punjab province, Pakistan in 2012 was used; which, to our knowledge,211

monitors the largest number and types of containment activities. The system212

captured millions of containment activity events over a seven-year period213

(Table S1), each event linked to precise geo-coordinates. Combined with214

geo-location of patients, this allowed us to systematically examine the effect215

of multiple containment activities on sub-city scale disease dynamics, which216

has never before been characterized using empirical activity and case data.217

We examined the relationship between deployed instances of each contain-218

ment activity type and the spatial dependence of geo-located dengue cases219

in their proximity, in the cities of Rawalpindi and Lahore between 2014 and220

2017. This method allows generation of unbiased estimates in the midst of221

exogeneous heterogeneities that could create spatial or temporal clustering222

(e.g., variation in population density, hospital and healthcare use and report-223

ing rates, and dengue seasonality). The result is quantification of both the224

maximum reduction in dengue transmission in the vicinity of a particular225

type of activity, as well as the maximum distance at which this reduction in226

dengue transmission is evident. Notably, the method and results provides227

novel empirical results insights into the comparative efficacy of fogging and228

indoor residual spray using real case and containment activity data.229

The time series modelling of dengue cases in Lahore and Rawalpindi en-230

abled us to assess the relation between the R0 of dengue and amount of231

containment activities, as deployed. Results from this approach are based232

on empirical field data, consider multiple interventions and use a precise and233

standardized measure of efficacy (R0) in contrast to studies based on sim-234

ulated data and models, or using proxy measures for dengue transmission235

[19]. The results show that training a separate model for spatial units in236

each city provides a better fit to data and hence results from models trained237

for individual cities get precedence over the model trained on combined data.238

The spatial dependence of dengue cases reported here is consistent with239

that reported in previous work using dengue case data from Bangkok. The240

spatial dependence at 200 m, presented in [22] is 1.82 (95% CI: 1.45-2.16) is241

comparable to 1.87 (95% CI: 1.81-1.93) observed in the two cities in Pakistan242

in our study. Further, the values of 1.83 and 1.45 observed in Rawalpindi and243

Lahore respectively also lies within the confidence interval. Results from the244

spatial signature analysis show that application of IRS and fogging spray,245
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in the vicinity of a dengue case, result in reduction of the generation of246

new cases by 10% and 20% respectively. Additionally, IRS and fogging are247

shown to be effective (ξa below 1) up to a distance of 750 m and 1050 m248

respectively. Similar trends are observed based on the results of time series249

modelling of containment activities. Increases in IRS and fogging are re-250

lated to decreases in the reproductive number of dengue in Lahore, though251

results from Rawalpindi specific model only show a statistically significant252

effect from IRS. This could be due to the fact that TSIR models assume253

that activities and cases are uniformly distributed in each spatial unit con-254

sidered. If the assumption is violated and activities are not performed in the255

direct vicinity of cases, then the resulting effect from the model may not be256

completely accurate [24].257

Results from both the spatial dependence method and timeseries mod-258

elling did not find larviciding to be effective. These results are consistent259

with a recent systematic review, which found Temephos (a chemical used260

in larviciding) to be only effective in reducing entomological indicators, but261

found no evidence of its association with reduction in disease transmission.262

At the same time, the results highlight that while containment activities can263

be effective under laboratory conditions, the effectiveness does not translate264

exactly in the field in reducing dengue transmission. This signifies the utility265

of studies such as this which examine effectiveness of containment activities266

using real case data. For example, there is conflicting evidence regarding267

the effectiveness of fish seeding in the literature [13, 25]. Our time series268

method did not find fish seeding to be effective in either city, and due to a269

minimal number of cases which were adjacent to only fish seeding activities,270

no inference about the effectiveness of fish seeding could be made from the271

spatial dependence method.272

Among source reduction containment activities, we find no activity to273

be effective using the spatial dependence method. Using the TSIR model,274

we find an increase in tap fixing in Lahore and increase in dewatering in275

Rawalpindi to be associated with a decrease in the reproductive number of276

dengue.277

Quantitatively, our results corroborate existing knowledge about the role278

of rainfall and temperature in dengue transmission by showing increases in279

R0 with increases in temperature and number of rainfall days [26, 27] (Sup-280

plementary Text). We also find an increase in population density is related281

to an increase in R0, when considering data from both cities separately (Sup-282

plementary Text).283
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It should be noted that results from this study are only relevant to the284

spatial dependence of cases or relationship between containment activity de-285

ployment and R0 after dengue cases have started to appear. Results from286

the study do not explain the effect of a containment activity on the overall287

dengue burden, or on delaying or preventing the appearance of first cases.288

A separate, and longitudinal analysis would be required to evaluate the pre-289

ventive effectiveness of each containment activity. As well, as with any study290

based on human reported data, there could be a chance of sampling bias in291

the containment activity reports. Such a bias would have to have a system-292

atic spatial or temporal dependence in order to impact results; thus we deem293

the assumption that such a bias would not affect the results fair. Further,294

while we consistently observe a short-term positive impact of IRS on dengue295

incidence, we were unable to assess the longer-term impact of the contain-296

ment activities and we cannot rule out these containment activities simply297

delay infection to future time points [28].298

In conclusion, results of this study regarding the relationship of different299

containment measures with the spatial dependence of dengue cases or the R0,300

provide specific insight regarding dengue in urban settings. More broadly,301

these results and the models and methods used to derive them – are relevant302

to a growing number of global health concerns related to the Aedes aegypti303

mosquito, including the Zika virus and chikungunya, which are also known to304

particularly impact urban areas. Further, the methods presented in the work305

lay groundwork for future studies aimed at studying the effect of containment306

from observational data collected from the field.307

4. Methods308

4.1. Containment Activities Data309

Modern technology was applied by the Punjab Information Technology310

Board to track containment activities carried out by the Punjab Health De-311

partment. Mobile phones were distributed to health care workers to record312

their activities since 2012 using a mobile application (Supplementary Text313

and Fig. S1). Government workers were asked to take a picture before and314

after performing the containment activity as a verifiable proof that the ac-315

tivity had been performed (Supplementary Text). Global positioning system316

(GPS) coordinates of the location, time stamp, and pictures of the performed317

activity were automatically submitted to a centralized server where they were318

monitored. Data on dengue containment activities for the period January 1,319
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2012 to December 31, 2017 was received. This consisted of 7,281,932 con-320

tainment records, each including the name of the containment activity, a321

time stamp of when the activity was performed and the GPS coordinates322

for the location of where it was performed. After excluding those activities323

performed outside the boundaries of the two cities, we were left with a total324

of 2,366,218 containment activity instances in Lahore between January 1,325

2012 and December 31, 2017, and 1,610,941 activity instances performed in326

Rawalpindi between January 1, 2014 and December 31, 2017. For the TSIR327

model, we used the GPS coordinates to map each containment activity data328

point to a spatial unit.329

4.2. Epidemiological data330

Data regarding confirmed dengue cases, for the same time period as the331

containment activities, was retrieved from the Government of Punjabs cen-332

tralized patient portal system. Precisely geo-tagged information linked to333

each case was available starting in 2014 (spatial unit level data was available334

from 2012-2014 for Lahore) (Supplementary Text). A total of 2,998 cases335

were reported in Lahore between January 1, 2012 and December 31, 2017.336

In Rawalpindi a total of 7,890 confirmed dengue cases were reported and337

geo-tagged between January 1, 2014 and December 31, 2017.338

4.3. Environmental Data339

City-wide daily mean temperature and mean precipitation estimates, for340

both cities, were obtained from the Pakistan Meteorological Department for341

time series method (www.pmd.gov.pk accessed August 27, 2018). As pre-342

viously shown these climate factors directly affect mosquito survival, repro-343

duction, and development and thus their abundance.344

4.4. Spatial Dependence of Cases345

First, to characterize the spatial dependence of cases we compute the346

probability of a case occurring between times t1 and t2, and within distance347

range d1 and d2 of a given case versus the expected probability if the clus-348

tering processes were independent in space and time:349

τi(d1, d2, t1, t2) =
Pr(Ωi(d1, d2, t1, t2))

Pr(Ωi(d1, d2, ·, ·))Pr(Ωi(·, ·, t1, t2))
(1)

where Ωi(d1, d2, t1, t2) is the set of cases between d1 and d2 (in meters) and350

temporal window of t1 and t2 (in days) of case i; Ωi(·, ·, t1, t2) is the set of cases351
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in temporal window t1 to t2 of case i independent of space, and Ωi(d1, d2, ·, ·)352

the set of cases within spatial window d1 and d2 of case i, independent of353

time. For our analysis, we use a fixed time window of 30 days: t1 is selected354

as the day when the patient experienced first symptoms of dengue virus, and355

t2 = t1 + 30. This time window is chosen to ensure that cases considered are356

from the same transmission chain, though we perform sensitivity analysis357

using additional time windows (Fig. S10). Dependence is then observed358

across variation in the distance window.359

Then, the overall spatial dependence of new cases appearing around cases360

labelled s (labelling is defined in the next subsection) is estimated as:361

τ̂s(d1, d2, t1, t2) =

(
∑N

i=1 |Ωi(d1, d2, t1, t2)|zi) · (
∑N

i=1 |Ωi(·, ·, ·, ·)|zi)
(
∑N

i=1 |Ωi(d1, d2, ·, ·)|zi) · (
∑N

i=1 |Ωi(·, ·, t1, t2)|zi)
(2)

where zi is 1 if the case is labelled s, N is the total number of cases in the362

dataset regardless of their label, and Ωi(·, ·, ·, ·) is the set of all cases in the363

dataset.364

4.5. Spatial Signature of Containment Activities365

To identify the impact of containment activities on the spatial dependence366

of dengue cases (the “spatial signature” of an activity) we first label all367

cases in the dataset as either a “containment” or a “control”. A case is368

labelled as s = a if only the containment a was performed in a 20 meter369

radius and time window of the past 30 days of the case before the first370

symptom appeared. Only cases for which a single containment activity was371

performed in the surrounding area are included in the analysis, to ensure372

only the effect of a single type of containment activity is being measured. A373

case is labelled a control, s = c, if no containment activity was performed in374

a 20 meter radius and time window of the past 30 days of the case before375

the first symptom appeared. The tau metric measures clustering dynamics,376

however there are factors such as population variation, reporting biases and377

availability of vegetation and water for growth of vector, can also play a role378

in variation of the number of cases that would be expected in a given location379

and time. Thus, to compare clustering while controlling for such factors, we380

compare clustering around cases that have a similar epidemiological context.381

For a given set of containment cases labelled a, we select a subset of cases,382

a′, such that each case in a′ has a matching control case. A matching control383
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case is defined as a control case which is within a radius of m meters, and384

was reported within 30 days of the containment case. We assess how values385

of m of 500, 1,000 and 2,000 (Fig. 2 and Fig. S9) impact the results. For386

each containment case a′, we randomly select a matching control case and387

represent the set of matching control cases as c′a. The spatial signature of388

containment activity a, ξa, is then calculated as:389

ξa =
τ̂a′

τ̂c′a
(3)

4.6. Impact of Containment Activities on R0390

We model the incidence of dengue using a time-series susceptibleinfect-391

edrecovered (TSIR) model of viral incidence previously used to reconstruct392

dengue dynamics in Asia (Supplementary Text) [29, 30]. The city of La-393

hore is divided in (n=10) and the city of Rawalpindi in (n=14) spatial units,394

and localized transmission of dengue is modelled at each spatial unit. The395

reported cases, in each spatial unit, are first reconstructed to account for396

under-reporting. The reported number of cases, I
(r)
i (t), are first smoothed,397

then multiplied with the inverse of the reporting rate rr, and the product398

is used as the mean of Poisson distribution (Supplementary Text, and Table399

S5 and S6). The number of infected individuals, Ii(t), are selected at each400

time step from the distribution. This reconstruction methodology, used in401

previous infectious disease modeling work [31], gives the advantage of captur-402

ing tails of the epidemic curve in a realistic, continuous manner. Our model403

incorporates environmental parameters in the transmission rate to account404

for variation in vector population density. We use two weeks as the time step405

in our study, consistent with the generation interval and previous studies406

which model the transmission of dengue [32, 30] (Supplementary Text). The407

general TSIR model is defined via the following equations:408

Ii(t+ 1) = βi(t)
Si(t)

Ni(t)
Iαi
i (t)ε (4)

409

Si(t) = Si(t− 1)− Ii(t) + ρNi(t− 1)− φSi(t− 1) (5)

where Ii(t), Si(t) and Ni(t) are the infected, susceptible and total population410

during time step t in spatial unit i, ρ is the bi-weekly birth rate, φ is the bi-411

weekly death rate, αi is the mixing coefficient in spatial unit i, and βi(t) is the412
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transmission coefficient during time step t. The error term ε is assumed to413

be an independent and identically log-normally distributed random variable.414

We endogenize containment activities in the transmission coefficient βi(t).415

This decision reflects the fact that containment activities reduce the contact416

rate between humans and mosquitoes, which results in a reduction of the417

transmission rates from human to mosquito to human [33]. The transmission418

coefficient β for equation 4 is parameterized as:419

log(βi(t)) =
∑
a

θaCi,a(t− la) +
∑
j

θjEj(t− lj) + θpDi(t) (6)

where la and lj are time steps containment activities a and environmental420

parameters j were lagged respectively (Supplementary Text). Ci,a(t − la)421

is the number of times per squared kilometer containment activity a was422

performed in spatial unit i during week (t − la). Ej(t − lj) is the value of423

environmental parameter j during week (t − lj). Di(t) is the population424

density in spatial unit i. The residual effect of each containment activity is425

added based on existing knowledge (see section Transmission cycle of dengue426

and timing and residual effect of containment activities in Supplementary427

Text).428

To calculate the value of βi(t), the value of β for each town at each time429

step, a single model is used to find the best fit for parameters: θa, θj, θp,430

based on the number of each containment activity and environmental pa-431

rameters as well as all non-zero cases data point in each town, i, at every432

time step (equation 6). We use Shape constrained additive model (SCAM)433

to fit this relationship. Shape constrained additive models are an extension434

of generalized additive models (GAMs) which provide the advantage of using435

existing knowledge about the relationship of the response variable with the436

explanatory variables [34, 35]. This prevents noise from being included in the437

shape of splines from the GAM. Containment activities are modeled as mono-438

tonically decreasing splines while environmental parameters and population439

density are modeled as monotonically increasing splines. The smoothing pa-440

rameters are estimated using maximum likelihood. Finally, using estimates441

of θa, θj, and θp from the SCAM model and equation 6 and 7, we identify the442

variation in R0 (reproductive number of dengue) by variation in the amount443

of each containment activity. The R0 is calculated by the following equation:444

445

R0i(t) =
βi(t)

γ
(7)
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where, γ is the recovery rate and is equal to 1 time step in our study, given446

the fact that infected patients are immediately admitted in the hospital and447

removed from the infected population. The reproductive number can be448

defined as the number of secondary infections a primary infection can cause449

over the course of its infectious period [36]. If R0 is greater than 1, then the450

disease will spread exponentially, while an R0 below 1 means that the disease451

will not spread.452
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