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Abstract

Dengue virus causes over 96 million cases worldwide per year and is ex-
panding rapidly in geographic range, especially in urban areas. Containment
activities are an essential part of reducing the public health burden caused
by dengue, but systematic evidence on the comparative efficacy of activities
from the field is lacking. To our knowledge, the effect of containment activi-
ties on local (sub-city) scale disease dynamics has never been systematically
characterized using empirical containment and case data. We combine data
from a comprehensive dengue containment monitoring system with confirmed
dengue case data from the local government hospitals to estimate the efficacy
of seven common containment activities in two urban areas in Pakistan. We
use a modified version of the time series Suspected Infected Recovered frame-
work to estimate how the reproductive number, Ry, of the outbreak changed
in relation to deployment of each containment activity. We also estimate the
spatial dependence of cases based on deployment of each containment activ-
ity. Both analyses suggest that activities aimed at the adult phase of the
mosquito lifecycle have the highest efficacy, with fogging having the largest
quantifiable effect in reducing cases immediately after deployment. In ex-
amining the efficacy of containment activities contemporaneously deployed
in the same locations, results here can guide recommendations for future
deployment of resources during dengue outbreaks in urban settings.
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1 1. Introduction

2 Dengue is a global threat; rapidly spreading with more than one half
s of the world’s population at risk for infection [1, 2]. Dengue virus is the
» most ubiquitous human arbovirus. It is transmitted primarily by Aedes ae-
s gypti mosquitoes, a vector which also transmits several other global threats
¢ including Zika, chikungunya and yellow fever [3]. Today, severe dengue is
7 a leading cause of hospitalization and death among children and adults in
s urban areas in Asia, and Central and South America [4]. Dengue dispro-
o portionately affects urban areas in developing countries, which often have
10 limited resources for containment and intervention activities [5, 6].

1 To date, the most common approach to reducing the burden of dengue
12 is through prevention and containment of the vector population [7, 8]. Con-
13 tainment activities focused on vector control broadly fall into three cate-
1 gories: (i) activities targeted at reducing mosquito breeding sites (source
15 reduction); (ii) activities targeted at the larval stage of the vector; and (iii)
16 activities targeted at the adult stage of the vector [9]. While recent work
17 has advanced efforts such as vaccines, genetically modified mosquitoes and
18 Wolbachia-infected mosquitoes [10], these interventions are generally seen as
1 a complement to containment activities [11], and may be prohibitively costly
20 for many countries [12].

21 Despite the widespread use of containment activities, costing millions of
» dollars each year, the evidence base of how these activities reduce dengue
23 risk is very limited. Existing research has largely focused on small controlled
2 trials that estimate the effect of a containment activity by comparing treated
»s and untreated populations [13, 14, 15, 16, 17]. Given the systematized na-
s ture of such studies, they generally focus on a small number of containment
7 activities in a local, controlled environment; therefore the results may not be
2 directly applicable to real-world settings, where external factors may impact
2 the efficacy of the containment activities [18]. Further, nearly all efforts to
s quantify the effect of activities on vector control use markers of vector pres-
a ence (e.g., household/container indices, Breteau indices) as the main outcome
2 of measure, and do not incorporate disease incidence directly [19]. However,
;3 the link between vector measurements and dengue risk is poorly understood
1 and a recent systematic review found little evidence of entomological indices
55 such as the Breteau index being statistically associated with risks of dengue
s transmission [20, 21].

37 Here, we harness data from a novel containment monitoring system in
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;s two cities in Pakistan which has produced data on millions of instances of
5 seven different types of containment activities, each linked with precise geo-
» location information. In parallel, there is detailed geo-location information on
sn when and where dengue cases occurred in the cities. This provides a unique
2 opportunity to estimate the impact of the different containment activities on
ss the spatial distribution of cases, which we do using two statistical frameworks.
" This study, as far as we are aware, considers the largest number of
s dengue containment activity types and instances alongside real field case
s data. Though the application and results are derived for dengue fever, this
s approach and findings can be informative for containment activity deploy-
s ment for other arboviruses. Broadly, the results provide insight which can
s be used to help shape increasingly important decisions for resource alloca-
so tion in Pakistan and other countries at risk of dengue and other vector-borne
51 diseases.

2 2. Results

53 To quantify the impact of containment activities on disease incidence, we
s« use data on 10,888 confirmed geocoded dengue cases reported in the cities
55 of Rawalpindi (N=7,890 between January 1, 2014 and December 31, 2017,
ss Fig. S3 and Fig. S5) and Lahore (N=2,998 between January 1, 2012 and
s December 31, 2017, Fig. S2 and Fig. S4). After a major dengue outbreak
ss in 2011, the city of Lahore experienced two mild outbreaks in 2013 and 2016
so  while Rawalpindi has experienced outbreaks in each year since 2014. In
s addition, the date and precise location of 3,977,159 containment activities
s was recorded from the two locations (1,610,941 between January 1, 2014
s2 and December 31, 2017 from Rawalpindi and 2,366,218 between January 1,
3 2012 and December 31, 2017 from Lahore) (Fig. S4, Fig. S5, Methods,
s« Supplementary Text and Table S1).

s 2.1. Spatial Signature of Containment Activities

66 To understand the spatial effect of containment activities, we adapt an
s approach previously used to assess dengue spatial dependence at small spa-
s tial levels [22, 23]. The spatial dependence metric, 7, quantifies how the
s location and time of a case relates to the location and time of other cases.
w0 Specifically, 7;(d1, da, 11, t2) is the relative probability of a case being reported
7 in the distance window between d; and ds, for cases i, within 30 days (¢ - t1,
72 where ¢; is the day when the case i developed first symptoms) compared to
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Figure 1: Spatial dependence of cases occurring within 30 days (cases from Lahore and
Rawalpindi). The spatial window of the analysis (d2 — d;) is maintained at 500 m when
ds is greater than 500 m, and observations are made by sliding the window at intervals of
100 m. For ds less than 500 m, d; is equal to zero and observations are made by increasing
ds at intervals of 100 m. Spatial dependence estimates are plotted at midpoint of the
spatial window. The time window ts — ¢; is set to 30 days. 95% CI from bootstrapping
100 replications is shown as green shaded area around estimate.

73 the expected probability of a case if there is no spatial dependence (the case
74 clustering process is independent of space and time). Importantly, both the
75 numerator and denominator of this metric are dependent on the spatiotem-
7 poral distribution of cases appearing in the same area and time-window,
77 therefore controlling for exogenous heterogeneities that could create spatial
¢ or temporal clustering (e.g., variation in population density, hospital and
79 healthcare use and reporting rates, and dengue seasonality). All details are
o explained in Methods and follow previous work [22].

81 We first calculate the spatial dependence between cases overall, and then
22 specifically for cases in each of Rawalpindi and Lahore (Methods). Overall,
&3 when considering combined patients from both cities, we observe a 2.25 times
sa (95% CI 2.16-2.33) increased probability of observing a case occurring within
55 50 m (d;=0 m and dy=100 m) radius and within 30 days of an index case,
ss relative to the probability of a case occurring if clustering is independent in
& space and time, highlighting a strong spatial dependence between cases (Fig.
s 1). This falls to 1.37 (95% CI 1.33-1.40) at a distance of 1.25 km (d;=1 km
o and dy=1.5 km) and 1.0 (95% CI 0.98-1.02) at a distance of 4.55 km (d;=4.3
o km and dy=4.8 km). When calculating spatial dependence separately for
o cases in each city, we observed a 2.21 times (95% CI 2.14-2.28) and 1.46
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Figure 2: Variation in the effect of containment activity, &4, versus the distance (in
meters) from index cases using combined data from Rawalpindi and Lahore. Values of
&qct are calculated using control and containment cases which appear in an m=1000 m
radius of each other. The spatial window of the analysis (d2 — dy) is maintained at 500
m when ds is greater than 500 m, and observations are made by sliding the window at
intervals of 100 m. For ds less than 500 m, d; is equal to zero and observations are made by
increasing do at intervals of 100 m. Spatial dependence estimates are plotted at midpoint
of the spatial window. Values below 1 show a lower probability of new cases appearing
around a case in proximity of a containment activity, compared to a control case. The
time window 5 — t1 is set to 30 days. 95% CI from bootstrapping 100 replications are
shown as shaded areas around estimates. Activities targeted at adult stage of mosquito
are shaded red, activities targeted at larval stage shaded orange, and activities targeted
at source reduction are shaded green.

2 times (95% CI 1.29-1.59) increased probability of observing a case occurring
o3 within 50 m (d;=0 m and dy=100 m) radius and within 30 days of an index
o case (Fig. S6) in Rawalpindi and Lahore, respectively. The lower level of
os spatial dependence in Lahore, as compared to Rawalpindi, suggests variation
o6 in spatial dependence of cases, across different locations and times, should
o7 be accounted for when studying the effect of containment activities.

%8 We then study the result of different containment activities on the spatial
o dependence between cases. Of the 9,268 geo-tagged cases in Rawalpindi and
w0 Lahore between 2014 and 2017, 531 were assigned IRS, followed by larviciding
1 (n=275) and fogging (n=162) (Table S2). A total of 742 cases had multiple
102 containment activities in their spatio-temporal proximity and hence were
103 not used as index cases in the study. As underlying spatial dependence may
ws differ by different areas in the city or at different times during an epidemic
105 season, for each case where a containment activity was performed, we identify
ws a matched control where no activity occurred. Matched-controls occurred
w7 within 30 days and 1000 m of the containment-case but which were not in
s immediate vicinity of any containment activities. We define &,(dy, d3), as the
we ratio of the spatial dependence in distance window d; and d», as measured
o through 7, for cases which were in proximity of containment activity a, to
u the same measure for the matched control. Values of ¢, below 1 signify that
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2 the relative probability of new cases appearing around a case which was in
u3  proximity of a containment activity is lower compared to that of a control
s case, after adjusting for underlying clustering in space and time, which is
us consistent with a positive impact from the containment activity. Values of
ue &, around 1 indicate no impact of the activity.

17 We calculate the &, values for each containment activity, a, using com-
us  bined data from both cities and for each city separately (Fig. 2, Fig. S7 and
o Fig. S8). When considering combined data, we find a consistent reduction in
120 probability of new dengue cases in proximity of indoor residual spray (IRS)
21 and fogging (Fig. 2). There was a 0.9 reduced probability of a case occurring
122 within 50 m (d;=0 m and d»=100 m) and in the next 30 days of cases for
13 which IRS occurred immediately after and in the immediate vicinity (95%
e Cl: 0.81-0.99) (details in Methods). For fogging, this value was 0.80 (95%
s CI: 0.66-0.96). By 750 m (d;=500 m and dy=1000 m) for IRS and 1050 m
126 (d;=800 m and d>=1300 m) for fogging, there was no difference (£,=0.99) in
17 probability of new cases around the containment cases and the controls (Ta-
s ble S3). In contrast to fogging and IRS, there was no consistent reduction in
120 probability of new cases in proximity of any other containment activity (Fig.
o 2). This lack of effect is most clearly visible for larviciding which had the
131 most number of cases amongst activities which had no effect (n=275). Due
132 to the low number of cases in proximity of tap fixing (n=25), the resulting
133 plot for this activity indicate structural uncertainty and are not interpretable.
134 Findings were consistent when we varied the maximum distance of matched
135 controls (Fig. S9) and when considering cities separately (Fig. S7, Fig. S8
s and Table 82)
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Figure 3: Variation in reproductive number (Ry) of dengue, with variation in instances
of containment activity, estimated from the model trained using data from (N=10 spatial
units) in Lahore between 2012 and 2017, and (N=14 spatial units) in Rawalpindi between
2014 and 2017. X-axis represents the total number of containment activities performed,
in a spatial unit, in a lagged time step and any residual effect from previous weeks.


https://doi.org/10.1101/401653

bioRxiv preprint doi: https://doi.org/10.1101/401653; this version posted August 29, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

. 2.2. Impact of Containment Activities on Ry

138 To understand the effect of containment activities on the transmission
1o potential of the outbreak and cases over time, we fit a Time Series Suscep-
uo tible Infected Recovered (TSIR) model for sub-city spatial units from both
1 cities (Methods) using the adjusted reported cases. Additionally, we create
12 separate TSIR models for each city (Supplementary Text).

143 This modeling approach is useful as it allows us to account for envi-
us  ronmental drivers, which are very pertinent in dengue epidemiology, and it
us assesses transmission potential through a standardized metric, Ry. In both
us Lahore and Rawalpindi, we observe high dengue activity during the post
17 monsoon months, September-November, which highlights the importance of
s climate in the reproduction of dengue vector (Fig. S2 and Fig. S3). Given
1o that nearly half of dengue cases are asymptomatic and given that our dataset
1o primarily comprises of data from public hospitals, we adjust the reported
151 cases for under-reporting (Methods and Supplementary Text) [1]. We also
12 assessed sensitivity of results based on this reporting rate; showing no changes
153 in the overall results (Fig. S14).

154 Each city is divided into spatial units (N=10 for Lahore and N=14 for
155 Rawalpindi), based on administrative boundaries to model localized dengue
15 transmission. We included containment activities, environmental data (tem-
157 perature and rainfall), and population density as part of the model to identify
155 the effect of each of these parameters. Appropriate delays, to account for vec-
10 tor life cycle and transmission of virus from vector to human were added, and
1o the residual effect of containment activities was accounted for, to model re-
1 alistic transmission of dengue accurately infer the effect of each parameter
162 (Supplementary Text). To access the utility of containment data, we train
13 additional variants of the TSIR model using only environmental parameters
s and population density.

165 The model trained on data from spatial units from both cities, using only
166 environmental parameters and population density, provided a good fit (ad-
w7 justed R* = 0.63), and the addition of containment activities to the model
s improved the fit (adjusted R?> = 0.65). For the model trained only on data
1o from spatial units in Rawalpindi, the addition of containment activities im-
1o proved the adjusted R? from 0.78 to 0.81. Similarly, for Lahore the model
171 incorporating containment activities improved the adjusted R? from 0.73 to
12 0.76 (Akaike information criterion (AIC) values also reported in Table ST7).
173 Overall, for the model trained on combined data, the reproductive num-
e ber was 2.82 (at mean temperature and precipitation values; 25.5 Celsius

7
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s and rainfall for 2 days during a 2 week period), if all containment activity
s coefficients are set to zero. For Lahore the Ry was 1.59 (at 26 Celsius and 2
7 days of rainfall), and for Rawalpindi the Ry was 1.79 (at 24.9 Celsius and 2
s days of rainfall).

179 Our results illustrate varied relationships between an increase in the
180 amount of containment activities and cases over time, for each activity as it
s was deployed in Lahore and Rawalpindi, and using Ry (Fig. 3, Fig. S12 and
;2 Fig. S13). We quantify the amount of a containment activity in instances,
183 where an instance during a single time-step (2 weeks in our study) represents
18« the sum of the number of activities performed during the time-step, and the
155 residual effect of any activities performed in previous weeks (Supplementary
s Text). For example for fogging, which has no residual effect, an instance at
17 time t represents only the number of activities performed in a spatial unit
18 at t. In contrast, for IRS which has a residual effect, instances at time ¢
19 represent the sum of the number of IRS activities performed at time ¢ and
o the residual effect of IRS activities performed in the previous six time-steps
1 (the residual effect of IRS is three months).

102 Of the adulticides, we find an increase in IRS to be related to a decrease
13 in Ry of dengue in both Lahore and Rawalpindi, as well as when data from
104 both cities is modelled as part of a single model. Specifically, additional
15 deployment of approximately 4,800 IRS activities in a spatial unit was related
s to a 0.1 decrease in the Ry of dengue. In contrast, fogging was related
17 to a decrease in the Ry of dengue only in Lahore. Among containment
108 activities targeted at the larval stage of mosquitoes, larviciding showed no
10 effect on Ry in either city or when data from both cities was trained together,
200 while fish seeding was only related to a decrease in Ry when data from both
201 cities was trained in a single model. Among source reduction activities, tap
22 fixing was related to a decrease in Ry in Lahore and in the model with
203 combined data from both cities. Tire shredding was related to a decrease
24 in Ry in Rawalpindi, and when analyzing combined data from both cities,
2s  but the effect of this activity was not statistically significant in Rawalpindi.
206 Dewatering was only related to a decrease in Ry when data from both cities
27 was trained in a single model. Results across all models are summarized in
208 Table S4.
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200 3. Discussion

210 Data from the dengue containment activity monitoring system deployed
on in the Punjab province, Pakistan in 2012 was used; which, to our knowledge,
212 monitors the largest number and types of containment activities. The system
213 captured millions of containment activity events over a seven-year period
2u (Table S1), each event linked to precise geo-coordinates. Combined with
215 geo-location of patients, this allowed us to systematically examine the effect
216 of multiple containment activities on sub-city scale disease dynamics, which
217 has never before been characterized using empirical activity and case data.
218 We examined the relationship between deployed instances of each contain-
210 ment activity type and the spatial dependence of geo-located dengue cases
20 in their proximity, in the cities of Rawalpindi and Lahore between 2014 and
21 2017. This method allows generation of unbiased estimates in the midst of
22 exogeneous heterogeneities that could create spatial or temporal clustering
23 (e.g., variation in population density, hospital and healthcare use and report-
24 ing rates, and dengue seasonality). The result is quantification of both the
»s maximum reduction in dengue transmission in the vicinity of a particular
26 type of activity, as well as the maximum distance at which this reduction in
27 dengue transmission is evident. Notably, the method and results provides
»s novel empirical results insights into the comparative efficacy of fogging and
29 indoor residual spray using real case and containment activity data.

230 The time series modelling of dengue cases in Lahore and Rawalpindi en-
an abled us to assess the relation between the Ry of dengue and amount of
22 containment activities, as deployed. Results from this approach are based
233 on empirical field data, consider multiple interventions and use a precise and
2 standardized measure of efficacy (Rp) in contrast to studies based on sim-
235 ulated data and models, or using proxy measures for dengue transmission
26 [19]. The results show that training a separate model for spatial units in
237 each city provides a better fit to data and hence results from models trained
23 for individual cities get precedence over the model trained on combined data.
230 The spatial dependence of dengue cases reported here is consistent with
20 that reported in previous work using dengue case data from Bangkok. The
21 spatial dependence at 200 m, presented in [22] is 1.82 (95% CI: 1.45-2.16) is
22 comparable to 1.87 (95% CI: 1.81-1.93) observed in the two cities in Pakistan
23 in our study. Further, the values of 1.83 and 1.45 observed in Rawalpindi and
24 Lahore respectively also lies within the confidence interval. Results from the
us  spatial signature analysis show that application of IRS and fogging spray,
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26 in the vicinity of a dengue case, result in reduction of the generation of
27 new cases by 10% and 20% respectively. Additionally, IRS and fogging are
23 shown to be effective (£, below 1) up to a distance of 750 m and 1050 m
29 respectively. Similar trends are observed based on the results of time series
0 modelling of containment activities. Increases in IRS and fogging are re-
1 lated to decreases in the reproductive number of dengue in Lahore, though
2 results from Rawalpindi specific model only show a statistically significant
3 effect from IRS. This could be due to the fact that TSIR models assume
4 that activities and cases are uniformly distributed in each spatial unit con-
»s  sidered. If the assumption is violated and activities are not performed in the
6 direct vicinity of cases, then the resulting effect from the model may not be
257 completely accurate [24].

258 Results from both the spatial dependence method and timeseries mod-
0 elling did not find larviciding to be effective. These results are consistent
%0 with a recent systematic review, which found Temephos (a chemical used
21 in larviciding) to be only effective in reducing entomological indicators, but
x%2 found no evidence of its association with reduction in disease transmission.
%3 At the same time, the results highlight that while containment activities can
xa  be effective under laboratory conditions, the effectiveness does not translate
x5 exactly in the field in reducing dengue transmission. This signifies the utility
s6  Of studies such as this which examine effectiveness of containment activities
7 using real case data. For example, there is conflicting evidence regarding
s the effectiveness of fish seeding in the literature [13, 25]. Our time series
%0 method did not find fish seeding to be effective in either city, and due to a
o0 minimal number of cases which were adjacent to only fish seeding activities,
on no inference about the effectiveness of fish seeding could be made from the
o2 spatial dependence method.

273 Among source reduction containment activities, we find no activity to
aa be effective using the spatial dependence method. Using the TSIR model,
o5 we find an increase in tap fixing in Lahore and increase in dewatering in
a6 Rawalpindi to be associated with a decrease in the reproductive number of
a7 dengue.

278 Quantitatively, our results corroborate existing knowledge about the role
279 of rainfall and temperature in dengue transmission by showing increases in
20 R with increases in temperature and number of rainfall days [26, 27] (Sup-
21 plementary Text). We also find an increase in population density is related
22 to an increase in Ry, when considering data from both cities separately (Sup-
23 plementary Text).

10


https://doi.org/10.1101/401653

bioRxiv preprint doi: https://doi.org/10.1101/401653; this version posted August 29, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

284 It should be noted that results from this study are only relevant to the
25 spatial dependence of cases or relationship between containment activity de-
286 ployment and Ry after dengue cases have started to appear. Results from
257 the study do not explain the effect of a containment activity on the overall
s dengue burden, or on delaying or preventing the appearance of first cases.
0 A separate, and longitudinal analysis would be required to evaluate the pre-
200 ventive effectiveness of each containment activity. As well, as with any study
2 based on human reported data, there could be a chance of sampling bias in
22 the containment activity reports. Such a bias would have to have a system-
203 atic spatial or temporal dependence in order to impact results; thus we deem
2 the assumption that such a bias would not affect the results fair. Further,
25 while we consistently observe a short-term positive impact of IRS on dengue
206 incidence, we were unable to assess the longer-term impact of the contain-
207 ment activities and we cannot rule out these containment activities simply
28 delay infection to future time points [28].

200 In conclusion, results of this study regarding the relationship of different
30 containment measures with the spatial dependence of dengue cases or the Ry,
;0 provide specific insight regarding dengue in urban settings. More broadly,
sz these results and the models and methods used to derive them — are relevant
33 to a growing number of global health concerns related to the Aedes aegypti
;4 Mmosquito, including the Zika virus and chikungunya, which are also known to
s particularly impact urban areas. Further, the methods presented in the work
w06 lay groundwork for future studies aimed at studying the effect of containment
57 from observational data collected from the field.

ss 4. Methods

00 4.1. Containment Activities Data

310 Modern technology was applied by the Punjab Information Technology
sn Board to track containment activities carried out by the Punjab Health De-
;12 partment. Mobile phones were distributed to health care workers to record
a3 their activities since 2012 using a mobile application (Supplementary Text
se and Fig. S1). Government workers were asked to take a picture before and
a5 after performing the containment activity as a verifiable proof that the ac-
ns  tivity had been performed (Supplementary Text). Global positioning system
a7 (GPS) coordinates of the location, time stamp, and pictures of the performed
sis  activity were automatically submitted to a centralized server where they were
si9 monitored. Data on dengue containment activities for the period January 1,

11
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30 2012 to December 31, 2017 was received. This consisted of 7,281,932 con-
;1 tainment records, each including the name of the containment activity, a
322 time stamp of when the activity was performed and the GPS coordinates
323 for the location of where it was performed. After excluding those activities
s performed outside the boundaries of the two cities, we were left with a total
s of 2,366,218 containment activity instances in Lahore between January 1,
26 2012 and December 31, 2017, and 1,610,941 activity instances performed in
327 Rawalpindi between January 1, 2014 and December 31, 2017. For the TSIR
»s model, we used the GPS coordinates to map each containment activity data
320 point to a spatial unit.

0 4.2. Epidemiological data

331 Data regarding confirmed dengue cases, for the same time period as the
;2 containment activities, was retrieved from the Government of Punjabs cen-
;3 tralized patient portal system. Precisely geo-tagged information linked to
s each case was available starting in 2014 (spatial unit level data was available
15 from 2012-2014 for Lahore) (Supplementary Text). A total of 2,998 cases
16 were reported in Lahore between January 1, 2012 and December 31, 2017.
;37 In Rawalpindi a total of 7,890 confirmed dengue cases were reported and
138 geo-tagged between January 1, 2014 and December 31, 2017.

10 4.3. Environmental Data

340 City-wide daily mean temperature and mean precipitation estimates, for
s both cities, were obtained from the Pakistan Meteorological Department for
32 time series method (www.pmd.gov.pk accessed August 27, 2018). As pre-
a3 viously shown these climate factors directly affect mosquito survival, repro-
s duction, and development and thus their abundance.

s 4.4. Spatial Dependence of Cases
346 First, to characterize the spatial dependence of cases we compute the
s probability of a case occurring between times t; and %5, and within distance
us range d; and dy of a given case versus the expected probability if the clus-
a9 tering processes were independent in space and time:

PT(Qi<d1, dg, tl, tz))

) d 7d 7t 7t = :
7i(d1, dz, 1, t2) Pr(Q(dy, da, -, -)) Pr($(-, -, t1, t2)) W

30 where Q;(dy, ds, t1,12) is the set of cases between d; and ds (in meters) and
351 temporal window of ¢; and ¢, (in days) of case i; Q;(-, -, t1, t2) is the set of cases
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32 in temporal window t¢; to ts of case i independent of space, and Q;(dy, ds, -, )
13 the set of cases within spatial window d; and dy of case 7, independent of
s time. For our analysis, we use a fixed time window of 30 days: t; is selected
35 as the day when the patient experienced first symptoms of dengue virus, and
356 tg = t1 + 30. This time window is chosen to ensure that cases considered are
7 from the same transmission chain, though we perform sensitivity analysis
3ss using additional time windows (Fig. S10). Dependence is then observed
30 across variation in the distance window.

360 Then, the overall spatial dependence of new cases appearing around cases
;1 labelled s (labelling is defined in the next subsection) is estimated as:

Ts(dy, do, t1,t2) =
(i, 19(da, do, t1, 1) |20) - (0, 1 (-, )] 20) (2)
(Zi\il |Ql<d17 d27 "y )lzZ) : (Zi\;l |QZ<7 * t17t2)|zi)

2 where z; is 1 if the case is labelled s, N is the total number of cases in the
33 dataset regardless of their label, and €;(-,-, -, ) is the set of all cases in the
s dataset.

s 4.9. Spatial Signature of Containment Activities

366 To identify the impact of containment activities on the spatial dependence
37 of dengue cases (the “spatial signature” of an activity) we first label all
s cases in the dataset as either a “containment” or a “control”. A case is
w0 labelled as s = a if only the containment a was performed in a 20 meter
s radius and time window of the past 30 days of the case before the first
sn - symptom appeared. Only cases for which a single containment activity was
sz performed in the surrounding area are included in the analysis, to ensure
sz only the effect of a single type of containment activity is being measured. A
s case is labelled a control, s = ¢, if no containment activity was performed in
ws a 20 meter radius and time window of the past 30 days of the case before
ss  the first symptom appeared. The tau metric measures clustering dynamics,
sz however there are factors such as population variation, reporting biases and
ss - availability of vegetation and water for growth of vector, can also play a role
s9  in variation of the number of cases that would be expected in a given location
;0 and time. Thus, to compare clustering while controlling for such factors, we
;1 compare clustering around cases that have a similar epidemiological context.
2 For a given set of containment cases labelled a, we select a subset of cases,
3 @, such that each case in @’ has a matching control case. A matching control

13
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;s case is defined as a control case which is within a radius of m meters, and
s was reported within 30 days of the containment case. We assess how values
s of m of 500, 1,000 and 2,000 (Fig. 2 and Fig. S9) impact the results. For
sz each containment case a’, we randomly select a matching control case and
;s represent the set of matching control cases as ¢/,. The spatial signature of
;0 containment activity a, &,, is then calculated as:

fa = Aa (3>

0 4.60. Impact of Containment Activities on Ry

301 We model the incidence of dengue using a time-series susceptibleinfect-
32 edrecovered (TSIR) model of viral incidence previously used to reconstruct
33 dengue dynamics in Asia (Supplementary Text) [29, 30]. The city of La-
04 hore is divided in (n=10) and the city of Rawalpindi in (n=14) spatial units,
35 and localized transmission of dengue is modelled at each spatial unit. The
w6 reported cases, in each spatial unit, are first reconstructed to account for
57 under-reporting. The reported number of cases, Ii(r) (t), are first smoothed,
s then multiplied with the inverse of the reporting rate rr, and the product
100 is used as the mean of Poisson distribution (Supplementary Text, and Table
w0 S5 and S6). The number of infected individuals, I;(¢), are selected at each
w1 time step from the distribution. This reconstruction methodology, used in
w2 previous infectious disease modeling work [31], gives the advantage of captur-
w03 ing tails of the epidemic curve in a realistic, continuous manner. Our model
w04 incorporates environmental parameters in the transmission rate to account
s for variation in vector population density. We use two weeks as the time step
w6 in our study, consistent with the generation interval and previous studies
a7 which model the transmission of dengue [32, 30] (Supplementary Text). The
ws  general TSIR model is defined via the following equations:

Lt +1) = &(zf)%ff” (t)e ()
Si(t) = Su{t — 1) — L(t) + pNi(t — 1) — 6Si(t — 1) (5)

a0 where I;(t), S;(t) and N;(t) are the infected, susceptible and total population
s during time step ¢ in spatial unit ¢, p is the bi-weekly birth rate, ¢ is the bi-
a2 weekly death rate, a; is the mixing coefficient in spatial unit ¢, and 3;(t) is the

14
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a3 transmission coefficient during time step . The error term ¢ is assumed to
a2 be an independent and identically log-normally distributed random variable.
415 We endogenize containment activities in the transmission coefficient g;(t).
a6 This decision reflects the fact that containment activities reduce the contact
a7 rate between humans and mosquitoes, which results in a reduction of the
s transmission rates from human to mosquito to human [33]. The transmission
a0 coefficient § for equation 4 is parameterized as:

log(Bi(t)) =Y 0uCialt — 1) + > 0;E;(t — ;) + 0,D;(t) (6)

20 where [, and [; are time steps containment activities a and environmental
w1 parameters j were lagged respectively (Supplementary Text). C;.(t — l,)
222 is the number of times per squared kilometer containment activity a was
25 performed in spatial unit ¢ during week (¢t —[,). E;(t — ;) is the value of
2« environmental parameter j during week (¢ — ;). D;(t) is the population
w5 density in spatial unit . The residual effect of each containment activity is
26 added based on existing knowledge (see section Transmission cycle of dengue
»27 and timing and residual effect of containment activities in Supplementary
428 Text).

429 To calculate the value of ;(t), the value of § for each town at each time
s0 step, a single model is used to find the best fit for parameters: 6,, 0;, 0,,
a1 based on the number of each containment activity and environmental pa-
.32 rameters as well as all non-zero cases data point in each town, 7, at every
s time step (equation 6). We use Shape constrained additive model (SCAM)
s to fit this relationship. Shape constrained additive models are an extension
a5 of generalized additive models (GAMs) which provide the advantage of using
16 existing knowledge about the relationship of the response variable with the
s explanatory variables [34, 35]. This prevents noise from being included in the
a8 shape of splines from the GAM. Containment activities are modeled as mono-
a0 tonically decreasing splines while environmental parameters and population
w0 density are modeled as monotonically increasing splines. The smoothing pa-
w1 rameters are estimated using maximum likelihood. Finally, using estimates
w2 of 0, 0;, and 6, from the SCAM model and equation 6 and 7, we identify the
w3 variation in Ry (reproductive number of dengue) by variation in the amount
was  of each containment activity. The Ry is calculated by the following equation:

445

Ry, (1) = 227 (7)
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us  where, 7 is the recovery rate and is equal to 1 time step in our study, given
w7 the fact that infected patients are immediately admitted in the hospital and
ws removed from the infected population. The reproductive number can be
uo  defined as the number of secondary infections a primary infection can cause
0 over the course of its infectious period [36]. If Ry is greater than 1, then the
ss1 disease will spread exponentially, while an Ry below 1 means that the disease
«52 will not spread.
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