1 TITLE

2	Plasticity and environmental heterogeneity predict geographic resilience patterns of foundation
3	species to future change
4	AUTHORS
5	Luca Telesca, ^{1,2*} Lloyd S. Peck, ² Trystan Sanders, ³ Jakob Thyrring, ^{4,5} Mikael K. Sejr, ^{4,5} Elizabeth
6	M. Harper ^{1*}
7	AFFILIATIONS
8	¹ Department of Earth Sciences, University of Cambridge, CB2 3EQ Cambridge, UK.
9	² British Antarctic Survey, CB3 0ET Cambridge, UK.
10	³ GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany.
11	⁴ Department of Bioscience, Arctic Research Centre, Aarhus University, 8000 Aarhus C, Denmark.
12	⁵ Department of Bioscience, Marine Ecology, Aarhus University, 8600 Silkeborg, Denmark.
13	* Corresponding authors: Luca Telesca, email: lt401@cam.ac.uk; Elizabeth M. Harper, email:
14	emh21@cam.ac.uk

15 ABSTRACT

Although geographic patterns of species' sensitivity to global environmental changes are defined 16 by interacting multiple stressors, little is known about the biological mechanisms shaping regional 17 differences in organismal vulnerability. Here, we examine large-scale spatial variations in 18 biomineralisation under heterogeneous environmental gradients of temperature, salinity and food 19 availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell 20 production and composition, from juveniles to large adults, mediates geographic patterns of 21 resilience to climate change in critical foundation species, the mussels *Mytilus edulis* and *M*. 22 23 trossulus. We find mussels produced thinner shells with a higher organic content in polar than temperature regions, indicating decreasing shell calcification towards high latitudes. Salinity was 24 the major driver of regional differences in mussel shell deposition, and in shell mineral and organic 25 composition. In low-salinity environments, the production of calcite and organic shell layers was 26 increased, providing higher resistance against dissolution in more corrosive waters. Conversely, 27 under higher-salinity regimes, increased aragonite deposition suggests enhanced mechanical 28 protection from predators. Interacting strong effects of decreasing salinity and increasing food 29 availability on the compositional shell plasticity in polar and subpolar mussels during growth 30 31 predict the deposition of a thicker external organic layer (periostracum) under forecasted future environmental conditions. This marked response potential of Mytilus species suggests a capacity 32 for increased protection of high-latitude mussel populations from ocean acidification. Our work 33 34 illustrates that mechanisms driving plastic responses to the spatial structure of multiple stressors can define geographic patterns of unforeseen species resilience to global environmental change. 35

36 INTRODUCTION

Unprecedented global environmental changes are driving scientists towards increased 37 understanding of the mechanisms underlying geographic variation in species' responses to future 38 environmental conditions (1, 2). However, our ability to forecast emergent ecological 39 consequences of climate change on marine populations, communities and ecosystems remains 40 41 limited (3). Ecosystem-wide projections are severely constrained by heterogeneous patterns of ocean warming and acidification (4), multiple interacting stressors (5), and species-specific 42 effects (6), as well as predictive models which often exclude important biological mechanisms 43 when projecting changes to species and ecosystems in response to climate change (2). A better 44 mechanistic understanding of the biological processes and environmental sources mediating 45 species' responses to disturbances is critical for building the theoretical baseline necessary to 46 forecast the combined effects of multiple emerging stressors (2, 3). 47

48 Advances in macroecology suggest that permanent environmental mosaics, defined by spatial overlaps of non-monotonic environmental gradients (7), as well as regional adaption or 49 acclimatization (8-10), dictate geographic variations in species performance and sensitivity to 50 51 environmental change in marine ecosystems. Key to these works is that responses vary among populations and individual taxa (6, 8), which often play disproportionately strong roles in 52 structuring benthic communities (11). Thus, species-specific biological mechanisms driving 53 organismal variability may shape differential regional responses of foundation species to co-54 occurring multiple drivers. This can establish spatial patterns of unexpected susceptibility of 55 marine communities to future conditions. 56

57 Climate change is considered a major threat to marine ecosystems worldwide, with ocean warming 58 and acidification profoundly affecting species life history and ecology (6, 10), as well as

community structure and ecosystem dynamics (11, 12). Species producing calcium carbonate 59 $(CaCO_3)$ shells and skeletons are possibly experiencing the strongest impacts of rapid 60 environmental changes (6). Knowledge on their sensitivity is derived largely from experimentally 61 induced responses in model organisms (1, 6), while complex variations under multiple stressors 62 have rarely been investigated in natural environments (7, 11-13). Therefore, inferences made from 63 64 experimental studies can be misleading and not fully applicable to marine ecosystems (9). Indeed, species-specific mechanistic responses to habitat alterations (14) on top of mixed outcomes of 65 environmental interactions (additive, synergistic or antagonistic) make future ecosystem 66 predictions extremely challenging. This leaves open the question: do differences in biological 67 mechanisms, shaping regional calcifiers' responses to interacting environmental stressors, define 68 geographic patterns of unforeseen species sensitivity or resilience to global environmental change? 69 A body of research has focused on responses of marine calcifiers to altered water chemistry (1, 6), 70 but studies have rarely considered changes in biogeochemical cycles that strongly mediate 71 biological responses to environmental alterations (4). Among those, a marked intensification of 72 the global water cycle in response to warming $(+4\% \text{ for } +0.5^{\circ}\text{C})$ has been documented over recent 73 decades through changes in ocean salinity (15). Salinity is a major ecological factor dictating 74 75 survival of aquatic organisms and ecosystem functioning. Multidecadal studies have revealed a global salinity pattern following the "rich-get-richer" mechanism, where salty ocean regions 76 (compared to the global mean) are getting saltier (mid-latitudes), whereas low salinity regions are 77 78 getting fresher (tropical convergence zones and polar regions) (15). In a future $2-3^{\circ}$ C warmer world (16), a substantial 16-24% intensification of the global water cycle is predicted to occur 79 80 making salinity gradients much sharper (15). However, emergent ecological effects of changing 81 salinity on calcifying species and marine communities are largely unknown.

Atlantic mussels, *Mytilus edulis* and *M. trossulus*, are important bed-forming foundation species throughout the eulittoral ecosystems of the northern hemisphere (up to 90% of epibenthic biomass), and represent valuable resources for aquaculture (192,000 t produced in 2015 worth 325 million USD) (*17*). Growing awareness of the consequences of climate change on biodiversity and industry that *Mytilus* species support have stimulated a number of studies to estimate the response potential of these habitat-forming calcifiers to changing ocean conditions (*18–20*).

Calcareous shells perform a range of vital functions including structural support and protection 88 against predators. Because shell integrity determines survival, shell traits are subject to strong 89 90 selection pressure with functional success or failure a fundamental evolutionary driver. Mytilus shell consists of three layers (Fig. 1A-B): (1) the outer organic periostracum, (2) the calcified 91 92 prismatic and (3) nacreous layers. The periostracum provides the substrate and a protected 93 environment for shell secretion, and is made of sclerotized proteins, protecting shells from 94 corrosive, acidic waters as well as predatory and endolithic borers (21). The prismatic and nacreous 95 layers are composed of different mineral forms of CaCO₃, calcite and aragonite respectively, dispersed in an organic matrix (22). These calcareous layers are characterized by different 96 97 microstructures and more (e.g. aragonite) or less (e.g. calcite and organics) soluble components the combination of which determines chemical and mechanical shell properties (23). Differences 98 in energetic costs of making shell components (13) combined with future shifts in environmental 99 gradients (4) may influence variations in shell production, composition and structure, shaping 100 101 regional patterns of shell strength and resistance to acidification.

102 *Mytilus* growth, biomineralisation and fitness are linked to multiple drivers, including water 103 temperature, salinity and food supply [chlorophyll-*a* (Chl-*a*) concentration] (24, 25). In the North 104 Atlantic and Arctic Oceans, these key environmental factors vary heterogeneously with latitude (Fig. 1C-D), encompassing a range of conditions predicted under different future climate change
 scenarios (*16*). Here we hypothesize that biological mechanisms driving spatial variations in shell
 production, mineral and organic composition: i) shape regional differences in the responses of
 Mytilus species to interacting environmental drivers, and ii) define geographic patterns of
 unanticipated mussel vulnerability in the face of global environmental changes.

Despite projected environmental alterations (4, 15), salinity gradients have been overlooked in large-scale models predicting emergent effects of climate changes on marine organisms. This knowledge is essential to predict whether environmental changes affect shell variability (i.e. thickness, mineral and organic content) and its properties, especially in calcifying foundation species such as *M. edulis* and *M. trossulus*. These factors are crucial for understanding species susceptibility to other rapidly emergent stressors, such as warming and acidification (3).

In this study, we examine the relationships between the plasticity in *Mytilus* shell production and 116 117 composition (from juveniles to large adults) and interactive environmental gradients of temperature, salinity and Chl-a concentration in 17 populations spanning a latitudinal range of 30° 118 (3,334 km) across the Atlantic-European and Arctic coastline (Fig. 1C-D). In particular, we test 119 120 for a latitudinal effect on *Mytilus* shell calcification (variation in shell thickness and organic content) that we hypothesize will show a general decrease from temperate to polar regions. We 121 also identified environmental sources and magnitude of regional variations in shell deposition, to 122 123 test whether salinity affects shell production and mineral composition during growth, driving changes of mechanical and chemical shell properties. Finally, we modelled spatial trends in the 124 125 production of individual shell layers with environmental gradients, to test whether biological mechanisms, driving variations in shell structure and properties, shape regional responses of 126

- 127 *Mytilus* to interacting stressors (especially salinity) and define geographic patterns of sensitivity 128 to future changes.
- 129

130 **RESULTS**

- Generalized linear (mixed) models, GL(M)Ms, were used to explain shell thickness and composition, from juveniles to large adults, with respect to latitude and environmental drivers, and to compare between the individual shell layers.
- 134
- 135

5 Latitudinal patterns of shell deposition

GLMMs indicated a general decrease of *Mytilus* whole-shell thickness with increasing latitude from warm-temperate to polar regions (Fig. 2A). We detected a significant negative relationship between the prismatic layer thickness and latitude (Fig. 2A), while no variation in nacreous thickness, periostracum thickness and relative proportion of prismatic layer thickness (calcite%) was found (table S1). Shell length was positively correlated with thickness in all layers indicating thickness during growth (table S1).

142 The weight proportion (wt%) of organic content in the prismatic layer was modelled with a GLM 143 as a function of collection site and shell thickness. Prismatic layers were characterized by a 144 significantly higher organic content (lower proportion of $CaCO_3$) in mussel shells from polar than 145 temperate regions, indicating decreased shell calcification at higher latitudes (Fig. 2B). Polar shells [sites 15, 16; mean (SD) = 1.8 wt% (0.31)] were characterized by an average of 29% more organic 146 147 content compared to temperate mussels [sites 1, 11; mean (SD) = 1.4 wt% (0.16)]. The organics wt% was negatively correlated with prismatic thickness (Fig. 2C), indicating a lower proportion 148 of CaCO₃ and thinner, so less calcified, shells at polar latitudes. 149

151 Environmental influence on shell production and composition

Individual GLMMs were fitted to explain spatial variations in the whole-shell thickness, 152 periostracum thickness and calcite% with environmental gradients during shell growth. We 153 identified significant trends in shell thickness with environmental gradients depending on the shell 154 155 measurement considered (Fig. 3A-E, fig. S1, Table 1). Whole-shell thickness was positively related to temperature, salinity and shell length, but there was no influence of Chl-a ($cR^2 = 0.93$; 156 Fig. 3A). Salinity had an effect on shell thickness that was 3.4 and 2.1 times larger than temperature 157 and length, respectively (Fig. 3A, Table 1). We detected a negative relationship between calcite% 158 and salinity (95% CI = -12.03 to -2.38, $cR^2 = 0.56$) (Fig. 3B, table S2), with none of the other 159 drivers having a significant effect. 160

Prismatic and nacreous layers thickness were analysed within the same GLMM. After model selection, fixed continuous covariates of the optimal model, equation (1), were the standardised *temperature*, *salinity*, *Chl-a* concentration and shell *length* in addition to shell *layer* (categorical, two levels: prismatic and nacreous) and their interactions. The random component was the collection *site* used as a random intercept. The model was of the form:

$$\begin{aligned} \ln(Thickness_{ijk}) &\sim N(\mu_{ijk}; \sigma_j^2) \\ \mu_{ijk} &= Temperature_{ik} + Salinity_{ik} + Chl - a_{ik} + Length_{ik} + Layer_j \\ &+ Temperature_{ik} \times Layer_j + Length_{ik} \times Layer_j + Site_{ij} \end{aligned}$$
(1)
$$Site_{ij} \sim N(0; \sigma_{Site}^2)$$

where *Thickness*_{ijk} is the *k*th thickness observation from layer *j* (*j* = prismatic, nacreous) and site *i* (*i* = 1,..., 17). *Site*_{ij} is the random intercept for layer *j*, which is assumed to be normally distributed with mean 0 and variance σ_{Site}^2 .

Sea surface temperature, salinity and shell length all successfully predicted ($cR^2 = 0.93$) variations 170 in the thickness of prismatic and nacreous layers, while no influence of Chl-a was detected (Table 171 1). The mean effect size of salinity on the response was twice as large as the effect of shell length, 172 while it was 2.9 and 4.7 times larger than the effect of temperature on the prismatic and nacreous 173 layers, respectively (equation (2), Fig. 3C-D). This indicates salinity had a stronger contribution 174 175 to predicting shell structure than the effects of temperature, Chl-a and shell length combined (Fig. 4).

 $\mu_{ijk} =$ (2)177 $(5.907+0.138 \times Temperature+0.396 \times Salinity+0.028 \times Chl-a+0.197 \times Length)$ Prismatic $5.853 + 0.138 \times Temperature + 0.654 \times Salinity + 0.028 \times Chl-a + 0.308 \times Length$ Nacreous

Interactions between shell layer and both salinity and shell length (equation (2)) indicate deposition 178 179 of proportionally thicker prismatic layers under low salinities and proportionally thicker nacreous layers under higher salinities across the entire range of shell lengths (Fig. 4). 180

181

176

Periostracum plasticity 182

Models of periostracum thickness revealed significant exponential relationships with Chl-a and 183 shell length ($cR^2 = 0.81$) (Table 1). Length had a mean effect that was 3 times larger than Chl-a 184 (Fig. 3E), showing a rapid thickening of the periostracum during shell growth. The interactions 185 between shell length and both salinity and temperature indicate that the effects of these variables 186 187 on periostracum were interdependent. At low salinities, the higher values of shell length had a greater positive effect on periostracum thickness, while the reverse was true for higher 188 temperatures having a marginal effect only on thickening rates (Fig. 5A-B). This suggests that 189 190 increasing shell size was a more important factor for periostracum growth in fresher waters than in relatively saltier conditions. 191

192

193 Among-site shell variation

GLMMs showed no difference in collection site-level effects (conditional modes) on each thickness measurement (Fig. 5C). This indicated no residual effect of species identity or hybridization on the thickness of individual shell layers at different sites after accounting for the effects of environmental factors and shell length.

198

199 **DISCUSSION**

Our results demonstrate that plasticity in shell production in *Mytilus* species and the spatial 200 structure of environmental conditions drive geographic variations in shell responses shaping 201 regional differences in the resilience of these foundation species to global environmental change. 202 An understanding of the biological mechanisms driving regional species' responses to multiple 203 interacting stressors is crucial for improving predictive accuracy and informing more realistic 204 205 projections of species and ecosystem resilience to climate change (2). Heterogeneous populationlevel responses from different climates suggest that environmental stressors, especially salinity, 206 drive regional variations in *Mytilus* shell production, mineral (prismatic and nacreous) and organic 207 208 (periostracum) composition during growth, which is reflected in the relative proportion of each shell layer. Variations in shell production and composition determine geographic differences in 209 210 chemical and mechanical protection of shells, shaping the vulnerability of these habitat-forming 211 species to future conditions.

Decreasing shell calcification (increasing organic content and thinner shells) towards high latitudes (Fig. 2) supports documented patterns of skeletal production (*13*, *26*). Two explanatory paradigms exist for decreased skeletal size at higher latitudes: increased calcification costs (*13*) and reduced

predation pressure (27). Given the higher production cost of organics than $CaCO_3$ deposition (13) 215 and problematic protein production at polar temperatures (28), we might expect a reduced 216 proportion of organic matrix. Moreover, decreasing predation pressure (27) should result in thinner 217 shells of the same composition irrespective of geographic area. However, the wt% of organic 218 matrix was higher at Arctic latitudes. This could suggest either (or a combination of) a marked 219 220 increase in the cost of calcification in polar regions (13), altering significantly the relative costs of CaCO₃ and organics production, or a decreased saturation state (increased dissolution) of CaCO₃ 221 due to low temperatures and, more importantly, salinity (low $[Ca^{2+}]$ availability) (25). In either 222 case, these underlying effects would result in decreased shell calcification at high latitudes. This 223 increased proportion of organic matrix could protect the calcified shell components from 224 dissolution and have an adaptive beneficial effect in more corrosive conditions. 225

226 Our results illustrate that different drivers significantly affect both shell thickness and composition 227 in *Mytilus* (Fig. 3). For over 60 years, temperature and shell size have been considered key drivers 228 of CaCO₃ shell mineralogy across latitudes, dictating the formation of predominantly aragonitic structures in temperate regions and increased calcite precipitation in cold climates (29-31). 229 Although our study partly supports previous findings, we demonstrate that salinity has the 230 strongest influence on shell production and composition in *Mytilus*, which is contrary to the general 231 assumption of temperature and shell size being the primary drivers of shell compositional 232 plasticity. 233

The interaction between shell layer, salinity and shell size indicates heterogeneous, age-related compositional changes in *Mytilus* shells across different salinities (Fig. 4A). Shifts in shell properties from juveniles to large adults are strongly modulated by salinity, which leads to the formation of exclusively prismatic-dominated shells in brackish waters and nacreous-dominated structures under marine conditions (Fig. 4B). These patterns, which we show were independent of species or hybrid status (Fig. 5C), indicate that mussel shell plasticity during growth (the *Length* \times *Layer* interaction, equation (1)) has an indirect effect on layer thickness by allowing salinityinduced compositional changes and, therefore, the production of the most appropriate shell structure for specific environmental conditions.

- Under current scenarios, plasticity in shell production could confer *Mytilus* species an advantage when facing different water chemistries and predation levels. In fact, at high-latitudes and in the Baltic region, where durophagous (shell-breaking) predators are rare or absent and the water is more corrosive (*13*, *27*), mussels are characterized by thinner, prismatic-dominated shells, providing a generally higher protection from dissolution. Conversely, at mid-latitudes, where durophagous predators are more abundant and the CaCO₃ solubility of the water is lower (*13*), mussels display thicker, nacreous-dominated shells with higher mechanical resistance.
- 250 Despite rapid global changes in the water cycle and salinity gradients (15), *Mytilus* species shows 251 a strong capacity to respond to heterogeneous environments. This plasticity in shell production 252 could help to mitigate the emergent negative effects of changing water chemistry. In fact, the 253 interacting effects of salinity and shell length, as well as a minor influence of temperature, on the 254 periostracum (Fig. 5A-B), which represents a strong chemical barrier to dissolution in molluscs 255 (21, 32, 33), suggest enhanced periostracal thickness under decreasing salinities could mediate 256 impacts of ocean acidification.

Although populations in high-latitude ecosystems will experience globally the most rapid acidification (4), the concurrent decrease in salinity predicts thicker prismatic layers and periostraca will be produced which increase protection from higher solubility conditions. Conversely, in temperate areas, increasing salinity would determine deposition of thicker shells and a relatively thicker nacreous layer and thinner periostracum, favouring mechanical shell resistance. However, predicted changes in periostracal thickening rate under different salinities depend on shell size and would be more evident in larger individuals (length > 48 mm) (Fig. 5A).

In Greenland, where the rate of melting of the ice sheet has doubled in the last decade (34), low 264 salinities during summer (< 20 psu) and high productivity (food supply) in coastal areas and fjords 265 (35) predict formation of thicker periostraca and increased relative thickness of organic-enriched 266 267 (high wt%) calcitic layers. These changes could make Arctic *Mytilus* populations more resilient to 268 future acidification. Differently, in the Baltic Sea, the forecasted decrease in salinity (maximum 45% reduction) (36), combined with a considerable physiological stress, would be particularly 269 270 critical for mussels inhabiting already unfavourable conditions for calcification (salinity from 22 psu to 3 psu, low water $[Ca^{2+}]$, and CaCO₃ saturation state) (25). Moreover, the reduced shell size 271 272 of Baltic *Mytilus* does not predict formation of thicker periostraca, which would further increase 273 vulnerability to dissolution. Impacts of changing salinity on this habitat-forming species, which contributes up to 90% of the Baltic benthic biomass, could strongly affect the ecosystem, most 274 likely resulting in substantial range restrictions towards higher salinity areas. 275

Although our results strongly support the hypothesis that biological mechanisms for variations in shell production can shape regional responses in *Mytilus*, changes of other biological drivers, such as predation pressure and primary production, could also have profound influences (*13*, *37*). In fact, as temperature rises, durophagous predators could expand their ranges towards polar regions (*38*), suggesting an increased vulnerability of thin-shelled individuals. However, predicted northward phytoplankton expansions and an overall increase in primary production at high latitudes (*37*), could favour periostracal growth potential in *Mytilus* and, thus, increased resistance
to dissolution for all the size classes in polar and subpolar regions.

Mytilus shells have a thick periostracum and a marked compositional plasticity compared to other calcifiers that often compete with it for space (e.g. barnacles and spirorbid polychaetes). This layer provides a strong defence against shell dissolution allowing mytilids to survive in oligohaline waters (~5 psu) and extremely acidified conditions (e.g. hydrothermal vents) (*33*). These factors may shift the ecological balance and community structure in favour of species with stronger resistance to corrosive conditions, such as mussels, when ocean waters become fresher and more acidic in future decades.

291 As hypothesised, plasticity in shell production and the spatial structure of environmental conditions drive regional differences in *Mytilus* shell deposition and composition, shaping spatial 292 patterns of chemical and mechanical shell properties. Overall, mussel shell calcification decreased 293 towards high latitudes, with salinity being the major driver of geographical variations in shell 294 production, mineral and organic composition. The marked compositional plasticity in calcareous 295 shell components (prismatics and nacreous layers) suggest an higher resistance against dissolution 296 297 for mussels in polar, low-salinity environments, and an enhanced mechanical shell protection from predators in temperate, higher-salinity regions. The strong response potential of *Mytilus* shell 298 periostracum to heterogeneous environments predicts an increased resilience to ocean acidification 299 300 in polar and sub-polar mussels, and a higher sensitivity of Baltic populations under future environmental conditions. 301

In conclusion, our findings demonstrate that biological mechanisms, driving spatial variability of mussel responses to interacting environmental factors, shape the complex geographic pattern of

shell deposition and properties, dictating regional differences in Mytilus species sensitivity to 304 future environmental change. As the magnitude of anthropogenic impacts continue to increase, 305 further studies are need to better understand the key biological processes mediating species' 306 response to habitat alterations, especially for those having both high climate sensitivity and 307 disproportionately strong ecological impacts in shaping marine communities. This knowledge 308 309 underpins our ability to predict accurately and reduce the damaging effect of climate change on future biodiversity under any range of scenarios (2). Our study has important implications because 310 it clarifies the links between (i) the mechanisms of biological variation, (ii) the predicted shift in 311 312 spatial co-occurrence of multiple environmental drivers, and (iii) regional differences in the plastic responses and sensitivity of calcifying, foundation species to changing habitats. This 313 understanding is of critical importance for making realistic projections of emergent ecological 314 effects of global environmental changes, such as altered salinity regimes, and to improve our 315 predictive accuracy for impacts on marine communities and ecosystems, and the services they 316 317 provide.

318

319 MATERIALS AND METHODS

320 *Mytilus* collection

We sampled individuals from a total of 17 *Mytilus (Mytilus edulis* and *M. trossulus)* populations along the North Atlantic, Arctic and Baltic Sea coastlines from four distinctive climatic regions (warm-temperate, cold-temperate, subpolar and polar) covering a latitudinal range of 30° (a distance of 3,334 km), from Western European (Brest, North-West France, 48°N) to Northern Greenlandic (Qaanaaq, North-West Greenland 78°N) coastlines (Fig. 1C). During December 2014 - September 2015, mussels of various size classes for each site (shell length 26-81 mm) were sampled from the eulittoral zone on rocky shores for a total of 424 individuals (table S3). For each
 specimen, shell length was measured with digital calipers (0.01 mm precision) and used as a
 within-population proxy for age.

We analysed *Mytilus* populations of which the genetic structure was known, with particular focus on species identity and hybrid status (*M. edulis* \times *M. trossulus*). *Mytilus* shells used were either from specimens already evaluated in genetic investigations or mussels obtained from sites routinely used in regional monitoring programs that provided information on species identity (table S3). Areas where the Mediterranean mussel, *Mytilus galloprovincialis*, was present were avoided. We did, however, sample few sites with very low levels of *M. edulis* \times *M. galloprovincialis* hybridization.

337

338 Mussel shell preparation

We set left shell valves in polyester resin (Kleer-Set FF, MetPrep, Coventry, U.K.) blocks. 339 340 Embedded specimens were sliced longitudinally along their axis of maximum growth (Fig. 1A) using a diamond saw and then progressively polished with silicon carbide paper (grit size: P800-341 342 P2500) and diamond paste (grading: 9-1 μ m). Photographs of polished sections (Fig. 1B) were acquired with a stereo-microscope (Leica M165 C equipped with a DFC295 HD camera, Leica, 343 Wetzlar, Germany) and shell thickness (µm) was measured using the Fiji software (v1.51u). Since 344 larger individuals had undergone evident environmental abrasion or dissolution which removed 345 the periostracum and prismatic layer closer to the umbo, we estimated the thickness of the whole-346 shell, prismatic and nacreous layers at the midpoint along the shell cross-section. The proportion 347 of calcite was estimated as 348

349

calcite% = (prismatic thickness / whole-shell thickness) \times 100

Periostracum thickness was measured at the posterior edge where it attaches to the external side of the prismatic layer, to estimate the fully formed organic layer that was unaffected by decay or abrasion (*21*).

353

354 **Organic content analyses**

We performed thermogravimetric analyses (TGA) to estimate the weight proportion (wt%) of 355 organic matrix within the prismatic layer. Mytilus edulis specimens were selected from four 356 populations (sites 1, 11, 15, 16) to explore differences in shell organic content under temperate 357 and polar regimes. We removed the periostracum by sanding, and prismatic layer tiles (8×5 mm, 358 $N = 20 \times 4$ sites) were isolated along the posteroventral shell margin. Tiles were cleaned, air-dried 359 and then finely ground. We tested ten milligrams of this powdered shell with a thermogravimetric 360 analyser (TGA Q500, TA Instruments, New Castle, DE, U.S.A.). Samples were subjected to 361 constant heating from ~25°C to 700°C at a linear rate of 10°C min⁻¹ under a dynamic nitrogen 362 atmosphere and weight changes were recorded (Supplementary Material and Methods). We 363 estimated the wt% of organic matter within the shell microstructure as the proportion of weight 364 loss during the thermal treatment between 150°C and 550°C (fig. S2). 365

366

367 Environmental characterization

We selected three key environmental drivers based on their known influence on mussel growth, their level of collinearity across the geographic scale investigated and the forecasted major ocean alterations under climate change (16). For each site, measurements of sea surface temperature, salinity and Chl-a concentration, the latter being used as a proxy for food supply (24), were generated using the Copernicus Marine Environment Monitoring Service (CMEMS) (http://marine.copernicus.eu/). These climate datasets are composed of high-resolution physical and biogeochemical assimilated (integration of observational and predicted information) daily data (N = 2,191 per parameter) (see data file S1). To provide a first order approximation of the water conditions prevailing during the near-maximum rates of shell deposition (*30*), we expressed parameters as mean May-October values averaged over the 6-year period 2009-2014 and used these as input variables (Fig. 1D, table S4).

Direct environmental monitoring for each site was not feasible due to the number of populations analysed, their geographic range (> 3,300 km) and the temporal resolution (6 years) required to estimate the average growth conditions during the lifespan of sampled specimens. For this largescale study, remote-sensing and assimilated data presented potential advantages compared to traditional measurements due to their high spatio-temporal resolution, advanced calibration and validation (i.e. high correlation with discrete field measurements).

385

386 Statistical analysis

387 GLMMs were applied to account for the hierarchical structure of the dataset consisting of multiple 388 specimens (N = 24-26 replicates) from each collection site and to generalize our results to *Mytilus* 389 populations beyond the study sample.

We carried out data exploration following the protocol of Zuur *et al.* (*39*). Initial inspection revealed no outliers. Pairwise scatterplots and variance inflation factors (VIFs) were calculated to check for collinearity between input variables. VIF values < 2 indicated an acceptable degree of correlation among covariates to be included within the same model. We applied residual regression to uncouple the unique from the shared contribution of temperature and Chl-*a* concentration to the response (*40*). This allowed us to account for the existing causal link between these two parameters

and to avoid inferential problems from modelling non-independent covariates without losing 396 explanatory power (40). To directly compare model estimates from predictors on different 397 measurement scales, estimate biologically meaningful intercepts and interpret main effects when 398 interactions are present, we standardised all the input variables (environmental parameters and 399 shell length). For standardisation, we subtracted the sample mean from the variable values and 400 divided them by the sample standard deviation $[z_i = (x_i - \bar{x})/\sigma_x]$. Preliminary inspection of 401 residual patterns showed heteroscedasticity in most models. The use of different continuous 402 probability distributions (i.e. gamma) and link functions did not stabilize the variance, therefore a 403 In-transformation of the response was required, except for calcite% and wt% measurements. 404 Response variables did not require further transformations. 405

We used separate GLMMs to explore patterns of shell thickness of individual layers with latitude and shell length (size). The proportion (wt%) of organic matrix (N = 80) was modelled as a function of site (categorical, four levels) and prismatic thickness (continuous) to test for differences between polar and temperate regions and association with shell thickness. The response variable was coded as a value from 0 to 1; therefore, we used a GLM with a beta distribution and a logistic link function. Pair-wise contrasts with a Bonferroni correction were then used to test for differences in wt% among sites within and between climatic regions.

Different approaches were used to investigate the relationships between shell thickness and environmental gradients. Whole-shell thickness, periostracum thickness and calcite% were modelled separately (N = 424 each). Prismatic and nacreous layer thickness were analysed within the same GLMM, allowing the simultaneous prediction of common and divergent environmental effects on both layers and to reduce the probability of type I error. To model shell thickness (N = 418 424×2 layers) as a function of the environmental predictors we used a GLMM with a normal 419 distribution (equation (1)). In the initial model, fixed continuous covariates were the standardised 420 temperature, salinity and Chl-*a* in addition to shell layer (categorical, two levels) and their two-421 way interactions. Shell length (continuous) was included to control for possible effects of within 422 population age on layer thickness. To incorporate the dependency among observations for a 423 specific layer from the same collection site, we used site as a random intercept.

Models were optimized by first selecting the random structure and then the optimal fixed 424 425 component. The principal tools for model comparison were the corrected Akaike Information 426 Criterion (AICc) and bootstrapped likelihood ratio tests. Random terms were selected on prior knowledge of the dependency structure of the dataset. Visual inspection of residual patterns 427 428 indicated violation of homogeneity in most cases. This required the use of variance structures 429 (generalized least squares) allowing the residual spread to vary with respect to shell layer. The 430 fixed component was optimized by rejecting only non-significant interaction terms that minimized 431 the AICc value. For all model comparisons, variation of AICc between the optimal (lowest AICc value) and competing models were greater than 8, and fixed-effect estimates were nearly identical, 432 433 indicating that competing models were very unlikely to be superior (41). The proportion of variance explained by the models was quantified with conditional or pseudo determination 434 coefficients (cR² or pseudoR²). We used variograms to assess the absence of spatial 435 autocorrelation. Final models were validated by inspection of standardised residual patterns to 436 437 verify GLMM assumptions of normality, homogeneity and independence. We used optimal models to estimate the mean effect sizes (same measurement scale) of environmental drivers on 438 the response. Ninety-five per cent confidence intervals (95% CI) for the regression parameters 439 were generated using bias-corrected parametric bootstrap methods (10,000 iterations). 95% CIs 440

441		were used for statistical inference due to estimation of approximated significance values (P-value)
442		in mixed-modelling. If the confidence intervals did not overlap zero, then the effect was considered
443		significant. All data exploration and statistical analyses were performed in R (v3.4.1) (for packages
444		see table S5).
445		
446	REF	ERENCES
447	1.	I. Nagelkerken, S. D. Connell, Global alteration of ocean ecosystem functioning due to increasing
448		human CO ₂ emissions. Proc. Natl. Acad. Sci. U.S.A. 112, 13272–13277 (2015).
449	2.	M. C. Urban, G. Bocedi, A. P. Hendry, JB. Mihoub, G. Peer, A. Singer, J. R. Bridle, L. G.
450		Crozier, L. De Meester, W. Godsoe, A. Gonzalez, J. J. Hellmann, R. D. Holt, A. Huth, K. Johst,
451		C. B. Krug, P. W. Leadley, S. C. F. Palmer, J. H. Pantel, A. Schmitz, P. A. Zollner, J. M. J.
452		Travis, Improving the forecast for biodiversity under climate change. Science. 353, aad8466
		(0010)

- 453 (2016).
- K. J. Kroeker, R. L. Kordas, C. D. G. Harley, Embracing interactions in ocean acidification
 research: confronting multiple stressor scenarios and context dependence. *Biol. Lett.* 13,
 20160802 (2017).
- 457 4. J. P. Gattuso, A. Magnan, R. Bille, W. W. L. Cheung, E. L. Howes, F. Joos, D. Allemand, L.
- 458 Bopp, S. R. Cooley, C. M. Eakin, O. Hoegh-Guldberg, R. P. Kelly, H. O. Portner, A. D. Rogers,
- 459 J. M. Baxter, D. Laffoley, D. Osborn, A. Rankovic, J. Rochette, U. R. Sumaila, S. Treyer, C.
- 460 Turley, Contrasting futures for ocean and society from different anthropogenic CO₂ emissions
- 461 scenarios. *Science*. **349**, aac4722 (2015).
- 462 5. D. L. Breitburg, J. Salisbury, J. Bernhard, W.-J. Cai, S. Dupont, S. Doney, K. Kroeker, L. Levin,
 463 W. C. Long, L. Milke, S. Miller, B. Phelan, U. Passow, B. Seibel, A. Todgham, A. Tarrant, And

464	on top of all that	Coping with ocean	n acidification in the	e midst of many stressors

465 *Oceanography*. **28**, 48–61 (2015).

- K. J. Kroeker, R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte, J.-P.
 Gattuso, Impacts of ocean acidification on marine organisms: quantifying sensitivities and
 interaction with warming. *Glob. Change Biol.* 19, 1884–1896 (2013).
- 469 7. K. J. Kroeker, E. Sanford, J. M. Rose, C. A. Blanchette, F. Chan, F. P. Chavez, B. Gaylord, B.
- 470 Helmuth, T. M. Hill, G. E. Hofmann, M. A. McManus, B. A. Menge, K. J. Nielsen, P. T.
- 471 Raimondi, A. D. Russell, L. Washburn, Interacting environmental mosaics drive geographic
- 472 variation in mussel performance and predation vulnerability. *Ecol. Lett.* **19**, 771–779 (2016).
- 473 8. P. Calosi, S. Melatunan, L. M. Turner, Y. Artioli, R. L. Davidson, J. J. Byrne, M. R. Viant, S.
- Widdicombe, S. D. Rundle, Regional adaptation defines sensitivity to future ocean acidification. *Nat. Commun.* 8, 13994 (2017).
- 476 9. C. A. Vargas, N. A. Lagos, M. A. Lardies, C. Duarte, P. H. Manríquez, V. M. Aguilera, B.
- Broitman, S. Widdicombe, S. Dupont, Species-specific responses to ocean acidification should
 account for local adaptation and adaptive plasticity. *Nat. Ecol. Evol.* 1, 0084 (2017).
- 479 10. L. S. Peck, Oceanogr. Mar. Biol., in press.
- G. V. Ashton, S. A. Morley, D. K. A. Barnes, M. S. Clark, L. S. Peck, Warming by 1°C drives
 species and assemblage level responses in Antarctica's marine shallows. *Curr. Biol.* 27, 2698–
 2705.e3 (2017).
- L. S. Peck, M. S. Clark, D. Power, J. Reis, F. M. Batista, E. M. Harper, Acidification effects on
 biofouling communities: winners and losers. *Glob. Change Biol.* 21, 1907–1913 (2015).
- 485 13. S.-A. Watson, S. A. Morley, L. S. Peck, Latitudinal trends in shell production cost from the
 486 tropics to the poles. *Sci. Adv.* **3**, e1701362 (2017).

487	14.	M. S. Clark, U. Sommer, J. K. Sihra, M. A. S. Thorne, S. A. Morley, M. King, M. R. Viant, L. S.
488		Peck, Biodiversity in marine invertebrate responses to acute warming revealed by a comparative
489		multi-omics approach. Glob. Change Biol. 23, 318–330 (2017).
490	15.	P. J. Durack, S. E. Wijffels, R. J. Matear, Ocean salinities reveal strong global water cycle
491		intensification during 1950 to 2000. Science. 336, 455-458 (2012).
492	16.	B. Kirtman, S. B. Power, J. A. Adedoyin, G. J. Boer, R. Bojariu, I. Camilloni, F. J. Doblas-Reyes,
493		A. M. Fiore, M. Kimoto, G. A. Meehl, M. Prather, A. Sarr, C. Schär, R. Sutton, G. J. van
494		Oldenborgh, G. Vecchi, H. J. Wang, in Climate Change 2013: The Physical Science Basis.
495		Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
496		on Climate Change, T. F. Stocker, D. Qin, GK. Plattner, M. Tignor, S. K. Allen, J. Boschung, A.
497		Nauels, Y. Xia, V. Bex, P. M. Midgley, Eds. (Cambridge University Press, Cambridge, UK,
498		2013), pp. 953–1028.
499	17.	FAO, "FAO Yearbook. Fishery and Aquaculture Statistics. 2015" (Rome, 2017), (available at
500		http://www.fao.org/documents/card/en/c/68440a7a-2adb-416d-872b-b233eb44f6c9/).
501	18.	L. Telesca, K. Michalek, T. Sanders, L. S. Peck, J. Thyrring, E. M. Harper, Blue mussel shell
502		shape plasticity and natural environments: a quantitative approach. Sci. Rep. 8, 2865 (2018).
503	19.	J. Thyrring, M. Blicher, J. Sørensen, S. Wegeberg, M. Sejr, Rising air temperatures will increase
504		intertidal mussel abundance in the Arctic. Mar. Ecol. Prog. Ser. 584, 91-104 (2017).
505	20.	J. Thomsen, L. S. Stapp, K. Haynert, H. Schade, M. Danelli, G. Lannig, K. M. Wegner, F.
506		Melzner, Naturally acidified habitat selects for ocean acidification-tolerant mussels. Sci. Adv. 3,
507		e1602411 (2017).
508	21.	E. M. Harper, The molluscan periostracum: an important constraint in bivalve evolution.

509 Palaeontology. 40, 71–97 (1997).

510	22	A G Checa C M	Pina A I Osuna-Mascaró	A B Rodríguez-Navarro	E M Harner
510		11.0.010000.01111		$\mathbf{D}_{\mathbf{n}}$	L. M. Hupper,

511 Crystalline organization of the fibrous prismatic calcitic layer of the Mediterranean mussel

512 *Mytilus galloprovincialis. Eur. J. Mineral.* **26**, 495–505 (2014).

513 23. S. C. Fitzer, W. Zhu, K. E. Tanner, V. R. Phoenix, N. A. Kamenos, M. Cusack, Ocean

acidification alters the material properties of *Mytilus edulis* shells. J. R. Soc. Interface. 12,

515 20141227 (2015).

- J. Thomsen, I. Casties, C. Pansch, A. Körtzinger, F. Melzner, Food availability outweighs ocean
 acidification effects in juvenile *Mytilus edulis*: laboratory and field experiments. *Glob. Change*
- 518 *Biol.* **19**, 1017–1027 (2013).
- J. Thomsen, K. Ramesh, T. Sanders, M. Bleich, F. Melzner, Calcification in a marginal sea –
 influence of seawater [Ca²⁺] and carbonate chemistry on bivalve shell formation. *Biogeosciences*.
 15, 1469–1482 (2018).
- 522 26. S.-A. Watson, L. S. Peck, P. A. Tyler, P. C. Southgate, K. S. Tan, R. W. Day, S. A. Morley,
- Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation:
 implications for global change and ocean acidification. *Glob. Change Biol.* 18, 3026–3038
 (2012).
- 526 27. E. M. Harper, L. S. Peck, Latitudinal and depth gradients in marine predation pressure. *Glob.* 527 *Ecol. Biogeogr.* 25, 670–678 (2016).
- 528 28. L. S. Peck, A cold limit to adaptation in the sea. *Trends Ecol. Evol.* **31**, 13–26 (2016).
- H. A. Lowenstam, Factors affecting the aragonite:calcite ratios in carbonate-secreting marine
 organisms. *J. Geol.* 62, 284–322 (1954).
- J. G. Carter, R. Seed, in *Bivalves: an Eon of Evolution*, P. A. Johnston, J. W. Haggart, Eds.
 (University of Calgary Press, Vancouver, 1998), pp. 87–117.

533	31.	L. Ramajo, A. B. Rodriguez-Navarro, C. M. Duarte, M. A. Lardies, N. A. Lagos, Shifts in shell
534		mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Mar.
535		Freshw. Res. 66, 1147 (2015).
536	32.	V. L. Peck, G. A. Tarling, C. Manno, E. M. Harper, E. Tynan, Outer organic layer and internal
537		repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep-Sea Res.
538		<i>Pt. II.</i> 127 , 41–52 (2016).
539	33.	V. Tunnicliffe, K. T. A. Davies, D. A. Butterfield, R. W. Embley, J. M. Rose, W. W. Chadwick
540		Jr, Survival of mussels in extremely acidic waters on a submarine volcano. Nat. Geosci. 2, 344–
541		348 (2009).
542	34.	K. K. Kjeldsen, N. J. Korsgaard, A. A. Bjørk, S. A. Khan, J. E. Box, S. Funder, N. K. Larsen, J.
543		L. Bamber, W. Colgan, M. van den Broeke, ML. Siggaard-Andersen, C. Nuth, A. Schomacker,
544		C. S. Andresen, E. Willerslev, K. H. Kjær, Spatial and temporal distribution of mass loss from the
545		Greenland Ice Sheet since AD 1900. Nature. 528, 396–400 (2015).
546	35.	L. Meire, J. Mortensen, P. Meire, T. Juul-Pedersen, M. K. Sejr, S. Rysgaard, R. Nygaard, P.
547		Huybrechts, F. J. R. Meysman, Marine-terminating glaciers sustain high productivity in
548		Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).
549	36.	U. Gräwe, R. Friedland, H. Burchard, The future of the western Baltic Sea: two possible
550		scenarios. Ocean Dyn. 63, 901–921 (2013).
551	37.	S. Dutkiewicz, J. J. Morris, M. J. Follows, J. Scott, O. Levitan, S. T. Dyhrman, I. Berman-Frank,
552		Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim.
553		<i>Change</i> . 5 , 1002–1006 (2015).
554	38.	J. García Molinos, B. S. Halpern, D. S. Schoeman, C. J. Brown, W. Kiessling, P. J. Moore, J. M.
555		Pandolfi, E. S. Poloczanska, A. J. Richardson, M. T. Burrows, Climate velocity and the future

556		global redistribution of marine biodiversity. Nat. Clim. Change. 6, 83-88 (2016).
557	39.	A. F. Zuur, E. N. Ieno, C. S. Elphick, A protocol for data exploration to avoid common statistical
558		problems. Methods Ecol. Evol. 1, 3–14 (2010).
559	40.	M. H. Graham, Confronting multicollinearity in ecological multiple regression. Ecology. 84,
560		2809–2815 (2003).
561	41.	K. P. Burnham, D. R. Anderson, Model Selection and Multimodel Inference : a Practical
562		Information-Theoretic Approach (Springer-Verlag, New York, NY, USA, 2002).
563	42.	C. M. Zaremba, D. E. Morse, S. Mann, P. K. Hansma, G. D. Stucky, Aragonite-hydroxyapatite
564		conversion in gastropod (Abalone) nacre. Chem. Mater. 10, 3813-3824 (1998).
565	43.	T. Kijewski, B. Śmietanka, M. Zbawicka, E. Gosling, H. Hummel, R. Wenne, Distribution of
566		Mytilus taxa in European coastal areas as inferred from molecular markers. J. Sea Res. 65, 224-
567		234 (2011).
568	44.	N. Bierne, P. Borsa, C. Daguin, D. Jollivet, F. Viard, F. Bonhomme, P. David, Introgression
569		patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Mol. Ecol.
570		12 , 447–461 (2003).
571	45.	T. Hilbish, E. Carson, J. Plante, L. Weaver, M. Gilg, Distribution of Mytilus edulis, M.
572		galloprovincialis, and their hybrids in open-coast populations of mussels in southwestern
573		England. Mar. Biol. 140, 137–142 (2002).
574	46.	T. Kijewski, J. W. M. Wijsman, H. Hummel, R. Wenne, Genetic composition of cultured and
575		wild mussels Mytilus from The Netherlands and transfers from Ireland and Great Britain.
576		Aquaculture. 287, 292–296 (2009).
577	47.	H. Stuckas, L. Knöbel, H. Schade, C. Breusing, HH. Hinrichsen, M. Bartel, K. Langguth, F.
578		Melzner, Combining hydrodynamic modelling with genetics: can passive larval drift shape the

579		genetic structure of Baltic Mytilus populations? Mol. Ecol. 26, 2765–2782 (2017).
580	48.	T. K. Kijewski, M. Zbawicka, R. Väinölä, R. Wenne, Introgression and mitochondrial DNA
581		heteroplasmy in the Baltic populations of mussels Mytilus trossulus and M. edulis. Mar. Biol.
582		149 , 1371–1385 (2006).
583	49.	H. Stuckas, K. Stoof, H. Quesada, R. Tiedemann, Evolutionary implications of discordant clines
584		across the Baltic Mytilus hybrid zone (Mytilus edulis and Mytilus trossulus). Heredity (Edinb).
585		103 , 146–156 (2009).
586	50.	C. Breusing, Population Genetics and Morphometric Variation of Blue Mussels in the Western
587		Baltic Sea. (Master Thesis. GEOMAR Helmholtz Centre for Ocean Research Kiel, 2012;
588		http://oceanrep.geomar.de/19887/).
589	51.	R. Väinölä, P. Strelkov, Mytilus trossulus in Northern Europe. Mar. Biol. 158, 817–833 (2011).
590	52.	T. Yarra, K. Gharbi, M. Blaxter, L. S. Peck, M. S. Clark, Characterization of the mantle
591		transcriptome in bivalves: Pecten maximus, Mytilus edulis and Crassostrea gigas. Mar. Genom.
592		27 , 9–15 (2016).
593	53.	H. Tyler-Walters, B. James, M. Carruthers, C. Wilding, O. Durkin, C. Lacey, E. Philpott, L.
594		Adamas, P. D. Chaniotis, P. T. V. Wilkes, R. Seeley, M. Neilly, J. Dargie, O. T. Crawford-Avis,
595		"Descriptions of scottish Priority Marine Features (PMFs). Scottish Natural Heritage
596		commissioned report No. 406." (2016).
597	54.	S. J. Brooks, E. Farmen, The distribution of the mussel <i>Mytilus</i> species along the Norwegian
598		coast. J. Shellfish Res. 32, 265–270 (2013).
599	55.	S. S. Mathiesen, J. Thyrring, J. Hemmer-Hansen, J. Berge, A. Sukhotin, P. Leopold, M. Bekaert,
600		M. K. Sejr, E. E. Nielsen, Genetic diversity and connectivity within <i>Mytilus</i> spp. in the subarctic
601		and Arctic. Evol. Appl. 10, 39–55 (2017).

- 602 56. R Core Team, R: a language and environment for statistical computing. (2017), (available at
 603 https://www.r-project.org/).
- 57. F. Cribari-Neto, A. Zeileis, Beta regression in R. J. Stat. Softw. 34, 1–24 (2010).
- 58. J. Fox, S. Weisberg, An R Companion to Applied Regression (SAGE Publications, Thousand
- Oaks, CA, USA, 2011; https://uk.sagepub.com/en-gb/eur/an-r-companion-to-applied regression/book233899).
- 59. H. Wickham, *Ggplot2 : Elegant Graphics for Data Analysis* (Springer, New York, NY, USA,
 2016).
- 610 60. D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4. *J.*611 *Stat. Softw.* 67, 1–48 (2015).
- 612 61. A. Loy, S. Steele, Imeresampler: bootstrap methods for nested linear mixed-effects models.
- 613 (2016), (available at https://cran.r-project.org/package=lmeresampler).
- 614 62. A. Kuznetsova, P. B. Brockhoff, R. H. B. Christensen, ImerTest package: tests in linear mixed
 615 effects models. *J. Stat. Softw.* 82, 1–26 (2017).
- 616 63. K. Barton, MuMIn: Multi-Model Inference. (2017), (available at https://cran.r-
- 617 project.org/package=MuMIn).
- 64. J. Pinheiro, D. Bates, *Mixed-Effects Models in S and S-PLUS* (Springer-Verlag, New York, USA,
 2000), *Statistics and Computing*.
- 620 65. U. Halekoh, S. Højsgaard, A Kenward-Roger approximation and parametric bootstrap methods
 621 for tests in linear mixed models The R package pbkrtest. *J. Stat. Softw.* 59, 1–32 (2014).
- 622 66. F. Scheipl, S. Greven, H. Küchenhoff, Size and power of tests for a zero random effect variance
- or polynomial regression in additive and linear mixed models. *Comput. Stat. Data Anal.* **52**,
- 624 3283–3299 (2008).

625 67. P. J. Haines, Principles of Thermal Analysis and Calorimetry (Royal Society of Chemistry,

626 Cambridge, UK, 2002; http://ebook.rsc.org/?DOI=10.1039/9781847551764), *RSC Paperbacks*.

- 627 68. S. Gaisford, V. Kett, P. J. Haines, Principles of Thermal Analysis and Calorimetry: Edition 2
- 628 (Royal Society of Chemistry, Cambridge, UK, 2016; http://pubs.rsc.org/en/content/ebook/978-1-
- 629 78262-051-8#!divbookcontent).
- 630
- Acknowledgments: We thank Iain Johnston (Scottish Oceans Institute, St. Andrews, UK), Sarah
 Dashfield (Plymouth Marine Laboratory, Plymouth, UK), Dr. Peter Thor (Norwegian Polar
 Institute, Tromsø, Norway), Alexander Ventura (University of Gothenburg, Kristineberg,
 Sweden), Dr. Henk van der Veer and Rob Dekker (Royal Netherlands Institute for Sea Research,
 Texel, Netherlands) for help with specimens collection, and the Statistics Clinic (University of
 Cambridge, UK) for statistical advice.
- Funding: The work was funded by the European Union Seventh Framework Programme, Marie Curie
 ITN CAlcium in a Changing Environment (CACHE), under grant agreement n° 605051. JT
 acknowledges additional financial support from the Danish Council for Independent Research,
 Individual Post-doctoral Grant n° 7027-0060B.
- Author contributions: L.T., L.S.P. and E.M.H. conceived the original project and designed the study;
 L.T. performed laboratory work and thermogravimetric analysis, generated environmental
 datasets, performed modelling work and analysed output data; L.T., T.S., J.T. and M.K.S. collected
 materials; L.T., L.S.P. and E.M.H. wrote the first draft of the manuscript, and all co-authors
 contributed substantially to revisions.
- 646

647 FIGURES AND TABLES

Fig. 1. Mytilus spp. shell, collection sites and environmental heterogeneity. (A) Mytilus shell valve morphology and dimensions. (B) Anteroposterior cross-section of shell valve along the axis of maximum growth (from umbo to posterior commissure) showing internal structure and composition of individual mineral (prismatic and nacreous) and organic (periostracum) shell layers. (C) Thermal map of North-East Atlantic and Arctic surface

waters from the CMEMS (http://marine.copernicus.eu/) biogeochemical datasets showing 654 locations (open circles) where *Mytilus* was collected from across the Eastern European and 655 Greenlandic coastlines (from 48°N to 78°N): (1) Brest, France, (2) Exmouth, England, (3) 656 Oostende, Belgium, (4) Texel, Netherlands, (5) Usedom, (6) Kiel, (7) Ahrenshoop, (8) Sylt, 657 all Germany, (9) Kerteminde, Denmark, (10) Tarbet, Scotland, (11) St. Andrews, Scotland, 658 659 (12) Kristineberg, Sweden, (13) Nynäshamn, Sweden (14) Trondhiem, Norway, (15) Tromsø, Norway, (16) Upernavik, Greenland and (17) Qaanaaq, Greenland. Map created 660 with ArcMap 10.5 (ArcGIS software by Esri, http://esri.com), background image courtesy 661 of OpenStreetMap (http://www.openstreetmap.org). (D) Latitudinal gradients for sea 662 surface temperature, salinity and chlorophyll-a (Chl-a) concentration, showing 663 environmental heterogeneity across the study regions. Mean values (May - October, filled 664 circles) and SD (horizontal lines) for the 6-year period 2009 - 2014 were estimated from 665 CMEMS datasets. 666

667

669

668

670

671

Fig. 2. Latitudinal patterns of shell thickness, organic content and calcification. (A) Relationships between the thickness of whole-shell (black), prismatic (blue) and nacreous (red) layers and latitude. Whole-shell thickness decreased poleward (95% CI = -0.36 to -0.01, cR² = 0.81). The prismatic layer was significantly related to latitude (95% CI = 4.70

673	to 5.73, $cR^2 = 0.72$). Predicted values (continuous lines) and confidence intervals (shaded
674	areas) were estimated for mussels of mean shell length (47.42 mm). Parameters'
675	significance is determined when the bootstrapped 95% CI does not include zero. (B)
676	Variations in organic content among shells from temperate (sites 1, 11, white bars) and
677	polar (sites 15, 16, grey bars) climates. Pair-wise contrasts indicated significantly higher
678	proportions of organics in high-latitude than low-latitude specimens [mean difference =
679	0.44%; $z = 8.27$, $P < 0.0001$ (***), pseudoR ² = 0.49], in addition to non-significant
680	differences (NS) among temperate (mean difference = 0.002% ; $z = 0.12$, $P = 0.91$) and
681	polar (mean difference = 0.13% , $z = 1.86$, $P = 0.063$) populations. (C) Relationship
682	between the proportion of organics and standardised thickness of the prismatic [mean (SD)
683	= 529 μ m (174)] (sites 1, 7, 10 and 11), indicating a negative association between layer
684	thickness and calcification level ($z = -7.10$, $P < 0.0001$, pseudoR ² = 0.40).

Fig. 3. Mean effect size of predictors on *Mytilus* shell measurements. Effect sizes were
estimated from individual latitudinal (left panels) and environmental (right panels)
GLMMs. Mean effect sizes and direction of impacts of latitude (white), shell length
(black), sea surface temperature (red), salinity (blue) and Chl-*a* concentration (green) on
layer ln-thickness (μm) measurements and calcite% are reported: (A) whole-shell, (B)
calcite%, (C) prismatic layer, (D) nacreous layer and (E) periostracum. Note the different

scales on the y-axis to highlight variations among layers. Significance of regression
parameters is determined when the bootstrapped 95% CI (error bars) does not cross zero
(* denotes a significant difference from zero).

696

Fig. 4. Environmental influence on shell production and composition. Predicted relationships 698 between thickness of prismatic (blue) and nacreous (red) layers, and standardised salinity 699 [mean (SD) = 25.52 psu (10.29)], shell length [mean (SD) = 47.42 mm (16.20)] and their 700 701 interactions. (A) Shell thickness is modelled as a function of salinity for the 1st quartile $(Q_1 = 31.50 \text{ mm})$, mean value (47.42 mm) and 3rd quartile ($Q_3 = 63.90 \text{ mm}$) of the shell 702 lengths sampled. For medium-sized mussels, we detected a decreasing proportion of the 703 704 calcitic component with increasing salinity and the deposition of relatively thicker 705 aragonitic layers at salinities > 27.67 psu. (**B**) Thickness is modelled as a function of length for the 1st quartile ($Q_1 = 18.92$ psu), mean value (25.52 psu) and 3rd quartile ($Q_3 = 33.13$ 706 707 psu) of salinity. At mean salinity, we detected an inversion of the relative layers' thickness

708	for shell length > 55.30 mm. Across the entire range of shell lengths, the model predicts
709	formation of calcite- and nacreous-dominated shells under low- and high-salinities,
710	respectively. Mean values (continuous lines) and confidence intervals (shaded areas) are
711	predicted controlling for temperature (13.03°C) and Chl- <i>a</i> (2.48 mg m ⁻³).

Fig. 5. Periostracum plasticity and among-site shell variation. Interacting effects of salinity,
 temperature and shell length on shell periostracum. (A) Periostracum thickness is
 modelled as a function of shell length [mean (SD) = 47.42 mm (16.20)] for the 1st

717	quartile ($Q_1 = 18.92$ psu, blue line), mean (25.52 psu, black line) and 3rd quartile ($Q_3 =$
718	33.13 psu, red line) of water salinity. Predicted values (continuous lines) and confidence
719	intervals (shaded areas) indicate higher rates of exponential periostracal thickening with
720	decreasing salinity. Smaller individuals (shell length < 48.38 mm) were characterized by
721	non-significant thickness differences under different salinity regimes. (B) Thickness is
722	modelled for the 1st quartile ($Q_1 = 12.89^{\circ}$ C, blue line), mean (13.03°C, black line) and
723	3rd quartile ($Q_3 = 15.51^{\circ}$ C, red line) of water temperature. Predicted values indicate a
724	marginal influence of temperature on periostracal thickening. (C) GLMMs' conditional
725	modes (filled circles) and variances (continuous lines) of the random effect estimated for
726	individual shell layers. Modes represent the difference between the average predicted
727	response (layer thickness) for a given set of fixed-effects values (mean environmental
728	covariates and shell length) and the response predicted at a particular site. These indicate
729	no detectable residual effect of species (Mytilus edulis or M. trossulus) and level of
730	hybridization on shell thickness for each site.

731

Table 1. Environmental GLMMs summary. Estimated statistics and bootstrapped 95% CIs for
regression parameters are reported for the modelled relationships between individual
shell thickness measurements and standardised covariates. For the summary of model in
equation (1), the prismatic layer, Layer(Pr), is used as the reference level, (Intercept).
(Parameters' significance is determined when the 95% CI does not include zero).

					<i>P</i> -value
	Estimate	SE	95% CI	<i>t</i> -value	(approximate)
Whole-shell*					
(Intercept)	6.617	0.051	6.517; 6.717	128.71	< 0.0001

Temperature	0.156	0.054	0.014; 0.240	2.89	0.013
Salinity	0.525	0.060	0.411; 0.672	8.69	< 0.0001
Chl-a	0.074	0.054	-0.042; 0.216	1.37	0.20
Length	0.248	0.037	0.181; 0.327	6.44	< 0.0001
Prismatic (Pr) &	a nacreous (Na	a)†			
(Intercept)	5.907	0.031	5.774; 6.036	188.31	< 0.0001
Temperature	0.138	0.033	0.013; 0.260	4.17	0.0011
Salinity	0.396	0.039	0.264; 0.531	10.22	< 0.0001
Chl-a	0.028	0.033	-0.087; 0.139	0.86	0.41
Length	0.197	0.031	0.096; 0.297	6.39	< 0.0001
Layer(Na)	-0.054	0.078	-0.247; 0.134	-0.70	0.49
Salinity \times	0.250	0 000	0.065.0.442	2.05	0.0022
Layer(Na)	0.239	0.000	0.005, 0.445	2.95	0.0033
Length \times	0.111	0.067	0.026.0.258	1 66	0.006
Layer(Na)	0.111	0.007	-0.030, 0.238	1.00	0.090
Periostracum [‡]					
(Intercept)	3.500	0.048	3.406; 3.596	71.03	< 0.0001
Temperature	0.049	0.043	-0.036; 0.134	1.12	0.28
Salinity	-0.009	0.061	-0.131; 0.111	-0.14	0.89
Chl-a	0.147	0.038	0.071; 0.221	3.88	0.0020
Length	0.439	0.041	0.357; 0.522	10.25	< 0.0001
Temperature \times	0.064	0.025	0 125.0 006	1 77	0.082
Length	-0.004	0.035	-0.135, 0.000	-1.//	0.082
Salinity \times	-0.151	0.061	-0.271.0.020	_2 38	0.020
Length	-0.131	0.001	-0.271, -0.029	-2.30	0.020

* Whole-shell, the random intercept was normally distributed with mean of 0 and variance 0.209². * Prismatic and nacreous layer, the random intercepts were normally distributed with mean 0, and variances 0.123² and 0.310², respectively.

[‡]Periostracum, the random intercept was normally distributed with mean 0 and variance 0.130^2 .

742 SUPPLEMENTARY MATERIALS

746

fig. S1. Relationships between shell layers and modelled predictors. Predicted relationships between the whole-shell, prismatic layer, nacreous layer, periostracum thickness and the calcite% with standardised water temperature [mean (SD) = 13.03°C (4.32)], salinity [mean (SD)

748= 25.52 psu (10.29), Chl-*a* concentration [mean (SD) = 2.48 mg m⁻³ (1.41)], and shell length749[mean (SD) = 47.42 mm (16.20)]. Predicted values (continuous lines) and confidence intervals750(shaded areas) across the range of each predictor were estimated controlling statistically for the751other covariates (mean values). (NS P > 0.05, * P < 0.05)

752

fig. S2. Example of Thermogravimetric Analysis (TGA) and Derivative Thermogravimetry 754 755 (**DTG**). The TGA curve (green) represents the weight changes with increasing treatment temperature for the prismatic layer of Mytilus edulis. The sample was exposed to a constant 756 heating, from ~25°C to 700°C at a linear rate of 10°C min⁻¹. Three known regions of weight loss 757 with increasing temperature are highlighted (42): i) the evaporation of physically adsorbed water 758 at 30-150°C, ii) the degradation of organics at 150-550 °C, and iii) the rapid decomposition of 759 calcium carbonate (CaCO₃) into calcium oxide (CaO) and carbon dioxide (CO₂) starting at 760 ~550°C. The DTG line (blue) represents the derivative of the thermal curve and shows the rate of 761

- weight loss during heating. The peak indicates the temperature at which the organic mass losswas fastest.
- 764

table S1. Latitudinal GLMMs summary. Estimated statistics and bootstrapped 95% CI for
 regression parameters are reported for the modelled relationships between individual shell

767 measurements, standardised latitude and shell length.

	Fixed					P-value	Random	
Measurement	effects	Estimate	SE	95%CI	<i>t</i> -value	(approximate)	effects	SD
Whole-shell	(Intercept)	7.036	0.089	6.863; 7.210	78.89	< 0.0001	Site	0.293
	Latitude	-0.188	0.089	-0.316; -0.011	-2.10	0.067	Residuals	0.192
	Length	0.188	0.036	0.115; 0.259	5.18	< 0.0001		
Prismatic	(Intercept)	6.211	0.267	6.118; 6.302	133.06	< 0.0001	Site	0.867
	Latitude	-0.839	0.268	-1.373; -0.305	-3.13	0.013	Residuals	0.906
	Length	-0.786	0.155	0.478; 1.106	4.83	< 0.0001		
Nacreous	(Intercept)	6.410	0.135	6.148; 6.674	47.63	< 0.0001	Site	0.442
	Latitude	-0.217	0.135	-0.480; 0.050	-1.61	0.14	Residuals	0.321
	Length	0.210	0.060	0.089; 0.332	3.39	0.00088		
Periostracum	(Intercept)	3.709	0.053	3.605; 3.814	70.02	< 0.0001	Site	0.170
	Latitude	-0.031	0.053	-0.136; 0.073	-0.59	0.58	Residuals	0.224
	Length	0.283	0.035	0.213; 0.353	7.65	< 0.0001		
Calcite%	(Intercept)	45.255	2.476	40.327; 50.134	18.28	< 0.0001	Site	8.019
	Latitude	1.097	2.484	-3.718; 6.011	0.44	0.67	Residuals	8.829
	Length	-0.510	1.486	-3.444; 2.515	-0.33	0.75		

768 table S2. Environmental GLMMs summary. Estimated statistics and bootstrapped 95% CI for

regression parameters are reported for the modelled relationships between individual shell

measurements, standardised environmental covariates and shell length.

					t-	<i>P</i> -value	Random	
Measurement	Fixed effects	Estimate	SE	95%CI	value	(approximate)	effects	SD
Whole-shell	(Intercept)	6.617	0.051	6.517; 6.717	128.62	< 0.0001	Site	0.209

	Temperature	0.156	0.054	0.014; 0.240	2.89	0.013	Residual	0.188
	Salinity	0.525	0.060	0.411; 0.672	8.69	< 0.0001		
	Chl-a	0.074	0.054	-0.042; 0.216	1.37	0.20		
	Length	0.248	0.037	0.181; 0.327	6.44	< 0.0001		
Prismatic (Pr)	(Intercept)	5.907	0.031	5.774; 6.036	188.31	< 0.0001	Site (Pr)	0.123
and nacreous	Temperature	0.138	0.033	0.013; 0.260	4.17	0.0011	Site (Na)	0.310
(Na)	Salinity	0.396	0.039	0.264; 0.531	10.22	< 0.0001	Residual	0.198
	Chl-a	0.028	0.033	-0.087; 0.139	0.86	0.41		
	Length	0.197	0.031	0.096; 0.297	6.39	< 0.0001		
	Layer(Na)	-0.054	0.078	-0.247; 0.134	-0.70	0.49		
	Salinity \times							
	Layer(Na)	0.259	0.088	0.065; 0.443	2.95	0.0033		
	Length \times							
	Layer(Na)	0.111	0.067	-0.036; 0.258	1.66	0.096		
Periostracum	(Intercept)	3.500	0.048	3.406; 3.596	71.03	< 0.0001	Site	0.130
	Temperature	0.049	0.043	-0.036;0.134	1.12	0.28	Residual	0.230
	Salinity	-0.009	0.061	-0.131;0.111	-0.14	0.89		
	Chl-a	0.147	0.038	0.071;0.221	3.88	0.002		
	Length	0.439	0.041	0.357; 0.522	10.25	< 0.0001		
	Temperature ×							
	Length	-0.064	0.035	-0.135; 0.006	-1.77	0.082		
	Salintiy \times							
	Length	-0.151	0.061	-0.271; -0.029	-2.38	0.020		
Calcite%	(Intercept)	51.092	1.903	47.338; 54.927	26.84	< 0.0001	Site	7.605
	Temperature	-4.003	2.112	-4.508; 3.791	-0.19	0.85	Residual	9.656
	Salinity	-7.163	2.476	-12.025; -2.382	-2.87	0.012		
	Chl-a	-1.908	2.392	-6.662; 2.764	-0.80	0.44		
	Length	-2.404	1.690	-5.807; 1.071	-1.367	0.18		

table S3. Provenience and taxonomic status of the *Mytilus* populations used for the study.

For each sampling site (site codes as in Fig. 1C), geographic location, samples size (*N*), site
coordinates (longitude and latitude), genotypic status [proportion of *Mytilus edulis* (Me), *M. trossulus* (Mt), *M. galloprovincialis* (Mg) and hybrids] and reference and/or previous use of the
studied populations are reported.

Site	Location	N	Longitude	Latitude	Status of mussels	Reference to taxonomic status of populations and/or previously published use of the shells
1	Brest (France)	25	4.369375°W	48.338°N	96%Me, 4%Me×Mg	Kijewski et al. (43); Bierne et al. (44)
2	Exmouth (England, UK)	26	3.429111°W	50.622°N	Me	Hilbish <i>et al.</i> (45); Annual monitoring 2015
3	Oostende (Belgium)	25	2.904333°E	51.23039°N	Ме	Kijewski et al. (43, 46)
4	Texel (Netherlands)	25	4.796167°E	53.00536°N	94%Me, 6%Me×Mg	Kijewski et al. (43, 46)
5	Usedom (Germany)	25	14.01103°E	54.05561°N	37%Me, 10%Mt, 53%Me×Mt	Stuckas <i>et al.</i> (47); Kijewski <i>et al.</i> (48)
6	Kiel (Germany)	25	10.14889°E	54.32919°N	68% Me, 32% Me×Mt	Stuckas <i>et al.</i> (47, 49); Breusing (50)
7	Ahrenshoop (Germany)	25	12.42694°E	54.38686°N	80% Me, 20% Me×Mt	Stuckas <i>et al.</i> (47, 49); Kijewski <i>et al.</i> (43)
8	Sylt (Germany)	25	8.435944°E	55.02556°N	Me	Stuckas <i>et al.</i> (47, 49); Breusing (50); Väinölä & Strelkov (51); Bierne (44)
9	Kerteminde (Denmark)	25	10.66797°E	55.45125°N	57%Me, 5%Mt, 38%Me×Mt	Stuckas et al. (47); Kijewski et al. (48)

10	Tarbet (Scotland, UK)	25	5.411333°W	55.86556°N	Me	Yarra <i>et al</i> . (52)
11	St. Andrews (Scotland, UK)	25	2.781472°W	56.33961°N	Me	Tyler-Walters <i>et al.</i> (53); Annual MPA monitoring (JCNN, SNH)
12	Kristineberg (Sweden)	24	11.42208°E	58.2105°N	94%Me, 6%Me×Mt	Stuckas <i>et al.</i> (47, 49); Brooks & Farmed (54); Breusing (50); Kijewski <i>et al.</i> (43); Väinölä & Strelkov (51)
13	Nynäshamn (Sweden)	25	17.92928°E	58.87736°N	Mt	Stuckas <i>et al.</i> (47, 49); Breusing (50); Väinölä & Strelkov (51); Kijewski <i>et al.</i> (43)
14	Trondheim (Norway)	25	10.44789°E	63.45719°N	70% Me, 5% Mt, 25% Me×Mt, 5% Me×Mg	Brooks & Farmed (54); Väinölä & Strelkov (51)
15	Tromsø (Norway)	24	56.10281°W	70.07467°N	Me	Mathiesen <i>et al.</i> (55); Brooks & Farmed (54); Väinölä & Strelkov (51)
16	Upernavik (Greenland)	25	56.10281°W	72.79389°N	33% Me, 51%Mt, 14%Me×Mt	Mathiesen et al. (55)
17	Qaanaaq (Greenland)	25	69.24031°W	77.465°N	Mt	Mathiesen et al. (55)

table S4. Environmental covariates. Summary statistics (mean value and SD) of environmental

	Temperature (SD)	Salinity (SD)	Chl-a (SD)
Sit	e (°C)	(psu)	(mg m ⁻³)
1	17.01 (1.94)	34.79 (0.33)	2.16 (1.00)
2	15.08 (1.92)	34.70 (0.39)	2.14 (0.98)
3	16.33 (2.55)	32.70 (1.92)	1.76 (0.75)
4	16.19 (2.82)	30.20 (2.28)	1.84 (0.93)
5	15.59 (3.67)	5.39 (1.45)	7.62 (3.02)
6	15.46 (3.11)	13.77 (2.54)	5.34 (7.10)
7	15.39 (3.34)	9.09 (1.24)	2.16 (1.25)
8	15.51 (3.10)	29.34 (1.14)	1.29 (0.70)
9	15.08 (3.09)	18.92 (3.57)	2.83 (1.40)
10	13.43 (2.15)	33.51 (0.49)	3.95 (3.72)
11	12.89 (2.14)	33.13 (0.57)	2.36 (1.12)
12	15.30 (3.39)	24.90 (2.20)	1.21 (0.59)
13	12.95 (4.28)	5.92 (0.45)	1.94 (1.07)
14	10.82 (2.39)	29.47 (1.35)	3.18 (2.55)
15	9.42 (2.49)	33.67 (0.37)	0.94 (0.81)
16	2.70 (2.74)	32.60 (0.53)	0.58 (0.54)
17	2.23 (3.46)	31.64 (0.97)	0.75 (0.61)

conditions at each study site. Site codes as in Fig. 1C.

780 **table S5. List of R packages.** Packages and version used with the R software (v3.4.1) (56) for

78	1

data exploration, statistical analysis and graphing.

Package	Complete name	Version	Year	Author	Use
betareg	Beta Regression	3.1	2016	Cribari-Neto & Zeileis (57)	Beta regression (GLM with beta distribution)
car	Companion to Applied Regression	2.1-5	2017	Fox et al. (58)	Type III ANOVA table
ggplot2	Create Elegant Data Visualisations Using the Grammar of	2.2.1	2016	Wickham et al. (<i>59</i>)	Graphing
lme4	Graphics Linear Mixed- Effects Models using 'Eigen' and S4	1.1-13	2017	Bates et al. (60)	Mixed-effect models (GLMMs)
lmeresampler	Bootstrap Methods for Nested Linear Mixed-Effects Models	0.1.0	2016	Loy & Steele (61)	Parametric bootstrap for nlme model
lmerTest	Tests in Linear Mixed Effects Models	2.0-33	2016	Kuznetsova et al. (62)	Wald approximated confidence intervals
MuMIn	Multi-Model Inference	1.40.0	2017	Barton (63)	Pseudo-R-squared for Generalized Mixed-Effect models

					Mixed-effect
	Linear and				models (GLMMs),
nlme	Nonlinear Mixed	3.1-131	2017	Pinheiro et al. (64)	variance structure
	Effects Models				(GLS), spatial
					correlation
	Parametric				Kenward-Roger
11 / /	Bootstrap and				approximations for
	Kenward Roger	0.4-7	2017	Halekoh &	degrees of freedom
pokriesi	Based Methods			Højsgaard (65)	and parametric
	for Mixed Model				bootstrap for model
	Comparison				comparisons
	Exact				random affaat
	(Restricted)				random enect
	Likelihood Ratio				simulation, exact
RLRsim	Tests for Mixed	3.1-3	2016	Scheipl et al. (66)	restricted likelihood
					ratio tests
	and Additive				simulations
	Models				

782

783 SUPPLEMENTARY MATERIALS AND METHODS

Protocol for Thermal Gravimetric Analyses. Thermogravimetric Analyses (TGA) are reported 784 following the guidelines made by the Committee on Standardisation of the International 785 Confederation for Thermal Analysis and Calorimetry (ICTAC) and appeared in standards as 786 ASTM E 472 (1991) (67, 68). 787 A. Properties of the sample 788 1. Source of material and identification 789 Shell of wild Atlantic blue mussel (Mytilus edulis). 790 • 791 • Prismatic layer composed of calcium carbonate (CaCO₃, calcite), variable amount of organics (~1-2%) and trace elements, such as quartzite (SiO₂) and magnesium 792 (Mg). 793

794	2. Sample history
795	• Shells were cleaned, raised with mill-Q water, dried at room temperature for
796	seven days.
797	• The periostracum was removed by sanding and a tile of prismatic layer isolated (8
798	x 5 mm) with a Dremel rotary tool (Dremel 300/395RD MultiPro, Racine,
799	Wisconsin, USA).
800	• Samples were cleaned in an ultrasonic bath (Ultrasonic Cleaner CD-4800,
801	Practical Systems Inc., Odessa, FL, USA) with mill-Q water, air-dried and
802	powdered with an agate mortar.
803	• Additional, oven drying (30°C for 24h, convection oven) to remove residual pre-
804	treatment water.
805	3. Physical properties
806	• Fine grade powder.
807 I	3. Experimental conditions
808	1. Apparatus used
809	• Thermogravimetric Analyser: TGA Q500, TA instrument (New Castle, DE, USA)
810	Q series.
811	2. Thermal treatment
812	• Initial temperature, ~25°C (room temperature).
813	• Final temperature, 700°C.
814	• Linear rate of heating, 10°C min ⁻¹ .
815	3. Sample atmosphere
816	• Dynamic (flowing) atmosphere.

817	• Flow rate for balance 40 ml min ⁻¹ and for sample 60ml min ⁻¹ .
818	• Gas composition: nitrogen, "white spot".
819	4. Sample holder
820	• Platinum crucible, cylindrical: diameter 10 mm and height 1.5 mm.
821	• Sample was tipped and spread to cover the bottom of the crucible.
822	5. Sample mass
823	• 10 mg of powder were weighted on a separate micro-balance (Ultramicro 4504
824	MP8, Sartorius, Göttingen; readability 0.1 µg).
825	C. Data acquisition and manipulation methods
826	1. Software version
827	• Universal Analysis 2000, version 4.5A, TA instrument (New Castle, DE, USA).
828	
829	SUPPLEMENTARY DATA
830	Environmental datasets. List of the datasets used for the calculation of mean annual values of
831	environmental descriptors. Water temperature, salinity and chlorophyll-a concentrations were
832	expressed as mean values (May - October) averaged over the 6-year period 2009 - 2014. This
833	study has been conducted using the Copernicus Marine Service Products: COPERNICUS -
834	Marine Environment Monitoring System (http://marine.copernicus.eu/).
835	DATASET #1
836	Product identifier GLOBAL_ANALYSIS_FORECAST_PHY_001_024
837	Link (last accessed on 26-02-2018) http://marine.copernicus.eu/services-portfolio/access-to-
838	products/?option=com_csw&view=details&product_id=GL
839	OBAL_ANALYSIS_FORECAST_PHY_001_024

840	Short description	The Operational Mercator global Ocean analysis and
841		forecast system at 1/12 degree is providing 7 days of 3D
842		global ocean forecasts updated daily and ocean analysis
843		updated weekly. The time series start on January 1st 2013
844		and is aggregated in time in order to reach a two full years'
845		time series sliding window. This product includes daily
846		mean files of temperature, salinity, currents, sea level and
847		ice parameters from the top to the bottom of the Ocean over
848		the Global Ocean. It also includes 2-hourly mean surface
849		fields for temperature, currents and sea level.
850	Spatial resolution	0.08 degree
851	Vertical coverage	from -5500.0 m to 0.0 m
852	Temporal resolution	Daily mean, hourly mean
853	Update frequency	Daily
854	Production unit	GLO-MERCATOR-TOULOUSE-FR
855		
856	DATASET #2	
857	Product identifier NORTHWE	STSHELF_ANALYSIS_FORECAST_BIO_004_
858		002_b
859	Link (last accessed on 26-02-2018)	http://marine.copernicus.eu/services-portfolio/access-to-
860		products/?option=com_csw&view=details&product_id=N
861		ORTHWESTSHELF_ANALYSIS_FORECAST_BIO_004
862		_002_b

863	Short description	The Forecasting Ocean Assimilation Model, Atlantic
864		Margin model (FOAM AMM7) is a coupled
865		hydrodynamic-ecosystem model, nested in a series of one-
866		way nests to the Met Office global ocean model. The
867		hydrodynamics are supplied by the Nucleus for European
868		Modelling of the Ocean (NEMO) with the 3DVar
869		NEMOVAR system used for the assimilation of sea surface
870		temperature data. This is coupled to the European Regional
871		Seas Ecosystem Model (ERSEM), developed at Plymouth
872		Marine Laboratory (PML). ERSEM based models have
873		been used operationally to forecast biogeochemistry in the
874		region for a number of years.
875	Spatial resolution	0.11 x 0.7 degree
876	Vertical coverage	from -5000 m to 0 m
877	Temporal resolution	Daily mean
878	Update frequency	Daily
879	Production unit	NWS-METOFFICE-EXETER-UK
880		

881 **DATASET #3**

882	Product identifier	GLOBAL_REANALYSIS_BIO_001_018
883	Link (last accessed on 26-02-2018)	http://marine.copernicus.eu/services-portfolio/access-to-
884		products/?option=com_csw&view=details&product_id=GL
885		OBAL_REANALYSIS_BIO_001_018

886	Short description	Biogeochemistry simulation over period 1998 - 2015.
887		Outputs are delivered as monthly mean files with .netcdf
888		format (CF/COARDS 1.5 convention) on the native tri-
889		polar grid (ORCA025) at $\frac{1}{4}^{\circ}$ resolution with 75 vertical
890		levels. This simulation is based on the PISCES
891		biogeochemical model. It is forced offline at a daily
892		frequency by the equivalent of the GLOBAL-
893		REANALYSIS-PHYS-001-009 physics product.
894	Spatial resolution	0.11 degree
895	Vertical coverage	from -5500.0 m to 0.0 m
896	Temporal resolution	Daily mean
897	Update frequency	Daily
898	Production unit	GLO-MERCATOR-TOULOUSE-FR
899		
900		
901	DATASET #3	
902	Product identifier NORTHWES	STSHELF_ANALYSIS_FORECAST_BIO_004_
903		002_b
904	Link (last accessed on 26-02-2018)	http://marine.copernicus.eu/services-portfolio/access-to-
905		products/?option=com_csw&view=details&product_id=N
906		ORTHWESTSHELF_ANALYSIS_FORECAST_BIO_004
907		_002_b

908	Short description	The Forecasting Ocean Assimilation Model, Atlantic
909		Margin model (FOAM AMM7) is a coupled
910		hydrodynamic-ecosystem model, nested in a series of one-
911		way nests to the Met Office global ocean model. The
912		hydrodynamics are supplied by the Nucleus for European
913		Modelling of the Ocean (NEMO) with the 3DVar
914		NEMOVAR system used for the assimilation of sea surface
915		temperature data. This is coupled to the European Regional
916		Seas Ecosystem Model (ERSEM), developed at Plymouth
917		Marine Laboratory (PML). ERSEM based models have
918		been used operationally to forecast biogeochemistry in the
919		region for a number of years.
920	Spatial resolution	0.11 x 0.7 degree
921	Vertical coverage	from -5000 m to 0 m
922	Temporal resolution	Daily mean
923	Update frequency	Daily
924	Production unit	NWS-METOFFICE-EXETER-UK

925

926 **DATASET #4**

927	Product identifier NO	RTHWESTSHELF_REANALYSIS_BIO_004_011
928	Link (last accessed on 26-02-2018)	http://marine.copernicus.eu/services-portfolio/access-to
929		products/?option=com_csw&view=details&product_id=N
930		ORTHWESTSHELF_REANALYSIS_BIO_004_011

931	Short description	This is a hydrodynamic model of the North West European
932		shelf forced at the surface by ERA-interim winds,
933		atmospheric temperature, and precipitation fluxes.
934		Horizontal boundary conditions were provided by the NOC
935		global reanalysis prior to 1989 and by the GloSea
936		reanalysis thereafter. Boundary conditions in the Baltic Sea
937		came from the IOM-GETM model and
938		CMEMS_BALTICSEA_ANALYSIS_FORECAST_
939		PHYS_003_006. E-Hype data were used for river inputs.
940		Hydrodynamic calculations were performed by the Nucleus
941		for European Modelling of the Ocean (NEMO) system,
942		while the 3DVar NEMOVAR system was used for the
943		assimilation of sea surface temperature data. Physical
944		outputs are provided both as monthly means and as daily 25
945		hours, edited, averages. The reanalysis was conducted in
946		four sections.
947	Spatial resolution	0.11 x 0.7 degree
948	Vertical coverage	from -5000.0 m to 0.0 m
949	Temporal resolution	Daily mean
950	Update frequency	Daily
951	Production unit	NWS-METOFFICE-EXETER-UK
952		

954 **DATASET #5**

955	Product identifier BALTICSEA	_ANALYSIS_FORECAST_PHYS_003_006
956	Link (last accessed on 26-02-2018)	http://marine.copernicus.eu/services-portfolio/access-to-
957		products/?option=com_csw&view=details&product_id=B
958		ALTICSEA_ANALYSIS_FORECAST_PHY_003_006
959	Short description	This Baltic Sea physical model product provides forecasts
960		for the physical conditions in the Baltic Sea. The Baltic
961		forecast is updated twice daily providing a new two days
962		forecast with hourly data for sea level variations, ice
963		concentration and thickness at the surface, and temperature,
964		salinity and horizontal velocities for the 3D field. The
965		product is based on the 3D ocean model code HBM
966		developed within the Baltic ocean community.
967	Spatial resolution	2 km
968	Vertical coverage	from -5500.0 m to 0.0 m
969	Temporal resolution	Daily mean, hourly mean
970	Update frequency	Daily
971	Production unit	GLO-MERCATOR-TOULOUSE-FR
972		
973	DATASET #6	

974 Product identifier BALTICSEA_ANALYSIS_FORECAST_BIO_003_007

975	Link (last accessed on 26-02-2018)	http://marine.copernicus.eu/services-portfolio/access-to-
976		products/?option=com_csw&view=details&product_id=B
977		ALTICSEA_ANALYSIS_FORECAST_BIO_003_007
978	Short description	This Baltic Sea biogeochemical model product provides
979		forecasts for the biogeochemical conditions in the Baltic
980		Sea. The Baltic forecast is updated twice daily providing a
981		new two days forecast with hourly data for the parameters
982		dissolved oxygen, nitrate, phosphate, chl-a. The product is
983		produced by the biogeochemical model ERGOM one way
984		coupled to the Baltic 3D ocean model HBM, which
985		provides the CMEMS Baltic physical ocean forecast
986		product.
987	Spatial resolution	2 km
988	Vertical coverage	from -400 m to 0 m
989	Temporal resolution	Daily mean, hourly instantaneous
990	Update frequency	Daily
991	Production unit	BAL-DMI-COPENHAGEN-DK