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Summary (124 words) 
 
How do we know what we are looking for in familiar scenes and surroundings?  
Here we tested a novel hypothesis derived from theories of human memory that working 
memory (WM) buffers mnemonic contents retrieved from long-term memory (LTM) to 
control attention.  To test this hypothesis, we measured the electrical fields recorded 
noninvasively from human subjects’ as they searched for specific sets of objects in 
learned contexts. We found that the subjects’ WM-indexing brain activity tracked the 
number of real-world objects people learned to search for in each context. Moreover, 
the level of this WM activity predicted the inter-subject variability in behavioral 
performance. Together, our results demonstrate that familiar contexts can trigger the 
transfer of information from LTM to WM to provide top-down attentional control.  
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Introduction  
 
When an experienced driver gets behind the wheel of an automobile, how is it that they 
can immediate shift attention to task-relevant information (e.g., red break lights, 
pedestrians entering the road, trucks looming in the rearview mirror)? Theories of 
human memory have suggested that context can be used to pull mnemonic information 
out of LTM and into working memory (WM) (Atkinson and Shiffrin, 1968; Broadbent, 
1975; Cowan, 2001; Fukuda and Woodman, 2017; James, 1890). However, theories of 
attention have never considered how this kind of explicit memory retrieval in well-
learned contexts might allow us to control which objects we direct attention to 
(Bundesen et al., 2005; Desimone and Duncan, 1995; Wolfe and Horowitz, 2004; 
Woodman et al., 2013). Past studies have shown that repeated exposure to specific 
objects in specific contexts can facilitate attentional selection and eye movements to 
task-relevant targets and this engages brain areas in the medial temporal lobe including 
the hippocampus (Chun and Jiang, 1998; Chun and Phelps, 1999; Giesbrecht et al., 
2013; Goldfarb et al., 2016; Greene et al., 2007; Hannula and Ranganath, 2009; 
Preston and Gabrieli, 2008; Summerfield et al., 2006). But how this learning influences 
how attention is controlled is still not well understood, with a number of accounts 
proposing that learning can influence attention implicitly, without any storage of 
information in WM (Chun and Jiang, 1998; Chun and Phelps, 1999). According to this 
account, the LTM representations can directly influence how attention is deployed to 
objects, without them needing to be buffered in WM. Here we aimed to test the novel 
hypothesis derived from theories of memory in which representations retrieved from 
LTM are actively maintained in WM to provide top-down control over attentional 
selection. 
 
If it is true that learned context can trigger the retrieval of LTMs into WM to guide 
attention, we should observe a neural index of WM maintenance as people re-
encounter a familiar context. To test this hypothesis, we recorded the 
electroencephalogram (EEG) from human subjects who performed a visual search task 
where they searched for specific targets in specific contexts that varied in their 
background color (Figure 1a). To infer whether LTM representations were being 
buffered in WM, we measured the subjects’ posterior delay activity (pDA). We predicted 
that the amplitude of this posterior WM-related activity would increase as function of the 
number of targets previously paired with a given context, up until subjects’ WM was 
filled with possible targets (Brady et al., 2016; Cowan, 2001; Luck et al., 1997; Todd and 
Marois, 2004; Vogel and Machizawa, 2004; Vogel et al., 2005; Xu and Chun, 2006). In 
addition, if our index of WM storage of the searched-for targets was the driver of 
subjects’ performance, then we should see that the amplitude of this activity is related to 
subjects’ search performance.   
 
Results  
 
Thirty-six female and male human subjects performed a visual search task where they 
had to search for specific targets in different colored background contexts (Figure 1a). 
During training, these subjects repeatedly searched for a specific set of objects in each 
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of 4 different contexts for 120 trials. As a comparison condition, we interleaved trials 
with a fifth background context color in which the searched for targets were unique on 
each trial (i.e., non-predictive context; Figure 1b). Across other 120 trials, this non-
predictive context was associated with 390 unique objects (i.e., each of 30 from 120 
trials contained 1, 2, 4, and 6 non-repeated objects). This condition was the most 
difficult, but LTM representations of the set of possible targets could not be retrieved to 
prepare for the search array. Thus, this provides us with a control condition that rules 
out explanations based on simple task difficulty that increases with the increasing 
number of memory items. Each training trial started with the presentation of the 
background color alone, followed by an array of 1, 2, 4, or 6 unique real-world objects 
(Brady et al., 2008) indicating the target or targets that subjects were to search for 
following a blank delay of 2000ms (Figure 1c). Subjects were instructed to learn the 
associations between different color contexts and those targets. Then, in the final test 
phase, they had to search for the possible targets in each context without seeing those 
targets (Figure 1d). Thus, if context triggers the retrieval of LTM information, which is 
then buffered by WM, the onset of the context should elicit WM-related activity as 
subjects fill WM with the possible targets given that context.  
 
As shown in Figure 2 left, in the training phase, subjects learned to detect the targets in 
each color context. While there was a general decrease in target sensitivity (d’) with 
increasing set size, training significantly improved d’ and the training effect was larger 
for the larger set size (compare filled circles to filled squares in Figure 2 top right, trial 
repetition effect: (F(1, 35) = 133.33, p = 1.73x10-13; set size x trial repetition interaction: 
F(3, 105) = 8.44, p = 4.89x10-5). Reaction times from correct trials (correct RTs) also 
increased as a function of set size (F(3, 105) = 269.72, p £ 1.00x10-15) but did not 
change significantly across the training phase (compare filled circles to squares in 
Figure 2 bottom right, F(1, 35) = 2.26, p = 0.142).  
 
During the test phase, d’ decreased as set size increased (F(3, 105) = 55.02, p £ 
1.00x10-15), but the set size effect was relatively small compared to that of the training 
phase as training compressed performance at ceiling levels (compared empty to filled 
circles in Figure 2 top right, phase effect: F(1, 35) = 47.40, p = 5.39x10-8; set size x 
phase interaction: F(3, 105) = 22.28, p = 3.07x10-11). While d’ for all learned contexts 
was near ceiling after training, d’ for the non-predictive context was near zero 
(compared empty circle to empty squares in Figure 2 top right, repetition effect: F(1, 35) 
= 480.13, p £ 1.00x10-15). This near-chance performance for the non-predictive context 
was expected because of the minimally training with any one of the many different 
possible targets (i.e., subjects saw each of 390 targets only once during training). 
Overall, correct RTs for repeated contexts during the test phase also increased as a 
function of set size (F(3, 105) = 92.03, p £ 1.00x10-15), and they were slightly longer 
during the test phase than the training phase (compared empty circle to empty squares 
in Figure 2 bottom right, phase effect: F(1, 35) = 19.18, p = 1.03x10-4). A further 
analysis showed that this was true only for correct rejection RTs (F(1, 35) = 38.86, p = 
3.80x10-7) but not for hit RTs (F(1, 35) = 0.08, p = 0.782). This suggests that the 
subjects may have been more cautious to reject target-absent trials when they had to 
pull information from LTM. Similar to the d’ result, during the test phase, correct RTs 
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were much shorter for all learned target contexts compared to those in trials with the 
non-predictive context (compared empty circle to empty squares in Figure 2 top right, 
repetition effect: F(1, 35) = 56.73, p £ 1.00x10-15).  
 
If humans use context to retrieve mnemonic contents from LTM and buffer the retrieved 
information in WM before performing the search task, we should observe a neural index 
of visual WM maintenance as people re-encounter a familiar context. Specifically, in the 
test phase, we should see the background color elicits a pDA component with an 
amplitude corresponding to the number of possible targets (Fukuda et al., 2015), or the 
capacity of WM if the number of possible targets exceeds the capacity limit (i.e., up until 
visual WM capacity of 3-4 memory items) (Brady et al., 2016; Cowan, 2001; Luck et al., 
1997; Todd and Marois, 2004; Vogel and Machizawa, 2004; Vogel et al., 2005; Xu and 
Chun, 2006).  
 
We found a significant main effect of set size on pDA amplitude from 400-900ms after 
the cue onset (Figures 3a.i-iii, F(3, 105) = 7.41, p =1.50x10-4,). The pDA amplitude 
increased (i.e., became more negative) as the number of to-be-retrieved targets 
increased, and saturated at set size 4 (see post-hoc t-test results in Supplementary 
Table 1). Importantly, when the number of to-be-retrieved targets was 390 (i.e., the non-
predictive context), the pDA amplitude returned to a baseline activity level that did not 
significantly differ from set size 1 (planned paired t-tests showed significant differences 
between the non-predictive context and the learned contexts paired with 2, 4, and 6 
targets: t’s(35) = -5.83 to -2.37, p’s = 1.29x10-6 to 0.0236). This confirms that the pDA 
amplitude does not simply index general changes in task difficulty, but actual LTM 
contents because LTM representations in the non-predictive context were not 
accessible to aid search (i.e., search d’ = ~0, see Figure 2). An auxiliary analysis 
showed that the set size effect on the pDA amplitude was significant only in subjects 
who did well learning, but not in subjects who poorly learned the targets (Supplementary 
Figure 1). Furthermore, the pDA closely tracked inter-subject variability in search 
performance during the test phase. Specifically, behavioral d’ during the test phase was 
significantly correlated with the amplitude of the pDA for set sizes 4 and 6, normalized 
by the magnitude of the pDA measured from the non-predictive context (Figure 3a.iii, 
Rho’s = -0.47 and -0.35, p’s= -0.0034 and 0.038 for set sizes 4 and 6, respectively). 
This correlation suggests that LTM retrieval is limited by each subject’s capacity to 
buffer items in WM, emphasizing the tight relationship between the two memory 
systems and their essential roles in retrieving mnemonic information to guide attention. 
 
We also examined the set size effect on the posterior-occipital alpha suppression (i.e., 
changes in power of EEG oscillations at 8-13Hz). Previous research suggests that 
alpha can track the storage of information in WM, even when it is retrieved from LTM 
(Foster et al., 2017b, 2016, Fukuda et al., 2015, 2016). Unlike the pDA, the alpha 
suppression during the delay period did not change as a function of memory set size 
(see all alpha results and statistics in Supplementary Figure 2). After the search onset, 
the magnitude of alpha suppression increased as a function of set size. However, the 
magnitude of alpha suppression in the non-predictive context was similar to target set 
sizes 4 and 6. This fits with the notion that modulations of alpha oscillations reflect the 
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storage of purely spatial information, as well as general task demands, but with alpha 
activity containing no feature- or object-based information (Bae and Luck, 2017; 
Bosman et al., 2012; Foster et al., 2017b, 2017a, 2016; Foxe and Snyder, 2011; Foxe 
et al., 1998; Fries, 2001; Fries et al., 2008; Fukuda and Woodman, 2017; Klimesch et 
al., 2007; van Moorselaar et al., 2017; Nelli et al., 2017; Rihs et al., 2007; 
Rungratsameetaweemana et al., 2018; Sauseng et al., 2005; von Stein et al., 2000; de 
Vries et al., 2017).  
 
Finally, we tested how the retrieved information could help guide attention and decision-
making during the actual period in which search was conducted. Following previous 
studies, we used the N2pc (200-300ms) and the P3 components (300-900ms) to index 
the deployment of spatial attention to the target location and decision-making 
processes, respectively (Cosman et al., 2016; Eimer, 1996; Hickey et al., 2010; Hillyard 
et al., 1972; Itthipuripat et al., 2014, 2015, 2017; Squires et al., 1975; Woodman and 
Luck, 1999; Woodman et al., 2009). The amplitudes of the N2pc and the P3 decreased 
as a function of memory set size (Figures 3b-c; F(3,135)’s = 9.15 and 43.48 with p’s = 
1.97x10-5 and ≤ 1.00x10-15 for N2pc and P300, respectively; also see post-hoc t-test 
results in Supplementary Table 1). In addition, the mean amplitudes of the N2pc and P3 
were the lowest in the non-predictive context. Specifically, for the N2pc, planned t-tests 
show significant differences between non-predictive-context trials and trials with 
memory set sizes 1 and 2 (t(35)’s = -5.08 and -3.39, p’s = 1.27x10-5 and 0.0017, 
respectively) but no differences between non-predictive-context trials and trials with 
memory set sizes 4 and 6 (t(35)’s = -1.83 and -1.28, p’s = 0.0760 and 0.2106, 
respectively). For the P3, planned t-tests show significant differences between non-
predictive-context trials and all other set sizes (t(35)’s = 2.31-10.25, p’s =  0.0269 -
4.43x10-12). These modulations of the N2pc and P3 components are consistent with the 
set size effects on search RT.  
 
Discussion 
 
Here we show that WM-related activity (i.e., the pDA component) can track the retrieval 
of target representations from LTM into WM that occurs spontaneously when people 
view a context in which they learned to search for specific sets of targets. As we 
predicted by deriving a novel hypothesis from cognitive theories of human memory, the 
pDA amplitude tracked the number of retrieved LTM representations up until WM was 
filled (i.e., at ~3-4 memory items) (Atkinson and Shiffrin, 1968; Broadbent, 1975; 
Cowan, 2001; Fukuda and Woodman, 2017; James, 1890). Moreover, the magnitude of 
the pDA modulation explained inter-subject variability in behavioral performance during 
the test phase.  
 
Our results are highly similar to results from previous studies that measure the parietal 
activity in WM tasks, where subjects maintain new incoming sensory inputs (Brady et 
al., 2016; Cowan, 2001; Luck et al., 1997; Todd and Marois, 2004; Vogel and 
Machizawa, 2004; Vogel et al., 2005; Xu and Chun, 2006). In those studies, the parietal 
activity scaled up with the number of sensory inputs and saturated at set sizes 3-4, 
which is thought to be the maximum capacity of visual WM (Brady et al., 2016; Cowan, 
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2001; Fukuda et al., 2015; Luck et al., 1997; Todd and Marois, 2004; Vogel and 
Machizawa, 2004; Vogel et al., 2005; Xu and Chun, 2006). Moreover, the level of 
activity also correlated with WM capacity of individual subjects estimated with different 
behavioral markers (Fukuda et al., 2015; Vogel and Machizawa, 2004), and 
manipulated by electrical stimulation over the parietal lobe (Heinen et al., 2016; Li et al., 
2017; Tseng et al., 2012). Together, the similarity between our pDA results and those 
reported by previous WM studies suggest the parietal activity plays a common role in 
actively maintaining new incoming sensory information and also LTM representations as 
they are retrieved back into WM. Moreover, our findings suggest that WM is a key 
mechanism by which top-down attentional control is maintained even after extensive 
learning. Together, these help extend theories of attention, which have not previously 
explained how top-down control settings in different environmental contexts are 
acquired and maintained across time (Bundesen et al., 2005; Desimone and Duncan, 
1995; Wolfe and Horowitz, 2004; Woodman et al., 2013).  
 
Our observations help knit together proposals from theories of attention with proposals 
from theories of human memory. Specifically, theories of top-down attentional control 
have proposed that WM representations have a special status in being able to control 
attentional selection (Olivers et al., 2011), and our findings demonstrate that 
representations are held in WM even in well-learned environments, a process that could 
take advantage of this special status. What we do not yet know is whether WM is used 
in all situations. For example, it is possible for people to search for hundreds of possible 
targets at the same time (Wolfe, 2012), and this may rely exclusively on LTM 
representations that do not need to be held in WM. Alternatively, it is possible that these 
situations with huge possible target sets involve maintaining prototype-like 
representations in WM for entire categories of objects (i.e., any bird), with this 
circumventing the capacity limit inherent in WM storage. Future experiments using the 
method that we introduce here will be able to address questions such as these 
regarding the ubiquity of the phenomenon we discovered here.  
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Figure Legends 
 

 

 

Figure 1. Task and behavioral results. (a) Human subjects (N = 36) learned to find 4 
different sets of unique real-world objects within 4 different colored background contexts 
(b) They also encountered another colored background followed by objects that never 
repeated. (c-d) Examples for trial structures during the training and test phases, 
respectively. 
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Figure 2. Behavioral results. (Top) search d-prime (d’). (Bottom) RTs on correct trials. 
(Left) Learning performance across blocks of trials during the training phase. The data 
were fit with a power function. (Right) Averaged performance for repeated objects 
(learned context) and non-repeated objects (non-predictive-context) plotted as function 
of set size during both training and test phases. Error bars represent ±1 within-subject 
SEM.  
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Figure 3. Neurophysiological results showing that learned context triggers WM activity 
indexing the number of the possible targets to guide attention and decision-making. (a.i-
ii) The posterior delay negativity (pDA) tracked the number of targets possible in that 
context, up until WM capacity was reached. (a.iii) pDA amplitude relative to the non-
predictive-context control condition correlated with search d-prime. (b.i-ii) The N2pc 
component on hit trials showed earlier and less variable shifts of spatial attention to the 
targets with fewer retrieved items. (c.i-ii) The P3 component was also larger in 
amplitude when fewer targets were possible. Both N2pc and P3 results were consistent 
with set-size effects on RTs. *** in a.i, b.i, and c.i show significant set size effects for the 
EEG data averaged across the shaded areas via repeated-measured one-way ANOVAs 
with p’s <0.001. Black *, **, and *** in Figures a.ii, b.ii, and c.ii show significant 
differences from post-hoc t-tests with p < 0.05, p < 0.01, and p < 0.001, respectively 
(Holm-Bonferroni corrected). Brown *, **, and *** in Figures a.ii, b.ii, and c.ii show 
significant differences from planned t-tests between non-predictive-context trials and 
learn context conditions with p < 0.05, p < 0.01, and p < 0.001, respectively. * and ** in 
a.iii show significant correlations with p <0.05 and p<0.001, respectively. A faint red dot 
in Figure a.iii (first panel) indicates an outlier excluded from the correlation analysis. All 
shaded areas around ERP traces and all error bars represent ±1 within-subject SEM. 
Note that we plotted negative up on all y-axes by electrophysiological convention.  
 
 
 
 
 

5

5

-1
0
1

pDA Posterior delay acitivity (pDA) N2pc N2pc (contra - ipsi) 

P3

0

0.5

1

1.5

2

-0.5

1 2 4 6 390
(non-
predictive)

# ObjectsTime (ms)Context onset

0 400

0 400 800 1200
Search onset Time (ms)

# object(s)
1
2
4
6
390
(non-predictive)

*** ***

***

******
*********

**

***

***

**

**

***

1 object 2 objects 4 objects 6 objects

** *

1 object

2 objects

>1000 objects
(WM-only)

Contra

Ipsi

0

-5

5
0 2.5 5 0 2.5 5 0 2.5 5 0 2.5 5

Search performance (d’)

-2

0

-1

-4

0

-2

0
4

0

-4

-8

Am
pli

tu
de

 (u
V)

Am
pli

tu
de

 (u
V)

pD
A 

am
pli

tu
de

 re
lat

ive
 to

  
> 

10
00

 o
bje

cts
 (u

V)
a.i a.ii

a.iii

b.i b.ii

c.i

c.ii
*****

****

*******

##

0 500 1000 1500

0

2

4

6

8

-2

o
0

e

***

-4

0
4

-4

0
4

-4

0
4

-4

0
4

-4

*********

-2
0
2

1 2 4 6 390
(non-predictive)# Objects

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/401216doi: bioRxiv preprint 

https://doi.org/10.1101/401216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Materials and Methods 
Subjects 
We recruited 40 neurologically healthy male and female adult humans, who had normal 
or corrected-to-normal color vision, from the Vanderbilt University (VU) and Nashville 
community. All subjects provided written informed consent as required by the local 
Institutional Review Board at VU (IRB#071176). They were compensated at a rate of 
$10 USD per hour of participation. Four subjects did not complete the experimental 
protocol, leaving 36 subjects in the final analysis (age range = 18-39 years old, mean 
age = 23.31±5.48 SD, 28 male, 4 left-handed). We collected a relatively large sample of 
data because we aimed to investigate individual differences in retrieval performance 
and neural indexes of WM (see below). 
 
Stimuli and Tasks  
Stimuli were presented on a Macintosh desktop running MATLAB 7.10.0 (R2010A) 
(Mathworks Inc., Natick, MA) and the Psychophysics Toolbox (version 3.0.8(Brainard, 
1997; Pelli, 1997)) Subjects were seated 80 cm from the CRT monitor with a black 
background of 1.23 cd/m2 (refresh rate = 75 Hz, 800x600 resolution). The experiment 
was performed in a dark, sound-attenuated, and electromagnetically shielded room 
(ETS-Lindgren, Cedar Park, TX, USA). The real-world object images used in the 
experiment were obtained from published sources (Brady et al., 2008). 
 
Training phase  
Subjects learned to look for four different sets of unique real-world objects of varying set 
size (1, 2, 4, or 6) on four different colored background contexts. The learning phase 
had them search for these objects repeatedly across 120 trials with each context. For 
example, they might learn that a red context was associated with a football while a 
green context was associated with a hat and a jacket, and so on (Figures 1a & 1c). The 
assignment of these individual objects to different set size conditions was randomized 
across subjects. Subjects indicated that one of the 6 objects in a search array matched 
the target(s) by responding present by pressing a button on a keyboard with their right 
index and they responded absent by pressing a key with their middle finger. Subjects 
were explicitly instructed that the searched-for objects would remain the same for each 
background color, except for the non-repeating-context condition, so that they should do 
their best to learn to look for these objects in their color context. 
 
Each trial started with a color-background context, which stayed on the screen until the 
end of the trial (a square with the width of 13.42o visual angle). Then, 1000ms after trial 
onset, a specific set of unique real-world objects appeared for 500ms, followed by a 
blank delay of 2000ms. For each subject, object locations for each set size were 
randomly drawn from 6 locations around the fixation point (the eccentricity of 2.25o 
visual angle; 0, 60, 120, 180, 240, or 300o angular position). The object locations for 
individual set size conditions were the same across trials for each subject. These 
objects were presented on top of small white squares (width = 2.82o visual angle). The 
unfilled locations were also presented with these small white squares as placeholders 
so that the spatial extent of overall visual input across different set sizes was equated. 
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After the delay period, subjects saw a search array of 6 objects placed in front of the 
white square placeholders, at an eccentricity of 4.38o from the fixation (width = 3.69o 
visual angle). Object locations were randomly drawn from 6 locations (30, 90, 150, 210, 
270, or 330o angular position). On target-present trials (50% of the trials), one of the 6 
objects matched one to the objects presented before the delay period (referred to as a 
target) and the other 5 objects were distractors randomly selected from a pool of 900 
unique objects. In the target-absent trials, all 6 objects were distractors, randomly 
selected from the same object pool. The search array appeared for 1500ms and 
subjects were instructed to respond as quickly and accurately as possible. The offset of 
the search array was then followed by a blank interval of 300ms and then feedback at 
the fixation dot for 200ms (“$” for correct responses and “X” for incorrect responses or 
responses slower than 1500ms). Trials were separated by inter-trial-intervals (ITIs) 
randomly drawn from a uniform distribution of 500-700ms. In addition, we interleaved 
these context-learning trials with non-predictive-context trials, in which we presented a 
fifth colored-background context followed by the possible target objects that never 
repeated across 120 trials (Figure 1b). The object set size also varied (1, 2, 4, or 6 
objects; 30 trials for each set size). These non-repeated objects were pseudo-randomly 
selected from a different pool of 390 unique objects.  
 
Overall there were 5 different color background contexts (i.e., red, green, blue, purple, 
and brown at photometric isoluminance: 9.14 cd/m2). The mapping between these color 
contexts and set size conditions were randomized across subjects to reduce confounds 
driven purely by physical differences between different colors. The training phase 
consisted of 15 blocks (600 trials in total, lasting ~1.5-2 hours). Each block contained 40 
trials (8 trials for each context). 
 
Test phase 
Five minutes after the training phase, subjects entered the test phase where they 
performed the visuals search task, without target cues, simply using the background 
color to determine if one of the targets from the set was present. The task during this 
phase was similar to that in the training phase except that the searched-for object(s) 
were not physically present. Subjects saw a blank color background context for 
2000ms, followed by a search array. The distractors in the search array during the test 
phase were randomly selected from an image pool of 900 objects, different from the 
pool used during the training phase. This was done to prevent the learning of distractors 
across the two phases. The test phase consisted of 15 blocks (600 trials in total, lasting 
~1-1.5 hours). Each block contained 40 trials (8 trials for each context). For both training 
and test phases, subjects were asked to fixate the dot at the center of the screen and to 
minimize blinks, eye movements, and head movements, while performing the task. 
Overall, the experimental protocol including task instruction, EEG preparation, training, 
and testing lasted approximately 4-4.5 hours. 
 
Behavioral analysis  
First, we sorted hit, false alarm, and RTs from correct trials (i.e. correct RTs) of 
individual subjects into different data bins according to their set size (1, 2, 4, versus 6), 
trail repetition (repeated versus non-repeated non-predictive-context), and phases 
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(training versus test). Then, we computed target sensitivity (d’) during the training and 
test phases using the following equation:  d’ = Z(hit) – Z(false alarm), where Z(x) is the 
inverse function for the cumulative distribution function of the Gaussian function. We 
also calculated averaged correct RTs for individual data bins.  
 
To test learning effects from trial repetition during the training phase, we used two-way 
repeated-measures with within-subject factors of trial repetition (repeated versus non-
repeated trials) and set size (1, 2, 4, versus 6) on the d’ and RT data. Then, we tested 
learning effects from trial repetition across the training and test phases using two-way 
repeated-measures analysis of variance (ANOVA) with within-subject factors of phase 
(training versus test) and set size (1, 2, 4, versus 6) on the d’ and RT data obtained 
from repeated trials (i.e., learned context). Finally, to examine the influence of trial 
repetition during the training phase on the retrieval performance during the test phase, 
we performed two-way repeated-measures analysis of variance (ANOVA) with within-
subject factors of trial repetition (repeated versus non-repeated trials) and set size (1, 2, 
4, versus 6) on the d’ and RT data in the test phase. 
 
EEG data acquisition  
We recorded EEG data from the 10-20 electrode sites Fz, Cz, Pz, F3, F4, C3, C4, P3, 
P4, PO3, PO4, O1, O2, T3, T4, T5, and T6, and a pair of custom sites OL and OR, 
which were halfway between O1 and T5 and halfway between O2 and T6, respectively. 
These EEG data were referenced online to the right mastoid.  Horizontal eye 
movements were monitored via a pair of external electrodes affixed ~1cm lateral to the 
outer canthi of the left and right eyes. Blinks and vertical eye movements were tracked 
using an electrode placed below the right eye. The impedance of each electrode was 
kept below 3 KW. We amplified the EEG data with a gain of 20,000 using an SA 
Instrumentation amplifier with a bandpass filter of 0.01– 100 Hz and digitized at 250 Hz. 
 
EEG preprocessing and ERP analysis  
We preprocessed the EEG data using custom MATLAB scripts and EEGLab11.0.3.1b 
(Delorme and Makeig, 2004). First, we re-referenced the EEG data offline to the 
average of the left and right mastoid electrodes. Next, we filtered the data using 0.25-Hz 
high-pass and 55-Hz low-pass Butterworth filters (3rd order). Next, we segmented the 
continuous EEG data into epochs extending from 2000ms before to 7000ms after trial 
onset. We then performed independent component analysis to remove prominent eye 
blinks (Makeig et al., 1996) and used threshold rejection and visual inspection to reject 
trials containing residual eye movements, muscle activity, drifts, and other artifacts. This 
artifact rejection protocol resulted in the removal of 19.13% ± 7.18% SD of trials across 
36 subjects.  
 
In the main text, we focused the EEG analysis on the test phase, where subjects had to 
use the learned color background context to perform a visual search task, however, we 
also present the ERP results during the training phase in Supplementary Figure 3. First, 
we sorted the data into 5 experimental bins: set size conditions 1, 2, 4, and 6 plus the 
non-predictive-context condition where the fifth color context was associated with a 
different target set on each training trial. We then time-locked the data to the context 
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onset and the search onset and computed the mean values of the EEG signals to 
obtained the event-related potentials (ERPs). Following previous studies, we focused 
our analyses on 3 ERP components: the posterior delay activity (pDA), N2pc, and P3 
components, which we used to index the holding of representations in working memory, 
target selection, and target-related decision-making processes, respectively(Eimer, 
1996; Hillyard et al., 1972; Woodman and Luck, 1999). We focused our analyses on the 
electrode site(s) that each of these components is maximal after verifying that the 
distribution of voltage was similar to these previous reports. The mean amplitude the 
pDA was computed from 400-900ms after the context onset over the Pz electrode. The 
N2pc was obtained from 200-300ms after the search onset and was computed by 
subtracting the ERPs ipsilateral to the target from those contralateral to the target over 
the T3, T4, T5, and T6 sites. The mean amplitude of the P3 was calculated from 300-
900 after the search onset over the Cz. To plot the ERP data, we added an additional 
filter of 25Hz-lowpass filter. However, all reported statistical results were based on 0.25-
55Hz filtered data (see similar methods in Hickey et al., 2010; Itthipuripat et al., 2015; 
Rungratsameetaweemana et al., 2018).  
 
To test for set size effects on the mean amplitude of the pDA component, we used a 
one-way repeated-measures ANOVA with set size as a within-subject factor (1, 2, 4, 
versus 6). Post-hoc pair-wise t-tests were then used to examine differences in the pDA 
amplitude across set size. Multiple comparisons were corrected using the Holm-
Bonferroni method. Lastly, we used 4 planned pair-wise t-tests to compare the mean 
amplitude of the pDA from each set size to the mean amplitude in the non-predictive-
context condition. This was done to test if the pDA modulation reflected content-specific 
information pulled from LTM or merely indexed general task difficulty. We further tested 
the relationship between our WM activity and visual search performance by examining 
individual differences in the pDA. To do so, we first computed the differences between 
the pDA amplitudes for individual set size and the pDA amplitude in the non-predictive-
context condition. Then, we computed the pair-wise linear correlation coefficients 
between the pDA amplitude differences and the mean behavioral d’ values obtained 
from the test phase.  
 
For the N2pc and P3 components, we also performed one-way repeated-measures 
ANOVAs with set size as a within-subject factor. Post-hoc pair-wise t-tests were used to 
examine differences in the mean amplitudes of these components across all set size 
conditions, and multiple comparisons were corrected using the Holm-Bonferroni 
method. Finally, we use planned pair-wise t-tests to compare the mean amplitudes of 
the N2pc and P3 from each set size to those measured in the non-predictive-context 
condition.   
 
Alpha suppression analysis 
We decomposed single-trial EEG data using spectrogram.m in MATLAB with a fixed 
window size of 400ms and a window overlap of 360ms to obtain Fourier coefficients at 
8-13Hz in 1Hz steps. Next, we computed the amplitude of these Fourier coefficients, 
baseline-corrected from -600 to -200ms, and divided the resultant spectral difference by 
the baseline activity for each frequency and multiplied by 100. These steps yielded the 
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percentage change in alpha amplitude, which was then averaged over 8-13Hz from the 
posterior occipital sites (PO3/PO4). To examine set size effects on alpha amplitude 
during the delay period, we computed the average of alpha amplitude across 600-
1400ms after context onset and used a one-way repeated-measures ANOVA with set 
size as a within-subject factor. To examine set size effects on alpha amplitude during 
the search period, we computed the average of alpha amplitude across 600-1400ms 
after search onset and used a one-way repeated-measures ANOVA with set size as a 
within-subject factor. Because this ANOVA revealed a significant set size effect, we 
performed post-hoc pair-wise t-tests to examine differences in the mean amplitudes of 
these components across all set size conditions, and multiple comparisons were 
corrected using the Holm-Bonferroni method. Finally, we used 4 planned pair-wise t-
tests to compare alpha amplitude from each set size to the amplitude measured in the 
non-predictive-context condition. 
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Supplementary Figure 1. Alpha results from the training phase. (a) During the delay 
period, we did not observe any set size modulations of alpha suppression (testing 
across the 4 set sizes from 600-1400ms after context onset: F(3, 105) = 1.77, p 
=0.1583; including the non-predictive-context condition: F(4, 140) = 2.11, p =0.0826). 
(b-c) However, we observed an increase in the magnitude of alpha suppression as 
function of memory set size from 600-1400ms after the search onset (F(3, 105) = 13.22, 
p =1.17x10-7). Unlike the pDA result (Figure 3a), the magnitude of alpha suppression in 
the non-predictive-context condition was higher than those in set size 1 and 2 conditions 
(t(35)’s = 3.77 and 3.07, p’s = 0.0060 and 0.0041, respectively) and was comparable to 
the magnitude of suppression with set sizes 4 and 6 (t(35)’s = 1.21 and -0.03, p’s = 
0.2332 and 0.9789). Together, these results are consistent with previous reports 
showing that alpha-band activity does not track the objects representations stored in 
WM, and may index the storage of purely spatial information, as well as general task 
demands(Bae and Luck, 2017; Bosman et al., 2012; Foster et al., 2017b, 2017a, 2016; 
Foxe and Snyder, 2011; Foxe et al., 1998; Fries, 2001; Fries et al., 2008; Fukuda and 
Woodman, 2017; Klimesch et al., 2007; van Moorselaar et al., 2017; Nelli et al., 2017; 
Rihs et al., 2007; Rungratsameetaweemana et al., 2018; Sauseng et al., 2005; von 
Stein et al., 2000; de Vries et al., 2017). (c) Graph of the alpha data shown in (b) 
averaged across a 600-1400ms window after search onset. *** in (b) show a significant 
set size effect in the alpha band averaged across the shaded areas via a repeated-
measured one-way ANOVA with p’s <0.001. Black * and *** in (c) show significant 
differences from post-hoc pair-wise t-tests with p < 0.05 and p < 0.001, respectively 
(Holm-Bonferroni corrected). Brown ** and *** in (c) show significant differences from 
planned pair-wise t-tests between non-predictive-context trials and trials with learned 
contexts with p < 0.01 and p < 0.001, respectively. All shaded areas around alpha 
traces and all error bars represent ±1 within-subject SEM.  
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Supplementary Figure 2. The behavioral and pDA data averaged separately using a 
median split between good and poor performers. The data were median split by the 
behavioral performance during the test phase. Specifically, we computed the difference 
in d’ values at large set sizes (averaged across set sizes 4 and 6) and d’ values at small 
set sizes (averaged across set size 1 and 2). This created two groups: good and bad 
performers with the former group having relatively smaller differential d’ values between 
high (4 and 6) vs low set sizes (1 and 2) than those in the latter group. (a) During the 
training phase, good performers learned much faster than poor performers especially 
for set sizes 4 and 6. (b) As expected given the sorting criterion, during the test phase 
the good performers performed better than poor performers when encountered learned 
contexts (i.e., repeated objects) especially for set sizes 4 and 6. However, both groups 
performed close to chance (d’ ~ 0) in the non-predictive-context condition.  (c-d). Good 
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performers exhibited a robust and highly significant set size modulation in the pDA 
amplitude (400-900ms after context onset: F(3, 105) = 13.79, p £ 1.00x10-15). Similar to 
the main result in Figures 3.a.i-ii, the pDA amplitude increased as the number of to-be-
searched-for objects increased (post-hoc parried t-tests showed significant differences 
between set sizes 1 and 4, between set sizes 1 and 6, between set sizes 2 and 4, and 
between set sizes 2 and 6: t(35)’s = 3.3152 to 2.9836, p’s = 0.0041 to 0.0010, Holm-
Bonferroni corrected) and saturated at set size 4 (no difference between set sizes 4 and 
6: t(35) = -0.08 with p = 0.9357). Importantly, when the number of to-be-searched-for 
objects was 390 (i.e., non-predictive-context trials), the pDA amplitude returned to the 
baseline activity level of set size 1 (planned paired t-tests showed significant differences 
between non-predictive-context trials and set sizes 2, 4, and 6: t(35)’s = -6.51 to -2.63, 
p’s £ 1.00x10-15 to 0.0177). While the pDA result in the poor performing group followed 
the data pattern observed in good performing group, the set size modulation in the poor 
performing group was weaker and not significant (testing across the 4 set sizes: F(3, 
105) = 1.91, p =0.1402; including the non-predictive-context condition: F(4, 140) = 1.81, 
p =0.1366). *** in (c) shows a significant set size effects for the pDA data averaged 
across the shaded area via a repeated-measured one-way ANOVA with p <0.001. Black 
** symbols in (d) show significant differences from post-hoc t-tests with p’s < 0.01 
(Holm-Bonferroni corrected). Brown *, **, and *** in (d) show significant differences from 
planned t-tests between non-predictive-context trials and learned context conditions 
with p < 0.05, p < 0.01, and p < 0.001, respectively. All shaded areas around ERP 
traces and all error bars represent ±1 within-subject SEM. Note that we plotted negative 
up on all y-axes by electrophysiological convention.  
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Supplementary Figure 3. ERP results during the training phase. (a) Unlike the test 
phase, during the training phase there was no significant difference in the pDA 
amplitude across different color contexts from 400-900ms after the context onset 
(testing across the 4 set size conditions: F(3, 105) = 0.23, p =0.8762; including the non-
predictive condition: F(4, 140) = 1.71, p =0.3254). Note that we averaged the non-
predictive-context data across all set size because at this point in time, subjects did not 
know whether the subsequent memory array would contain 1, 2, 4, or 6 items. This null 
result confirms that the set size modulation of the pDA amplitude during the test phase 
selectively served LTM retrieval (Figure 3a), and it was not merely driven by physical 
stimulus differences between different color contexts or differences in learning difficulty 
across set sizes. (b-c) In contrast, we observed a robust set size effect on the posterior 
negative component over the Pz from 300-600ms after memory array onset (set size 
effect: F(3, 105) =13.26, p = 2.09x10-7). In the non-predictive-context condition, the 
amplitude of this negative potential increased as set size increased (set size 4 > set 
sizes 1 and 2: t(35)’s = 3.32 and 3.24 and  p’s = 0.0021 and 0.0026, Holm-Bonferroni 
corrected) and reached asymptote at set size 4 (set size 4 = set size 6: t(35) = -1.33, p 
= 0.1929). Consistent with past reports(Reinhart and Woodman, 2014, 2015; Servant et 
al., 2018; Woodman, 2013), trial repetition induces robust amplitude changes in the 
opposite direction (more positive; repetition effect: F(1, 35) = 94.48, p =1.77x10-11) and 
these changes are larger for smaller set size conditions where learning is relatively 
easier (set size x repetition interaction: F(3, 105) = 4.71, p = 0.0040). This explains why 
an increase in negative potentials induced by increasing set size does not reaches 
asymptote at set size 4. Specifically, we found that the amplitude in set size 4 was 
higher than that in set size 1 (t(32) = 4.34, p =1.14x10-4) and the amplitude in set size 6 
were higher than those in set sizes 1, 2, and 4 (t(32)’s = 6.75, 5.07, and 3.37; p’s = 
8.09x10-8, 1.29x10-5, and 0.0018, Holm-Bonferroni corrected).  (c) is the ERP data 
shown in (b) averaged across a 300-600ms window after memory array onset. ** and 
*** significant results with p < 0.01 and p < 0.001, respectively. All shaded areas around 
ERP traces and all error bars represent ±1 within-subject SEM. Note that we plotted 
negative up on all Y-axes. 
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Comparisons 
 

t-tests 
(p values) 

 
pDA N2pc P3 

1 vs. 2 objects 
0.57 

(0.5722) 
-1.97 

(0.0568) 
4.25** 

(0.0002) 

1 vs. 4 objects 
3.71*** 
(0.0007) 

-5.07*** 
(1.29x10-5) 

7.39*** 
(1.21x10-8) 

1 vs. 6 objects 
2.73** 

(0.0097) 
-4.56*** 
(0.0001) 

9.45*** 
(3.64x10-11) 

2 vs. 4 objects 
4.41*** 
(0.0001) 

-1.63 
(0.1118) 

4.27*** 
(0.0001) 

2 vs. 6 objects 
2.66* 

(0.0118) 
-2.79** 
(0.0085) 

6.53*** 
(1.55x10-7) 

4 vs. 6 objects 
-0.97 

(0.3398) 
-0.69 

(0.4932) 
3.19** 

(0.0030) 
 
Supplementary Table 1. Post-hoc pair-wise t-test for Figure 3. *, **, and *** indicate 
significant differences with p < 0.05, p < 0.01, and p < 0.001, respectively (Holm-
Bonferroni corrected).  
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