
Disease persistence on temporal contact networks

accounting for heterogeneous infectious periods

Alexandre Darbon1, Davide Colombi1, Eugenio Valdano2, Lara
Savini3, Armando Giovannini3, and Vittoria Colizza1
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Abstract

The infectious period of a transmissible disease is a key factor for
disease spread and persistence. Epidemic models on networks typically
assume an identical average infectious period for all individuals, thus
allowing an analytical treatment. This simplifying assumption is how-
ever often unrealistic, as hosts may have different infectious periods,
due, for instance, to individual host-pathogen interactions or inhomo-
geneous access to treatment. While previous work accounted for this
heterogeneity in static networks, a full theoretical understanding of
the interplay of varying infectious periods and time-evolving contacts
is still missing. Here we consider an SIS epidemic on a temporal net-
work with host-specific average infectious periods, and develop an an-
alytical framework to estimate the epidemic threshold, i.e. the critical
transmissibility for disease spread in the host population. Integrating
contact data for transmission with outbreak data and epidemiologi-
cal estimates, we apply our framework to three real-world case studies
exploring different epidemic contexts – the persistence of bovine tu-
berculosis in southern Italy, the spread of nosocomial infections in a
hospital, and the diffusion of pandemic influenza in a school. We find
that the homogeneous parameterization may cause important biases
in the assessment of the epidemic risk of the host population. Our
approach is also able to identify groups of hosts mostly responsible
for disease diffusion who may be targeted for prevention and control,
aiding public health interventions.
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1 Introduction

Mathematical modeling of infectious diseases provides an important tool
in understanding patterns and determinants of disease spread [1, 2]. The
foundations of this field rest upon compartmental models, in which the pop-
ulation is divided in different classes (compartments) according to the indi-
vidual health status and disease progression is modeled through transitions
between compartments. This allows the mathematical description of the
epidemic outcome, using, for instance, coupled differential equations [2, 3].
While usually being tractable, this framework, however, often relies on two
important simplifying assumptions. The first is the homogeneous mixing
approximation for which the probability of having a contact with an in-
fectious host is identical for each individual of the population, neglecting
any underlying social or spatial structure. Such approximation, unrealistic
in many circumstances [4–9], was overcome by accounting for host contact
heterogeneities in different ways. In this work we focus on the network epi-
demiology approach where each individual is represented by a node in a
network and edges encode the interactions between nodes. The contact net-
work can be static [10–14] or dynamic [7–9, 15–21], representing interactions
that evolve in time. In both cases, network structure strongly influences the
spreading process, since it depends on the interplay between the infection
dynamics and the structural and temporal features of the networks.

The second assumption involves the recovery process, when infected
hosts recover from infection either going back to the susceptible state, or
acquiring immunity. Typically, models assume that all the infected indi-
viduals have identical constant recovery rate [2, 3]. This implies that the
average duration of the infectious period (the interval during which an in-
fectious host can transmit the disease) is the same for each individual and
is exponentially distributed. Recovery is therefore described by an identical
Markovian process for all individuals in the population that, while being
analytically more tractable, can be unrealistic in many contexts. Individu-
als may indeed be characterized by different genetic [22] and immunogenetic
[23] profiles, or may differ regarding age, medical treatment and vaccination
[24]. These features, combined with specific epidemiological characteristics,
may cause large deviations from the exponential distribution [25–27], and
lead to large heterogeneities in the duration of the infectious period at the
individual level. An increasing body of literature started to account for indi-
vidual heterogeneities, considering mainly individual variations in infectivity
[5, 28] and susceptibility [29–31]. Preliminary works incorporated this fea-
ture only in homogeneously mixed populations through integro-differential
equations [10, 32], partial differential equations or through the method of
stages [27, 33–37]. Only recently the effects of infectious period hetero-
geneity are analyzed on static networks, using message passing approaches
[38, 39] and heterogeneous mean-field models [40]. These works provide a
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description of the Susceptible-Infectious-Recovered (SIR) model on static
networks and the computation of the basic reproductive number R0 [2, 3].
These approaches however neglect the temporal dynamics of the network
of contacts between hosts, which becomes particularly relevant if the time
scale of the evolution of contacts is comparable to the one of the spreading
process [7–9, 17, 18].

The aim of this work is to understand how heterogeneous durations of the
infectious period impact the conditions for the spreading of an epidemic on a
time-evolving contact network, in the particularly interesting scenario of the
disease time scale being comparable to the one of the underlying network. By
extending the infection propagator approach developed in [41, 42], we build
an analytical framework that allows us to go beyond the two aforementioned
assumptions providing an analytical form for the epidemic threshold, i.e., the
critical transmission probability below which a pathogen would go extinct in
the population. The epidemic threshold is a key epidemiological quantity as
it can measure the vulnerability of a system to the introduction of a specific
pathogen.

Lastly, we apply this methodology to evaluate the vulnerability of three
different real-world systems: bovine tuberculosis in Southern Italy, noso-
comial carriage of pathogenic bacteria in hospital facilities and pandemic
influenza in closed settings. We show that using compartmental models
with homogeneous infectious periods may introduce important biases in the
estimate of the epidemic threshold and thus of the epidemic risk of a host
population.

2 Methods

Infection propagator for heterogeneous infectious periods

In this section, we introduce the analytical framework that allows us to
compute the epidemic threshold for a spreading process on a time-varying
contact network, considering that infected hosts have a constant rate of
recovery, but each host is associated to an individual average infectious
period.

We start from a Susceptible-Infectious-Susceptible (SIS) disease progres-
sion [2, 3], and assume a discrete time evolution for both the network and
the spreading process. Each node of the network represents a host, and
each link a time-resolved contact that is relevant to pathogen transmission.
The temporal network is characterized by a finite number of snapshots T
(network period) and formally it can be represented by a list of adjacency

matrices whose element W
(t)
ij corresponds to the weight of the link made

from node i to node j at time t. At each time step, infected nodes transmit
the infection to the susceptible neighbors with a probability that depends
both on the weight of the link and on the specific disease transmissibility λ.
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The weight may correspond to different quantities (e.g. duration or strength
of a contact) depending on the context under study, as we will see in the
real-world systems addressed in this work. Infectious nodes can sponta-
neously recover with probability µ. Recovery is a Poisson process with an
average infectious period τ = 1/µ that in the classic compartmental model
formulation is the same for each individual.

Following the approach introduced in [41], the critical behavior of the
epidemic spreading process is completely described by the following quantity,
called infection propagator:

P (W ;λ, µ) =
T∏
t=1

(
1− µ+ Λ(T−t)

)
with Λ

(t)
ij = 1−(1−λ)W

(t)
ij and µ = µI .

(1)
The sufficient and necessary condition for the existence of the asymptomati-
cally stable disease-free solution is that the spectral radius of P (i.e. its lead
eigenvalue) is smaller than 1. Therefore, for a given value of µ, the critical
value of the transmissibility λc for which the spectral radius is equal to 1
corresponds to the epidemic threshold.

To account for hosts with individual average infectious period τi, with i
corresponding to the node index, we define ~µ as a vector where each element
µi is the inverse of the individual infectious period µi = 1/τi. The infection
propagator can then be written as:

P (W ;λ,µ) =
T∏
t=1

M (T−t) with M
(t)
ij = δij(1− µi) + 1− (1− λ)W

(t)
ij (2)

and the epidemic threshold expression becomes:

ρ [P (W ;λ = λc,µ)] = 1 , (3)

where µ is a diagonal matrix with ~µ on the diagonal.

Epidemic threshold computation

We compute the spectral radius of the infection propagator P , given by the
expression of Eq. (2) using the power iteration method. To compute the

threshold, we find the zero for ρ[P (W ;λ = λc, µ)]
1
T − 1 = 0 using Brent

algorithm [43] where λ is a variable and µ is informed from epidemiological
data. This procedure returns the value of λ for which the spectral radius
is equal to one. A Python library to compute the critical transmissibility is
publicly available online for interested researchers [44].
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Epidemic risk assessment in the heterogeneous vs. homoge-
neous cases

We compute the epidemic threshold with the infection propagator approach
to assess the epidemic risk of a host population in three real case studies. In
each one of them, actual epidemiological data allow us to inform the infection
propagator P (W ;λ,µ) with empirical estimates for µi, corresponding to
the actual heterogeneous context. We then compare our findings with the
epidemic threshold obtained under the assumption that all hosts have the
same infectious period (referred to as the homogeneous case) obtained as
a population average, i.e. τall =

∑
i τi/N , where N is the total number of

hosts (nodes) in the population. This quantity enables a parameterization
for the comparison of the two cases.

Network properties

We define the activity potential of a node in an empirical network as the
fraction of the number of time steps during which it makes contact with
other nodes over the period of the network T , as defined in Ref. [21].

Other quantities used in this study are basic network measures, including
the degree, i.e. the number of neighbors a given node has at time t, and the
strength, i.e. the total sum of the weights on the connections that a given
node establishes at time t. These quantities are also considered aggregated
on a given time interval [45].

Hellinger distance

To compare two distributions of the epidemic threshold obtained by vary-
ing underlying conditions in the host population under study, we use the
Hellinger distance[46] that is defined for discrete distributions as follows:

H(P1, P2) =

1

2

∑
i=1,k

(
√
pi −

√
qi)

2

 1
2

where P1 and P2 are discrete probability distributions over k discrete values:
P1 = (p1, ..., pk) and P2 = (q1, ..., qk).

3 Results

Bovine tuberculosis in Italy

Livestock infectious diseases are of primary interest for animal health and
welfare and for the economy of a country, with the potential to produce dev-
astating consequences [47]. Bovine tuberculosis is one the most widespread
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zoonotic diseases all over the World [48] and it is very difficult to contain
since it can rapidly spread while unnoticed, before the onset of clinical signs
in the animals [49]. Bovine tuberculosis is a notifiable disease in Europe.
In Italy, in particular, it has affected cattle population for decades and still
circulates in southern regions [50]. Here we focus on Puglia region in the
south of Italy where outbreak data are available and outbreak duration was
shown to vary depending on the production type of the affected premises.

We built the temporal network starting from the dataset of cattle trade
movements of the whole population of bovines in Puglia obtained from the
Italian National Database for Animal Identification and Registration that
is managed by the Istituto Zooprofilattico Sperimentale dell’Abruzzo e del
Molise (IZSAM) on behalf of the Italian Ministry of Health [51, 52]. Each
time-stamped cattle movement record provides the animal unique identifier
and the identifiers of both origin and destination premises. Here we con-
sider the daily records of bovine trades in Puglia, from January 1, 2006 to
December 31, 2012. In this region, 5,430 animal holdings displaced 136,206
bovines through 44,272 trade movements in the time period under study. In
the network representation, each node corresponds to a farm, and directed
links represent the animal movements, weighted with the number of bovines
moved [53, 54].

Bovine displacements tend to concentrate in the countryside around the
three majors cities of the region: Foggia, Bari and Lecce (Figure 1a). Out-
break locations correspond to these three geographic clusters, and also ap-
pear to be grouped according to the production type of the affected premises
(i.e. meat, dairy, or mixed production). We define the monthly-aggregated
average degree of an animal holding as the average number of trading part-
ners it has in a month. We compute this quantity by averaging on all
premises and averaging only on the ones trading at least once a month (de-
fined as active, including both sales and purchases). The evolution of these
quantities over time shows the low density of the network (Figure 1b). Each
month active premises represent between 8 and 14% of the total number
of premises and their average degree is around 3, leading to a very low
overall average degree. Further analysis of the Italian cattle trade network
properties were performed in previous works [9, 55, 56].

For the outbreak data we used records of bovine tuberculosis cases in
cattle occurring in Puglia between 1983 and 2015. This data were collected
by the Italian National Animal Health Managing Information System, an
informatics system developed by IZSAM on behalf of the Ministry of Health
[51, 52]. For each outbreak, we considered data reporting the identifiers
of the affected animal holding, its production type, and the start and the
end of the outbreak based on the date of first infection detection and date
of clearing of the infection, respectively. As shown in Table 1, outbreak
durations vary with production types. We split the premises population
in groups corresponding to their production type, and we set to each node
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the data-driven infectious period corresponding to the associated production
type.

Table 1: Estimated outbreak duration of bovine tuberculosis per production
type of the affected farm.

Production type Outbreak duration (min-max) (days) [51, 52]

Meat τmeat = 181 (74-2029)
Diary τdairy = 170 (65-274)
Mixed τmixed = 82 (41-292)

All τall = 153

Predicted epidemic risks in the homogeneous or heterogeneous case are
rather different (Figure 1c). The epidemic threshold computed on hetero-
geneous durations of the outbreak durations is about 30% smaller than the
estimate obtained with the population average. As a result, the homoge-
neous assumption overestimates the epidemic threshold. Even if we vary the
population average infectious period (used in the homogeneous model), for
example by assuming that all premises are either dairy or meat farms, we
obtain a higher epidemic threshold, thus systematically underestimating the
vulnerability of the livestock system. More in detail, we obtain the largest
bias when we parameterize all premises as they were all of mixed produc-
tion. Under this assumption, the obtained epidemic threshold is equal to 1,
meaning that the pathogen would not be able to persist in the system, in
clear contradiction with the current epidemiological status of Puglia with
respect to bovine tuberculosis.

Nosocomial infection carriage in hospital facilities

The definition of nosocomial infection applies both to infections acquired
by patients while being in a healthcare facility, and to occupational infec-
tions of medical staff [57]. Their control is a great concern in public health.
Several pathogens cause nosocomial infections, such as viruses (e.g. nosoco-
mial influenza, rotaviruses), or pathogenic and nonpathogenic bacteria (e.g.
Mycobacterium Tuberculosis, Pseudomonas Aeruginosa, Klebsiella Pneumo-
niae, Enterococcus, Staphyloccocus Aureus) [58]. While host colonization
can last for months in the absence of intervention[59], it can be dramati-
cally shortened by detection and intervention protocols, or by the hygiene
measures adopted by hospital personnel [60]. In addition, patients are known
to take longer to clear nasal colonization than healthcare workers [60, 61].
In order to understand how these differences may affect the vulnerability
of a hospital setting to nosocomial infections, we focus here on the case
of Staphylococcus Aureus (S. Aureus), for which colonization durations are
documented [60–62].

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 29, 2018. ; https://doi.org/10.1101/401158doi: bioRxiv preprint 

https://doi.org/10.1101/401158
http://creativecommons.org/licenses/by-nc-nd/4.0/


a) b)

c)

Figure 1: Bovine tuberculosis in Puglia, Italy. a) Aggregated network of
the cattle trade movements in Puglia and location of bovine tuberculosis
outbreaks in this region, in the period 1983 - 2015. Only the links with
an aggregated strength higher than 30 are represented. Affected farms are
identified according to their production type (dairy, meat, mixed). b) Ac-
tivity patterns of the cattle trade network in time. The red line shows the
proportion of active nodes. Blue bars show the monthly average degree of
all nodes and grey bars show the monthly average degree of active nodes.
c) Epidemic threshold estimate comparison between homogeneous and het-
erogeneous parameterizations. The plot shows the relative variation of the
epidemic threshold (expressed in %) as a function of the population average
infectious period. The reference for the relative variation is the epidemic
threshold obtained in the homogeneous assumption obtained with the pop-
ulation average infectious period τall computed from the data (Table 1). The
red star shows the epidemic threshold estimate in the heterogeneous case.
Blue markers show particular cases of the threshold estimate in various ho-
mogeneous parameterizations. The blue line shows the full dependence of
the epidemic threshold estimate in the homogeneous case as a function of
the population average infectious period.

Close proximity interactions are acknowledged to be a route along which
nosocomial infections may be transmitted [61, 62]. Here we use a temporal
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network of contacts within a hospital ward in Lyon, France, collected by the
SocioPatterns project [63, 64]. The dataset records face-to-face interactions
among patients and hospital workers over 4 days, at a 20 second resolution.
It includes also individual information that allow us to divide the popula-
tion into four groups: patients, nurses, medical doctors and administrative
personnel (see Table 2). Spatial constraints appear to be major drivers in
network topology, as, for instance, patients are mostly confined to rooms,
and administrative personnel to offices. Nurses, moreover, are the most con-
nected, sharing links with all other groups and among themselves (Figure
2a). The number of contacts follows a daily cycle, featuring peaks during
daytime, and troughs at night (Figure 2b).

Table 2: Number and proportion of individuals in each class in the hospital
network and corresponding estimated carriage duration for S. Aureus.
Role #nodes (%) Carriage duration (days) [60–62]

Patients 29 (38.67) τp = 10
Nurses 27 (36) τn = 2.5
Medical Doctors 11 (14.66) τm = 2.5
Administrative personnel 8 (10.67) τa = 2.5

All 75 (100) τall = 5.4

Analogously to the case of bovine tuberculosis, we compare the epi-
demic threshold obtained under homogeneous and heterogeneous parame-
terizations of the infection propagator approach. In the heterogeneous case,
patients and personnel colonization durations are set to respectively 10 and
2.5 days[60–62] while τall = 5.4 days (Table 2). The epidemic risk analysis
presented in Figure 2c shows that the epidemic threshold in the heteroge-
neous case yields a 100% relative variation with respect to the homogeneous
parameterization with τall. This hints at the presence of a group of poten-
tial hosts that are critical to the spread of the pathogen, but have a short
infectious period. To obtain the same estimates of the epidemic threshold
of the heterogeneous case with the homogeneous parameterization we would
need to reduce the average infectious period to τall =2.8 days.

To understand the contribution of each class of individuals to the epi-
demic risk, we computed the epidemic threshold in the heterogeneous pa-
rameterization by reducing the carriage duration parameter of a single class
at a time for each of the four classes. For the hospital staff, we set the
carriage duration to 1 day, and for the patients, we explored a reduction
in their carriage duration from 10 to 4 days. This allows us to understand
the performance of an intervention aimed at reducing the epidemic risk for
the ward, using, for instance, more frequent hand washing for a given class
of staff, or enhanced screening and treatment of patients. We observe that
while the intervention on administrative personnel or medical doctors would
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Figure 2: S. Aureus diffusion in a hospital ward. a) Aggregated network
of proximity contact in the hospital ward. Nodes are grouped by class of
individuals and links’ width and color are proportional to links’ weight,
measuring the total amount of time associated with each contact. b) Ac-
tivity patterns of the hospital network in time. The red line shows the
proportion of active nodes. Blue bars show the hourly average degree of
all nodes and gray bars show the hourly average degree of active nodes.
c) Epidemic threshold estimate comparison between homogeneous and het-
erogeneous parameterizations. The plot shows the relative variation of the
epidemic threshold (expressed in %) as a function of the population average
infectious period. The reference for the relative variation is the epidemic
threshold obtained in the homogeneous assumption (blue cross) obtained
with the population average infectious period τall computed from the data
(Table 2). The red star shows the epidemic threshold estimate in the hetero-
geneous case. Circles correspond to the estimates obtained when reducing
the carriage duration of each class of hospital personnel to 1 day, in the
heterogeneous parameterization. The red dashed line show the estimates
obtained when reducing the carriage duration of patients in the range of 4
to 10 days, in the heterogeneous parameterization. The blue line shows the
full dependence of the epidemic threshold estimate in the homogeneous case
as a function of the population average infectious period.
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have almost no impact on the epidemic threshold, targeting nurses would
dramatically increase the epidemic threshold, yielding a relative variation
larger than 200% with respect to the homogeneous assumption. This high-
lights the important role of nurses in the network of contacts, and their
potential of largely facilitating the dispersal of nosocomial infections in the
hospital setting [62, 65–67].

Pandemic influenza in closed settings

Influenza is a respiratory infectious disease that spreads through proxim-
ity contacts, and affects 10% to 30% of European population every year
[68]. High-risk individuals, such as elderly or immune-deficient, may experi-
ence a severe form requiring hospitalization. Particular attention is given to
schoolchildren [69, 70] since epidemiological evidence suggests that they are
critical in the early transmission chains of the disease favoring then the dif-
fusion in the general population. Hosts infected with influenza may develop
symptoms or may be asymptomatic, also exhibiting a shorter infectious pe-
riod in absence of symptoms[24]. We aim at understanding how the presence
of asymptomatic individuals impacts the pandemic risk for a population of
students at a school.

We build the temporal network from data reporting time-resolved con-
tacts in a French school [71, 72] collected by the SocioPatterns project [63],
over a period of 2 days, at a resolution of 20 seconds. As for hospital facili-
ties, proximity sensors were used to record face-to-face contacts between in-
dividuals. The resulting network is composed of N=242 individuals divided
into 11 classes, corresponding to ten classes distributed on five consecutive
grades, plus teachers. The network exhibits strong community structure, as
children connect more within the same class or the same grade (see Figure
3a). While teachers connect with students from different classes, those links
have a lower weight, as they occur less frequently and are shorter in time.
The hourly activity timeline shows clearly the three main breaks of the day
(Figure 3b). The proportion of active nodes is very high, showing a high
degree of interaction among students [73, 74]. It is possible to distinguish
the morning and afternoon breaks, characterized by a proportion of active
nodes close to 1, from the lunch break where students have lunch or leave
the school to eat at home decreasing the network activity. Detailed analysis
of the network were reported in previous work [71, 72].

We model the epidemic using infectious period estimates from 2009 in-
fluenza pandemic [24, 75], yielding 3.4 days for symptomatic infections and
1 day for asymptomatic infections (Table 3). We investigate proportions of
asymptomatically infected schoolchildren (pa) in agreement with empirical
estimates, i.e. pa = 0.669 (95% CI: 0.556-0.772) [76]. In addition to these
values, we also explore the full range from pa = 0 to pa = 1 for a com-
prehensive analysis. For a given proportion pa of asymptomatic individuals
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we compute the epidemic threshold randomly extracting the asymptomatic
nodes paN in the population. Repeating this operation 500 times, we obtain
a distribution of epidemic threshold values for each value or pa depending on
the assumed symptomatic response of the host population of schoolchildren.

Table 3: Estimated infectious period per symptomatic or asymptomatic
influenza infections. The population average τall depends on the assumed
proportion pa of asymptomatic individuals in the schoolchildren population.

Type of infection Infectious period (days) [24]

Symptomatic τs = 3.4
Asymptomatic τa = 1

All τall = τall(pa)

Figure 3c reports the results of the comparison between the homoge-
neous and heterogeneous cases. We observe that without any asymptomatic
individual (i.e. pa = 0 and population average infectious period equal to 3.4
days) the threshold is lower than when considering the presence of asymp-
tomatic, as expected. While it may be natural to think that asymptomatic
individuals may create unnoticed paths of infection, their shorter infectious
periods indeed plays a role in reducing the epidemic vulnerability of the
population. When we consider the heterogeneous parameterization, we find
that the homogeneous epidemic threshold is almost equal to the median
heterogeneous one. This observation is not only true for values of pa in the
confidence interval of the empirical estimates, but also for the whole range
from 0 to 1. There are, however, significant fluctuations around the median
value, whose width corresponds to approximately 40% of the homogeneous
estimate. The epidemic risk assessment assuming homogeneous infectious
periods in the population may therefore introduce a large bias leading either
to underestimating or overestimating population’s risk to infection.

We now want to understand the mechanisms responsible for those fluc-
tuations, specifically, by identifying the hosts that play a key role in shaping
the vulnerability. In what follows, we fix the proportion of asymptomatic
individuals to the empirical estimate pa = 0.669 [76]. For each node, we de-
termine the two threshold distributions obtained considering the given node
as either symptomatically or asymptomatically infected. We then compute
the Hellinger distance between these two distributions to quantifies their
dissimilarity: the higher the distance is, the more different the two distri-
butions are (see Methods). This quantity will be higher for nodes whose
status has a larger impact on the epidemic threshold. The distribution of
the Hellinger distance of all nodes, shown in Figure 4a, is bimodal and the
subset of nodes mainly responsible for the epidemic threshold variation is
clearly visible. It is a small group composed of only 7 nodes, corresponding
to 2.9% of the school population. In Figure 4b we show two examples of
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Figure 3: Pandemic influenza in a school setting. a) Aggregated network of
proximity contacts in the school. Nodes are grouped by class of individu-
als and links’ width and color are proportional to links’ weight, measuring
the aggregated amount of time associated with each contact. b) Activity
patterns of the school network in time. The red line shows the propor-
tion of active nodes. Blue bars show the hourly average degree of all nodes
and gray bars show the hourly average degree of active nodes. c) Epidemic
threshold estimate comparison between homogeneous and heterogeneous pa-
rameterizations. The plot show the epidemic threshold as a function of the
population average infectious period, for both homogeneous (blue) and het-
erogeneous (red) parameterizations. The red shaded areas show the 95%
(lighter red) and 50% (darker red) confidence intervals for the epidemic
threshold estimate obtained when randomizing on nodes that are symp-
tomatic or asymptomatic in the heterogeneous case. The gray vertical area
indicate the range of population average infectious period corresponding to
pa varying in the empirically estimated 95% confidence interval.

the distributions obtained for a node selected in each mode of the distance
distribution.

We also observe that these 7 nodes belong to the same class (see circled
nodes in Figure 3a) and do not correspond to hubs in the whole network.
They are likely to be a single group of friends. In order to highlight the
patterns making these specific nodes more responsible than others for the
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threshold variation, we investigate various network properties. We find that
these nodes exhibit higher strength (Figure 4c) and activity potential (not
shown).

a) b) c)

Figure 4: Identification of nodes mostly contributing to the large fluctuations
obtained with the heterogeneous parameterization compared to the homo-
geneous case. a) Distribution of the Hellinger distance computed on the
epidemic threshold distributions obtained by considering one at a time each
node in the symptomatic or asymptomatic classes. The blue and the orange
lines show examples of distance values obtained for two nodes, one close to
the peak of the distribution (blue) and the other being an outlier (orange).
b) Epidemic threshold distributions depending on symptomatic status fol-
lowing infection (purple for symptomatic infection, green for asymptomatic
infection), for the two nodes highlighted in panel (a). c) Hellinger distance
as a function of the node strength. Orange points correspond to nodes with
outlier Hellinger distance values.

4 Discussion

Mathematical models have been highly successful in the study and under-
standing of infectious disease epidemics [2, 3]. Some simplifying assump-
tions, however, have sometimes hindered their applicability to real world
scenarios. Our work helps adding realism to modeling a wide class of highly
relevant diseases, as it provides a synthetic and solvable framework for con-
sidering individual hosts (or host classes) that have different characteristic
infectious periods. By building on the methodology described in [41, 42],
we have defined and computed the epidemic threshold with arbitrarily het-
erogeneous recovery probabilities, assuming them to be constant. We then
applied our analytical framework to three relevant case studies, showing that
we can successfully measure how such heterogeneity impacts the vulnerabil-
ity of a particular population to disease introduction, considering bovine
tuberculosis in southern Italy, nosocomial infections in hospital wards, and
influenza-like epidemics in schools.
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We stress that, while an increasing body of literature has already demon-
strated the importance of including contact structure [4–16] and host-specific
heterogeneities [25–31, 37, 77], few studies have considered the combined
impact of these two factors in the estimation of the epidemic risk. Theoret-
ical works that include host-specific heterogeneities were previously carried
while assuming homogeneously mixed population [10, 27, 32, 33, 37] or using
a static contact network [38–40], neglecting the possible interplay between
the spreading process timescale and the contact evolution.

Our findings suggest that obtaining an accurate, individual or class-
specific, estimate of the infectious period is an important step for building
realistic spreading models. Indeed we have shown that if we set the same
recovery probability to all hosts, we may greatly bias the estimate of the
vulnerability, with the sign of the error depending on the specific setting.
For bovine tuberculosis in Puglia, any homogeneous parameterization of the
outbreak duration predicts a lower epidemic risk with respect to the hetero-
geneous case. In particular, when the shortest recorded outbreak duration
is considered in the homogeneous approximation (τ = τmixed), the disease
is predicted not to be able to persist in the system, in evident contrast
with the documented endemic presence of bovine tuberculosis in the region.
On the contrary, in the case of the S. Aureus infection within a hospital,
the classic homogeneous assumption causes to substantially overestimate
the epidemic risk, with respect to the heterogeneous case. The presence
of medical personnel with a shorter carriage duration is able to counteract
the spreading potential of patients assumed to be carrying the pathogen
for a longer time, and to further reduce the risk with respect to a homoge-
neous parameterization with the population average. Finally, for pandemic
influenza in school settings, even though the median epidemic threshold ob-
tained from the heterogeneous assumption matches the homogeneous result,
we observe important fluctuations that may lead to either underestimating
or overestimating vulnerability.

All these findings highlight the importance of properly accounting for
heterogeneous infectious periods, as ignoring this feature may lead to a
biased estimate of the epidemic risk, and consequently inefficient control
strategies [78].

In addition, despite the fact that the responsibility of more active nodes
in the epidemic risk has already been proven [45, 56], our approach was able
to highlight them and show their contribution to population vulnerability,
depending on their individual infectious period and their network proper-
ties. This can have clear implications in devising targeted interventions. For
example, we have shown that in the hospital ward hygiene practices that re-
duce carriage duration in nurses can lead to a strong reduction in nosocomial
risk. No impact is instead observed reducing the carriage duration of the
administrative personnel or medical doctors. These findings are explained
by the highly connected role of nurses within the hospital facility, given they
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interact considerably with both patients and other hospital personnel. As
such, they represent an ideal target group for prevention measures aimed
at lowering the risk for pathogen diffusion [64, 79–81]. Also in the case of
pandemic influenza in school our approach allows the identification of those
individuals who mostly contribute to disease circulation and persistence.

Our findings provide useful insights for the understanding of host hetero-
geneities in disease spread and can be used to build more realistic data-driven
mathematical approaches for real case scenarios and targeted control mea-
sures. However, several key theoretical and practical issues are still to be
addressed. First, empirical evidence shows that asymptomatically infected
individuals with influenza tend to be less infectious than those who develop
symptoms [24]. Our approach, however, assumes that disease transmissibil-
ity would not vary depending on host symptoms status, as our study was
restricted to the role of heterogeneity of infectious periods only. Such vari-
ation can be taken into account by introducing a variation of the weights of
the contacts established by an asymptomatic infectious individual while in-
fected. The framework with varying transmissibility may also apply to other
epidemic contexts, such as e.g. the spread of nosocomial infections. Nurses
and doctors indeed are expected to adopt hygiene measures (e.g. use of
disposable gloves, hand washing, etc.) that can reduce their transmissibility
if infected.

Second, our study considered a basic intervention expressed with the
reduction of the carriage duration for medical personnel in the hospital.
More realistic interventions may however be considered, as e.g. pharmaceu-
tical treatments aimed not only at reducing the infectious period but also
the probability of transmission of the disease (e.g. antiviral treatments for
influenza infections [24], or the use of antibiotics for bacterial infections).
In addition, recent work highlighted the role of heterogeneous carriage du-
ration of bacterial strains in ruling the relative abundance of each strain
under antibiotic treatments [82]. Accounting for these aspects would al-
low a more realistic design of targeted interventions aiming at raising the
epidemic threshold in the most efficient way.

Finally, more realistic and pathogen-specific distributions of infectious
periods should be further considered, differently from the exponential dis-
tributions with heterogeneous individual infectious periods assumed here.
This would likely require a radical re-design of the infection propagator ap-
proach to address the inclusion of such distributions. These various future
directions would help the theoretical understanding of disease spreading pro-
cesses with increasingly realistic epidemic models.
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