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Many complex processes, from protein folding and virus evolution to brain activity and neuronal
network dynamics, can be described as stochastic exploration of a high-dimensional energy land-
scape. While efficient algorithms for cluster detection and data completion in high-dimensional
spaces have been developed and applied over the last two decades, considerably less is known about
the reliable inference of state transition dynamics in such settings. Here, we introduce a flexible and
robust numerical framework to infer Markovian transition networks directly from time-independent
data sampled from stationary equilibrium distributions. Our approach combines Gaussian mixture
approximations and self-consistent dimensionality reduction with minimal-energy path estimation
and multi-dimensional transition-state theory. We demonstrate the practical potential of the in-
ference scheme by reconstructing the network dynamics for several protein folding transitions and
HIV evolution pathways. The predicted network topologies and relative transition time scales agree
well with direct estimates from time-dependent molecular dynamics data and phylogenetic trees.
The underlying numerical protocol thus allows the recovery of relevant dynamical information from
instantaneous ensemble measurements, effectively alleviating the need for time-dependent data in
many situations. Owing to its generic structure, the framework introduced here will be applicable
to modern cryo-electron-microscopy and high-throughput single-cell RNA sequencing data and can
guide the design of new experimental approaches towards studying complex multiphase phenomena.

Energy landscapes encapsulate the effective dynam-
ics of a wide variety of physical, biological and chem-
ical systems1,2. Well-known examples include a myr-
iad of biophysical processes3–7, multiphase systems2,
thermally activated hopping in optical traps8, chemi-
cal reactions1, brain neuronal expression9, and cellular
development10–14. Energetic concepts have also been
connected to machine learning15 and to viral fitness land-
scapes, where pathways with the lowest energy barriers
may explain typical mutational evolutionary trajectories
of viruses between fitness peaks16,17. Recent advances
in experimental techniques including cryo-electron mi-
croscopy (cryo-EM)3 and single-cell RNA sequencing18,
as well as new online social interaction datasets19, are
producing an unprecedented wealth of high-dimensional
instantaneous snapshots of biophysical and social sys-
tems. Although much progress has been made in di-
mensionality reduction20–22 and the reconstruction of ef-
fective energy landscapes in these settings3,11,14,23, the
problem of inferring dynamical information such as pro-
tein folding or mutation pathways and rates from instan-
taneous ensemble data remains a major challenge.

To address this practically important question, we
introduce here an integrated computational framework
for identifying metastable states on reconstructed high-
dimensional energy landscapes and for predicting the rel-
ative mean first passage times (MFPTs) between those
states, without requiring explicitly time-dependent data.
Our inference scheme employs an analytic representa-
tion of the data based on a Gaussian mixture model
(GMM)24 to enable efficient identification of minimum-

energy transition pathways25–27. We show how the es-
timation of transition networks can be optimized by re-
ducing the dimension of a high-dimensional landscape
while preserving its topology. Our algorithm utilizes ex-
perimentally validated analytical results8 for transition
rates1,28,29. Thus, it is applicable whenever the time-
evolution of the underlying system can be approximated
by a Fokker-Planck-type Markovian dynamics, as is the
case for a wide range of physical, chemical and biological
processes1.

Specifically, we illustrate the practical potential by
inferring protein folding transitions and HIV evolution
pathways. Current standard methods for coarse-graining
the conformational dynamics of biophysical structures30

typically estimate Markovian transition rates from time-
dependent trajectory data in large-scale molecular dy-
namics simulations31. By contrast, we show here that
protein folding pathways and rates can be recovered with-
out explicit knowledge of the time-dependent trajecto-
ries, provided the system is sufficiently ergodic and equi-
librium distributions are sampled accurately. The agree-
ment with the trajectory-based estimates suggests that
the inference of complex transition networks via recon-
structed energy landscapes can provide a viable and often
more efficient alternative to traditional time series esti-
mates, particularly as new experimental techniques will
offer unprecedented access to high-dimensional ensemble
data.
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FIG. 1. Inference scheme for estimating transition networks and mean first passage times (MFPTs) from a stationary sample
set, demonstrated on test data generated from a Gaussian Mixture Model (GMM; Supplementary Information). (A) Inputs are
the instantaneously measured data, sampled here from a 10-dimensional GMM with 5 Gaussians, plotted in the first 3 principal
components (PCs). (B) Top: A GMM is fit to the samples to construct the empirical distribution which is then converted to the
energy landscape using Eq. (1). Background color indicates the projection of the empirical energy landscape onto the first two
PCs. Minimum energy paths (MEPs, grey lines) between minima 1–5 on the landscape are calculated using the NEB algorithm
(Supplementary Information). Bottom: Disconnectivity graph illustrating minima on the energy landscape (circles) and saddle
points between them (squares). (C) A Markov state model (MSM) is constructed with transition rates given by Eq. (2) and
solved to predict the MFPTs between discrete states (top right; Methods). MFPTs predicted by the MSM agree with direct
estimates from Brownian dynamics simulations in the inferred energy landscape (top left; Supplementary Information). MFPTs
calculated in a reduced 4-dimensional space using the scaling given in Eq. (3) recover the MFPTs accurately (bottom left).
Without the appropriate scaling, the predicted MFPTs are inaccurate (bottom right).

RESULTS

Minimum-energy-path (MEP) network
reconstruction

The equilibrium distribution p (x) of a particle diffus-
ing over a potential energy landscape E(x) is the Boltz-
mann distribution p(x) = exp [−E(x)/kBT ] /Z , where
kB is the Boltzmann constant, T is the temperature and
Z is a normalization constant. Given the probability den-
sity function (PDF) p(x), the effective energy can be in-
ferred from

E(x) = −kBT ln[p(x)/pmax], (1)

where pmax is the maximum value of the PDF, included
to fix the minimum energy at zero. Our goal is to esti-
mate the MFPTs between minima on the landscape us-
ing only sampled data. We divide this task into three
steps, as illustrated in Fig. 1 for test data (Supplemen-
tary Information). In the first step, we approximate the
empirical PDF by using the expectation maximization
algorithm to fit a Gaussian mixture model (GMM) in a
space of sufficiently large dimension d (Methods, Fig 1A).
Mixtures with a bounded number of components can be
recovered in time polynomial in both d and the required
accuracy32. The resulting GMM yields an analytical ex-
pression for E(x) via Eq. (1).

In the second step, the inferred energy landscape E(x)
is reduced to an MEP network whose nodes (states) are
the minima of E(x) (Fig. 1B top). Each edge represents
an MEP that connects two adjacent minima and passes
through an intermediate saddle point (Fig. 1B). The
MEPs are found using the nudged elastic band (NEB)
algorithm25,26, which discretizes paths with a series of
bead-spring segments (Supplementary Information).

Markov state model (MSM)

Given the MEP network, the final step is to infer the
rates for transitioning from a minimum α to an adjacent
minimum β. Assuming overdamped Brownian dynamics,
the directed transition α→ β can be characterized by the
generalized transition Kramers rate1

kαβ =
ωb

2πγ

∏
i ω

α
i∏′

i ω
S
i

exp (−Eb /kBT ), (2)

where γ is the effective friction, Eb is the energy differ-
ence between the saddle point S on the MEP and the
minimum α, ωαi are the stable angular frequencies at the
minimum α, while ωSi and ωb are the stable and unsta-
ble angular frequencies at the saddle. Eq. (2) assumes
isotropic friction but can be generalized to a tensorial
form1 if anisotropies are relevant. In most practical ap-
plications, the error from assuming γ to be isotropic is
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likely negligible compared to other experimental noise
sources. In principle, Eq. (2) can be refined further by
including quartic (or higher) corrections to the prefactor
ωb/γ to account for details of the saddle shape1. Such
corrections can be significant for GMMs (Supplementary
Information).

Each edge (αβ) has two weights, kαβ and kβα, assigned
to it. The rate matrix (kαβ) completely specifies the
MSM on the network. Solving the MSM yields the ma-
trix of pairwise mean first passage times (MFPTs) be-
tween states (Fig. 1C, Methods). In a simple two-state
system, the MFPTs are determined up to a time scale
by detailed balance, but for three or more states the in-
fluence of landscape topography and the associated state
network topology (Methods) can lead to interesting hi-
erarchical ordering of passage times. Identifying these
hierarchies, and ways to manipulate them, is key to con-
trolling protein folding or viral evolution pathways.

Topology-preserving dimensionality reduction

To ensure that the inference protocol can be efficiently
applied to larger systems with a high-dimensional energy
landscape, we derive a general method for reducing the
dimension D of an energy landscape while preserving its
topology. A probability density function with C well-
separated Gaussians in D dimensions can be projected
onto the d = C − 1 dimensional hyperplane spanning
the Gaussian means using principal component analysis
(PCA). In practice, it suffices to choose C to be larger
than the number of energy minima if their number is not
known in advance. Reduction to fewer than d = C − 1
dimensions does in general not allow a correct recovery
of the MFPTs.

To preserve the topology under such a transformation
– which is essential for the correct preservation of en-
ergy barriers and MEPs in the reduced-dimensional space
– one needs to rescale GMM components in the low-
dimensional space depending on the covariances of the
Gaussians in the D − d neglected dimensions (Fig. 1C).
Explicitly, one finds that within the subspace spanned by
the retained principal components (Supplementary Infor-
mation)

p(xD) =

C∑
i=1

φi p
d
i (xd)

√
det
(
2πUT

d ΣiUd
)√

det (2πΣi)
(3)

as long as p satisfies certain minimally-restrictive condi-
tions. Here, Ud denotes the first d = C−1 columns of the
matrix of sorted eigenvectors U of the covariance matrix
of the Gaussian means, and φi, p

d
i and Σi are the mixing

components, reduced-dimensional PDF and the covari-
ance matrix of each individual Gaussian in the mixture,
respectively (Supplementary Information). Neglecting
the determinant scale-factors in Eq. (3), as is often done
when GMM models are fitted to PCA-projected data,
generally leads to inaccurate MFPT estimates (Fig. 1C,

bottom). Note that Eq. (3) does not represent inversion
of the transformation performed on the data by PCA, un-
less all D dimensions are retained; if some dimensions are
neglected, Eq. (3) represents a rescaling of the marginal
distribution in the retained dimensions to reconstruct the
probability density function in the original dimension. In
other words, the transition rates are best recovered from
the conditional – not marginal – distributions, which are
given by Eq. (3) up to a constant factor that does not
affect energy differences.

Dimensionality reduction can substantially improve
the efficiency of the NEB algorithm step: when the MEPs
in the reduced d-dimensional space have been computed,
the identified minima and saddles can be transformed
back into the original data dimension D to calculate
the Hessian matrices at these points, allowing Kramers’
rates to be calculated as usual (Fig. 1C, Supplemen-
tary Information). Alternatively, in specific situations
where the MEPs lie outside the hyperplane spanning the
means (Supplementary Information), the MEP in the re-
duced d-dimensional space can be transformed back to
the D-dimensional space and used as an initial condition
in that space, significantly reducing computational cost.
These results present a step towards a general protocol
for identifying reaction coordinates or collective variables
for projection of a high-dimensional landscape onto a re-
duced space while quantitatively preserving the topology
of the landscape.

Protein folding

To illustrate the vast practical potential of the above
scheme, we demonstrate the successful recovery of several
protein folding pathways, using data from previous large-
scale molecular dynamics (MD) simulations31. The pro-
tein trajectories, consisting of the time-dependent coordi-
nates of the alpha carbon backbone, were pre-processed,
treated as a set of static equilibrium measurements, and
reduced in dimension before fitting a GMM (Methods).
As is typical for high-dimensional parameter estimation
with few structural assumptions, the fitting error due to a
finite sample size n in d dimensions scales approximately
as
√
d/n (Supplementary Information); see Refs.33,34

for advanced techniques tackling sample size limitations.
Here, d < 10 so the sample size n ∼ 105 suffices for effec-
tive recovery (Methods, Supplementary Information).

For each of the four analyzed proteins Villin, BBA,
NTL9 and WW, the reconstructed energy landscapes re-
veal multiple states including a clear global minimum cor-
responding to the folded state (Fig. 2A,B). To estimate
MFPTs, we determined the effective friction γ in Eq. (2)
for each protein from the condition that the line of best
fit through the predicted vs. measured MFPTs has unit
gradient. Although not usually known, γ could in prin-
ciple be calculated by comparing MD simulations with
experimental data. Our MFPT predictions agree well
with direct estimates (Supplementary Information) from
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FIG. 2. Reconstructed MEP networks for protein folding transitions, and comparison of predicted MFPTs with direct estimates
from molecular dynamics (MD) simulations (Supplementary Information). (A) Left: Low energy states and transition network
in the first three principal components (PCs) for Villin including predicted transition paths between states (red lines); bottom
coloring shows two-dimensional projection of the empirical energy landscape onto the first two PCs. Right: Associated discon-
nectivity graph and illustrations of the five lowest energy states, with state 1 corresponding to the folded state. (B) Low energy
states, transition paths and empirical energy landscape for BBA, WW and NTL9 proteins, and sketches of their folded states.
(C) Predicted MFPTs agree well with estimates from MD simulations when energy minima are well separated and become
less accurate for fast transitions with small MFPTs. Filled shapes correspond to unfolding transitions and unfilled shapes
correspond to folding transitions for Villin, BBA, NTL9 and WW. Crosses correspond to transitions between intermediate
states.

the time-dependent MD trajectories (Fig 2C). Detailed
analysis confirms that the MFPT estimates are robust
under variations of the number of Gaussians used in the
mixture (Fig. S1). Also, the estimated MEPs are in good
agreement with the typical transition paths observed in
the MD trajectories (Fig. S2).

Viral evolution

As a second proof-of-concept application, we demon-
strate that our inference scheme recovers the expected
evolution pathways between HIV sequences as well as
the key features of a distance-based phylogenetic tree
(Fig. 3). To this end, we reconstructed an effective energy
landscape from publicly available HIV sequences sam-
pled longitudinally at several points in time from multiple
patients35, assuming that the frequency of an observed
genotype is proportional to its probability of fixation and
that the high-dimensional discrete sequence space can be
projected onto a continuous reduced-dimensional pheno-
type space (Fig. 3A; Supplementary Information). First,
a Gaussian was fit to each patient and then combined in
a GMM with equal weights, to avoid bias in the fitness
landscape towards sequences infecting any specific pa-

tient (Supplementary Information). Thereafter, we ap-
plied our inference protocol to reconstruct the effective
energy landscape, transition network (Fig. 3B) and dis-
connectivity graph (Fig. 3C), where each state is asso-
ciated to a separate patient. As expected, states corre-
sponding to patients infected with different HIV subtypes
are not connected by MEPs (Fig 3A,B). The discon-
nectivity graph reproduces the key features of a coarse-
grained patient-level representation of the phylogenetic
tree (Fig. 3C). Using our inference scheme, vertical evo-
lution in the tree can be tracked along the minimum
energy paths in a reduced-dimensional sequence space
(Fig. 3B). The energy barriers, represented by the lengths
of the vertical lines in the disconnectivity graph (Fig.
3C), provide an estimate for the relative likelihood of
evolution to fixation via point mutations between fitness
peaks (energy minima). If mutation rates are known, the
MEPs can also be used to estimate the time for evolution
to fixation from one fitness peak to another36.
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FIG. 3. Minimum energy paths (MEPs) on viral fitness landscapes reconstructed from publicly available HIV sequencing data35.
(A) Longitudinal samples of the HIV virus are binarized after multiple sequence alignment (Supplementary Information) and
plotted in the first 3 PCs. Samples of the same HIV subtype are closer in PC-space. Patient labels correspond to those used
in35. (B) MEPs between minima corresponding to patients infected with Type B HIV, plotted in the first 3 PCs. Paths
between minima indicate likely evolutionary pathways. Minima corresponding to patients with Type 01 AE and Type C HIV
were unconnected to the other minima. (C) Disconnectivity graph for connected minima, where vertical evolution frequency
is assumed to be proportional to the normalized energy barriers (top). The disconnectivity graph reproduces the majority
of the structure of a distance-based phylogenetic tree (bottom), where the lengths of vertical lines are proportional to the
Jukes-Cantor sequence distance (scaled to [0, 1]).

DISCUSSION

Preserving landscape topology under dimensionality
reduction

Finding the appropriate number of collective macro-
variables to describe an energy landscape is a generic
problem relevant to many fields. For example, al-
though some proteins can be described through effec-
tive one-dimensional reaction coordinates5, the accu-
rate description of their diffusive dynamics over the full
microscopic energy landscape requires many degrees of
freedom37. Whenever dynamics are inherently high-
dimensional, topology-preserving dimensionality reduc-
tion can enable a much faster search of the energy land-
scape for minima and MEPs. In practice, data dimension
is often reduced with PCA or similar methods before con-
structing an energy landscape37,38. The extent to which
commonly used dimensionality reduction techniques al-
ter MEP network topology or quantitatively preserve en-
ergy barriers is not well understood. Eq. (3) suggests
that reducing dimensions using PCA should not intro-
duce significant errors if the variance of the landscape
around each state (energy minimum) in the neglected
dimensions is similar. For instance, we found that the
protein folding data could be reduced to five dimensions
while maintaining accuracy (Fig. S1), although addi-
tional higher energy states may become evident in higher
dimensions. Overall, our theoretical results demonstrate
the benefits of combining an analytical PDF with a linear
dimensionality reduction technique so that the neglected
dimensions can be accounted for explicitly.

Biological and biophysical applications

Rapidly advancing imaging techniques, such as cryo-
genic electron microscopy (cryo-EM), will allow many
snapshots of biophysical structures to be taken at the
atomic level in the near future3. A biologically and bio-
physically important task will be to infer dynamical infor-
mation from such instantaneous static ensemble measure-
ments. The protein folding example in Fig. 2 suggests
that the framework introduced here can help overcome
this major challenge. Another promising area of future
application is the analysis of single-cell RNA-sequencing
data quantifying the expression within individual cells18.
In related recent work, an effective energy landscape of
single-cell expression snapshots was inferred using the
Laplacian of a k-nearest neighbor graph on the data, al-
lowing lineage information to be derived via a Markov
chain13. The GMM-based framework here provides a
complementary approach for reconstructing faithful low-
dimensional transition state dynamics from such high-
dimensional data.

Furthermore, the proof-of-concept results in Fig. 3 sug-
gests that our inference scheme for Markovian network
dynamics can be useful for studying viral and bacte-
rial evolution, which are often modeled as movements
through a series of DNA or protein sequences39. The fit-
ness landscape of an organism in sequence space is anal-
ogous to the negative of an effective energy landscape.
The process of fixation by a succession of mutants in a
population, whereby each mutant replaces the previous
lineage as the population’s most recent common ances-
tor, has been modeled as a Markov process40. Successive
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sweeps to fixation have been observed in long-term evo-
lution experiments, promising groundbreaking data for
future analysis as whole-genome sequencing technologies
improve41.

Outlook and extensions

The inference protocol opens the possibility to ana-
lyze previously intractable multi-phase systems: many
high-dimensional physical, chemical and other stochastic
processes can be described by a Fokker-Planck dynam-
ics1, with phase equilibria corresponding to maxima of
the stationary distribution. By taking near-simultaneous
measurements of many subsystems within a large multi-
stable Fokker-Planck system, the above scheme allows
the inference of coexisting equilibria and transition rates
between them. Other possible applications may include
neuronal expression9 and social networks19, which have
been described in terms of effective energy landscapes.

While we focused here on normal white-noise diffu-
sive behavior, as is typical of protein folding dynamics,
the above ideas can in principle be generalized to other
classes of stochastic exploration processes. Such exten-
sions will require replacing Eq. (2) through suitable gen-
eralized rate formulas, as have been derived for correlated
noise1,42. Conversely, the present framework provides a
means to test for diffusive dynamics: if the MFPTs of
an observed system differ markedly from those inferred
by the above protocol, then either important degrees of
freedom have not been measured; the system is out of
equilibrium on measurement time scales; or the system
does not have Brownian transition statistics, necessitat-
ing further careful investigation of its time dependence.

To conclude, the conformational dynamics of biophysi-
cal structures such as viruses and proteins are character-
ized by their metastable states and associated transition
networks, and can often be captured through Markovian
models. Current experimental techniques, such as cryo-
EM or RNA-sequencing, provide limited dynamical in-
formation. In these cases, transition networks must be
inferred from structural snapshots. Here, we have in-
troduced a numerical framework for inferring Markovian
state-transition networks via reconstructed energy land-
scapes from high-dimensional static data. The successful
application to protein folding and viral evolution path-
ways illustrates that high-dimensional energy landscapes
can be reduced in dimension without losing relevant topo-
logical information. Generally, the inference scheme pre-
sented here is applicable whenever the dynamics of a
high-dimensional physical, biological or social system can
be approximated by diffusion in an effective energy land-
scape.

METHODS

Population landscapes. A Gaussian mixture model
(GMM) was used to represent the probability density
function (PDF), or population landscape, of samples.
The PDF at position x of a GMM with C mixture com-
ponents in d dimensions is

p(x) =
C∑
i=1

φipi(x)

pi(x) =
exp

(
− 1

2 (x− µi)T Σ−1i (x− µi)
)

√
det (2πΣi)

,

where φi are the weights of each component, µi are the
means and Σi are the covariance matrices. More details
on GMMs and how they were fit to data is given in the
Supplementary Information.

Mean first passage times. We form a discrete-state
continuous-time Markov chain on states given by the
minima of the energy landscape. For a pair of states α
and β directly connected by a minimum-energy pathway
via a saddle, we approximate the transition rate α → β
by the Kramers rate kαβ in Eq. (2), while if α and β
are not directly connected we set kαβ = 0. Given these
rates, the Markov chain has generator matrix Mαβ where
Mαβ = kαβ for α 6= β and Mαα = −

∑
β:β 6=α kαβ . Then

the matrix ταβ of MFPTs (hitting times) for transitions
α→ β satisfies∑

γ

Mαγτγβ = −1 for α 6= β, ταα = 0.

Protein data pre-processing. Protein folding tra-
jectories were obtained from all-atom molecular dy-
namics (MD) simulations performed by D.E. Shaw
Research31. Data was subsampled by a factor of 5 to re-
duce the size. For some proteins, residues at the flexible
tails of proteins were removed from the dataset to reduce
noise. Pairwise distances between carbon alpha atoms
on the protein backbone were taken, with a cut off of 6-
8 Å, depending on the size of the protein. Samples were
reduced in dimension using principal component analysis
(PCA). The first five principle components of the protein
data were found to be sufficient for inference of energy
landscapes and transition networks (Fig. S1).

Code availability. The source code used in this study
to learn a dynamical transition network and mean first
passage times from a Gaussian mixture model is pub-
licly available from Github (https://github.com/philip-
pearce/learning-dynamical). Also included are all data
processing codes required to convert the raw data used
in this study into the appropriate format.

Data availability. Two publicly available
datasets were used in this study. Protein folding
trajectories31 are available from D.E. Shaw Research
(https://www.deshawresearch.com/). HIV sequences35

are available from https://hiv.biozentrum.unibas.ch/.
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