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Abstract

In this work we demonstrate how to leverage our recent iterative deep learning–all atom
molecular dynamics (MD) technique “Reweighted autoencoded variational Bayes for enhanced
sampling (RAVE)” (Ribeiro, Bravo, Wang, Tiwary, J. Chem. Phys. 149, 072301 (2018))
for sampling protein-ligand unbinding mechanisms and calculating absolute binding affinities
when plagued with difficult to sample rare events. RAVE iterates between rounds of MD and
deep learning, and unlike other enhanced sampling methods, it stands out in simultaneously
learning both a low-dimensional physically interpretable reaction coordinate (RC) and associ-
ated free energy. Here, we introduce a simple but powerful extension to RAVE which allows
learning a position-dependent RC expressed as a superposition of piecewise linear RCs valid in
different metastable states. With this approach, we retain the original physical interpretabil-
ity of a RAVE-derived RC while making it applicable to a wider range of complex systems.
We demonstrate how in its multi-dimensional form introduced here, RAVE can efficiently
simulate the unbinding of the tightly bound benzene-lysozyme (L99A variant) complex, in
all atom-precision and with minimal use of human intuition except for the choice of a larger
dictionary of order parameters. These simulations had a 100 % success rate, and took between
3–50 nanoseconds for a process that takes on an average close to few hundred milliseconds,
thereby reflecting a seven order of magnitude acceleration relative to straightforward MD.
Furthermore, without any time-dependent biasing, the trajectories display clear back–and–
forth movement between various metastable intermediates, demonstrating the reliability of
the RC and its probability distribution learnt in RAVE. Our binding free energy is in good
agreement with other reported simulation results. We thus believe that RAVE, especially in
its multi-dimensional variant introduced here, will be a useful tool for simulating the dissoci-
ation process of practical biophysical systems with rare events in an automated manner with
minimal use of human intuition.

1 INTRODUCTION

Modern all-atom simulation approaches to
tackling open problems in the biological sci-
ences must confront an inherent limitation
stemming from the difference in timescales be-
tween the fast rovibrational molecular motions

relative to the (much) slower biochemical pro-
cesses. With these fast molecular motions act-
ing to constrain the timestep for integrating
Newton’s equations of motion to small fem-
tosecond values, it can be difficult to simulate
timescales much greater than a few tens of
microseconds despite intense developments in
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computational hardware.1 It is often the case,
however, that fundamental biological processes
reach timescales greater than milliseconds, one
particular example being the (un)binding of
specific ligand-protein complexes happening
over multiple hours.2,3 In order to deal with
this restriction several methods have been in-
troduced with the aim of reducing the timescale
for sampling the slow biochemical processes
while nonetheless being capable of recovering
their original statistics.4–18 Included among
these are several interesting recent approaches
that leverage deep learning to generate an opti-
mum reaction coordinate (RC) that can then be
used within a pre-existing enhanced sampling
or markov state model framework.11–15 One of
these is a method we very recently proposed,
named “Reweighted autoencoded variational
Bayes for enhanced sampling (RAVE)”. The
major distinguishing feature of RAVE is that
the RC is learnt together with its Boltzmann
probability distribution,18 which can then serve
as the ideal bias potential and be leveraged
outside pre-existing biasing frameworks such
as metadynamics or umbrella sampling.4–6,10

In the original proof-of-concept paper, RAVE
was applied to model potentials including a
fullerene-nanopocket19–23 unbinding test case
where it was demonstrated that sampling in
simulations could indeed be enhanced with the
simultaneous on-the-fly learning of the RC and
bias potential.18 We demonstrated that RAVE
could reproduce the dissociation free energy
profile for the unbinding of a fullerene from a
nanopocket in much less computational time
than using the popular metadynamics and um-
brella sampling methods.24 These initial inves-
tigations were thus suggestive that RAVE could
find important applications in simulations of
ligand-protein complexes that now have a crit-
ical role in aiding drug design.25,26

Here we introduce a simple but powerful
multi-dimensional extension to RAVE that
makes it possible to obtain accurate absolute
binding free energies ∆Gb in realistic ligand-
protein complexes. As our test-case, we choose
benzene (un)binding from the L99A variant of
the T4 bacteriophage lysozyme protein (T4L),
which is a popular and challenging ligand-

protein complex for experimental and simu-
lation studies.25,27–35 For example, Deng and
Roux investigated the binding affinities of the
T4L protein with various aromatic ligands.25,30

Miao and co-workers applied their Gaussian Ac-
celerated Molecular Dynamics (GaMD) method
on the complex.31 Wang et al. 33 also looked into
the binding free energies but from the perspec-
tive of using association and dissociation rate
coefficients to calculate the ∆Gb. Most recent,
several (un)binding paths were simulated in or-
der to make accurate kinetics predictions,34,35

these (un)binding paths differing from one an-
other in that different helix-helix distances were
modulating the entry and exit of benzene from
the binding pocket.

Using our multi-dimensional extension, we
will show how RAVE can learn position-
dependent RCs which lead to sampling ben-
zene unbinding from the buried binding pocket
of the T4L protein in 100% of our short in-
dependent MD simulations (that is 20 out of
20 simulations). The first unbinding event in
these short independent runs occurred within 3-
50 nanoseconds, corresponding to a seven order
of magnitude speed-up relative to the actual
process expected to take around 100 millisec-
onds. Furthermore, back and forth movement
between the deep initial bound state and inter-
mediate metastable states within the binding
pocket was often observed prior to unbinding.
This rate of success and speed-up, together with
the reversible nature of the sampling within the
buried binding pocket and elsewhere inside the
protein, are to our knowledge unprecedented
in systems that are this complex. In addi-
tion, we also show that RAVE can handle the
calculation of binding free energies quite well.
Multiple runs gave estimates of the binding free
energy within reasonable error bars in agree-
ment with other sampling methods. Lastly,
using our simulations we can construct well-
converged free energy profiles demonstrating
the interdependence between ligand movement,
protein fluctuation and water movement. It is
our expectation that RAVE, especially with its
multi-dimensional extension introduced here,
will find use in automating the calculation of
important quantities which are of practical in-
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terest.

2 THEORY

2.1 RAVE

RAVE has been introduced in detail in the orig-
inal proof-of-concept publication18 and here we
summarize its central features. To begin let us
assume a molecular system with N atoms at
temperature T , and under some other generic
thermodynamic conditions. Our central ob-
jective is to sample the system’s Boltzmann-
weighted probability distribution using all-
atom MD. To achieve this objective, the first
step in RAVE is to launch an unbiased MD
simulation from a point in configuration space
that often, for ligand-protein unbinding pro-
cesses, will correspond to the ground state if
known or to a metastable state. Unless T is
high, the simulation will be trapped in this state
sampling the fast internal degrees of freedom
as well as the a priori unknown RC, both ac-
cording to their Boltzmann-weighted probabil-
ities. There is useful information contained in
this trapped simulation that can be leveraged
to enhance fluctuations. The slow degree-of-
freedom describing escape from the metastable
state, for instance, stands apart as a distinct
signal or feature relative to the fast internal os-
cillations that together amount to background
noise. The probability distribution P of the
simulation data, when projected onto the slow
coordinate, provides a natural biasing potential
that helps enhance the fluctuations by making
motion along the RC more diffusive. Our cen-
tral motivation in constructing RAVE was that
both the slow degree-of-freedom as well as its
probability distribution P are learnable via the
use of certain forms of deep learning.18 RAVE
will then proceed from this initial unbiased sim-
ulation stage in an iterative fashion, each iter-
ation aiming to simultaneously construct, from
what will then be a biased simulation, a better
biasing potential along a more refined RC. In
this sense, the biasing along the approximate
RC obtained from deep learning drives forward
the enhanced exploration of the system’s con-

figuration space, leading to the generation of
new data that we can again analyze with deep
learning. The success of this data generation
scheme will depend on the RAVE protocol de-
termining an appropriate RC to describe the
slow coordinate, but the iterative protocol per
construction provides a self-consistent check to
help construct the correct solution. One can
just screen through the set of available RAVE
RCs, including any spurious solutions, since an
appropriate RC should lead to systematically
greater exploration of configuration space un-
til ergodicity is achieved. It is the method’s
inherent new data generation scheme together
with its simultaneous learning of both the RC
as well as the bias potential that makes RAVE
distinct relative to other deep learning based
methods.12–15

Let us formalize this intuitive description.
To start RAVE the user first defines a k-
dimensional vector s whose components are
k order parameters (s1, s2, ..., sk) expected to
have an important role in the process being
studied. These are functions of the 3N atomic
coordinates x, si = si(x) where i = 1, 2, ..., k,
and represent a valid reduced dimensional de-
scription. One should think of a good order
parameter vector s as containing components
of a basis set that together can be combined
into a RC that describes the slow degree-of-
freedom associated with the process. In the
case of ligand-protein complexes, which are the
subject of this work, the vector components
are distances between the ligand center-of-mass
and protein residues, protein inter-residue dis-
tances and protein residue hydration states.36,37

It is standard practice in the enhanced sam-
pling literature to introduce such order pa-
rameter descriptions.16,36–41 Although the need
to pre-select a set of order parameters might
seem like a drawback of RAVE and these other
methods,16,38–40 in this work we will demon-
strate how RAVE allows us to expand an initial
minimal list of order parameters with a self-
consistent test until the set of order parame-
ters required to construct the RC is complete.
This is akin to starting with a small basis set in
quantum mechanics, and gradually expanding
the list if needed.
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With the order parameters in hand we can
launch a brief unbiased molecular simulation
from the ground state configuration. This gen-
erates a time-series (s1, s2, ...sn) tracking the
time evolution of s, where n is the total num-
ber of timesteps in the simulation, and si de-
notes values of the order parameter vector at
time-step i. This time-series dataset can then
be used to extract, at the same time, both
(a) a latent variable z that describes a low-
dimensional manifold capturing the interesting
features of the data and (b) probability distri-
bution P (z) of the data along this variable z.
Since for our purposes the task of capturing
the interesting features amounts to finding a
low-dimensional representation of the data that
disentangles the slow molecular motions from
the rovibrational oscillations amounting to ran-
dom noise, RAVE uses an unsupervised ma-
chine learning approach called variational au-
toencoder (VAE)42–44 whose training protocol
per construction compresses high-dimensional
data into low-dimensional representations. A
crucial point worth noting is that in traditional
implementations of the VAE, z is described as
tens of thousands of neural network parame-
ters lacking clear interpretability. RAVE at-
tempts to solve the interpretability problem by
shifting the emphasis to the probability distri-
bution P (z) of the latent variable, rather than
the exact variable itself. By screening through
trial RCs χ expressed as linear combination of
the order parameters (s1, s2, ..., sk), RAVE de-
termines the best RC as the χ whose proba-
bility distribution P (χ) is closest to the proba-
bility distribution learnt in VAE, namely P (z),
according to the Kullback-Leibler (KL) diver-
gence metric:

DKL(P (z)||P (χ)) =
∑
i

P (zi) log
P (zi)

P (χi)
(1)

Eq. (1) sums over the discretized distributions
containing the same number of bins. In the
limit when P (χ) approaches P (z), the KL di-
vergence will tend to zero. The distribution
P (χ) minimizing Eq. (1), in addition to deter-
mining the RC χ, immediately leads to a bias
potential, Vb, equal to the inverted free energy,

F :

Vb(χ) = −F (χ) = kBT logP (χ) (2)

At this point RAVE has determined, from an
unbiased simulation, both an approximate re-
action coordinate as well as a bias potential,
which it uses to launch a short biased MD sim-
ulation generating a new dataset (s1, s2, ...sn)
containing larger fluctuations in configuration
space, assuming that the RC identified indeed
has sufficient overlap with the true RC. From
this new dataset we can then extract a more
accurate (in terms of sampling the tails) dis-
tribution P along a refined hidden latent vari-
able z whose unbiased probability distribution
we compare to that of trial RCs χ again ex-
pressed as a linear combination of order param-
eters (s1, s2, ..., sk). In order to reweight out the
effect of the biasing, we calculate the KL Diver-
gence as:

DKL(P (z)||P (χ)) =
∑
i

P u(zi) log
P u(zi)

P u(χi)
(3)

where P u(z) and P u(χ) are the unbiased prob-
abilities reweighted from a biased MD simu-
lation. For this RAVE associates a weight
w = eβVb to each point sampled during the bi-
ased simulation, where β = 1

kBT
is the inverse

temperature. This can then be used to recover
the unbiased probabilities through the simple
reweighting formula from importance sampling:

P u(χ) =
〈wδ(χ− χ(t))〉b

〈w〉b
(4)

In Eq. 4 the subscript b indicates averag-
ing while sampling from the biased simulation.
From this point onwards all that is left is to
launch another molecular simulation using the
current biasing parameters and iterate between
rounds of MD and VAE until the desired ther-
modynamic variables as well as the RC are con-
verged.
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2.2 Multi-Dimensional RAVE
and the “washing out” trick

The original RAVE protocol was designed to
determine a one-dimensional RC given a set of
user-defined input order parameters.18 Further-
more, the one-dimensional RC was restricted to
be a linear combination of these order parame-
ters, as described in Sec. 2.1. It can be imprac-
tical, however, to use just a single linear RC
for problems such as ligand-protein unbinding,
where the reaction path involves movements be-
tween multiple metastable states. Of course, in
principle, we could extend the space of avail-
able RCs to include non-linear combinations
of the chosen order parameters. These non-
linear RCs together with the associated bias
could handle realistic biochemical problems of
arbitrary complexity. Unfortunately, the use of
non-linear functions is not without their own
complications. For instance, when using Eqs.
(1) and (3), different non-linear combinations
can lead to almost indiscernible values of KL
divergence, increasing the likelihood of find-
ing spurious solutions for the optimum RC and
bias. Furthermore, the natural limit of tak-
ing non-linear combinations of order parame-
ters is to directly use the deep neural network
VAE bottleneck variable itself as the RC, simi-
lar to what has been done in recent autoencoder
based work.12,13,45 However, this at odds with
our key intention of maintaining physical inter-
pretability of the RC.

Here we develop an alternative approach
based on representing the RC as a combination
of multiple position-dependent piecewise linear
functions. Although the true RC is not em-
bedded in a linear subspace spanned from the
user-defined input order parameters, we divide
the sampled regions of configuration space into
several sections such that within each section
the local component of the RC is embedded in
a linear subspace of the order parameters. Each
linear RC component and its associated Boltz-
mann probability distribution can then be iden-
tified using the original RAVE protocol in one
of two different procedures. These can be either
(a) in a supervised piecewise manner where the
network is trained only using data from spe-

cific parts of the configuration space, or (b) in
a relatively unsupervised manner where the full
dataset can be used, but with a slight modi-
fication that we introduce next. This allows
enforcing that each local linear component is
optimized strictly from only the local features
of the configuration space. We adopt a mini-
malistic approach here, where each subsequent
local component is introduced only when no fur-
ther enhancement in ergodicity can be achieved
with the components at hand. Notice that each
local component that is introduced is free to
learn a different direction in the configuration
space of our molecular system such that biases
along them act about multiple and ideally in-
dependent dimensions. It is for this reason that
we call this extension of the protocol multi-
dimensional RAVE (multi-RAVE). We provide
a flowchart depiction of multi-RAVE in Fig. 1.

We now formalize this intuitive picture. To
initiate multi-RAVE we first launch a short un-
biased molecular simulation from an initial con-
figuration that corresponds to the ground state
configuration. Using the dataset containing the
time evolution of s we now subject the simula-
tion data to the original RAVE protocol under
the specific constraint that the first RC com-
ponent, which we call χ1, be a linear combina-
tion of the user-input order parameters s, i.e.
χ1 = c · s = c1s1 + c2s2 + ... + cksk. Nothing
until now has distinguished multi-RAVE from
the original protocol, since in essence we are
performing RAVE on a single linear reaction
coordinate. As described in Sec. 2.1 and in
the original publication,18 RAVE will proceed
to iterate between rounds of MD and VAE in
order to improve the choice of the coefficients c
and the associated unbiased probability distri-
bution. Should the optimized one-dimensional
RC χ1 lead to sampling the desired rare event,
then nothing else remains to be done. If, how-
ever, after initial enhancement in ergodicity the
coefficients converge but the system still does
not exhibit the desired rare event we set out to
study, we proceed to introduce a new round of
RAVE on potentially new order parameters.

Essentially, the first set of RAVE has brought
the system to an intermediate where either (a)
new order parameters are needed, and/or (b)
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Figure 1: Flowchart illustrating the multi-
RAVE protocol. The portions of the flowchart
in blue represent the original RAVE protocol
while the outermost loop represents the multi-
dimensional extension introduced in this work.

previous order parameters suffice, but the RC
undergoes a change which cannot be captured
by the constraints of a linear formalism, which
is the case with the benzene-T4L complex we
will focus on. See Figs. 2b and 2c for an
illustrative schematic of case (b). To tackle
this issue, multi-RAVE now introduces a sec-
ond linear RC component, χ2, that will be op-
timized within a region of configuration space
not sampled during biased MD simulations with
RC χ1 and associated bias Vb(χ1). To begin,
however, the user will first redefine the vector
s whose components are now the d order pa-
rameters considered useful in constructing this
new local linear RC component. The purpose
of this redefinition is to capture a direction not
expressible through the original k-dimensional
subspace from which we optimized χ1 but that
describes the local behavior of the slow de-
gree of freedom. The procedure for choosing
the d new order parameters will be as usual
context specific. For ligand-protein unbind-
ing, which is the interest of this publication,
these are mostly the distances between the lig-
and center-of-mass and protein residues. Multi-
RAVE now launches an MD simulation that is
biased along χ1 using the current converged es-
timate of Vb(χ1) and tracks the time evolution
of the redefined order parameter vector s.

The multi-RAVE protocol for optimizing the
second set of biasing parameters χ2 and Vb(χ2)
is similar to performing the original RAVE pro-
tocol but with a simple, essential difference that
we label as the “washing out trick”. It is our
intention to learn, through χ2, the features that
have not already been captured by χ1. We thus
need a computationally easy way to turn off the
features that we have already captured. Multi-
RAVE implements this task in an automated
manner by optimizing χ2 without reweighting
for the effect of the bias Vb(χ1) along χ1, even
though that sampling was performed using a
bias. Effectively this amounts to tempering the
probability distribution along χ1 so that any as-
sociated features are washed out. The net effect
of this procedure is that the sampling incorpo-
rated into χ1 appears featureless so that, dur-
ing the optimization of χ2 and Vb(χ2), there is
nothing to be learned from previously explored
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configuration space regions.
Let us be more concrete about the proto-

col for learning χ2 and Vb(χ2). As we have
mentioned multi-RAVE generates a time se-
ries (s1, s2, ...sn) using the converged estimate
of Vb(χ1). With the VAE we extract z and
P (z) that will be our benchmark for screening
through χ2 = c · s = c1s1 + c2s2 + ... + cdsd
and corresponding P (χ2) via the KL divergence
metric in Eq. (1). If we wished to ensure that
the probabilities were unbiased we would apply
the reweighting formula:

P (χ2) =
〈w1δ(χ2 − χ2(t))〉b

〈w1〉b
(5)

where in Eq. (5) w1 = eβVb(χ1). Multi-RAVE
simply sets w1 = 1 to turn off the reweight-
ing and effectively wash out any features learnt
so far (see Fig. 2a vs. 2c). We thus arrive
at a component of the RC χ2 and its probabil-
ity distribution P (χ2) capturing the features of
the configuration space previously uncaptured
by χ1. These directly give us a second set of
biasing parameters χ2 and Vb(χ2) that are op-
timum given the quality of the sampling so far.
We continue by iterating between the rounds of
MD and VAE as per the RAVE protocol mak-
ing sure to apply the washing out trick to the
first set of biasing parameters χ1 and Vb(χ1) but
not the second, until the second RC and asso-
ciated bias also converge. Without loss of gen-
erality, the same treatment then applies to all
additional components χi and their associated
biases Vb(χi) for i ≥ 2. We proceed to introduce
local components until their converged biasing
parameters lead to sampling the full rare event.
Until this is accomplished, the protocol is to
simply for a given RC-component number i, ig-
nore all biases for components 1 to i-1 by setting
corresponding weights wi to 1 while optimizing
the ith component and bias.

2.3 Binding Free Energy Calcu-
lation

While the protocol we have described here ap-
plies to generic systems, our focus in this work
is on the calculation of absolute binding free

(a)

(b)

(c)

Figure 2: (a)A three-centered model potential
with labels for the reactant (R), intermediate
(I) and product (P) states. (b)Movement from
left to right between the reactant to the product
via an intermediate state cannot be captured
with a single linear RC. (c)The three-centered
model potential when the bias acting along the
first RC component is not accounted for with
the reweighting formula given in Eq. 4.
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(a) (b)

Figure 3: (a)Snapshot of the benzene-T4L complex in the bound state configuration from which all
trajectories are initiated. (b)Snapshot of the benzene-T4L complex in the intermediate metastable
state from which it escapes into the solvent through the helices 6, 7, 8 and 9.

energies of ligand-protein complexes, which is a
challenging and important problem.25,30 With-
out loss of generality, we give illustrative ex-
amples for the benzene-T4L complex studied
in this work and described in detail in Sec.
3. When the multi-RAVE protocol has con-
verged in its estimate of a piecewise linear RC
and associated biases, we launch independent
MD simulations from the bound pose of the
ligand-protein complex using these optimal bi-
asing parameters. Unlike other autoencoder
based enhanced sampling work, no additional
biasing as in metadynamics or umbrella sam-
pling is required.12,15 For the benzene-T4L com-
plex studied here, the learnt piecewise RC and
associated bias led to unbinding in simulation
times between 3 to 50 nanoseconds when the
natural process occurs on 100 ms or slower
timescales,31,33–35 which is reflective of the cal-
iber of the biasing parameters that multi-RAVE
has generated.

With 20 out of 20 MD simulations sampling
the benzene-T4L unbinding rare event, ligand-
protein binding free energy, ∆Gb, can then be
directly calculated from the free energy pro-
files estimated from these runs once these have
converged. In order to calculate the bind-
ing free energy we have used the potential of

mean force (PMF) along the distance between
the benzene center-of-mass and Tyr88. At the
benzene-T4L bound position benzene is prox-
imal to Tyr88. We then defined the reactant
state along this PMF to include all values less
than 0.8 Å and the product state to be all val-
ues greater than 1.8 Å. We include a standard
correction term30,33 that accounts for the dif-
ferent concentration of benzene used in exper-
iments versus simulations (1 M vs. 5 mM in
the present work). One crucial caveat needs
to be addressed for calculation of binding free
energies from simulations such as ours - once
the ligand leaves the protein, it is free to ex-
plore the full solvent making it extremely rare
for it to bind back. In principle, we could train
RAVE to address this entropic portion of the
configuration space as well. However, here for
computational ease, we apply a soft restrain-
ing potential that brings the ligand back into
the protein once it unbinds. The effect of this
restraining potential is reweighted out in the
calculation of ∆Gb. See Supplemental Informa-
tion (SI) for further details of this and other
calculations in this work.
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2.4 Simulation and Neural Net-
work Details

The MD simulations in this work have been
performed using the software GROMACS ver-
sion 5.046 patched with PLUMED version 2.3.47

These simulations were all performed in the
constant number, pressure and temperature
(NPT) ensemble, with ∼10,000 water molecules
in a periodic box where all side lengths are
seven nanometers. The pressure of the simu-
lation was kept at 1.0 bar and the temperature
at 298 K. Constant pressure was maintained
using Parrinello-Rahman barostat48 while the
temperature was maintained constant with
the v-rescale thermostat.49 In addition, the
CHARMM22* force-field50 was used to describe
the system. All simulations were run for ∼300
picoseconds initially, although in later RAVE
rounds the MD simulation times were increased
to ∼2 ns (see Sec. 3.2 for additional informa-
tion).

The current VAE implementation uses a neu-
ral network architecture almost identical to the
set-up used in the original RAVE publication.18

The input and reconstruction spaces are 2-
dimensional (i.e. 2-dimensional order parame-
ter vectors) while the probabilistic encoder and
decoder are each 3 layers of 512-dimensional
vectors. The latent variable representation of
the RC is 1-dimensional. The final layer of
the encoder did not have an activation func-
tion, meaning it was defined as a linear transfor-
mation. The output layer of the decoder used
tanh as the activation function. We refer the
readers to the original RAVE publication for a
schematic illustration of the VAE architecture
as well as additional details regarding the ar-
chitecture.18

In order to implement the aforementioned
VAE architecture and to train it we have
used the high level deep learning library called
Keras.51 The training of the neural network
was performed using the RMSprop algorithm,
which is a variation of stochastic gradient de-
scent. The learning rate used with RMSprop
was 0.0001 or 0.0002 depending on the size of
the dataset. Training was performed over 1000-
3000 epochs also depending on the size of the

dataset. In total, 34 rounds of MD–VAE were
used to train the RC and the time-independent
static biases along them.

3 RESULTS

Figure 4: Calculated binding free energy as a
function of time. Six different trajectories, in
color, are shown, while the time-dependent av-
erage value is given as the black line represents.

3.1 Binding Free Energy

We have performed in total 20 biased MD sim-
ulations, all of them initiated from the benzene-
T4L bound configuration using the RC and bias
identified from construction rounds of RAVE. 6
of these trajectories ran for longer than 100 ns
in order to monitor the detailed convergence of
the ∆Gb estimate. As can be seen in Fig. 4,
this estimate appears to be converging before
the simulation time reaches 100 ns. We thus
obtain, using 100 ns, a ∆Gb estimate of -8.2
± 0.8 kcal/mol, although similar results would
be obtained with much a shorter simulation
time (see the behavior of the time-dependent
average given as the black curve in Fig. 4).
This result is in good agreement with other cal-
culations reported in the literature, for exam-
ple -6.9 ± 0.8 kcal/mol from Mondal et al. 34
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based on long unbiased simulations and sub-
sequent application of Markov State Modeling,
and -5.96 ± 0.19 kcal/mol from the alchemical-
based calculations of Deng and Roux 25 . No-
tice in Fig. 4 that all 6 trajectories underesti-
mate these reported values suggesting that our
∆Gb estimates might be a lower bound. It is
possible that this arises from the slower rate
of sampling the unbound state as opposed to
the initial metastable well corresponding to the
bound complex, as we have used a sub-optimal
restraining potential to bring the ligand back
into the protein (see SI). Whether this is true
in general, however, will be the subject of future
investigations.

3.2 Order Parameters and Reac-
tion Coordinate

We show in Table 1 the T4L residues we used
to define the distances relative to the benzene
center-of-mass. Our RC components were even-
tually based on using just these distance-based
order parameters. We also considered other or-
der parameters such as protein inter-residue dis-
tances and protein residue hydration states, but
these had close to 0 weight in the RC on a con-
sistent basis. We will thus not describe them
further here. To drive the ligand to unbind from
the protein, four local linear RC components
was found to be sufficient. These components
were learnt sequentially using RAVE:
χ1 = −(0.17d1 + 0.02d2)
χ2 = −0.40d3
χ3 = 0.04χ1 + 0.05d5
χ4 = d2

with di, i = 1, 2, 3, 4, 5, defined as the distance
between the center-of-mass of benzene and the
protein residues according to Table 1. In terms
of the snapshots in Figs. 3a and 3b, d1 measures
the distance of benzene from helix 4, d2 from
helix 5, d3 from helix 8 , d4 from helix 7 and d5
from helix 6. Notice that χ1 is composed of d1
and d2, which have been defined using residues
on helices that when in close contact with ben-
zene corresponds to the initial reactant state.
χ2, meanwhile, is defined in terms of d3 whose
associated residue in close contact with benzene
corresponds to intermediate metastable state.

We began learning the first of these four lin-
ear RC components using extremely short sim-
ulations of ∼300 picoseconds. These simula-
tion times were enough to converge a first RC
component but were not sufficient to learn a
second RC component. For this reason we in-
creased the simulation time for the remaining
RC components to be trained to be ∼2 ns. We
will investigate in future work the critical ques-
tion of the simulation length which should be
used to maximize the efficiency and accuracy
of RAVE. Once we had learned linear RC com-
ponents capable of driving exploration of con-
figuration space from the tightly bound com-
plex into higher energy regions and eventually
into escape into the solvent we seized to con-
tinue training. Hence we did not attempt to
train a RC and bias for capturing re-entry into
the protein, and instead used simple restraining
potentials to bring the ligand back.

As mentioned in Sec. 3.1, we ran 20 indepen-
dent biased MD simulations, all of which led to
benzene unbinding from the T4L buried binding
site. Often, the unbinding event occurred in the
first few ns of simulation although in one case
benzene unbinding was observed after 50 ns.
Prior to unbinding, however, we observed that
benzene tends to show back and forth move-
ment between being proximal to either helix 4
or helix 7, as shown in Fig. 5. This hopping be-
tween wells corresponds to sampling the initial
bound state and an intermediate state, which
suggests that RAVE can learn biasing param-
eters capable of reversibly sampling the reac-
tion path until ligand escape into the solvent
occurs. Taken together, these demonstrate the
quality and reliability of the RC and bias so
constructed.

3.3 Unbinding Mechanism

A range of specialized MD based enhanced
sampling methods have been used to uncover
several paths corresponding to benzene escape
from the buried binding site of T4L.31,34,35

Many of these methods have also attempted
to quantify the actual dissociation and associ-
ation rate constants. Here we do not attempt
to quantify these constants (which will be the
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(a) (b)

(c) (d)

Figure 5: (a-d) show four (out of twenty total) independent biased trajectories in terms of order
parameters d1 (red) and d2 (blue). Clear back-and-forth movement between various metastable
states can be seen. Also note the short but different first passage times to unbinding for different
trajectories.
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subject of future work). However, our biased
trajectories do show clear back and forth move-
ment between various metastable states (See
Fig. 5 showing 4 out of 20 trajectories in terms
of the d1 and d2 order parameters), which is a
hallmark of lack of hysteresis in enhanced sam-
pling simulations, and is typically rather dif-
ficult to achieve.10 It is this easy inter-state
movement which is what leads us to classify our
unbinding as reversible, and gives us confidence
to draw mechanistic conclusions on the basis of
these trajectories. Our optimized piecewise lin-
ear RC and associated bias led to eventual ben-
zene escape from the binding pocket and into
the solvent through helices 6, 7, 8 and 9, via
a metastable intermediate state corresponding
to the benzene being in simultaneous close con-
tact with helices 7 and 8. Figs. 3a and 3b show
snapshots of the benzene-T4L bound pose and
intermediate metastable state. The presence of
these two states is also shown in Figs. 6a–6c. It
is interesting to note that movement from the
benzene-T4L bound position to the intermedi-
ate is correlated to slight increases in the “tran-
sient motions” of helices 7 and 8. The relevance
of different short-lived protein “breathing mo-
tions” for making the deeply buried binding site
accessible to ligands has been pointed by vari-
ous other theoretical studies.32,34,35,52 Escape of
the benzene into the solvent appears to require
these slight increases in helix-helix distance, as
shown in Fig. 6b. A movie of the unbinding
simulation showing these events is provided in
the SI.

Interestingly, our initial benzene-T4L com-
plex has two short-lived water molecules in the
non-polar cavity between helices 8 and 10. The
timescale for water exit tends to be much faster
than benzene exit from the binding pocket,
found to be less than 100 ns in our unbiased
MD simulations. Similar waters have been re-
ported in experiments for many variants of T4L
and also from simulations.52 As shown in Fig.
6c, the movement from the intermediate to the
outside of the binding pocket occurs post-water
exit. Sampling of the intermediate metastable
state does take place while one water molecule
either remains close to its initial position or en-
ters the binding pocket before eventual escape

into the solvent. The exit of water molecules
from the binding pocket is thus a relatively fast,
but mandatory event for ligand unbinding to
occur.

4 DISCUSSION

Over the past decade a tremendous number of
machine learning approaches relevant to vari-
ous aspects of molecular simulations have be-
come available in the literature.12–15,53–58 A
major open problem in the field has been
whether machine learning can be leveraged to
make rare events less rare, therefore making
amenable their accurate sampling via standard
computational resources. Our recent publica-
tion marked a promising step forward in this di-
rection.18 Through the use of an iterative deep
learning-MD scheme we demonstrated that sig-
nificant enhancement in the sampling of model
potentials could be achieved. In the current
work we have extended the applicability of
RAVE by showing how it can be used to si-
multaneously learn the reaction coordinate and
calculate the absolute binding free energy in a
much more challenging test case, namely the
benzene-T4L system in explicit water. A simple
but crucial methodological extension of RAVE
has been introduced here, named multi-RAVE,
that allows learning a RC with multiple com-
ponents and explicit dependence on location in
configuration space. It is this position depen-
dence that allows multi-RAVE to construct an
overall non-linear RC as a sum of piecewise lin-
ear components that nonetheless captures the
slow non-linear degree of freedom, with the
added benefit of allowing for clear physical in-
terpretability.

RAVE shares some similarities with Diffusion
Map-directed MD59 and intrinsic map dynam-
ics60 which also perform sampling without pre-
knowledge of low dimensional RC. Similar to
RAVE, in these methods as well the explo-
ration of the unknown configuration space is
broken down into local components. In Dif-
fusion Map-direction MD, for instance, local-
ized slow diffusion coordinates are determined
from an MD simulation. Intrinsic map dynam-
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Table 1: T4L protein residues used to define the order parameter distances, relative to the benzene
center-of-mass, used in the construction of the piecewise linear RC.

d1 d2 d3 d4 d5

Tyr88 Ala99 Leu133 Leu118 Val111

(a) (b)

(c) (d)

Figure 6: Contour plots of free energies, in kcal/mol, showing the escape pathway when projected
onto different two-dimensional order parameters. The helix numbering follows the convention given
in Fig. 3a. (a)Free energy profile given as a function of the main components of χ1 and χ3. (b)Free
energy profile given as a function of distance from binding site and helix7-helix8 breathing motion.
(c) Free energy profile given as a function of distance from binding site and hydration state between
helices 8 and 10. (d)Free energy profile given as a function of hydration state between helices 8 and
10 and helix7-helix8 distance.
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ics, meanwhile, learns local parametrizations to
the low-dimensional manifold that describes the
slow process of interest. Both methods launch
an MD simulation from the edge of the previ-
ously explored region in order to start a new
iteration. RAVE is different from these meth-
ods because although it is learning local RCs
from local regions of the configuration space, it
is in principle independent of launching the sim-
ulation from the boundary between two regions
due to the reweighting of just the “local” order
parameters. That is, the final bias potential
and RC learnt in RAVE allow complete move-
ment from any point A to point B in configura-
tion space in extra simulations with no further
training or time-dependent biasing needed.

The set of RC components and bias potentials
we used to describe the entire benzene-T4L un-
binding process had four members (refered to in
the text as {χi}4i=1 and {Vb(χi)}4i=1). Although
we were able to get full unbinding using all bi-
ases at the same time, we found that the sim-
ulation time to unbind became much smaller
(less than 10ns on average from earlier around
50ns or higher) if we switched once between the
two sets of biases depending on which part of
the landscape the trajectory commits to. This
requires a labeling of the metastable states, and
thus is a form of supervised learning. In future
work we will address the question of how to
achieve full unbinding without having the need
to switch biases on and off depending on which
metastable state the trajectory had committed
to. That we were able to accomplish unbinding
with only one switch is not trivial - this was only
possible due to the quality of the RC and the
bias learnt from deep learning. To use parlance
from umbrella sampling, this is in a sense equiv-
alent to sampling the full energy landscape of
benzene-lyzozyme unbinding with only two um-
brella potentials. No such reported work exists,
to the best of our knowledge.

In the work presented here we have shown
how our recent RAVE algorithm18 can be used
to investigate the unbinding of realistic ligand-
protein complexes. It is interesting to note
that unbinding could be accomplished using
geometric distances, without having to resort
to protein-protein or solvation order parame-

ters, whose weights were identified by RAVE
to be consistently close to 0. We have no-
ticed that the use of different distances could
in principle lead to sampling different unbind-
ing paths. Although we leave accurate kinetics
of ligand-protein unbinding for upcoming work,
that RAVE seems capable of reversibly sam-
pling at least one path reversibly and in prin-
ciple different paths as well seems to suggest
promise for obtaining accurate kinetics, possi-
bly through the use of an acceleration factor
approach.61–63 We also hope to be able to apply
RAVE to other established benchmarks in the
field such as the SAMPL challenges for blind
prediction of host–guest binding affinities.64

To our knowledge the current work is the first
to obtain reasonable absolute ∆Gb estimates for
the benzene-T4L complex using a PMF based
approach. Wang et al. 33 attempted to obtain
such an estimate but were not able to converge
∆Gb despite long simulation times. In addi-
tion, Miao et al. obtained one binding event
and thus produced estimates subject to high
error.31 It is often thought of as less convenient
to use free energy surface or potential of mean
force (PMF) based approach, as opposed to
alchemical-based approaches when the bound
pose corresponds to a ligand buried deep within
the binding pocket of a protein instead of the
protein’s surface. In addition, a big criticism of
PMF based approaches has also been their sen-
sitivity to the chosen RC to perform the sam-
pling along. RAVE addresses all of these is-
sues – it learns a RC on-the-fly and gives accu-
rate free energy estimates in nominal simulation
time .

An open-source software implementing RAVE
in its orignal form as well as the multi-
dimensional extension introduced here, will
soon be released for use by the wider commu-
nity. We hope the current work makes a strong
case for the use of RAVE as a method that uses
deep learning to construct both the reaction co-
ordinate and associated free energy profile in
complex molecular systems, a problem that has
been one of the holy grails of the field.
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