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 2

SUMMARY: 48 

EndoC-βH1 is emerging as a critical human beta cell model to study the genetic 49 

and environmental etiologies of beta cell function, especially in the context of 50 

diabetes. Comprehensive knowledge of its molecular landscape is lacking yet 51 

required to fully take advantage of this model. Here, we report extensive 52 

chromosomal (spectral karyotyping), genetic (genotyping), epigenetic (ChIP-seq, 53 

ATAC-seq), chromatin interaction (Hi-C, Pol2 ChIA-PET), and transcriptomic 54 

(RNA-seq, miRNA-seq) maps of this cell model. Integrated analyses of these 55 

maps define known (e.g., PDX1, ISL1) and putative (e.g., PCSK1, mir-375) beta 56 

cell-specific chromatin interactions and transcriptional cis-regulatory networks, 57 

and identify allelic effects on cis-regulatory element use and expression. 58 

Importantly, comparative analyses with maps generated in primary human 59 

islets/beta cells indicate substantial preservation of chromatin looping, but also 60 

highlight chromosomal heterogeneity and fetal genomic signatures in EndoC-61 

βH1. Together, these maps, and an interactive web application we have created 62 

for their exploration, provide important tools for the broad community in the 63 

design and success of experiments to probe and manipulate the genetic 64 

programs governing beta cell identity and (dys)function in diabetes. 65 

 66 

Keywords: EndoC-βH1, β cell, human pancreatic islets, type 2 diabetes, 67 
karyotype, genetics, (epi)genome, Hi-C, Pol2 ChIA-PET, transcriptome  68 
 69 
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INTRODUCTION: 72 

Type 2 diabetes (T2D) is a complex disease characterized by elevated 73 

blood glucose levels. Ultimately, T2D results when the pancreatic islets are 74 

unable to produce and secrete enough insulin to compensate for insulin 75 

resistance in peripheral tissues of the body. Individual genetic variation combined 76 

with dietary and environmental stressors contribute to disease risk and 77 

pathogenesis (Elbein et al., 2012; Franks, 2011; Fuchsberger et al., 2016; Lawlor 78 

et al., 2017a; Mohlke and Boehnke, 2015). Genome-wide association studies 79 

have identified hundreds of genetic loci associated with T2D and related traits, 80 

but extensive work remains to identify the causal/functional variant(s), define 81 

their target gene(s), and determine the role(s) of these genes in beta cell identity 82 

and function. Several studies have employed (epi)genomic and transcriptomic 83 

profiling of human islets (van de Bunt et al., 2015; Dayeh et al., 2014; Fadista et 84 

al., 2014; Parker et al., 2013; Varshney et al., 2017; Volkmar et al., 2012), 85 

purified/isolated beta cells (Ackermann et al., 2016; Blodgett et al., 2015; 86 

Bramswig et al., 2013; Dorrell et al., 2011; Nica et al., 2013), and single cell 87 

populations (Baron et al., 2016; Dorajoo et al., 2017; Lawlor et al., 2016; Li et al., 88 

2016; Muraro et al., 2016; Segerstolpe et al., 2016; Wang et al., 2016; Xin et al., 89 

2016) to identify changes in transcriptional regulation and gene expression 90 

associated with beta cell-specific functions in individuals with T2D. However, the 91 

molecular and physiologic consequences of these alterations and their causal 92 

link to beta cell failure and T2D pathogenesis remain largely undefined.  93 
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With the recent creation of an immortalized human beta cell line, EndoC-94 

βH1 (Ravassard et al., 2011), islet researchers now possess a necessary tool to 95 

experimentally interrogate the molecular mechanisms that govern human beta 96 

cell identity and (dys)function in the context of T2D. Since the initial report of their 97 

creation, studies utilizing EndoC-ßH1 to build insights into human beta cell 98 

regulation and function have grown steadily. These studies have demonstrated 99 

that the physiology (e.g., response to glucose, insulin secretion) of EndoC-βH1 100 

cells resembles that of their primary islet counterparts (Andersson et al., 2015; 101 

Gurgul-Convey et al., 2015, 2016; Krizhanovskii et al., 2017; Oleson et al., 2015; 102 

Teraoku and Lenzen, 2017; Tsonkova et al., 2018) and researchers have used 103 

them to identify novel genes involved in human insulin secretion (Ndiaye et al., 104 

2017). In order to motivate further functional studies of human beta cell molecular 105 

biology and guide the development of cellular models (e.g., for small molecule 106 

screening (Tsonkova et al., 2018)), extensive characterization of the EndoC-βH1 107 

molecular landscape is needed. Here, we completed multi-omic profiling of 108 

EndoC-ßH1 cells to extensively map the (1) chromosomal (spectral karyotyping), 109 

(2) 3-D epigenomic/chromatin looping (Hi-C (Belton et al., 2012), ChIA-PET (Li et 110 

al., 2014)), (3) histone modification (ChIP-seq), (4) chromatin accessibility 111 

(ATAC-seq) (Buenrostro et al., 2013), (5) genetic (dense genotyping and 112 

imputation), and (6) transcriptomic (RNA-seq, miRNA-seq) signatures of EndoC-113 

ßH1. With these high-resolution maps, we sought to (1) examine gene regulatory 114 

programs central to human beta cell identity and function, (2) nominate putative 115 

functional variants, putative molecular mechanisms, and target genes underlying 116 
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T2D, glucose, and insulin genetic associations, and (3) build a publicly available 117 

web application for interactive and easy exploration. By comparing these multi-118 

omic profiles to those we generated from islets in this study (Hi-C) and in 119 

previous studies (Khetan et al., 2017), we identified shared and unique cis-120 

regulatory elements (cis-RE) and gene expression features. Taken together, 121 

these data, the insights gleaned from their analysis, and the research support 122 

provided by the web application serve as a high-content resource to enable and 123 

guide future functional assessment and molecular studies of beta cell 124 

(dys)function.  125 
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Results 126 

Chromosomal and genetic heterogeneity of EndoC-ßH1 127 

To pursue a precise, comprehensive understanding of the regulatory 128 

networks that govern EndoC-βH1/islet beta cell identity and function, we first 129 

defined the chromosomal complement and stability of this cell line using spectral 130 

karyotyping (SKY) (Figure 1A). SKY analysis of fourteen EndoC-ßH1 metaphase 131 

spreads revealed that the number of chromosomes was pseudodiploid (n=46 to 132 

48) (Figure S1). Nearly all metaphases (n = 13/14) had a normal XY sex 133 

complement, with only one having a missing Y chromosome, (metaphase 2; 134 

Table S1).  135 

The most common autosomal aberrations in EndoC-ßH1 included 136 

chromosome 20 gains (n=11/14 metaphases) and chromosome 10 losses 137 

(n=10/14). Both of these were also detected as copy number changes by 138 

comparative genomic hybridization (CGH) analysis of the cell line (Univercell-139 

Biosolutions). As summarized in Figure 1B and Table S1, we also noted 140 

recurrent 10;17 (11/14 metaphases), 7;18 (10/14 metaphases), 3;17 (7/14 141 

metaphases), and 3;21 (7/14 metaphases) chromosomal translocations as well 142 

as rarer 12;22 (metaphase 1) and 3;5 (metaphase S2.5) translocations and loss 143 

of chromosome 12 (2/14 metaphases; Table S1). Together, these results 144 

emphasize that although EndoC-ßH1 is largely diploid, vigilance and caution is 145 

warranted when completing and interpreting experiments involving genes or cis-146 

REs on chromosomes 3, 7, 10, 17, 18, 20, and 21. 147 
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Delineation of T2D- and related metabolic trait-associated GWAS SNP 148 

genotypes in EndoC-ßH1 149 

Genome wide association studies (GWAS) have identified hundreds of 150 

index and linked single nucleotide polymorphisms (SNPs) representing putative 151 

causal variant(s) at hundreds of loci (Mahajan et al., 2018) associated with 152 

genetic risk of T2D and changes in associated quantitative traits (e.g., fasting 153 

glucose, insulin, and proinsulin levels). We completed dense genotyping and 154 

imputation of EndoC-ßH1 (Materials and Methods) to determine the genotypes at 155 

approximately 2.5 million sites genome-wide (MAF > 1%), including disease-156 

associated SNPs. First, we overlapped EndoC-ßH1 genotypes with NHGRI/EBI 157 

GWAS cataloged (MacArthur et al., 2017) (Materials and Methods) single lead 158 

SNPs associated with glucose levels (fasting glucose), insulin levels (fasting 159 

insulin, proinsulin levels), type 1 diabetes (T1D), or T2D. EndoC-ßH1 exhibited 160 

homozygous non-risk genotypes at >50% of these SNPs (Figure 1C; Table S2). 161 

For approximately 20% of analyzed GWAS loci, EndoC-ßH1 possessed a 162 

heterozygous genotype, including rs10830963 at the MTNR1B locus (chr11) and 163 

rs7173964 at the C2CD4A/4B locus (chr15) (Figure 1D; Table S2). Overlap with 164 

T2D-associated SNPs (n=6,725 total, constituting 403 unique signals) reported in 165 

the most recent meta-analysis (Mahajan et al., 2018) revealed a similar genotype 166 

distribution, in which EndoC-ßH1 was heterozygous for approximately 30% 167 

(n=119/403; Table S2) of T2D signals. These unique signals represent attractive 168 

candidates for epigenomic editing to experimentally determine T2D-associated 169 

allelic effects on cis-RE use in human beta cells.  170 
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EndoC-βH1 epigenome and transcriptome largely resemble those of 171 

primary islets but retain fetal/progenitor islet cell signatures 172 

To identify the genome-wide location of EndoC-ßH1 cis-REs (Figure 2A), 173 

we generated chromatin accessibility maps using ATAC-seq and defined 174 

chromatin states (ChromHMM) by completing and integrating ChIP-seq profiles 175 

for multiple histone modifications.  ATAC-seq identified 127,894 open chromatin 176 

sites in EndoC-ßH1. Qualitative comparison of EndoC-βH1 open chromatin and 177 

chromatin state maps to those in primary human islets (Khetan et al., 2017; 178 

Varshney et al., 2017) revealed that the genomic architecture for well-known 179 

islet-specific loci such as PCSK1 (Figure 2A), PDX1, and NKX6-1, was 180 

remarkably similar in both, suggesting EndoC-βH1 cells effectively recapitulate 181 

beta cell cis-regulatory landscapes.  182 

We further compared each ATAC-seq dataset to those from primary islets 183 

(Khetan et al., 2017; Varshney et al., 2017), sorted beta/alpha cells (Ackermann 184 

et al., 2016), and other primary cell types including adipocyte (Khetan et al., 185 

2017), skeletal muscle (Scott et al., 2016), peripheral blood mononuclear cells 186 

(PBMC) (Ucar et al., 2017), and CD4+ T cells (Buenrostro et al., 2013). We 187 

identified a total of 269,701 open chromatin regions (OCRs) across all cell types 188 

analyzed (Materials and Methods). Among all studied cell types, EndoC-βH1 189 

ATAC-seq profiles were most similar to those of beta cells (Figure 2B, Spearman 190 

R = 0.67) and islets (Figure 2B, Spearman R = 0.64).  191 

Next, we compared OCRs and chromatin states to determine where and 192 

to what extent EndoC-ßH1 chromatin states recapitulated those of human islets, 193 
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their constituent cell types, or other metabolic tissues. EndoC-ßH1, islet, and 194 

beta cell OCRs were commonly enriched for binding sites of transcription factors 195 

(TFs) implicated in islet cellular identity and function (Figure 2C; Group III: 196 

FOXA2, FOXO1, RFX, NKX6-1, PDX1). EndoC-ßH1 OCRs also showed 197 

exclusive enrichment of sequence motifs that correspond to TFs that regulate 198 

pluripotency and pancreatic progenitor states (Figure 2C; Group IV: HNF6, 199 

SOX2, OCT4), likely reflecting the fetal origin/derivation of EndoC-ßH1. At 200 

EndoC-ßH1 ATAC-seq OCRs, promoter annotations (from ChromHMM; 201 

Materials and Methods) were widely conserved across EndoC-ßH1 and other cell 202 

types including islets as expected (Figure S2A; centered Pearson correlation > 203 

0.95; Materials and Methods). In contrast, enhancers, which often encode cell-204 

specific transcriptional regulatory elements (Heinz et al., 2015), at EndoC-ßH1 205 

ATAC-seq OCRs were most comparable between islet and EndoC-ßH1 (Figure 206 

S2A; centered Pearson correlation ~ 0.71; black point).  207 

To further assess similarities and differences between islet and EndoC-208 

ßH1 epigenomes, we investigated the proportions and features of chromatin 209 

states that were preserved or disparate between them. Unsurprisingly, a large 210 

proportion of promoters (11,907/19,482; ~61%) were preserved (Figure 2D) 211 

which included motifs for a variety of TFs from the ETS family (e.g., ELK4, ETS, 212 

ELF1; Table S3) with established roles in cellular differentiation, proliferation, and 213 

apoptosis (Findlay et al., 2013). Regions annotated as repressed in both islets 214 

and EndoC-ßH1 were enriched for CTCF and BORIS binding motifs (Table S3), 215 

DNA binding proteins known to bind and establish transcriptional insulators at 216 
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chromatin territory boundaries. 16,351/51,325 putative enhancers (defined via 217 

ChromHMM) were shared between islets and EndoC-ßH1 (Figure 2D; blue box) 218 

and showed strong enrichment for general (ATF3, AP-1, JUN) TFs (Figure 2E, 219 

blue dots; Table S3) relative to all enhancer regions. Interestingly, we observed a 220 

substantial number of EndoC-ßH1 enhancers that were annotated as 221 

quiescent/repressed in islets (n = 19,380) (Figure 2D; orange box). Relative to all 222 

enhancers, these sites were enriched for TFs controlling pluripotency (OCT2, 223 

NANOG) (Sokolik et al., 2015; Tantin, 2013), pancreatic development/lineage 224 

specification (HNF6, ISL1) (Zhang et al., 2009), and beta cell fate determination 225 

(PDX1, NKX6-1) (Thompson and Bhushan) (Figure 2E, orange dots; Table S3). 226 

Based on these findings, it is possible that these regions represent fetal or 227 

developmental cis-REs that are active in the fetal-derived EndoC-ßH1 and 228 

inactive in adult islets composed of mature beta cells. Nonetheless, a significant 229 

number of cis-REs (n = 16,351) are conserved between EndoC-ßH1 and human 230 

islets.  231 

Next, we measured EndoC-ßH1 gene expression using RNA-seq and 232 

compared it to RNA-seq profiles of islets and other cell types/tissues (Figure 233 

S2B). As anticipated, the EndoC-ßH1 transcriptome most strongly correlated with 234 

transcriptomes of islets (R = 0.87) and primary beta cells (R=0.86) among all 235 

tissues/cells tested. Of the 27,564 protein coding/lincRNA genes considered, 236 

11,554 were expressed in EndoC-ßH1 and 12,231 genes were expressed in islet 237 

(with 10,473 genes expressed in both). Similarly, EndoC-βH1 small non-coding 238 

RNA (miRNA) profiles resembled human islets more than the other tissues 239 
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(adipose, skeletal muscle; Figure S2C) in a principal component analysis (PCA). 240 

In particular, PC1 loadings were highly correlated with key islet miRNAs 241 

including, miR-375 (Table 1), a critical regulator of beta cell mass and identity 242 

(Eliasson, 2017), whereas PC2 stratified primary tissue (adipose, skeletal 243 

muscle, islet) from immortalized cells (EndoC-βH1). Consistent with the PCA, 244 

miRNA expression levels in EndoC-βH1 and islets were highly correlated (R = 245 

0.779; Figure S2D), and the vast majority of the most highly expressed miRNAs 246 

in EndoC-βH1 have been reported previously to be enriched in primary human 247 

beta cells relative to whole islets (Table 1) (Bunt et al., 2013). Together, these 248 

chromatin accessibility, chromatin state, gene expression, and small RNA 249 

expression analyses reveal substantial conservation between the transcriptional 250 

regulatory and gene expression landscapes of EndoC-ßH1 and primary islets.  251 

Hi-C profiling of EndoC-ßH1 and human islets reveals beta cell-specific 252 

chromatin looping domains 253 

Next, we sought to determine spatial chromatin organization and identify 254 

chromatin domains in EndoC-ßH1 and islets using Hi-C. We generated Hi-C 255 

maps for EndoC-ßH1 and islet cells with approximately 6 billion reads each. The 256 

maps have 1.9 billion contacts and 1.5 billion contacts, respectively. Using Juicer 257 

(Durand et al., 2016a) (Material and Methods), we identified 9,100, 2,580, and 258 

9,448 Hi-C loops in EndoC-ßH1, human islets, and GM12878 (human 259 

lymphoblastoid cell line) (Rao et al., 2014), respectively. Together, this 260 

represents 19,428 independent DNA-DNA loops. Aggregate Peak Analyses 261 

(APA) (Rao et al., 2014) (Figure 3A, top plots) revealed that chromatin looping 262 
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sites (anchors) were comparable in EndoC-ßH1, islets, and GM12878 for the 263 

majority of (> 90%) the total chromatin loops (n=19,428/21,128). Consistent with 264 

previous studies (Rao et al., 2014; Vietri Rudan et al., 2015), CTCF and 265 

CTCFL/BORIS DNA binding motifs were overwhelmingly enriched (p<1e-229, 266 

p<1e-114, respectively) among all Hi-C anchor sequences (Table S4), verifying 267 

that general 3-D chromatin structures and loops are preserved between different 268 

mammalian tissues and cell types. Importantly, however, we detected 1,078 269 

chromatin loops that were exclusively present in EndoC-ßH1 compared to 270 

GM12878 (Figure 3A, bottom plots), a subset of which (n=50) was independently 271 

detected in human islet Hi-C data.  272 

To further study cell-specific loops, we subdivided EndoC-ßH1 and 273 

GM12878 differential Hi-C loops into three categories based on the cell type-274 

specificity of the ATAC-seq OCRs they bring into physical proximity (Figure 3B): 275 

(A) loops between two non-specific OCRs, (B) loops between two cell-specific 276 

OCRs, or (C) loops between one cell-specific OCR and one non-specific OCR. 277 

Class B/C loops were classified as cell-specific and further studied. Comparison 278 

of EndoC-ßH1-specific (n = 315) and GM12878-specific (n = 308) loops revealed 279 

a strong bias for cell-specific TF binding at anchors (Figure 3C). In EndoC-ßH1-280 

specific anchors, we observed enrichment for TFs involved in beta cell 281 

differentiation and function (NKX6-1, FOXA2, FOXA1) (Thompson and Bhushan) 282 

as well as OCT4, a key regulator for early embryo development (Le Bin et al., 283 

2014; Wu and Schöler, 2014), while GM12878-specific anchors were enriched 284 

for TFs necessary for B cell proliferation and activation (MEF2C, NFAT) (Herglotz 285 
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et al., 2016; Peng et al., 2001). Furthermore, genes adjacent to EndoC-ßH1-286 

specific anchors (Materials and Methods) were most enriched (Hypergeometric 287 

FDR-adjusted p-value < 0.05) for islet-associated GO terms including insulin 288 

secretion, glucose homeostasis, and neuronal/endocrine development (Figure 289 

S3A; Table S4 for complete results). For several genes affiliated with these GO 290 

terms, such as SLC30A8, which encodes a zinc efflux transporter closely 291 

involved with zinc ion sequestering and ultimately insulin secretion (Mitchell et 292 

al., 2016), we observed striking similarities in Hi-C contact frequencies between 293 

islet and EndoC-ßH1 (Figure 3D). In contrast, we observed far fewer chromatin 294 

loops and large spans of polycomb-repressed and/or quiescent chromatin for 295 

these loci in GM12878 cells (Figure 3E).  296 

Approximately 50% (4,543/9,100) of EndoC-ßH1 loop anchors overlapped 297 

EndoC-ßH1 ATAC-seq OCRs, of which 44% (n=1,987/4,543) of these occurred 298 

between promoter and enhancer elements (Figure S3B).  Of these loops, we 299 

observed a substantially higher proportion (64%; 376/587) of EndoC-ßH1-300 

specific loops that overlapped EndoC-ßH1 stretch enhancers (Fisher’s exact test 301 

p-value < 4.23 e-42) compared to that of non-specific loops (34%; 1,358/3,956). 302 

To examine the functional specificity of these loops, we overlapped chromatin 303 

state (ChromHMM) information from EndoC-ßH1 and 27 other tissue/cell types 304 

for all EndoC-ßH1 Hi-C. For each cell type, we determined the percent of Hi-C 305 

anchors that contained the same chromatin state as EndoC-ßH1 (Materials and 306 

Methods). Islets had the highest percent of identical chromatin states to EndoC-307 

ßH1 at Hi-C anchor sites among all tested tissues/cell types, especially promoter-308 
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enhancer loops (Figure S3C; orange line plot). These findings enumerate regions 309 

of cell-specific chromatin looping associated with islet development and function 310 

and indicate that EndoC-ßH1 forms cell type-specific chromatin 311 

domains/territories highly similar to primary human islets. 312 

EndoC-ßH1 Pol2 ChIA-PET identifies beta cell cis-regulatory hubs  313 

To map functional cis-regulatory networks, we completed RNA 314 

polymerase (Pol 2) ChIA-PET (Li et al., 2017b) in EndoC-ßH1 to identify 25,336 315 

putative Pol2-mediated chromatin interactions. We further filtered these 316 

interactions, retaining only those for which both interacting sites (ChIA-PET 317 

anchors) overlapped EndoC-ßH1 ATAC-seq OCRs, resulting in 16,756 putative 318 

cis-regulatory interactions (Materials and Methods). As shown in Figure 4A, the 319 

overwhelming majority of Pol2-mediated chromatin interactions linked active 320 

enhancer and active promoter chromatin states to themselves and each other. 321 

Importantly, ChIA-PET detected EndoC-ßH1-specific loops (Figure 4B, compare 322 

EndoC-ßH1, GM12878, and K562 ChIA-PET tracks) coinciding with those 323 

previously reported in targeted 4C-seq analyses of human islets (Pasquali et al., 324 

2014), including the ISL1 (Figure 4B; n = 8 sites denoted by asterisks, and PDX1 325 

(Figure S4A, n = 9 sites) loci.  326 

In addition to replicating interactions previously detected by 4C-seq in 327 

human islets, Pol2 ChIA-PET identified genome-wide interactions that 328 

encapsulate hundreds of promoter-promoter and putative promoter-enhancer 329 

interactions (Figure 4C; Materials and Methods). These include extensive Pol 2 330 

interactions in loci containing genes crucial for beta cell identity and development 331 
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such as PDX1, ISL1, NKX6-1, MAFB, and miR375 (Figure 4C, red text). As 332 

shown in Figures 4C and S4A, multiple interactions were detected between the 333 

PDX1 promoter and classically described essential PDX1 transcriptional 334 

enhancer sequences (n=7/14 enhancer interactions), which contain binding sites 335 

for islet TFs such as FOXA2 (Gao et al., 2008; Gerrish et al., 2004). During 336 

embryonic development, C57BL/6 mouse pancreata displayed a transition in 337 

expression of MafB to MafA (Nishimura et al., 2006) suggesting that these two 338 

factors are tightly involved in beta cell differentiation and function. The high 339 

degree of connectivity in MAFB (vs. that of MAFA) may therefore reflect the 340 

fetal/naive state of EndoC-ßH1 cells. miR375, a small non-coding RNA, 341 

possessed multiple connections to active promoter and enhancer elements 342 

(Figure 4C; red text), consistent with its role as a post-transcriptional regulator of 343 

genes involved in beta cell development/differentiation and insulin 344 

secretion/exocytosis (Eliasson, 2017).  345 

Interestingly, INSM1, a gene necessary for pancreatic endocrine cell 346 

differentiation (Osipovich et al., 2014), harbored the most connections in EndoC-347 

ßH1 (n = 97 total interactions, n = 7 between active promoters and enhancers; 348 

Figure S4B). Other genes linked by ChIA-PET interactions are involved in insulin 349 

processing and secretion including PCSK1, one of the prohormone convertases 350 

that catalyzes (pro)insulin processing; RIMBP2, whose protein mediates 351 

formation of a complex for polarized accumulation and exocytosis of insulin 352 

granules (Fan et al., 2017); RGS7, a critical regulator of muscarinic-stimulated 353 

insulin secretion (Wang et al., 2017); and CDC42, which is essential for second 354 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/399139doi: bioRxiv preprint 

https://doi.org/10.1101/399139
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

phase insulin secretion (Wang et al., 2007). Additionally, genes implicated in the 355 

protection and management of stress were highly connected in EndoC-ßH1 356 

ChIA-PET interactions. Notable candidates were ZFAND2B whose induction 357 

helps protect against human beta amyloid peptide toxicity/accumulation in a C. 358 

elegans transgenic Alzheimer’s disease model (Hassan et al., 2009); SUSD4, a 359 

complement inhibitor and tumor suppressor that modules ER stress; and CD59, 360 

which is required for mediating exocytosis events facilitating insulin secretion 361 

(Blom, 2017; Krus et al., 2014). Finally, TSHZ1, a PDX1 target gene whose 362 

expression levels were notably lower in human islet donors with T2D (Raum et 363 

al., 2015), harbored five links to active enhancer elements in EndoC-ßH1, 364 

suggesting that perturbation of the cis-regulatory networks identified herein may 365 

contribute to T2D pathogenesis. 366 

Finally, we sought to study to what extent the putative cis-regulatory 367 

networks detected in EndoC-ßH1 may be preserved in islets and other cell types. 368 

However, due to a limited availability of ChIA-PET data in human islets and other 369 

relevant tissues, we decided to use the chromatin interaction sites determined by 370 

EndoC-ßH1 ChIA-PET and compare the functional annotations (ChromHMM 371 

state annotations) at these loci across 27 different tissue/cell types. Overall, 372 

aggregate counts of these chromatin state interactions for each cell type were 373 

most similar between EndoC-ßH1 and islet (Figure 4D; green bar plots; Materials 374 

and Methods). ChIA-PET interactions between regions annotated as active 375 

promoters in EndoC-ßH1 were similarly annotated as active promoters across 376 

the 27 other cell/tissue types (Figure 4D; Act. promoter x Act. promoter red line 377 
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plot; Materials and Methods). In contrast, the majority of active enhancers 378 

interacting in EndoC-ßH1 were marked as active enhancers only in human islets 379 

(Figure 4D, Act. Enhancer x Act. Enhancer yellow line plot). Multidimensional 380 

scaling of all cell/tissue chromatin state annotations at EndoC-ßH1 ChIA-PET 381 

interacting sites also reaffirmed a high similarity between EndoC-ßH1 and islets 382 

(Figure S4C) consistent with a strong conservation of active enhancer state 383 

annotations as previously observed (Figure 4D; line plots). These results suggest 384 

that these interactions may be reflecting beta cell cis-regulatory hubs. Indeed, we 385 

observed a large proportion of ChIA-PET interactions (6,904/16,756 (41%)) 386 

whose anchors overlapped islet stretch enhancers implicating that these 387 

interactions may encompass key islet functional chromatin domains.  388 

Integration of EndoC-ßH1 genotype and 3-D genomic interaction maps 389 

identifies allelic imbalance at beta cell-specific cis-REs 390 

We and others have demonstrated that genetic variants, including those 391 

associated with T2D and other quantitative measures of islet (dys)function, can 392 

alter cis-RE use (chromatin accessibility quantitative trait loci; caQTL) 393 

(Karczewski and Snyder, 2018; Timpson et al., 2018) and target gene expression 394 

(expression quantitative trait loci; eQTL (van de Bunt et al., 2015; Fadista et al., 395 

2014; Varshney et al., 2017)). Recently, approaches have been used to assess 396 

allelic effects on these molecular features at heterozygous sites within a single 397 

sample. We applied these allelic imbalance (AI) analyses in EndoC-ßH1 to 398 

assess genetic effects on beta cell cis-regulatory networks and gene expression. 399 

To identify instances of AI in EndoC-ßH1, we considered approximately 2 million 400 
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heterozygous SNPs (Materials and Methods) and examined their biases within 401 

OCRs (ATAC-seq peaks), active enhancer elements (H3K27ac peaks), or 402 

expressed genes (RNA-seq; Figure 5A). Subsequent analyses revealed that 403 

<10% of all SNPs occurring in OCRs and enhancer elements showed significant 404 

AI (Figure 5A; Part I; FDR < 10%). We observed ~25% of SNPs with gene 405 

expression AI (Figure 5A). When considering variants with adequate coverage in 406 

both EndoC-ßH1 ATAC-seq OCRs and H3K27ac-marked enhancer regions (n = 407 

1,734 SNPs), we noted a positive correlation (R = 0.2) in the corresponding AI 408 

ratios (Figure S5A) suggesting the potential for coordinated chromatin 409 

accessibility and histone modifications at these cis-regulatory sites. In total, 410 

119/403 (~30%) T2D-associated signals overlapped EndoC-ßH1 cis-REs (Table 411 

S2), of which only 34/119 (~29%) of these unique signals were heterozygous in 412 

EndoC-ßH1 and potentially amenable to allelic analyses. GREGOR (Schmidt et 413 

al., 2015) enrichment analysis of these same 403 signals and all corresponding 414 

SNPs in high linkage disequilibrium (R2 > 0.8), identified significant overlap (p-415 

value < 1 e-7) in EndoC-ßH1 ATAC-seq (n = 67 SNPs) OCRs. These results 416 

suggest that EndoC-ßH1 cis-REs modestly encompass established T2D signals.  417 

Next, we leveraged information from EndoC-ßH1 ChIA-PET interactions to 418 

determine potential allelic effects on cis-regulatory networks and target gene 419 

expression. To achieve this, we (1) identified SNPs overlapping enhancers with 420 

AI (H3K27ac/ATAC-seq), (2) determined if the SNP linked (via ChIA-PET) to the 421 

transcription start site (TSS) of a gene, and (3) assessed if promoter or 422 

transcribed SNPs in the predicted target gene exhibited allelic imbalance in 423 
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H3K27ac/ATAC-seq or RNA-seq, respectively (Figure 5B). For example, 424 

rs2294805 exhibits allelic imbalance in an EndoC-ßH1 enhancer downstream of 425 

SAMD5 and is linked to this gene’s TSS by a ChIA-PET interaction (Figure 5C). 426 

Notably, 5/11 transcribed SAMD5 SNPs exhibited significant AI in RNA-seq gene 427 

expression data. In all cases, one parental chromosome (denoted in blue) was 428 

consistently overrepresented in both H3K27ac ChIP-seq and RNA-seq data. 429 

Although the exact role of SAMD5 in human islets has not been described, 430 

expression of this gene is high in adult alpha cells, but absent in adult beta cells 431 

(Lawlor et al., 2016; Segerstolpe et al., 2016; Wang et al., 2016). SAMD5 has 432 

been recently identified as a marker of peribiliary gland (PBG) cells (Yagai et al., 433 

2017), and PBG stem cells have been documented to differentiate into glucose-434 

responsive pancreatic islets (Cardinale et al., 2011). Our data highlights SAMD5 435 

as one of the most highly-connected loci in EndoC-ßH1 (Figures 4C and S4B; n 436 

= 35 ChIA-PET connections between the gene and active enhancers; n = 5 437 

interactions to other active promoters), and a potential novel cis-regulatory hub 438 

for fetal beta/islet cell development. Further manipulation of the regulatory 439 

networks in this locus may provide greater insight of its putative roles in islet cell 440 

differentiation and function.  441 

Overall, 2,500/5,515 (~45%) and 8,794/43,492 (~20%) of heterozygous 442 

SNPs that passed coverage thresholds (Materials and Methods) in ATAC-seq 443 

and H3K27ac cis-REs respectively overlapped a ChIA-PET anchor (Figure 5D; 444 

bar plots). For both datasets, < 5% of SNPs demonstrated significant AI, which 445 

were present in active promoter and enhancer regions of the genome (Figure 5D; 446 
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pie charts). SNPs with significant H3K27ac and ATAC-seq AI were enriched for 447 

active enhancer elements compared to promoter elements (Figure 5D). We also 448 

observed 21/50 (42%) and 91/185 (~49%) of enhancer SNPs (Figure 5D; yellow 449 

portion of pie charts marked with blue arrow) with significant ATAC-seq and 450 

H3K27ac AI, respectively, linked to target gene promoters via ChIA-PET (Table 451 

S5). To determine if the allelic effects on EndoC-ßH1 cis-regulatory networks 452 

extended to primary islets, we examined the direction-of-effect of these SNPs on 453 

steady state expression in human islet eQTLs (Varshney et al., 2017). Islet eQTL 454 

Z-scores (Materials and Methods) were most correlated to the H3K27ac allelic 455 

ratio at SNPs where the human islet eQTL target gene (i.e., the gene whose 456 

expression in human islets is influenced by a genetic variant) matched that of the 457 

EndoC-ßH1 ChIA-PET target gene (i.e., the gene linked to the enhancer by 458 

EndoC-ßH1 ChIA-PET as depicted in Figure 5B) (n = 42/91) (Figure S5B red 459 

points; R = 0.32), as opposed to those genes in the locus that were not linked to 460 

the enhancer by ChIA-PET (Figure S5B, grey points; R=0.17). 461 

Importantly, these analyses suggest that integrated EndoC-ßH1 omics 462 

analyses provide molecular insights into diabetes genetics (e.g., GWAS). For 463 

example, a T2D-associated index SNP rs57235767, for which the ‘C’ risk allele 464 

exhibited reduced EndoC-ßH1 H3K27ac counts, exhibited consistent down-465 

regulation of the ChIA-PET-predicted target gene C11orf54 (Figure 5SB; 466 

asterisk) expression in islet cohorts (Fadista et al., 2014; Varshney et al., 2017). 467 

Similarly, the T2D risk allele of rs3807136, a SNP in linkage disequilibrium (R2 > 468 

0.8) with the index SNP rs2268382, displayed a higher proportion of H3K27ac 469 
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counts in EndoC-ßH1 and increased expression of the predicted target gene, 470 

CEP41. These human islet SNP-gene interactions (that are also recapitulated in 471 

EndoC-ßH1 cells) represent high priority targets for (epi)genomic modification 472 

and should assist efforts to decrypt the factors contributing to T2D pathogenesis. 473 

  474 
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Discussion: 475 

 Here, we report extensive multi-omic mapping and integrated analysis of 476 

cytogenetic (karyotyping), large scale chromatin structural conformation (Hi-C), 477 

cis-regulatory networks (ChIA-PET), histone mark (ChIP-seq), chromatin 478 

accessibility (ATAC-seq), genetic (genotyping), and gene expression (RNA-seq) 479 

information in EndoC-ßH1 human beta cells. For convenient and interactive 480 

browsing of this data, we have created an R shiny web application (Chang et al., 481 

2018) which is publicly available at… These data and the browser application will 482 

serve as a resource for future studies to explore the complex beta cell regulatory 483 

programs uncovered in this study and to guide targeted studies of regulatory 484 

networks, genes, and pathways of interest.  485 

Spectral karyotyping revealed chromosomal heterogeneity among 486 

individual cells in the EndoC-ßH1 population. These included copy number 487 

variation, such as chromosome 20 gain and chromosome 10 loss, that has been 488 

identified previously by array comparative genomic hybridization analyses, as 489 

well as previously unappreciated structural alterations, including chromosome 490 

10:17 and 3:21 translocations, that are frequent within the population. Consistent 491 

with spectral karyotyping, we observed enhanced contact frequency between 492 

chromosomes 3 and 21 in EndoC-ßH1 Hi-C maps (Juicebox (Durand et al., 493 

2016b) link…) suggesting that these two technologies may complement one 494 

another to identify cell line abnormalities. As evident by other less prevalent 495 

chromosomal aberrations among the population, it is possible that this cell line 496 

may continue to evolve with continued passaging. Thus, caution should be taken, 497 
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and these aberrations should be considered, in future (epi)genome editing or 498 

EndoC-ßH1 molecular and functional experiments involving genes or regulatory 499 

elements on these chromosomes.  500 

Overall, comparative analyses of omics profiles indicate substantial 501 

similarity between EndoC-ßH1, islet, and primary beta cell transcriptomes (Figure 502 

2B; Pearson R > 0.86). EndoC-ßH1 open chromatin profiles were only modestly 503 

correlated with islet (R = 0.64) and primary beta (R = 0.67) cells, highlighting 504 

potential drift between the cell line and primary islet cells at the epigenetic level. 505 

These include approximately 19,000 putative EndoC-ßH1 enhancers that are 506 

annotated as quiescent or polycomb repressed in human islets. Our analyses 507 

revealed that these sites contain potential binding sites for TFs with important 508 

roles in beta cell development and pancreatic precursor fates and functions (e.g., 509 

NKX6-1, PDX1, ISL1, HNF6) (Thompson and Bhushan) and pluripotency (e.g., 510 

NANOG, OCT2) (Sokolik et al., 2015; Tantin, 2013). These features may reflect 511 

the fetal nature of EndoC-ßH1 cells, their transformed nature, or both.  512 

Using Hi-C to map higher order chromatin structure in EndoC-ßH1 and a 513 

corresponding map for a representative human islet, we defined islet/beta cell 514 

chromatin domains and territories. Consistent with previous findings (Rao et al., 515 

2014), the overall spatial chromatin organization was similar across EndoC-ßH1, 516 

islet, and GM12878 cells (Figure 3A; top panel) and all Hi-C anchors were 517 

enriched for classic TFs involved in chromatin modeling (e.g., CTCF, BORIS; 518 

Table S4). Importantly, however, Hi-C analyses also identified approximately 519 

1,078 islet/beta cell-specific chromatin domains, several of which were evident in 520 
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both EndoC-ßH1 and primary human islets (Figure 3).  These cell-specific 521 

chromatin territories were enriched for beta cell-specific TFs (Figure 3C) and 522 

brought into close physical proximity genes linked to islet-associated biological 523 

process gene ontology terms (Figure S3A) compared to those of GM12878.  524 

Here, we also report the first Pol2 ChIA-PET map of chromatin 525 

interactions in EndoC-ßH1, which further refined chromatin territories to reveal 526 

functional EndoC-ßH1 cis-regulatory networks. In addition to validating chromatin 527 

interactions previously reported in 4C-seq analyses at select loci in human islets, 528 

Pol2 ChIA-PET identified hundreds of new interactions genome-wide between 529 

active promoter and enhancer regions (Figure 4A) potentially involved in the 530 

regulation and transcription of dozens of beta cell-specific loci (Figure 4B, C). 531 

Comparison of Pol2 ChIA-PET interaction locations in EndoC-ßH1, GM12878, 532 

and K562 revealed that the overwhelming majority of interactions at these loci 533 

were unique to EndoC-ßH1. Due to high cell input requirements (~100 million 534 

cells) (Li et al., 2017b) for current ChIA-PET library construction protocols, we 535 

were unable to validate these findings in human islets. However, consistent with 536 

our previous observations between islet and EndoC-ßH1 Hi-C maps (Figure 537 

S3C), we noted that chromatin states of ChIA-PET interaction nodes in EndoC- 538 

ßH1 were most conserved in islet (Figure 4D, Figure S4C) in comparison to that 539 

of 27 other cell/tissue types. Thus, the cis-regulatory programs we define for 540 

EndoC-ßH1 should provide valuable insight of important transcriptional hubs that 541 

drive islet and beta cell identity and function.  542 
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Genome-wide association studies have identified hundreds of SNPs that 543 

contribute to genetic risk of type 2 diabetes and other quantitative measures of 544 

islet dysfunction, such as glucose, insulin, and proinsulin levels (DIAbetes 545 

Genetics Replication And Meta-analysis (DIAGRAM) Consortium et al., 2014; 546 

Fuchsberger et al., 2016; Mahajan et al., 2018). We and others have linked a 547 

subset of SNPs and loci to altered cis-regulatory element activity and steady 548 

state islet gene expression (van de Bunt et al., 2015; Fadista et al., 2014; 549 

Gaulton et al., 2015; Parker et al., 2013; Pasquali et al., 2014; Varshney et al., 550 

2017). For the majority of loci, challenges remain to define the (1) causal or 551 

functional SNP, (2) determine its molecular effect on cis-regulatory element 552 

activity, and (3) identify the putative target gene(s). By combining our densely 553 

genotyped/imputed and 3-D chromatin interaction (ChIA-PET) networks in 554 

EndoC-ßH1, we sought to identify SNPs with imbalanced expression or cis-RE 555 

use and link them physically with their target genes. Using this approach, we 556 

linked 91/185 (H3K27ac imbalanced) and 21/50 (ATAC-seq imbalanced) SNPs 557 

to potential target genes (e.g., rs2294805 - SAMD5 in Figure 5B). Our ability to 558 

assess chromatin interactions between diabetes-associated SNPs and their 559 

target genes was modest. Nonetheless, we identified two candidate SNPs 560 

(rs57235767, rs3807136) that demonstrated consistent directions-of-effect on 561 

epigenetic measures of cis-regulatory element activity (e.g., H3K27ac) and target 562 

gene expression in EndoC-ßH1 and human islets (Figure S5B) (Varshney et al., 563 

2017). Several factors could underlie the modest frequency of diabetes-564 

associated GWAS SNPs linked by Pol2 ChIA-PET interactions: (1) limited 565 
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sensitivity of ChIA-PET technology (2) condition/disease specificity of GWAS 566 

SNP effects on cis-regulatory element use or activity; or (3) condition-specific 567 

Pol2 interactions between cis-REs and their target genes.  568 

In summation, this study provides the first integrated multi-omic analysis of 569 

EndoC-ßH1, a human pancreatic beta cell line with increasing utility and 570 

importance to the beta cell and diabetes communities. Integrated analysis of 3-D 571 

epigenetic and gene expression information identified chromosomal territories 572 

and cis-regulatory networks governing beta cell identity and function.  Overall, 573 

comparison of EndoC-ßH1 (epi)genomic and 3-D chromatin profiles with those of 574 

human islets verified common signatures of gene expression, TF binding, and 575 

cis-RE use. These analyses also highlighted genomic discrepancies between 576 

EndoC-ßH1 and their primary cell counterparts, presumably reflecting the 577 

fetal/embryonic origin of the cell line and/or its transformed state. Integration of 578 

EndoC-ßH1 cis-regulatory maps with genome-wide genotype information 579 

nominated target genes and identified SNP allelic effects on transcriptional 580 

regulatory networks, including a subset of T2D-associated SNPs. Together, the 581 

data and tools provided here should serve as helpful guides for comprehensive 582 

design of targeted and hypothesis-driven studies of candidate genes, pathways, 583 

or cis-REs to determine their role(s) in beta cell (dys)function and diabetes. 584 
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EndoC-ßH1 Main figure legends:  964 
Figure 1. Extensive karyotyping and genotyping of EndoC-ßH1  965 

(A) Spectral Karyotyping (SKY) of EndoC-ßH1 for a representative metaphase. 966 

(B) Summary of the frequency of chromosomal abnormalities across 14 967 

metaphases.  Black boxes indicate the presence of an event, while white boxes 968 

indicate an absence. (C) Bar plots highlighting the risk allele burden of NHGRI-969 

EBI GWAS Catalog diabetes-associated GWAS loci in EndoC-ßH1. T1D = type 1 970 

diabetes, T2D = type 2 diabetes. Glucose traits include fasting plasma glucose 971 

and fasting glucose related traits interacting with body mass index (BMI) from the 972 

NHGRI-EBI GWAS catalog (MacArthur et al., 2017). Insulin traits include 973 

proinsulin and fasting insulin traits interacting with BMI. (D) Chromosome 974 

cartoons illustrating EndoC-ßH1 genotypes and the reported genes at glucose 975 

trait GWAS SNPs. Cases in which independent association signals mapped to 976 

the same locus are indicated by the locus name followed by parentheses 977 

containing numbers of SNPs with each risk genotype. Chromosomes 10 and 20 978 

are marked with asterisks “*” to indicate that the previously observed copy 979 

number alterations (illustrated in Figure 1B) may obfuscate interpretation of 980 

variant genotypes on these chromosomes. 981 

Figure 2. Multi-omic comparative analysis of EndoC-ßH1 and human 982 

pancreatic islets  983 

(A) Integrated view of the EndoC-ßH1 and human islet (epi)genomic and 984 

transcriptomic features surrounding the PCSK1 locus on chromosome 5.  985 

Histone modification ChIP-seq data from EndoC-ßH1, human islets, and 5 986 

Epigenome Roadmap cell types/tissues (Roadmap Epigenomics Consortium et 987 
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al., 2015) were jointly analyzed to determine ChromHMM-based chromatin states 988 

in a uniform manner. (B) Spearman correlation between EndoC-ßH1 ATAC-seq 989 

profiles and their corresponding profiles from islets, sorted alpha or beta cells, 990 

and other cell types and tissues (Methods). PBMC=peripheral blood 991 

mononuclear cells, GM12878 = B-lymphoblast cell line, CD4T = CD4+ T immune 992 

cell, skeletal = skeletal muscle, Alpha = primary islet alpha cells, Beta = primary 993 

islet beta cells.  EndoC-ßH1 exhibits greatest similarity to islets and their cellular 994 

constituents. (C) Heat map illustrating z-scores of HOMER enrichment p-values 995 

for transcription factor motifs in cell-type-specific OCRs. (D) Comparison of 996 

chromatin states between EndoC-ßH1 and human islets. Blue box highlights 997 

putative enhancer cis-REs in both EndoC-ßH1 and human islets; orange box 998 

indicates putative EndoC-ßH1 enhancers that are repressed in islets. (E) 999 

Transcription factor (TF) motifs enriched in genomic regions containing putative 1000 

enhancer cis-REs in both EndoC-ßH1 and islets (blue) or EndoC-ßH1 only 1001 

(orange). Points in grey denote TFs that are not enriched in either category.  1002 

Figure 3. Generating a genome-wide map of looping in EndoC-ßH1 and 1003 

human pancreatic islets (Hi-C) 1004 

(A) Aggregate peak analysis (APA) plots showing the total signal across all loops 1005 

(top three panels) and EndoC-ßH1-specific loops (bottom three panels) in 1006 

EndoC-ßH1 (left), human islet (center), and GM12878 (right) cells. Of note, islets 1007 

exhibit similar contact point enrichments at EndoC-ßH1-specific peaks compared 1008 

to GM12878. (B) Cartoon illustrating the different classes of Hi-C loops between 1009 

common (gray peaks) or cell-specific (black peaks) ATAC-seq OCRs. (C) 1010 
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Transcription factor motifs enriched in GM12878 (blue) or EndoC-ßH1 (red) Hi-C 1011 

looping anchors that overlap cell-specific ATAC-seq peaks (Loop classes B and 1012 

C in panel B above). (D) Hi-C contact maps highlighting a specific loop at the 1013 

SLC30A8 locus (denoted by dotted black circle) observed in both EndoC-ßH1 1014 

(left) and primary human islets (center) but absent in GM12878 (right). (E) Multi-1015 

omics view of Hi-C, ChIA-PET (Pol2), chromatin states, ATAC-seq, RNA-seq, 1016 

and gene tracks at the SLC30A8 neighborhood containing the Hi-C contact point 1017 

highlighted in panel D. Tracks corresponding to EndoC-ßH1, human islet, and 1018 

GM12878 are colored red, black, and blue, respectively.  1019 

Figure 4. RNA Polymerase 2 ChIA-PET identifies chromatin interactions in 1020 

EndoC-ßH1  1021 

(A) Heatmap showing the chromatin states of EndoC-ßH1 ChIA-PET interaction 1022 

nodes. (B) Example of a Pol2 ChIA-PET interaction between active enhancer 1023 

(blue box) and active promoter (green box) cis-REs in the ISL1 locus on 1024 

chromosome 5. Asterisks under EndoC-ßH1 ChIA-PET interactions (red) indicate 1025 

interacting sites in the ISL1 locus detected in human islet 4C-seq analyses 1026 

(Pasquali et al., 2014). (C) ChIA-PET network connectivity of gene promoters in 1027 

EndoC-ßH1 containing at least 3 interactions with other regulatory elements. For 1028 

each gene, the number of connections between other regulatory elements (e.g. 1029 

active enhancer, weak enhancer) and the proportion of links in which the 1030 

chromatin states are EndoC-ßH1-specific (blue) or identical in both human islet 1031 

and EndoC-ßH1 (green) are shown in bar plots on the right. (D) (Top) Bar plot 1032 

illustrating the proportions of chromatin states at the Pol2 ChIA-PET interacting 1033 
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sites (nodes) shared between EndoC-ßH1, islets, and additional Epigenomics 1034 

Roadmap tissues and cell lines. (Bottom) Heatmap demonstrating the chromatin 1035 

states of EndoC-ßH1 Pol2 ChIA-PET interacting sites (nodes) in islets (left) or 1036 

stomach smooth muscle (right).  1037 

Figure 5. Allelic effects on EndoC-ßH1 transcriptional regulatory features   1038 

(A) EndoC-ßH1 genotype information was integrated with ATAC-seq, H3K27ac, 1039 

and RNA-seq data to identify sequence variants altering cis-RE 1040 

accessibility/activity (ATAC-seq, H3K27ac) or mRNA levels (RNA-seq) in EndoC-1041 

ßH1. Pie charts summarize the proportions of variants exhibit significant allelic 1042 

imbalances (blue; FDR < 10%) in each of the corresponding –seq profiles. (B) 1043 

Cartoon representation of approach to identify systematic allelic effects on 1044 

EndoC-ßH1 cis-regulatory networks. (B) Multi-omic view highlighting allelic 1045 

effects on the SAMD5 locus cis-regulatory network in EndoC-ßH1. A variant site 1046 

exhibiting significant allelic imbalance in H3K27 acetylation (denoted by blue 1047 

arrow) is linked (red ChIA-PET interaction) to the transcription start site (TSS) of 1048 

SAMD5. Within the SAMD5 locus, five transcribed SNPs exhibited significant 1049 

allelic bias in gene expression (RNA-seq) in a direction consistent with the 1050 

H3K27ac allelic bias. (D) (Left) Bar plots summarizing the proportions of variants 1051 

with ATAC-seq/H3K27ac imbalance (blue bars; FDR < 10%) that overlap ChIA-1052 

PET interacting loci. (Right) Pie charts specifying the chromatin state 1053 

(ChromHMM) annotations of the overlapping variants.    1054 

 1055 

 1056 
  1057 
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Materials and Methods 1058 
 1059 
EndoC-ßH1 cell culture and processing 1060 

EndoC-ßH1 cells provided by EndoCells/INSERM were cultured and passaged 1061 

as previously described (Ravassard et al., 2011). Briefly, cells were seeded at a 1062 

density of approximately 600,000 cells/cm2 on tissue culture-treated plates pre-1063 

coated overnight with extracellular matrix (Sigma) and fibronectin (Sigma) in 1064 

EndoC-ßH1 complete medium. Cells were passaged approximately every 7 1065 

days. Cells were harvested at various passages and distinct sites (e.g., NHGRI, 1066 

JAX-GM) for karyotyping, genotyping, ATAC-seq, ChIP-seq, RNA-seq, Hi-C, and 1067 

Pol2 ChIA-PET analyses. 1068 

 1069 
Human islet acquisition and procurement 1070 
 1071 
The single human pancreatic islet sample used in this study was obtained from 1072 

the National Disease Research Interchange (NDRI). The islet was shipped 1073 

overnight from the distribution center. On receipt, we pre-warmed the islet to 37 °C in 1074 

shipping media for 1–2 h before harvest; �50,000 islet equivalents (IEQs) were harvested 1075 

for Hi-C. 1076 

 1077 

Spectral karyotyping (SKY) 1078 

Spectral karyotyping of EndoC-ßH1 was completed to identify structural and 1079 

numerical chromosome aberrations using standard procedures as previously 1080 

described. In brief, EndoC-ßH1 cells were cultured to 80% confluence. 1081 

Metaphase spreads were prepared from these cells after mitotic arrest with 1082 

Colcemid (0.015 μg/mL, 16 to 18 hours) (GIBCO, Gaithersburg, MD), hypotonic 1083 
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treatment (0.075 mol/L KCl, 20 minutes, 37°C), and fixation with methanol–acetic 1084 

acid (3:1). Commercial SKY probe and software (Applied Spectral Imaging INC, 1085 

Carlsbad, CA) was used to identify and visualize the individually colored 1086 

chromosomes obtained from two slides’ worth of metaphase spreads from the 1087 

same passage. 1088 

 1089 

Genotyping, imputation, and phasing of EndoC-ßH1 1090 

EndoC-ßH1 was genotyped with the HumanOmni2.5–4v1_H BeadChip Array 1091 

(Illumina, San Diego, CA, USA). We mapped the Illumina array probe sequences 1092 

to the hg19 genome assembly and excluded likely problematic ones as described 1093 

in (Varshney et al., 2017).  1094 

We applied the following filtering criteria to remove additional SNP probes 1095 

prior to pre-phasing of the array genotypes: 1) we assessed allele frequency of 1096 

the SNPs using combined genotypes of EndoC-ßH1 and 163 other samples that 1097 

were genotyped on similar chips; and 2) we removed SNPs with an alternate 1098 

allele frequency difference with 1000G EUR samples > 20%, or palindromic 1099 

SNPs with a minor allele frequency > 20%, genotype missingness > 2.5%, 1100 

Hardy-Weinberg p-value < 10-4. At the end, a total of 1,851,388 SNPs were used 1101 

in pre-phasing and imputation. 1102 

We performed pre-phasing and imputation separately on autosomal and 1103 

chrX markers using the Michigan Imputation Server (Das et al., 2016). We used 1104 

Eagle v2.3 (Loh et al., 2016) for autosomal chip marker pre-phasing and 1105 

SHAPEIT v2.r790 (Delaneau et al., 2011) for chrX markers. We subsequently 1106 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/399139doi: bioRxiv preprint 

https://doi.org/10.1101/399139
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45

used minimac3 (Das et al., 2016) for imputation of missing genotypes using the 1107 

Haplotype Reference Consortium (HRC version, hrc.r1.1.2016) panel (McCarthy 1108 

et al., 2016).  1109 

 1110 

GWAS SNP pruning 1111 

Lists of reference SNP identifiers were obtained from the NHGRI-EBI Catalog of 1112 

SNPs (https://www.ebi.ac.uk/gwas/ ; accessed January 19th, 2017) for Type 2 1113 

diabetes, Type 1 diabetes, fasting glucose traits, fasting insulin traits, and 1114 

proinsulin level categories. For each disease category, GWAS SNPs were 1115 

pruned using PLINK version 1.9 (Purcell et al., 2007) to identify SNPs in high 1116 

linkage disequilibrium (R2 > 0.8) as previously described (Lawlor et al., 2017b). 1117 

T2D-associated SNPs from (Mahajan et al., 2018) were obtained and pruned 1118 

using the same methodology described above. 1119 

 1120 

ATAC-seq  1121 

EndoC-ßH1 ATAC-seq libraries were prepared as previously described 1122 

(Varshney et al., 2017) and sequenced on an Illumina NextSeq 500 with 2 x 125 1123 

bp cycles. Raw sequence fastq files for adipocyte tissue, bulk islet (Khetan et 1124 

al., 2017), islet beta and alpha (GSE76268) (Ackermann et al., 2016), peripheral 1125 

mononuclear blood cells (PBMC) (Ucar et al., 2017), skeletal muscle (Scott et 1126 

al., 2016), GM12878 and CD4+ T cells (GSE47753) (Buenrostro et al., 2013) 1127 

were obtained from their corresponding studies. Paired-end ATAC-seq reads 1128 

were quality trimmed using Trimmomatic version 0.33 (Bolger et al., 2014) and 1129 
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parameters “TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36”. Trimmed reads 1130 

were aligned to human genome (hg19) using BWA version 0.7.12 (Li, 2013), 1131 

specifically using the bwa mem –M option. Duplicate reads were removed using 1132 

“MarkDuplicates” from Picard-tools version 1.95 (The Broad Institute, 2013). 1133 

After preprocessing and quality filtering, peaks were called on alignments with 1134 

MACS version 2.1.0 (Zhang et al., 2008) using the parameters “-g 'hs' --nomodel 1135 

--keep-dup all --broad --broad-cutoff 0.05 -f BAMPE”. Peaks located in 1136 

blacklisted regions of the genome were removed. Remaining overlapping peaks 1137 

from all cell types were merged with BEDTools version 2.26.0 (Quinlan and Hall, 1138 

2010) to generate a single peak set (n = 269,701). Raw read counts in these 1139 

peaks for each cell type were determined using the R package DiffBind_2.4.8 1140 

(Ross-Innes et al., 2012). Spearman rank-order correlation was calculated for 1141 

cell types using the merged peaks with deepTools version 2.4.2 (Ramírez et al., 1142 

2014).  1143 

 1144 

ChIP-seq 1145 

CTCF, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K79me2, H3K4me3, 1146 

H3K9me3 ChIP-seq was performed as previously described (Stitzel et al., 2010) 1147 

and sequenced on an Illumina HiSeq 2000 using 2 x 100 bp cycles. Harmonized 1148 

ChromHMM (Ernst and Kellis, 2017) states for EndoC-ßH1 and NIH Roadmap 1149 

cells/tissues were determined as previously described (Varshney et al., 2017). 1150 

 1151 

Transcription factor motif enrichment analysis  1152 
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“findMotifsGenome.pl” (HOMER version 4.6 (Heinz et al., 2010)) script with 1153 

parameters “hg19 -size 200” was used to determine TF motifs enriched in 1154 

ATAC-seq OCRs for each cell type (Figure 2C). In each analysis, all merged 1155 

OCRs (n = 269,701) were provided as background (e.g., EndoC-ßH1 called 1156 

OCRs (foreground) vs. all merged OCRs (background)). The same parameters 1157 

were used to identify enriched motifs in either “Enhancers in Both EndoC-ßH1 1158 

and Islet” (n = 16,351) or “Enhancers in EndoC-ßH1 Only” (n = 19,380) 1159 

compared to all enhancers (n = 51,325) (Figure 2D). The same HOMER script 1160 

and parameters were also used to identify enriched motifs in EndoC-ßH1 (n = 1161 

315) vs. GM12878 (n = 308) cell-specific Hi-C loops. 1162 

 1163 

Similarity of cell/tissue type chromatin state (ChromHMM) annotations at 1164 

EndoC-ßH1 ATAC-seq OCRs 1165 

EndoC-ßH1 ATAC-seq OCRs (n = 127,894) were overlapped with chromatin 1166 

state (ChromHMM) annotations from EndoC-ßH1, human islet, adipocyte, 1167 

skeletal muscle, GM12878, and PBMC cells provided in (Varshney et al., 2017). 1168 

Next, only OCRs that intersected a ChromHMM annotation from all tissue/cell 1169 

types (n = 127,887/127,894) were retained (union set). Within a tissue/cell type, 1170 

or instances where multiple chromatin state elements intersected an EndoC-1171 

ßH1 OCR, annotations were prioritized as follows: promoter, enhancer, 1172 

transcription, repressed, or low signal. At each OCR, cell/tissue ChromHMM 1173 

annotations were compared to those of EndoC-ßH1 and assigned a binary 1174 

classification (1 = the annotations were the same, 0 = the annotations were 1175 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/399139doi: bioRxiv preprint 

https://doi.org/10.1101/399139
http://creativecommons.org/licenses/by-nc-nd/4.0/


 48

different). Aggregated counts of pairwise chromatin state annotations based on 1176 

EndoC-ßH1 OCRs were then computed for each tissue/cell type, and a resulting 1177 

similarity matrix was calculated using the “simil” function within the proxy version 1178 

0.4 R package (Meyer and Buchta, 2018). 1179 

 1180 

RNA-seq 1181 

Total RNA was extracted and purified from EndoC-ßH1 using Trizol as 1182 

previously described (Varshney et al., 2017). All sequencing was performed on 1183 

an Illumina NextSeq 500 with 2 x 101 bp cycles. Raw fastq files for human islets 1184 

(Khetan et al., 2017), islet beta and alpha (Ackermann et al., 2016) , PBMC 1185 

(GSE90275), skeletal muscle (GSE78611), adipocyte (GSE93486) (ENCODE 1186 

Project Consortium, 2012), GM12878 (GSE30400) (Rozowsky et al., 2011), and 1187 

CD4+ T cell (GSE18927) (Schultz et al., 2015) were obtained from the 1188 

associated databases. Paired-end RNA-seq reads were trimmed using 1189 

Trimmomatic with the same parameters as used for ATAC-seq reads. Trimmed 1190 

reads were aligned to human genome (hg19) using STAR version 2.53 (Dobin et 1191 

al., 2012) with default parameters and expression levels of all genes were 1192 

determined using QoRTs version 1.2.42 (Hartley and Mullikin, 2015) with default 1193 

parameters and Gencode v19 transcript annotations. A total of 27,564 protein-1194 

coding genes and long intergenic non-coding RNAs (lincRNAs) were considered 1195 

in the study. 1196 

 1197 

miRNA-seq 1198 
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Total RNA was extracted and purified from 2000-3000 islet equivalents (IEQ) or 1199 

2 x 106 EndoC-ßH1 cells using Trizol (Life Technologies). RNA quality was 1200 

confirmed with Bioanalyzer 2100 (Agilent); islet samples with RNA integrity 1201 

number (RIN) greater than 6.5 were prepared for miRNA sequencing; EndoC- 1202 

ßH1 cells RNA RIN scores were > 9.0. miRNA libraries were prepared at the 1203 

NIH Intramural Sequencing Core (NISC) from 1 µg total RNA using Illumina’s 1204 

TruSeq Small RNA Library Kit according to the manufacturer’s guidelines, 1205 

except a 10% acrylamide gel was used for better separation of library from 1206 

adapters. Libraries were pooled in groups of about 8 for gel purification. Single-1207 

end 51 base sequencing was performed on Illumina HiSeq 2500 sequencers in 1208 

Rapid Mode using version 2 chemistry.  Data was processed using RTA version 1209 

1.18.64 and CASAVA 1.8.2. All resulting data was processed with miRquant 2.0 1210 

(Kanke et al., 2016). 1211 

 1212 
Hi-C 1213 
 1214 
Hi-C libraries were generated as described in (Rao et al., 2014) and analyzed 1215 

using the Juicer Tools version 1.75 pipeline (Durand et al., 2016a). We 1216 

sequenced 6,065,763,792 Hi-C read pairs in EndoC-ßH1 cells, yielding 1217 

1,909,699,446 Hi-C contacts; we also sequenced 6,009,242,588 Hi-C read pairs 1218 

in islet cells, yielding 1,516,995,339 Hi-C contacts. Loci were assigned to A and 1219 

B compartments at 500 kB resolution. Loops were annotated using HiCCUPS at 1220 

5kB and 10kB resolutions with default Juicer parameters. This yielded a list of 1221 

9,100 loops in EndoC-ßH1 cells and 2,580 loops in Islet cells. GM12878 loop 1222 

calls (n = 9,448 loops) were downloaded from Gene Expression Omnibus 1223 
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(GSE63525). Differential loop calling with HiCCUPS at 5kb and 10kb identified 1224 

1,120 loops as significantly enriched for EndoC-ßH1 cells and 829 loops as 1225 

significantly enriched for GM12878 cells. Similar comparison of islet and EndoC-1226 

ßH1 loops determined 935 loops as significantly enriched for EndoC-ßH1 and 49 1227 

loops as being significantly enriched for islet. Aggregate peak analysis (APA) 1228 

plots were calculated using Juicer and the “apa” command using default 1229 

parameters. Visualization of Hi-C maps was performed using Juicebox version 1230 

1.6.11 (Durand et al., 2016b) with the “Observed/Expected” view and “Balanced” 1231 

(Knight-Ruiz) normalization. All the code used in the above steps is publicly 1232 

available at (github.com/theaidenlab). Genomic Regions Enrichment of 1233 

Annotations Tool (GREAT; (McLean et al., 2010) was used to identify pathways 1234 

enriched in the single nearest genes (whose TSS was within 2 kb) of EndoC-1235 

ßH1-specific anchors. 1236 

 1237 
ChIA-PET 1238 
 1239 
EndoC-ßH1 RNA Polymerase 2 (Pol2) ChIA-PET libraries were generated and 1240 

sequenced reads were processed and analyzed according to the protocol in (Li 1241 

et al., 2017b). ChIA-PET interactions were identified using ChIA-PET2 (Li et al., 1242 

2017a) using the “bridge linker mode” option. Corresponding ChIA-PET 1243 

interactions for K562 (GSE39495) and GM12878 (GSE72816) cells were 1244 

obtained from Gene Expression Omnibus. ChIA-PET and Hi-C loops were further 1245 

filtered using the Bioconductor package InteractionSet_1.8.0 (Lun et al., 2016) to 1246 

retain only those in which both interacting sites (anchors) overlapped OCRs. 1247 

ChIA-PET anchors were annotated to the nearest gene. To assess the physical 1248 
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connectivity between genes and their putative regulatory regions as captured by 1249 

ChIA-PET interactions, the number of distinct links between anchors annotated 1250 

to each gene were counted and categorized by their chromatin state and 1251 

regulatory function. Counting was carried out both between each gene promoter 1252 

and all linked regulatory regions (Fig. 4C), and also between all annotated 1253 

anchors regardless of their chromatin state and all linked regulatory regions (Fig. 1254 

S4B). For example, consider anchors A1 and A2, both overlapping enhancer 1255 

regions annotated to gene i. These anchors respectively link to anchors B1, 1256 

located in a TSS, and B2, in an enhancer. In this scenario, a connectivity degree 1257 

of two would be computed for gene i, corresponding to an enhancer-TSS and a 1258 

TSS-TSS interaction, respectively. 1259 

The functional specificity of EndoC-ßH1 ChIA-PET interactions was 1260 

investigated by overlapping interaction anchors on ChromHMM chromatin states 1261 

computed from EndoC-ßH1 data as well as 27 other tissue/cell types (Varshney 1262 

et al., 2017), and calculating the rate of conservation of chromatin states of both 1263 

anchors. For example, a rate of 80% enhancer-enhancer conservation would 1264 

mean that 8 out of 10 interactions of this type in EndoC-ßH1 are also found in 1265 

another cell type. The resulting proportions were computed for all interactions 1266 

combined, and for specific relevant regulatory interactions (Figure 4D, line plots). 1267 

In addition, aggregated counts of pairwise chromatin state interactions based on 1268 

EndoC-ßH1 ChIA-PET interactions were computed for the same cell types as 1269 

above, and pairwise distances (D) between the resulting 29 count matrices were 1270 

computed and plotted as scaled similarity values relative to EndoC-ßH1 (i.e., 1-1271 
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D/Dmax), so that D = 0 for EndoC-ßH1 interactions and D = Dmax for the most 1272 

divergent cell type (Figure 4D, bar plot). These same methods were used to 1273 

determine the functional specificity of EndoC-ßH1 Hi-C interactions. 1274 

 1275 

Visualization of multiomic data 1276 

Multiomic plots of all Hi-C, ChIA-PET, chromatin state (ChromHMM), ATAC-seq, 1277 

and RNA-seq data examined in this study were produced using the Bioconductor 1278 

package Sushi_1.18.0 (Phanstiel et al., 2014).  1279 

 1280 

ATAC-seq allelic bias analysis 1281 

All allelic bias analyses were performed using WASP (Geijn et al., 2015) (version 1282 

0.2.2 after GitHub commit 5a52185 and bug fix in pull request #67). For the 1283 

EndoC-ßH1 ATAC-seq allelic bias analyses, after original BWA mapping, reads 1284 

were filtered to properly-paired, high-quality autosomal reads using SAMtools (v. 1285 

1.3.1; flags -f 3 -F 4 -F 8 -F 256 -F 2048 -q 30) (Li et al., 2009). Remapping and 1286 

filtering as part of the WASP pipeline utilized the same parameters. As the last 1287 

step of the WASP pipeline, duplicate removal was performed using WASP’s 1288 

rmdup_pe.py script. In order to avoid double-counting SNPs covered by both 1289 

reads in a pair, overlapping read pairs were clipped using bamUtil’s clipOverlap 1290 

(https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap; v. 1.0.14). The four 1291 

replicate libraries were then merged using SAMtools merge.  1292 

For each SNP, we determined the number of reads containing each allele 1293 

(requiring base quality of at least 20). We excluded SNPs with total coverage 1294 
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less than 10, as well as SNPs in regions blacklisted by the ENCODE Consortium 1295 

because of poor mappability (wgEncodeDacMapabilityConsensusExcludable.bed 1296 

and wgEncodeDukeMapabilityRegionsExcludable.bed). Allelic bias testing was 1297 

performed using a two-tailed binomial test, using an adjusted expectation for the 1298 

null to account for residual reference bias as described in (Scott et al., 2016). 1299 

Briefly, for each of the 16 reference-alternate allele pairs (e.g., AG and GA are 1300 

separate allele pairs), we calculated the expected fraction of reference alleles 1301 

(fracRef) under the null as the sum of the reference allele counts divided by the 1302 

sum of the total allele counts for SNPs of that allele pair. To prevent SNPs of 1303 

high coverage from biasing the expected fracRef, we down-sampled SNPs with 1304 

coverage in the top 25th percentile to the median coverage, and used these 1305 

downsampled reference and total allele counts when calculating the expected 1306 

fracRef. We used the observed allele-pair specific fracRef as the true fracRef 1307 

under the null hypothesis of no allelic bias in the binomial test. Multiple testing 1308 

correction was performed using the Benjamini-Hochberg correction (FDR < 1309 

10%). 1310 

 1311 

ChIP-seq allelic bias analysis 1312 

For the EndoC-ßH1 ChIP-seq allelic bias analyses, paired-end libraries were 1313 

processed as follows. Adapters were trimmed using cta (v. 0.1.2) and reads 1314 

mapped using BWA mem (-M flag; v. 0.7.12). Reads were filtered to properly-1315 

paired, high-quality autosomal reads using SAMtools (flags -f 3 -F 4 -F 8 -F 256 -1316 

F 2048 -q 30). Single-end libraries were mapped using BWA aln (v. 0.7.12; 1317 
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default parameters) and filtered using SAMtools (flags -F 4 -F 256 -F 2048 -q 30). 1318 

Remapping and filtering as part of the WASP pipeline utilized the same 1319 

parameters as for the original mapping. For paired-end libraries, overlapping 1320 

read pairs were clipped using bamUtil’s clipOverlap. Replicates were merged 1321 

using SAMtools merge. Allele counting and allelic bias testing was performed as 1322 

described above for ATAC-seq. 1323 

 1324 

RNA-seq allelic bias analysis 1325 

For the EndoC-ßH1 RNA-seq allelic bias analyses, after original STAR mapping, 1326 

reads were filtered to properly-paired, high-quality autosomal reads using 1327 

SAMtools (v. 1.3.1; flags -f 3 -F 4 -F 8 -F 256 -F 2048 -q 255). Remapping and 1328 

filtering as part of the WASP pipeline utilized the same parameters. In order to 1329 

avoid double-counting SNPs covered by both reads in a pair, overlapping read 1330 

pairs were clipped using bamUtil’s clipOverlap. Allele counting and allelic bias 1331 

testing was performed as described above for ATAC-seq. 1332 

 1333 

Comparison of islet eQTL and EndoC-ßH1 biased SNPs allelic effect 1334 

Human islet eQTL data were obtained from (Varshney et al., 2017). For EndoC-1335 

ßH1 biased (H3K27ac) enhancer SNPs that were also linked (via ChIA-PET 1336 

chromatin interaction) to a target gene (n = 91/185 SNPs in Figure 5C), all 1337 

corresponding islet eQTL SNP-gene pairs were retrieved. For 42/91 SNPs linked 1338 

to target genes, the H3K27ac allelic effect bias was calculated assuming that the 1339 

EndoC-ßH1 effect allele was the same as the islet eQTL effect allele. Allelic 1340 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/399139doi: bioRxiv preprint 

https://doi.org/10.1101/399139
http://creativecommons.org/licenses/by-nc-nd/4.0/


 55

effect bias was calculated by dividing the effect allele coverage (either reference 1341 

or alternate allele) by the total coverage of the SNP. A scalar value of 0.5 was 1342 

subtracted from this value to determine whether the effect allele had an 1343 

increased (positive value), decreased (negative value), or no (zero) bias in 1344 

H3K27ac coverage. Randomly selected eQTL SNP-gene pairs that did not have 1345 

corresponding connections (via ChIA-PET chromatin interaction) to a target gene 1346 

were considered as a null/background set.    1347 

 1348 

  1349 
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EndoC-ßH1 Supplementary figure legends:  1350 

Figure S1: 1351 

Representative spectral karyotypes (SKY) of EndoC-ßH1 cells at metaphase. 1352 

Specific metaphases shown are S2.1 (top), 7 (middle), and S2.7 (bottom). 1353 

Common structural or numerical chromosomal aberrations that are evident in 1354 

multiple metaphases are indicated in green.  1355 

Figure S2: 1356 

(A) Similarity (centered Pearson correlation) of human islet, adipocyte, skeletal 1357 

muscle, GM12878, and PBMC chromatin state annotations (ChromHMM) to 1358 

those of EndoC-ßH1 at EndoC-ßH1 OCRs. The similarity matrix was calculated 1359 

using the “simil” function within the proxy version 0.4 R package (Meyer and 1360 

Buchta, 2018). (B) Spearman correlation between EndoC-ßH1 RNA-seq and the 1361 

corresponding RNA-seq from islets, sorted alpha or beta cells (Ackermann et al., 1362 

2016), and other cell types and tissues. PBMC=peripheral blood mononuclear 1363 

cells, GM12878 = lymphoblastoid cell line, CD4T = CD4+ T immune cell, skeletal 1364 

= skeletal muscle, Alpha = primary islet alpha cells, Beta = primary islet beta 1365 

cells. (C) Principal component analysis (PCA) of miRNA-seq profiles from 1366 

EndoC-ßH1 and 5 representative human islet, skeletal muscle, and adipose 1367 

tissue samples. (D) Scatter plot illustrating the resemblance of miRNA 1368 

expression levels between EndoC-ßH1 and human islets. RPMMM = reads per 1369 

million mapped miRNA, R2 = Pearson R.  1370 

Figure S3: 1371 
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(A) Biological process gene ontology terms enriched in genes adjacent to 1372 

EndoC-ßH1-specific Hi-C anchors. Enrichment analysis was performed with 1373 

GREAT (McLean et al., 2010) using the single gene whose transcription start site 1374 

(TSS) was nearest to each anchor. Results with an adjusted (Benjamini & 1375 

Hochberg) hypergeometric p-value < 0.05 were regarded as statistically 1376 

significant. (B) Frequency of EndoC-ßH1 Hi-C loop anchors and their 1377 

corresponding chromatin state (ChromHMM) annotations. (C) (Top) Bar plot 1378 

depicting the average similarity of chromatin state (ChromHMM) annotations for 1379 

each cell type at EndoC-ßH1 Hi-C loop anchor positions. Overlaid line plots 1380 

highlight the relative similarity for various chromatin state interactions (e.g. active 1381 

promoter vs. active promoter). (Bottom) Select heat maps showing the frequency 1382 

of human islet (left) and GM12878 (right) chromatin states at EndoC-ßH1 loop 1383 

anchors.  1384 

Figure S4: 1385 

(A) Genome-wide view of RNA polymerase 2-mediated (Pol2 ChIA-PET) 1386 

chromatin interactions around the PDX1 locus on chromosome 13 in EndoC-1387 

ßH1. Asterisks under EndoC-ßH1 (red) ChIA-PET interactions indicate 1388 

interacting sites/anchors identified by targeted 4C-seq analyses in this locus in 1389 

human islets (Pasquali et al., 2014). (B) Connectivity of EndoC-ßH1 ChIA-PET 1390 

interactions when considering nodes with 6 or more links to other regulatory 1391 

elements. (Left) Circular plots depict the number of links that occur with 1392 

corresponding regulatory elements (e.g., active promoter, active enhancer). 1393 

(Right) bar plots illustrate the proportion of interacting nodes that exhibit the 1394 
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active regulatory element chromatin states exclusively in EndoC-ßH1 (blue) or 1395 

identical chromatin states in both EndoC-ßH1 and islet (green). (C) 1396 

Multidimensional scaling (MDS) plot based on pairwise Chi-square distances of 1397 

vectors of proportions of chromatin states in EndoC-ßH1, islets, and additional 1398 

Epigenomics Roadmap cell and tissue types at EndoC-ßH1 defined ChIA-PET 1399 

interacting nodes.  1400 

Figure S5: 1401 

(A) Correlation of cis-regulatory element allelic imbalance for SNPs with 1402 

heterozygous genotypes in EndoC-ßH1. For a given heterozygous SNP (n = 1403 

1,734 total with 20X coverage in EndoC-ßH1 ATAC-seq and H327ac data), allelic 1404 

imbalance ratios were calculated and plotted. Colored points signify SNPs with 1405 

significant allelic imbalance (FDR < 10%) in ATAC-seq (red), H3K27ac (blue), or 1406 

both (purple) datasets. (B) Correlation of human islet eQTL SNP-gene pair 1407 

direction of effect (z-score) from (Varshney et al., 2017) and their corresponding 1408 

H3K27ac effect allele bias deviation from 0.5 in EndoC-ßH1. Red points indicate 1409 

eQTL SNP-gene pairs that are also linked by an EndoC-ßH1 ChIA-PET 1410 

interaction. Asterisks indicate eQTL SNPs that are also diabetes-associated 1411 

GWAS SNPs. 1412 

 1413 

 1414 
 1415 
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