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 2 

Abstract 1 

Characterization of Human Endogenous Retrovirus (HERV) expression within the 2 

transcriptomic landscape using RNA-seq is complicated by uncertainty in fragment 3 

assignment because of sequence similarity. We present Telescope, a computational 4 

software tool that provides accurate estimation of transposable element expression 5 

(retrotranscriptome) resolved to specific genomic locations. Telescope directly addresses 6 

uncertainty in fragment assignment by reassigning ambiguously mapped fragments to the 7 

most probable source transcript as determined within a Bayesian statistical model. We 8 

demonstrate the utility of our approach through single locus analysis of HERV expression 9 

in 13 ENCODE cell types. When examined at this resolution, we find that the magnitude 10 

and breadth of the retrotranscriptome can be vastly different among cell types. 11 

Furthermore, our approach is robust to differences in sequencing technology, and 12 

demonstrates that the retrotranscriptome has potential to be used for cell type 13 

identification. Telescope performs highly accurate quantification of the 14 

retrotranscriptomic landscape in RNA-seq experiments, revealing a differential 15 

complexity in the transposable element biology of complex systems not previously 16 

observed. Telescope is available at github.com/mlbendall/telescope. 17 

  18 
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 3 

Author Summary 1 

Almost half of the human genome is composed of Transposable elements (TEs), but their 2 

contribution to the transcriptome, their cell-type specific expression patterns, and their 3 

role in disease remains poorly understood. Recent studies have found many elements to 4 

be actively expressed and involved in key cellular processes. For example, human 5 

endogenous retroviruses (HERVs) are reported to be involved in human embryonic stem 6 

cell differentiation. Discovering which exact HERVs are differentially expressed in 7 

RNA-seq data would be a major advance in understanding such processes. However, 8 

because HERVs have a high level of sequence similarity it is hard to identify which exact 9 

HERV is differentially expressed. To solve this problem, we developed a computer 10 

program which addressed uncertainty in fragment assignment by reassigning 11 

ambiguously mapped fragments to the most probable source transcript as determined 12 

within a Bayesian statistical model. We call this program, “Telescope”. We then used 13 

Telescope to identify HERV expression in 13 well-studied cell types from the ENCODE 14 

consortium and found that different cell types could be characterized by enrichment for 15 

different HERV families, and for locus specific expression. We also showed that 16 

Telescope performed better than other methods currently used to determine TE 17 

expression. The use of this computational tool to examine new and existing RNA-seq 18 

data sets may lead to new understanding of the roles of TEs in health and disease. 19 

  20 
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 4 

Introduction 1 

 Transposable elements (TEs) represent the largest class of biochemically 2 

functional DNA elements in mammalian genomes(Dunham et al. 2012; Kellis et al. 2014) 3 

comprising nearly 50% of the human genome. As many of these transcriptionally active 4 

elements originated as retroelements, we refer to the set of RNA molecules transcribed 5 

from these elements in a population of cells as the retrotranscriptome. The contribution of 6 

the retrotranscriptome to the total transcriptome, cell-type specific expression patterns, 7 

and the role of retroelement transcripts in disease remain poorly understood (Magiorkinis 8 

et al. 2013). Although most TEs are hypothesized to be transcriptionally silent (due to 9 

accumulated mutations), recent studies have found many elements to be actively 10 

expressed and involved in key cellular processes. For example, aberrant expression of 11 

LINE-1 (L1) elements, the most expansive group of TEs, has been implicated in the 12 

pathogenesis of cancer (Wang-Johanning et al. 2003; Tang et al. 2017; Rodić et al. 2015; 13 

Ardeljan et al. 2017), while human endogenous retroviruses (HERVs) are reported to be 14 

involved in human embryonic stem cell differentiation(Grow et al. 2015; Göke et al. 15 

2015) and in the pathogenesis of amyotrophic lateral sclerosis(Li et al. 2015). We, and 16 

others, have shown that HIV-1 infection increases HERV transcription(Garrison et al. 17 

2007; Jones et al. 2012; Ormsby et al. 2012; Contreras-Galindo et al. 2012; Gonzalez-18 

Hernandez et al. 2014). These lines of evidence therefore indicate that TEs have 19 

important roles in the regulation of human health and disease. 20 

The ability to observe and quantify TE expression, especially the specific 21 

genomic locations of active elements, is crucial for understanding the molecular basis 22 

underlying a wide range of conditions and diseases(Flockerzi et al. 2008). Traditional 23 
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 5 

techniques for interrogating the TE transcriptome include quantitative PCR (Muradrasoli 1 

et al. 2006; Rangwala et al. 2009) and RNA expression microarrays (Seifarth et al. 2003; 2 

Pérot et al. 2012; Gnanakkan et al. 2013; Young et al. 2014; Becker et al. 2017). 3 

However, these techniques are unable to discover elements not specifically targeted by 4 

the assay, and may fail to detect rare, previously unknown, or weakly expressed 5 

transcripts. High-throughput RNA sequencing (RNA-seq) promises to overcome many of 6 

these shortcomings, enabling highly sensitive detection of transcripts across a wide 7 

dynamic range. Mathematical and computational approaches for transcriptome 8 

quantification using RNA-seq are well established ((Mortazavi et al. 2008; Marioni et al. 9 

2008), see review (Garber et al. 2011)) and provide researchers with reproducible 10 

analytical pipelines (Trapnell et al. 2010, 2012). Such approaches are highly effective at 11 

quantifying transcripts when sequenced fragments can be uniquely aligned to the 12 

reference genome, since the original genomic template for each transcript can be 13 

unambiguously identified (Trapnell et al. 2013; Conesa et al. 2016). In contrast, 14 

sequencing fragments generated by TEs often have high scoring alignments to many 15 

genomic locations with similar sequences, leading to uncertainty in transcript count 16 

estimates. Approaches that fail to account for these uncertainties may incorrectly estimate 17 

TE abundance and falsely detect significant changes in expression (Trapnell et al. 2013). 18 

A growing number of studies are using high-throughput sequencing to 19 

characterize the retrotranscriptome. Three general approaches are used to deal with 20 

challenges of aligning short sequencing reads to repetitive elements. i) “Family-level” 21 

approaches combine read counts across all instances of a TE family, since fragments 22 

mapping to multiple genomic locations can often be uniquely assigned to a single repeat 23 
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 6 

family.  ii) “Heuristic” approaches simplify the problem of multi-mapped fragments by 1 

either discarding ambiguous reads (unique counts) or randomly assigning ambiguous 2 

reads to one of its best scoring alignments (best counts). Finally, iii) “statistical” 3 

approaches estimate the most probable assignment of fragments given a statistical model. 4 

Our approach, Telescope, implements a Bayesian statistical model for reassigning 5 

ambiguous fragments; previous work that has used statistical approaches include the 6 

TETranscripts package (Jin et al. 2015) and an ad hoc model implemented by (Santoni et 7 

al. 2012). 8 

 Here, we introduce Telescope, a tool which provides accurate estimation of TE 9 

expression resolved to specific genomic locations. Our approach directly addresses 10 

uncertainty in fragment assignment by reassigning ambiguously mapped fragments to the 11 

most probable source transcript as determined within a Bayesian statistical model. We 12 

implement our approach using a descriptive statistical model of the RNA-seq process and 13 

use an iterative algorithm to optimize model parameters. We use Telescope to investigate 14 

the expression of HERVs in cell types from the ENCODE consortium.15 
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 7 

Results 1 

 2 

Telescope: Single locus resolution of transposable element expression 3 

  Resolution of transposable element (including those of human endogenous 4 

retroviruses, HERVs) expression from RNA-seq data sets has been complicated by the 5 

many similarities of these repetitive elements. Telescope is a computational pipeline 6 

program that solves the problem of ambiguously aligned fragments by assigning each 7 

sequenced fragment to its most likely transcript of origin. We assume that the number of 8 

fragments generated by a transcript is proportional to the amount of transcript present in 9 

the sample; thus, the most likely source template for a randomly selected fragment is a 10 

function of its alignment uncertainty and the relative transcript abundances. Telescope 11 

describes this relationship using a Bayesian mixture model where the estimated 12 

parameters include the relative transcript abundances and the latent variables define the 13 

possible source templates for each fragment (Francis et al. 2013). 14 

 The first step in this approach is to independently align each fragment to the 15 

reference genome; the alignment method should search for multiple valid alignments for 16 

each fragment and report all alignments that meet or exceed a minimum score threshold 17 

(Fig 1A). Next, alignments are tested for overlap with known TE transcripts; transcript 18 

assignments for each fragment are weighted by the score of the corresponding alignment 19 

(Fig 1B and 1C). In our test cases, we typically find that less than 50% of the fragments 20 

aligning to TEs can be uniquely assigned to a single genomic location and many 21 

fragments have more than 20 possible originating transcripts.  22 
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 8 

Fig 1. Telescope conceptual overview. A set of possible genomic locations for each 1 

fragment is determined by alignment to the reference genome. In order to find as many 2 

high-scoring mappings as possible, we use sensitive local alignment parameters and 3 

search for up to 100 alignments for each fragment using bowtie2 (A). Using an 4 

annotation containing known TE locations, Telescope intersects the aligned fragments 5 

with annotated TE loci (B,C). The set of alignments and corresponding alignment scores 6 

for each fragment are used to calculate the expected assignment weights, initially 7 

assuming equal expression for all elements (D). The assignment weights estimated in (D) 8 

are used to find the maximum likelihood estimate (MLE) for the proportion of each 9 

transcript (E). Next, we update the expected assignment weights, now assuming that the 10 

MLE represents our best estimate of transcript expression (D,E). The steps in panels (D) 11 

and (E) describe an expectation-maximization procedure, and we further refine the 12 

assignment weights and MLE by iterating until parameter estimates converge. Telescope 13 

produces a report that includes the maximum a posteriori estimate of the transcript 14 

proportions and the final number of fragments assigned to each transcript, as well as an 15 

updated alignment including the final fragment assignments (F). 16 

 17 

 Telescope estimates the transcript proportions and expected source templates 18 

using an expectation-maximization algorithm. In the expectation step (E-step), the 19 

expected value of the source template for each fragment is calculated under current 20 

estimates of transcript abundance (Fig 1D). The maximization step (M-step) finds 21 

maximum a posteriori estimates of the transcript abundance dependent on the expected 22 

values from the E-step (Fig 1E). These steps are repeated until parameter estimates 23 
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 9 

converge (Fig 1D and 1E). Telescope reports the proportion of fragments generated by 1 

each transcript and the expected transcript of origin for each fragment (Fig 4F). The final 2 

counts estimated by Telescope correspond to actual observations of sequenced fragments 3 

and are suitable for normalization and differential analysis by a variety of methods. The 4 

software also provides an updated alignment with final fragment assignments that can be 5 

examined using common genome visualization tools. Telescope is available at 6 

github.com/mlbendall/telescope. 7 

 8 

Determination of HERV expression in major cell types from the ENCODE 9 

consortium 10 

 To investigate HERV expression in a robust way across a diverse platform of cell 11 

types we relied on publicly available RNA-seq data. The ENCODE data project is an 12 

invaluable source of genomic data from disparate sources and provides the opportunity to 13 

mine the transposable element expression in a setting of maximum genomic information. 14 

We profiled 13 human cell types, including common lines designated by the ENCODE 15 

consortium, as well as primary cell types, and applied our approach to determine HERV 16 

expression across the spectrum of human cell types, including normal or transformed, and 17 

contrasting cell lines with primary cells (Table 1). 18 

Table 1. ENCODE cell types used in this study 19 

Cell Type Description Karyotype Lineage Tissue Replicates 
H1-hESC Embryonic stem cell Normal ICM ESC 4 
GM12878 B-lymphocyte Normal mesoderm blood 4 
K562 Leukemia Cancer mesoderm blood 3 
HeLa-S3 Cervical carcinoma Cancer ectoderm cervix 3 
HepG2 Hepatocellular carcinoma Cancer endoderm liver 3 
HUVEC Umbilical vein endothelial cells Normal mesoderm vessel 3 
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 10 

SK-N-SH Neuroblastoma Cancer ectoderm brain 1 
IMR90 Fetal lung fibroblasts Normal endoderm lung 1 
A549 Lung carcinoma Cancer endoderm lung 1 
MCF-7 Mammary gland adenocarcinoma Cancer ectoderm breast 2 
CD20+ CD20+ B cells Normal mesoderm blood 1 
CD14+ CD14+ Monocytes Normal mesoderm blood 1 
NHEK Epidermal keratinocytes Normal ectoderm skin 3 

 1 

 Over 2.7 billion sequenced fragments aligned to human reference hg38 with 2 

between 23.6% and 46.1% of the fragments in each sample aligning ambiguously to 3 

multiple genomic locations. Telescope intersected the aligned fragments with a set of 4 

14,968 manually curated HERV loci belonging to 60 families (see methods) and 5 

identified over 27 million fragments that appear to originate from HERV proviruses. 6 

Most (80.1%) of these fragments aligned to multiple genomic locations; we used 7 

Telescope to reassign ambiguous fragments to the most likely transcript of origin and 8 

estimate expression at specific HERV loci. 9 

 We developed genome-wide maps of HERV expression for 8 of the analyzed cell 10 

types that had replicates (Table 1) , and used CIRCOS (Krzywinski 2009) to visualize the 11 

data (Fig 2). The outer track is a bar chart showing the number of HERV loci in 10 Mbp 12 

windows, with the red part of the bar representing the number of loci that are expressed 13 

in one or more cell types. The 8 inner rings show the expression levels (log2 counts per 14 

million (CPM)) of 1365 HERV loci that were expressed at least one of the cell types 15 

examined. Moving from the outer ring to the inner ring are replicates for each of the 8 16 

cell types with duplicates: H1-hESC, GM12878, K562, HeLa-S3, HepG2, HUVEC, 17 

MCF-7, and NHEK. 18 

 19 
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Fig 2. Genome-wide maps of locus-specific HERV expression for 8 ENCODE tier 1 1 

and 2 cell types. The outer track is a bar chart showing the number of HERV loci in 10 2 

Mbp windows, with the red part of the bar representing the number of loci that are 3 

expressed in one or more cell types. The 8 inner rings show the expression levels (log2 4 

counts per million (CPM)) of 1365 HERV loci that were expressed at least one of the cell 5 

types examined. Moving from the outer ring to the inner ring are replicates for each of 6 

the 8 cell types with duplicates: H1-hESC, GM12878, K562, HeLa-S3, HepG2, HUVEC, 7 

MCF-7, and NHEK. 8 

 9 

We found 1365 HERV loci that were expressed in at least one of the cell types 10 

(CPM > 0.5). Not all HERVs were expressed in all cell types, some were widely 11 

expressed in all cells, whereas others were only expressed in one or more cell type (Fig 12 

2).  There is also a spectrum of differential HERV expression, with some HERVs having 13 

significantly higher expression than others. On a chromosome by chromosome analysis, 14 

there are certain regions of the genome that have minimal HERV expression, while other 15 

regions appear dense in HERV expression. There are areas of scarce HERV expression 16 

on chromosomes 3, 5, 9, 15, and the Y chromosome (Fig 2). Interestingly, the Y 17 

chromosome is host to a greater density of HERV locations, yet they are mostly silent. In 18 

contrast, several chromosomes exhibit a greater than expected number of active HERV 19 

locations, i.e. chromosome 19 (S1 Fig) and chromosome 6 (S2 Fig). 20 

 21 

HERV	Locus-specific-analysis	22 
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To ascertain, global, family and locus level specific HERV expression, we 1 

assessed the number of HERVs expressed in each cell type.  All cell types expressed 2 

HERVs; the number of expressed loci ranged from 216 (in MCF-7), to 533 (H1-hESC) 3 

(Fig 3A). The number and proportion of cell type specific locations (expressed in only 4 

one cell) differed among cell types. Nearly half (46.3%) of locations expressed in H1-5 

hESC were not expressed in any other cell type, while 89.3% of locations expressed in 6 

MCF-7 were also present in other cell types (Fig 3A). This suggests that regulatory 7 

networks are shared among some cell types but not others. We next examined the relative 8 

contribution of HERV families to overall HERV transcription and found that different 9 

cell types could be characterized by enrichment for different HERV families. For 10 

example, HERVH accounted for 91.8% of the transcriptomic output in H1-hESC cells, 11 

while HERVE was dominant in K562 cells (24.4%) (Fig 4A). Other families, such as 12 

HERVL, were evenly distributed across cell types, both in number of expressed locations 13 

and in expression levels (Fig 4B). Resolving the most highly expressed specific locations 14 

in each cell type at a locus specific level shows that the distribution of expression varies 15 

among cell types. (Fig 3C). For example, HepG2 is characterized by high expression 16 

from a single locus, while H1-hESC has many locations that are activated.  17 

 18 

Fig 3. Overall HERV expression patterns. (A) Number of HERV elements that are 19 

expressed for each cell type; expressed loci have CPM > 0.5 in the majority of replicates. 20 

The darker section of the bar corresponds to expressed loci that are unique to cell type, 21 

while the lighter part is expressed in other cell types. (B) The proportion of mapped 22 

RNA-seq fragments that are generated from HERV transcripts in each of eight replicated 23 
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cell types. Each point is one replicate; boxplot shows the median and first and third 1 

quartiles. (C) Top 10 most highly expressed loci for each cell type. Height of the bar is 2 

average CPM of all replicates with error bars representing the standard error calculated 3 

from replicates CPM values. 4 

 5 

Fig 4. Family-level HERV expression profiles using Telescope. Family-level HERV 6 

expression profiles were computed from locus-specific profiles (generated by Telescope) 7 

by summing expression across all locations within each family. (A) The proportion of 8 

fragments assigned to each HERV family relative to the total amount of HERV 9 

expression. Families that account for at least 5% of total HERV expression in at least one 10 

cell type are shown, with the remaining families in “other”. (B) Number of expressed 11 

HERV loci and fragment counts per million mapped fragments (CPM) for selected 12 

HERV families. 13 

 14 

HERV expression profiles generated by Telescope are cell type specific 15 

Previous work has suggested that estimates of HERV expression are highly 16 

sensitive to sequencing technology used, and differences due to sequencing technology 17 

can obscure biological differences due to cell type (Haase et al. 2015). Since aligning 18 

shorter fragments (i.e. single-end reads) tends to produce more ambiguously mapping 19 

fragments compared to longer fragments, we hypothesized that Telescope (which 20 

resolves ambiguity) would create HERV expression profiles that are robust to differences 21 

in sequencing technology. Hierarchical clustering of all 30 polyA RNA-seq HERV 22 

profiles shows that replicates from the same cell type cluster most closely with other 23 
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samples from the same cell type, regardless of the sequencing technology used (Fig 5A). 1 

Clusters for all cell types had significant support using multiscale bootstrap resampling 2 

(approximately unbiased (AU) > 95%). Principal component analysis (PCA) also 3 

indicates that cell type, not sequencing technology, is associated with the strongest 4 

differences among expression profiles. The first principal component, accounting for 5 

44% of the total variance in the data, separates H1-hESC samples from all other samples 6 

(Fig 5B). The second and third components further separate the samples into the other 12 7 

cell types, and capture 13% and 10% of the total variance, respectively. Interestingly, the 8 

second component separates blood-derived cell types (K562, GM12878, CD20+ and 9 

CD14+) from the other cell types, suggesting that cells derived from the same tissue may 10 

share similarities in HERV expression profiles. 11 

 12 

Fig 5. Cell type characterization based on HERV expression profiles using 13 

unsupervised learning and linear models. Unsupervised learning and linear modeling 14 

were used to identify patterns in HERV expression profiles generated by Telescope for 15 

30 polyA RNA-seq datasets from 13 cell types. (A) Similarities among normalized 16 

expression profiles were explored using hierarchical cluster analysis. Supporting p-values 17 

were based on 1000 multiscale bootstrap replicates and calculated using Approximately 18 

Unbiased (AU, red) and Bootstrap probability (BP, green) approaches. (B) Principal 19 

component analysis (PCA) of normalized expression profiles. The first component 20 

accounts for 44% of the variance in the data, and is plotted against component 2 and 3, 21 

which account for 13% and 10% of the variance, respectively. (C) Heatmap of the 22 

number of HERV elements found to be significantly differentially expressed (DE) among 23 
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each pair of cell types. Significance was determined using cutoffs for the false discovery 1 

rate (FDR < 0.1) and log2 fold change (abs(LFC) > 1.0). Yellow indicates low numbers 2 

of differentially expressed elements, while blue indicates high numbers. 3 

 4 

We further explored differences among cell types using differential expression 5 

(DE) analysis. Pairwise contrasts between cell types were performed to determine the 6 

number of significant DE loci (FDR < 0.1, abs(LFC) > 1.0) (Fig 5C). As found in the 7 

unsupervised analysis, HERV expression in H1-hESC was drastically different from 8 

other cell types, with between 578 and 1127 significantly DE loci.  9 

Finally, we asked whether heuristic approaches for TE quantification would be 10 

sufficient to identify cell type specific signal in the data or whether these approaches 11 

would be sensitive to other variables. We performed the same unsupervised analyses with 12 

HERV expression profiles obtained using unique and best counting approaches. 13 

Hierarchical clustering using unique count expression profiles produced a very similar 14 

topology to that found using Telescope (S3 Fig). Replicate samples were properly 15 

clustered by cell type, though GM12878 and HUVEC had slightly less bootstrap support. 16 

In contrast, clustering with the best count profiles did not recover all cell type clusters; 17 

two HeLa-S3 samples clustered with H1-hESC, while the third was more similar to A549 18 

cells (S3 Fig). There was also less support for several clusters, including one cell type 19 

cluster (NHEK) that did not meet the 95% threshold. 20 

 21 

Performance of Telescope compared to current methods 22 
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 In order to examine the sensitivity and biases of computational approaches for 1 

quantifying TE expression, we designed simulation experiments with known expression 2 

values. Earlier studies have suggested that the HERV-K(HML-2) family (hereafter 3 

referred to as HML-2) is expressed in human tissue and may be relevant to human health 4 

(Hohn et al. 2013; Grow et al. 2015; Li et al. 2015; Weiss 2016). Furthermore, its 5 

relatively few family members (~90 distinct genomic loci (Subramanian et al. 2011)) and 6 

high nucleotide identity make HML-2 a good model for studying TE expression. Here, 7 

we report on the performance of each method to detect locus-specific expression of 8 

HML-2 by simulating RNA-seq fragments. We simulated 25 independent datasets, each 9 

simulation consisted of 10 randomly chosen HML-2 loci and a fragment count, which 10 

could be interpreted as an expression value. We used the following TE quantification 11 

approaches for estimating locus specific HML-2 expression: unique counts, best counts, 12 

RepEnrich (Criscione et al. 2014), TETranscripts (Jin et al. 2015) and Telescope. 13 

 14 

Fig 6. Comparison of performance results for unique counts, best counts, 15 

RepEnrich, TEtranscripts and Telescope using simulated data. 25 RNA-seq samples 16 

were simulated, each sample consisted of 10 randomly chosen HML-2 loci with each 17 

having different expression value. The possible expression values are shown along the x-18 

axis, 0 represent all HML-2 not expressed, red dashed line represents the expected 19 

expression value. A box plot representing the count distribution from each expression 20 

value is plotted. The resulted count from the different counting method from each 21 

simulated expression value per sample is plotted over the boxplot. Counting methods 22 

tested: (A) unique count, (B) best count, (C) RepEnrich, (D) TEtranscript, (E) Telescope. 23 
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(F) The precision and recall for each sample simulated as well as the mean of both are 1 

shown for all methods. 2 

 3 

The greatest strength of the unique counts approach was the low false detection 4 

rate since across all 25 simulations (41.5K simulated fragments), only 6 fragments were 5 

incorrectly assigned. However, unique counts consistently underestimated expression 6 

levels with ~60% of all estimates (151 out of 250) missing at least 50% of the true 7 

expression (Fig 6A). One striking example of this underestimation was for 8 

HML2_5q33.3; this locus did not generate any fragment that could be counted by unique 9 

counts despite being expressed in 5 simulations. We presume that the underestimation is 10 

a direct consequence of discarding ambiguously mapped reads, as the unique counts 11 

discarded 62.6% of the simulated fragments. 12 

In contrast to unique counts, the best counts approach offers greater sensitivity 13 

(Fig 5F). Instead of discarding ambiguously mapped fragments, all the fragments are 14 

used, resulting in more accurate expression estimates (Fig 5B). The majority of fragments 15 

were assigned to the true source transcript, while incorrect hits account for 14.2% of the 16 

total fragments. These off-target assignments resulted in false detection of unexpressed 17 

loci in each simulation, representing a major drawback of this approach (Fig 5B). Despite 18 

the high sensitivity of best counts, we conclude that the high number of incorrect 19 

detections outweighs the possible advantages of using this approach. 20 

In order to make a direct comparison between Telescope and RepEnrich, which 21 

quantifies TE families at the family level, we modified RepEnrich annotations to give 22 

each locus a unique “family” name. We found that expression was underestimated by this 23 
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approach for all expressed HML-2 elements (Fig 5C). We attribute this bias to the large 1 

number of fragments that were discarded by this approach, 38.8%. Nevertheless, the 2 

number of discarded reads is fewer than the unique counts approach where 62.6% of all 3 

fragments were omitted. Another negative aspect of RepEnrich is that 12.1 % of the 4 

counted fragments were assigned to non-expressed TE. 5 

We tested TETranscripts on our simulated data with the TE counting method set 6 

under “multi” mode. We provided the algorithm with our HERV annotation thus results 7 

could be compared with Telescope. TETranscripts showed a better performance than 8 

RepEnrich as shown in Jin et al. (2015) involving multiple mapped fragments assignment 9 

but 21.7% of all fragments were assigned incorrectly to a non-expressed HML-2. Based 10 

on the precision and recall of all methods tested TETranscripts performed as the third 11 

best TE single locus counting method on the simulated data (S4 Fig). 12 

Finally, we tested Telescope’s ability to reassign ambiguous alignments and 13 

estimate locus-specific fragment counts using the same simulation data. On average 14 

57.8% of the simulated fragments aligned to multiple loci, which need to be reassigned. 15 

Telescope reassigned ambiguously mapped fragments to the expected transcript of origin 16 

according to our model (see methods) and reported the final number of fragments aligned 17 

to each TE. The estimated levels of expression, calculated with Telescope, from each 18 

HML-2 resembled closely the simulated levels (Fig 5E). Only 3 HML-2 loci that were 19 

simulated to be expressed did not present any fragments and 99.9% of all simulated 20 

fragments were counted with the Telescope approach. 21 

Of all methods considered here, Telescope had the highest rate of precision and 22 

recall from all other counting methods tested (Fig 5F). In contrast to the best counts 23 
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approach, the second best (S4 Fig), Telescope assigned only 15 fragments were assigned 1 

to genomic locations that were not expressed, while 5871 fragments were assigned 2 

incorrectly by best counts. Deviations of Telescope estimates from true expression levels, 3 

as measured by F1-score, was the highest of all approaches (S4 Fig). These simulation 4 

results demonstrate that Telescope resolves ambiguously aligned fragments and produces 5 

unbiased estimates of TE expression that are robust to sequencing error. 6 
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DISCUSSION 1 

High-throughput RNA sequencing has enabled the simultaneous characterization 2 

and quantification of an entire transcriptome with remarkable resolution and sensitivity. 3 

Current studies have primarily focused on protein-coding transcripts, with greater 4 

attention being given to non-coding and micro RNAs in recent years. The transposable 5 

elements represent another major biochemically active group of transcripts and are 6 

increasingly recognized as important regulators in complex biological systems and 7 

disease yet have been largely ignored in the literature. We present a novel software 8 

program, Telescope, that can be used to mine new or existing RNA-seq datasets to 9 

accurately quantify the expression of TEs. The key advantage of our approach is the 10 

capability to localize TE expression to an exact chromosomal location. 11 

 As TEs are repetitive elements located throughout the genome, existing programs 12 

have limitations in performing accurate alignments from RNA fragments because of 13 

sequence similarity. The management of alignment uncertainty has been approached in 14 

several ways. The unique count approach discards fragments that align ambiguously, but 15 

this approach underestimates or fails to detect gene expression. The best count method 16 

assigns each fragment to the source template with the best scoring alignment, but this 17 

underestimates TEs that are truly expressed and spuriously detects those that are in fact 18 

absent. While the family method of alignment mitigates uncertainty in alignments by 19 

classification according to repeat family, this method does not locate the genomic site of 20 

TE transcription. Our approach, Telescope, reassigns fragments to the most likely 21 

originating transcript using Bayesian mixture model that relating the relative transcript 22 

abundances to the possible source templates for each fragment. This approach thus 23 
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resolves ambiguously aligned fragments and results in accurate quantification of TE loci 1 

for differential analysis. 2 

Telescope will have widespread utility in other settings. Studies on TE expression 3 

have become prominent in studies of embryonic stem cell development (Grow et al. 4 

2015)(Göke et al. 2015), neural cell plasticity (Muotri et al. 2010; Gage and Muotri 5 

2012), oncogenesis (Wang-Johanning et al. 2003; Rakoff-Nahoum et al. 2006; Takahashi 6 

et al. 2008; Tang et al. 2017; Rodić et al. 2015; Ardeljan et al. 2017), psychiatric and 7 

neurological  disorders(Perron et al. 2012; Christensen 2016; Mortelmans et al. 2016) and 8 

autoimmune diseases (Nexø et al. 2015; Hanke et al. 2016). As the breadth of knowledge 9 

on TEs expands, expression profiling of TEs using Telescope will allow scientists to 10 

discover unique and collective TE transcripts involved in the biology of complex 11 

systems. 12 

  13 
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Methods 1 

Fragment reassignment mixture model 2 

Telescope implements a generative model of RNA-seq relating the probability of 3 

observing a sequenced fragment to the proportions of fragments originating from each 4 

transcript. Formally, let 𝐹 = [𝑓%, 𝑓',… , 𝑓)] be the set of 𝑁 observed sequencing 5 

fragments. We assume these fragments originate from 𝐾 annotated transcripts in the 6 

transcriptome 𝑇 = [𝑡%, 𝑡', … , 𝑡/]. In practice, annotations fail to identify all possible 7 

transcripts that generate fragments, thus we include an additional category, 𝑡0, for 8 

fragments that cannot be assigned to annotated transcripts. Let  𝐺 = [𝐺%, 𝐺', … , 𝐺)] 9 

represent the true generating transcripts for 𝐹, where 𝐺2 ∈ 𝑇 and 𝐺2 = 𝑡4 if 𝑓2 originates 10 

from 𝑡4. Since the process of generating 𝐹 from 𝑇 cannot be directly observed, the true 11 

generating transcripts 𝐺 are considered to be “missing” data. The objective of our model 12 

is to estimate the proportions of 𝑇 by learning the generating transcripts of 𝐹. 13 

 As described above, the alignment stage identifies one or more possible alignments for 14 

each fragment, along with corresponding alignment scores. Let 𝑞2 = [𝑞20, 𝑞2%, … , 𝑞2/] be 15 

the set of mapping qualities for fragment 𝑓2, where 𝑞24 = Pr	(𝑓2|𝐺2 = 𝑡4) represents the 16 

conditional probability of observing 𝑓2 assuming it was generated from 𝑡4; we calculate 17 

this by scaling the raw alignment score by the maximum alignment score observed for the 18 

data. We write the likelihood of observing uniquely aligned fragment 𝑓< as a function of 19 

the conditional probabilities 𝑞< and the relative expression of each transcript for all 20 

possible generating transcripts 𝐺< 21 

Pr(𝑓<|𝜋, 𝑞<) = >𝜋4𝑞<4

/

4?0

 22 
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where 𝝅 = [𝜋0, 𝜋%, … , 𝜋/] represents the fraction of observed fragments originating from 1 

each transcript. Note that 𝑞<4 = 0 for all transcripts that are not aligned by 𝑓<. For non-2 

unique fragments, we introduce an additional parameter in the above likelihood to 3 

reweight each ambiguous alignment among the set of possible alignments. The 4 

probability of observing ambiguous fragment 𝑓B is given by  5 

Pr(𝑓B|𝜋, 𝜃, 𝑞B) = 	>𝜋4𝜃4𝑞B4

/

4?0

 6 

where 𝜽 = [𝜃0, 𝜃%,… , 𝜃/] is a reassignment parameter representing the fraction of non-7 

unique reads generated by each transcript. 8 

Using these probabilities of observing ambiguous and unique fragments, we 9 

formulate a mixture model describing the likelihood of the data given parameters 𝝅 and 10 

𝜽. The 𝐾 mixture weights in the model are given by 𝝅, the proportion of all fragments 11 

originating from each transcript. To account for uncertainty in the initial fragment 12 

assignments, let 𝑥2 = [𝑥20, 𝑥2%, … , 𝑥2/] be a set of partial assignment (or membership) 13 

weights for fragment 𝑓2, where ∑ 𝑥24/
4?0 = 1 and 𝑥24 = 0 if 𝑓2 does not align to 𝑡4. We 14 

assume that 𝑥2 is distributed according to a multinomial distribution with success 15 

probability	𝝅. Intuitively, 𝑥24 represents our confidence that 𝑓2 was generated by 16 

transcript 𝑡4. In order to simplify our notation, we introduce an indicator variable 𝒚 =17 

[𝑦%, 𝑦', … , 𝑦)] where 𝑦2 = 1 if 𝑓2 is ambiguously aligned and 𝑦2 = 0 otherwise. The 18 

complete data likelihood is 19 

𝐿(𝝅, 𝜽|𝒙, 𝒒, 𝒚) ∝ 	NNO𝜋4𝜃4
PQ𝑞24R

SQT
/

4?0

)

2?%

 20 

 21 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/398172doi: bioRxiv preprint 

https://doi.org/10.1101/398172
http://creativecommons.org/licenses/by/4.0/


 24 

Parameter estimation and fragment reassignment by EM 1 

Telescope iteratively optimizes the likelihood function using an expectation-2 

maximization algorithm (Dempster et al. 1977). First, the parameters 𝝅 and 𝜽 are 3 

initialized by assigning equal weight to all transcripts. In the expectation step, we 4 

compute the expected values of 𝑥2 under current estimates of the model parameters. The 5 

expectation is given by the posterior probability of 𝑥2: 6 

𝐸V𝑥24W =
𝜋4𝜃4

PQ	𝑞24
∑ 𝜋X𝜃X

PQ	𝑞2X/
X?0

 7 

In the M-step we calculate the maximum a posteriori (MAP) estimates for 𝝅 and 𝜽  8 

𝜋YZ = 	
∑ 𝐸V𝑥24W + 𝑎4)
2?%

𝑁 +	∑ 𝑎X/
X?0

		and		𝜃Ỳ = 	
∑ 𝐸V𝑥24W	𝑦2 + 𝑏4)
2?%

∑ 𝑦2)
2?% + ∑ 𝑏X/

X?0
 9 

where 𝑎4 and 𝑏4 are prior information for transcript 𝑡4. Intuitively, these priors are 10 

equivalent to adding unique or ambiguous fragments to 𝑡4; providing non-zero values for 11 

these parameters prevents parameter estimates from converging to boundary values. 12 

Convergence of EM algorithms to local maxima has been shown by (Wu 1983), and is 13 

achieved when the absolute change in parameter estimates is less than a user defined 14 

level, typically 𝜖 < 0.001.  15 

 16 

HERV Annotations 17 

A Telescope analysis requires an annotation that defines the transcriptional unit of each 18 

TE to be quantified. For HERV proviruses, the prototypical transcriptional unit contains 19 

an internal protein-coding region flanked by LTR regulatory regions. Existing 20 

annotations, such as those identified by RepeatMasker (Tarailo-Graovac and Chen 2009) 21 

(using the RepBase database (Jurka et al. 2005)) or Dfam (Wheeler et al. 2013) identify 22 
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sequence regions belonging to TE families but do not seek to annotate transcriptional 1 

units. Both databases represent the internal region and corresponding LTRs using 2 

separate models, and the regions identified are sometimes discontinuous. Thus, a HERV 3 

transcriptional unit is likely to appear as a collection of nearby annotations from the same 4 

HERV family. 5 

Transcriptional units for HERV proviruses were defined by combining RepeatMasker 6 

annotations belonging to the same HERV family that are located in adjacent or nearby 7 

genomic regions. Briefly, repeat families belonging to the same HERV family (internal 8 

region plus flanking LTRs) were identified using the RepBase database (Jurka et al. 9 

2005). RepeatMasker annotations for each repeat family were downloaded using the 10 

UCSC table browser (Karolchik et al. 2004) and converted to GTF format, merging 11 

nearby annotations from the same repeat family. Next, LTR found flanking internal 12 

regions were identified and grouped using BEDtools (Quinlan and Hall 2010). HERV 13 

transcriptional units containing internal regions were assembled using custom python 14 

scripts. Each putative locus was categorized according to provirus organization; loci that 15 

did not conform to expected HERV organization or conflicted with other loci were 16 

visually inspected using IGV (Thorvaldsdóttir et al. 2013) and manually curated. As 17 

validation, we compared our annotations to the HERV-K(HML-2) annotations published 18 

by (Subramanian et al. 2011); the two annotations were  concordant. Final annotations 19 

were output as GTF files and are available; all annotations, scripts, and supporting 20 

documentation are available at https://github.com/mlbendall/telescope_annotation_db. 21 

 22 

Simulated HML-2 expression data 23 
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We simulated 25 independent datasets, each consisted of randomly chosen 10 1 

HML-2 which were expressed at different level, ranging from 30 to 300 fragments per 2 

locus. Using the expression pattern and the chosen HML-2, we simulated sequencing 3 

fragments with the Bioconductor package for RNA-seq simulation, Polyester (Frazee et 4 

al. 2014). All simulations used the parameters of read length: 75 bp; average fragment 5 

size: 250; fragment size standard deviation: 25; and an Illumina error model with an error 6 

rate of 5e-3. 7 

 8 

Alignment to reference genome 9 

Sequenced fragments from each sample or simulation were aligned to human reference 10 

genome hg38 using bowtie2. Alignment options were specified to perform a sensitive 11 

local alignment search (--very-sensitive-local) with up to 100 alignments reported for 12 

each fragment pair (-k 100). The minimum alignment score threshold was chosen so that 13 

fragments with ~95% or greater sequence identity would be reported (--score-min 14 

L,0,1.6).  15 

 16 

Software Availability 17 

All scripts used for simulating and analyzing data are available at 18 

https://github.com/mlbendall/TelescopeEncode. The Telescope package is available at 19 

https://github.com/mlbendall/telescope. 20 

 21 
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