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Abstract 

The establishment of a landscape of enhancers across human cells is crucial to deciphering 

the mechanism of gene regulation, cell differentiation, and disease development. High-

throughput experimental approaches, though having successfully reported enhancers in 

typical cell lines, are still too costly and time consuming to perform systematic 

identification of enhancers specific to different cell lines under a variety of disease status. 

Existing computational methods, though capable of predicting regulatory elements purely 

relying on DNA sequences, lack the power of cell line-specific screening. Recent studies 

have suggested that chromatin accessibility of a DNA segment is closely related to its 

potential function in regulation, and thus may provide useful information in identifying 

regulatory elements. Motivated by the above understanding, we integrate DNA sequences 

and chromatin accessibility data to accurately predict enhancers in a cell line-specific 

manner. We proposed DeepCAPE, a deep convolutional neural network to predict 

enhancers via the integration of DNA sequences and DNase-seq data. We demonstrate that 

our model not only consistently outperforms existing methods in the classification of 

enhancers against background sequences, but also accurately predicts enhancers across 

different cell lines. We further visualize kernels of the first convolutional layer and show 

the match of identified sequence signatures and known motifs. We finally demonstrate the 

potential ability of our model to explain functional implications of putative disease-

associated genetic variants and discriminate disease-related enhancers. 
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Introduction 

Enhancers are distal regulatory elements that can be bound by transcription factors to boost 

the expression of their target genes. As important regulatory elements, enhancers 

collaborate with promoters to regulate the transcription of genes in a cis-acting manner, 

receiving more and more attentions in studies of cell differentiation [1], human diseases [2] 

and phenotypic diversity [3]. However, due to such facts as far away from target genes, the 

absence of common sequence features, and the high cell line specificity, it has long been a 

challenging task to systematically and precisely identify enhancers in a specific cell line. 

Enhancers are usually identified by high-throughput biological experiments. For 

example, Heintzman and Ren [4] used ChIP-seq experiments to establish a landscape of 

binding sites for individual transcription factors. May et al. [5] mapped binding sites of 

such transcription coactivators as EP300 and CBP to a large number of enhancers. With the 

understanding that enhancers are marked by monomethylation of H3K4  [6], genome-

wide identification of enhancers have been conducted in large-scale projects such as 

ENCODE  [7] and Roadmap [8]. Besides, using a technique called Cap Analysis of Gene 

Expression, the FANTOM project [9] has mapped promoters and enhancers that are active 

in mammalian primary cell lines [10]. Considering that experimental approaches are 

expensive and time consuming for large scale identification of enhancers, computational 

methods have been proposed to predict regulatory elements. For example, kmer-SVM used 

k-mer frequencies of a DNA fragment with a support vector machine to classify regulatory 

elements [11]. gkmSVM and LS-GKM allowed gaps in a k-mer and improved the 

prediction performance [12, 13]. Methods based on random forests [14] and decision trees 

[15] have also been introduced. 

Over the past five years, deep learning has been incorporated into bioinformatics studies. 

For example, DeepBind used a convolutional neural network (CNN) to predict binding 

proteins and showed higher prediction power than traditional classifiers [16]. DeepSEA 

learned DNA regulatory codes via a CNN from epigenomic data and predicted effects of 

noncoding variants [17]. DeepEnhancer predicted enhancers purely relying on DNA 

sequences and outperformed SVM-based methods [18]. The success of these methods 

suggests that deep learning is a powerful tool in genomic studies. Nevertheless, all these 

methods use only DNA sequence information in their models. This formulation, though 

simple in implementation, obviously lack the power of making predictions in a cell line-

specific manner, because DNA sequences are identical in different cell lines.  

Chromatin accessibility of the genome has received more and more attentions in the 

recent years. It is known that putative accessible regions in the genome often work with 

transcription factors (TFs), RNA polymerases and other cellular machines to regulate gene 

expression [19]. With the development of high-throughput sequencing techniques, such 

experimental methods as DNase-seq and ATAC-seq, have enabled the accumulation of a 

vast amount of chromatin profiles across a variety of cell lines and provides a great 

opportunity to study transcription factor binding sites (TFBS), DNA methylation sites, 

histone modification markers, and other regulatory elements [20, 21]. It is therefore natural 

to integrate DNA sequence and chromatin accessibility information in a single neural 

network model for the study of cell line-specific enhancers. 
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With the above understanding, we propose in this paper DeepCAPE, a Deep 

Convolutional neural network for the Accurate Prediction of Enhancers, using DNA 

sequences and DNase-seq data. Through comprehensive experiments, we show that our 

model is not only superior to existing methods in the prediction of enhancers, but also able 

to predict enhancers across cell lines. With a visualization strategy, we show that sequence 

motifs discovered by our method successfully match known motifs. Through joint analysis 

of prediction results with GWAS data, we show the potential ability of our method to 

identify genetic variants associated with liver cancer and discriminate enhancers related to 

lymphoma. 

Materials and methods 

Data collection and processing 

We used the promoter enhancer slider selector tool (PrESSTo) to download from the 

FANTOM project experimentally verified enhancers specific to 9 different cell lines, 

including epithelial cell of esophagus, melanocyte, cardiac fibroblast, keratinocyte, 

myoblast, stromal cell, mesenchymal cell, natural killer cell and monocyte. We use two 

strategies to generate negative samples, i.e., non-enhancer fragments that do not overlap 

with enhancers. First, we randomly sample DNA fragments of variable length from the 

background genome, with the constraint that the length and GC content of negative samples 

should be identically distributed as those of known enhancers. The background genome is 

defined as the entire human reference genome (GRCh37), excluding known enhancers, 

promoters for coding and noncoding genes, and exonic regions for coding and non-coding 

genes. Second, we discard the constraint on the GC content to demonstrate the adaptability 

of our method to different genome contexts. The first model is more stringent and is used 

throughout this paper. We set the ratios of positive and negative samples to 1:10 and 1:20, 

i.e., for each positive sample, we generate 10 and 20 negative samples respectively. 

We downloaded raw sequencing data of 891 DNase-seq experiments from the ENCODE 

project [22] and identified experiments corresponding to the cell lines. Given the raw 

sequencing data of a DNase-seq experiment, we defined the chromatin accessibility score 

(S) of a DNA position as the number of reads (N) starting at this position, divided by the 

average number of reads (�̃�) starting at a position in a background region of size W centered 

at the given position. Formally, 𝑆 = 𝑁/�̃� and �̃� = 𝑀/𝑊, where M is the number of 

reads starting within the background region. A summary of the data is shown in S1 Table. 

We consider two issues that are crucial to our method. First, enhancers are of variable 

length, while a CNN requires inputs of fixed length. Second, a deep neural network has an 

appetite for a vast amount of training samples. We therefore propose a data augmentation 

strategy to address both issues (S1 Text). 

Design of DeepCAPE 

As illustrated in Fig 1, DeepCAPE consists of four modules. First, a DNA module is used 

to extract features from DNA sequences. Second, an auto-encoder module is adopted to 
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embed DNase-seq data into a low-dimensional space. Third, a DNase module is used to 

extract features of chromatin accessibility after dimensionality reduction. Finally, a joint 

module integrates outputs of the DNA and DNase modules to predict the probability that 

an input sequence is an enhancer. 

DNA module. The DNA module is a convolutional neural network (CNN) with multiple 

convolutional and pooling layers. The first layer uses 128 kernels to scan for sequence 

motifs of length 8 along the input DNA fragment, which is represented using the one-hot 

encoding. The second layer uses 64 kernels, each of length 1, to reduce the dimension of 

features extracted from the first layer by adopting the Network In Network (NIN) model 

[23], which aims to enhance the discrimination power of the model. The third layer uses 64 

kernels, each of length 3, to reduce the number of parameters by drawing on experiences 

of VGGNet [24]. The fourth layer again adopts the NIN technique and uses 128 kernels, 

each of length 1, to extract high-level features. The fifth layer adopts the max-pooling 

strategy to reduce the number of parameters and abstracts features learned in the previous 

layer. The sixth and seventh layers again adopt the VGGNet technique to further reduce the 

number of parameters by using 64 kernels, each of length 3. Finally, the eighth layer adopts 

the max-pooling strategy to abstract final high-level features. In the convolutional layers, 

the activation of the k-th convolutional kernel at the i-th position is written as 

𝑎𝑖𝑘 = ReLU ( ∑ ∑ 𝑤𝑚𝑛
𝑘 𝑥𝑖+𝑚,𝑛

𝑁−1

𝑛=0

𝑀−1

𝑚=0

)                 (1), 

where 𝑋 is the input matrix, 𝑀 the size of the kernel, 𝑁 the number of input channels, 

𝑤𝑚𝑛
𝑘  the weight matrix of the kernel. For the first convolution layer, 𝑁 is equal to 4. For 

other layers, 𝑁 is equal to the number of kernels in the previous layer. The rectified linear 

unit ReLU(𝑥) = max(0, 𝑥) activation function sets negative values to zero. 

Auto-Encoder and DNase modules. A DNase-seq experiment usually has a small number 

of replicates, and this number varies between cell lines, making the dimensionalities of 

input data vary between cell lines and preventing the use of a CNN in cross cell line 

prediction. To solve this problem, we adopt auto-encoder, a neural network designed for 

unsupervised learning of efficient encodings [25], to embed chromatin accessibility scores 

of an DNA fragment into a vector of fixed length in a low-dimensional space. Briefly, the 

auto-encode module first uses a batch-normalization layer to reduce the internal covariate 

shift and accelerate the training procedure. The output then goes to an encoder component, 

which is essentially a feedforward neural network that transfers the input data of 

𝑘 channels (corresponding to k replicates) into a single channel. After another batch-

normalization layer, a decoder component, which is also a feedforward neural network, 

transfers the data back to k channels. With the module well trained, the decoder is able to 

produce output similar to the original input, and results of the encoder component can then 

be used as features extracted from the original data and fed to the successive DNase module. 

Such an auto-encoder module benefits our model in two aspects. First, regardless of the 

number of replicates for different cell lines, output of the module is of the same dimension, 

and thus makes cross cell line prediction possible. Second, effective dimensionality 
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reduction significantly alleviates the computational burden of the successive prediction 

model. 

The DNase module extracts multi-level features from chromatin accessibility scores and 

is essentially identical to the DNA module in structure, except for the number of input 

channels. The DNA module is fed with one-hot encoded DNA sequence and has 4 channels, 

while the DNase module is fed with chromatin accessibility data produced by the encoder 

component of the auto-encoder module and has a single channel. 

Joint module. The joint module integrates multi-level features from both the DNA and 

DNase modules to predict the probability that the input DNA fragment is an enhancer. 

Drawing on the idea of skip connection in ResNet [26], we merge outputs of the 

convolutional and max-pooling layers in DNA and DNase modules to form a multi-channel 

feedforward network. The merged outputs of different layers contain features of different 

levels, which are integrated via three fully connected hidden dense layers. Such a skip 

connection strategy endows the model the ability to self-adapt to different sizes of training 

sets. When there are sufficient training samples, the model may use low-level features. 

When there are inadequate training samples, the model inclines to explore high-level 

features automatically. On the top of the architecture, a softmax layer predicts the 

probability that an input DNA fragment is an enhancer based on the integrated features, as 

𝑓𝑖(𝑧) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
𝑗

                          (2), 

where 𝑓𝑖(𝑧) is the predicted probability that the input DNA fragment belongs to class 𝑖 
(i.e., 1 for enhancer and 0 for non-enhancer).  

Model training 

We carry out 5-fold cross-validation experiments to validate the performance of our method 

for each cell line. Particularly, in order to avoid information disclosure, we partition both 

positive (known enhancers) and negative (non-enhancers) samples into 5 subsets of nearly 

equal size before converting sequences of variable length to sequences of fixed length by 

the data augmentation strategy. In each fold of the experiment, we take 4 subsets to train 

the model and test its performance using the remaining subset. 

Considering that the positive and negative samples are highly imbalanced, we adopt a 

two-stage training strategy. First, we train an initial model using all positive samples and 

an equal number of negative samples selected from the training set. After this stage, the 

DNA and DNase modules obtain the ability to extract features [27]. Then, the joint module 

is further trained as usual using all the imbalanced samples on the training set, with learning 

rates of DNA and DNase modules setting to 0. This strategy also alleviates the 

computational burden. During training, the cross entropy loss is adopted as the objective 

function to be optimized with Adam (S2 Text). 

With a well-trained model, we score all samples augmented from an original sequence 

on a test set, and then average over these scores to obtain the final probability that the 
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sequence is an enhancer. We also used another strategy that takes the maximum of these 

scores as the final probability to study the effects of different statistics on the results. 

We implement DeepCAPE in Python using Keras [28] with Tensorflow as the backend, 

while the Theano backend also generated very close results according to our test. The 

NVIDIA GeForce GTX 1080Ti GPU is used to accelerate the computation. 

Motif visualization 

We propose a motif visualization strategy to interpret features extracted by DeepCAPE. We 

converted kernels of the first convolution layer to probabilistic position weight matrices 

(PWMs) by counting nucleotide occurrences in the set of sequences that activate the kernels. 

Briefly, each kernel of the first convolution layer is converted into a PWM by scanning 

along input sequences for activated positions and then calculating the PWM by pooling 

corresponding regions [29, 30]. A position 𝑖 is regarded as being activated if 

∑ ∑ 𝑤𝑚𝑛
𝑘 𝑥𝑖+𝑚,𝑛

𝑁−1

𝑛=0

𝑀−1

𝑚=0

> 𝛼 ∙ EAV                  (3), 

where 𝛼 is the control coefficient (0 < 𝛼 <  1) and EAV the extreme activation value 

defined as 

EAV = ∑ max (𝑤𝑚𝑛
𝑘 |0 ≤ 𝑛 ≤ 𝑁 − 1)

𝑀−1

𝑚=0

              (4). 

We set length of kernels in the first convolution layer to 8 and 𝛼 to 0.9. We identify 

putative sequence motifs by using the tool TomTom 4.11.2 [31] with q-value threshold 0.1 

to match PWMs identified by our method to the JASPAR database [32]. 

Results 

DeepCAPE accurately predicts enhancers 

To verify the performance of DeepCAPE, we conducted a series of 5-fold cross-validation 

experiments using enhancers collected from FANTOM and negative data generated by the 

background model with the consideration of GC content. We compared the performance of 

our method with several baseline methods, including gkmSVM, DeepSEA and 

DeepEnhancer, with parameters proposed by the respective authors. We also proposed a 

variation of our model, named “seq only”, which discarded the auto-encoder and DNase 

modules and predicted enhancers using only DNA sequence information. Considering our 

imbalanced classification task, we computed two widely used metrics, the area under the 

precision-recall curve (auPRC) and the area under the receiver operating characteristic 

curve (auROC). 
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The performance at different ratios of positive and negative samples (1:10 and 1:20) with 

augmentation stride 1 is shown in Fig 2. Our method consistently outperforms the three 

baseline methods. In more detail, when the ratios of positive and negative samples are 1:10 

and 1:20, respectively, the auPRC scores of our method are on average 0.474 and 0.590 

higher than gkmSVM, 0.522 and 0.598 higher than DeepSEA, and 0.511 and 0.588 higher 

than DeepEnhancer. One-sided paired-sample Wilcoxon rank sum tests consistently 

suggest that our method achieves higher auPRC scores than a baseline method (p-values < 

2.2e-16 for all the three baseline methods). In terms of auROC scores, our method is on 

average 0.121 and 0.151 higher than gkmSVM, 0.169 and 0.151 higher than DeepSEA, and 

0.150 and 0.150 higher than DeepEnhancer, when the ratios are 1:10 and 1:20, respectively. 

Wilcoxon rank sum tests similar to the previous ones also consistently report significant 

results (p-values < 2.2e-16 for all the three baseline methods). All these results suggest the 

superior performance of our method over existing sequence-based approaches in predicting 

enhancers. 

Our method also demonstrates much higher robustness than the baseline methods. With 

the variance of auPRCs in the 5-fold experiments calculated for each cell line, one-sided 

Wilcoxon rank sum tests consistently suggest that our method achieves smaller variance 

than a baseline method (p-value=4.019e-4 against gkmSVM, 7.908e-4 against DeepSEA, 

and 4.571e-3 against DeepEnhancer), suggesting that our method is not sensitive to the 

partition of training and test samples. Besides, our method consistently performs well in all 

the cell lines, while the performance of the other three methods shows significant 

fluctuation across cell lines, suggesting that they are sensitive to the number of training 

samples. 

In terms of model training, benefiting from the usage of dropout layers and the early stop 

strategy, the performance on the test set is fairly close to that on the training set, indicating 

that DeepCAPE is able to avoid overfitting. In addition, with regard to the efficiency of 

model training, DeepCAPE is superior to other deep learning models due to the zero-

learning-rate strategy in the second training stage. Take the dataset with augmentation stride 

1 of myoblast as an example, when the ratio of positive and negative samples is 1:20, the 

training time for an epoch is about 126s for DeepCAPE, 301s for DeepSEA, and 237s for 

DeepEnhancer. 

We further conducted a series of experiments to demonstrate the performance of 

DeepCAPE. First, it is worth noting that the performance of the “seq only” model is also 

superior to the three baseline methods and performs more steadily, suggesting that our 

model has the advantage in the case of predicting only with sequences. Second, taking the 

maximum of the scores of samples augmented from an original test sequence as the final 

probability generates slightly worse performance, and this may be due to the outliers with 

high scores in the augmented negative samples. Finally, the performance on datasets 

without considering GC content is slightly superior to that on datasets under the GC content 

constraint (S3 Text). 

Contribution of each module 
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To illustrate the contribution of auto-encoder module, we compared the performance of 

models using auto-encoder to models without auto-encoder and other two strategies that 

average the replicates or randomly select a single replicate. As shown in Fig 3 (a), the auto-

encoder module not only makes cross cell line prediction possible, but also maintains 

superior performance of our method even if the dimensionality of the data is reduced (S4 

Text). 

To evaluate contributions of DNA and DNase modules, we performed a model ablation 

analysis. As shown in Fig 3 (b), DNase-seq data provide more information than DNA 

sequences to the prediction. In addition, using DNA sequences and DNase-seq data jointly 

effectively improves performance and stability, indicating that DNA sequences also play 

an important role in promoting the performance of DeepCAPE and making the performance 

more stable (S5 Text).  

There are more than 100 million parameters in the whole neural network of DeepCAPE, 

and most of them are concentrated on the merge layer of the joint module. As shown in S2 

Fig, we visualized activated features on the merge layer when DeepCAPE was trained with 

datasets augmented by different strides. With abundant training samples, DeepCAPE is 

inclined to activate only low-level features, which are extracted by the first three layers. 

When the sample size is limited, however, DeepCAPE can also activate high-level features, 

which are extracted by the last three layers (S6 Text). 

In order to explore the effect of the number of training samples to the final performance, 

we repeated the cross-validation experiments on datasets of different augmentation strides 

for each cell line. As shown in Fig 3 (c), although the performance is gradually decreasing 

with the augmentation stride becomes longer, the performance is still satisfactory when 

compared with the three baseline methods and the computational burden is significantly 

alleviated (S7 Text). 

All the observations above suggest that DeepCAPE can not only achieve superior 

performance with limited known enhancers but also achieve satisfactory performance with 

longer augmentation strides to effectively save computational time when there are massive 

enhancers. 

DeepCAPE enables cross cell-line prediction 

Experimental approaches are expensive and time consuming for large scale identification 

of enhancers across a variety of human cell lines. For a cell line whose enhancers have not 

been identified yet, predicting potential enhancers has great significance in guiding 

biological experiments for novel enhancers identification. 

To accurately predict enhancers across cell lines, we employed a collective scoring 

strategy. Given a cell line of interest and a DNA fragment, we used models trained on other 

cell lines to predict the probability that the fragment is an enhancer, and then averaged over 

these predictions to obtain a final prediction probability. We used the datasets of 9 cell lines 

from FANTOM to demonstrate the ability of DeepCAPE to predict enhancers in a cross 

cell line manner. For each cell line, we first excluded the samples that overlap with samples 
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in other cell lines to make sure that there are not common samples with other cell lines. On 

average, 35.2% and 37.6% of samples are left on the datasets of 9 cell lines when the ratios 

of positive and negative samples are 1:10 and 1:20, respectively, and the corresponding 

ratios become 1:8.3 and 1:18.1 averagely. We next used the models of other 8 cell lines to 

make predictions for the filtered samples of the cell line of interest, and then average over 

the resulting 8 probabilities to obtain the final prediction probability. We also used other 

three baseline models to predict enhancers in this cross cell line manner. 

As shown in Fig 4, DeepCAPE with our cross cell line predicting strategy is consistently 

superior to other three baseline methods. In more detail, when the ratio of positive and 

negative samples is 1:10, the average auPRC and auROC scores of DeepCAPE in 9 cell 

lines are 0.902 and 0.971, respectively, and when the ratio is 1:20, they are 0.862 and 0.971, 

respectively. These results suggest that DeepCAPE can accurately predict enhancers across 

cell lines and thus establish a landscape of potential enhancers specific to a cell line that 

still lacks systematic exploration of enhancers. The relatively low performance on the 

dataset of stromal cell may be caused by the fact that we can find only DNase-seq data of 

stromal cell of bone marrow in ENCODE, which may not match the cell line in FANTOM 

very well. 

DeepCAPE recovers known TF binding motifs 

To interpret features extracted by DeepCAPE, we used the strategy described in methods 

to obtain sequence signatures (i.e., PWMs) learned from the first convolution layer of the 

DNA module. We further identified putative motifs by using the tool TomTom [31] to 

match these PWMs to the JASPAR database [32].  

For each cell line, we displayed the sequence logo of one of the matched motifs in Fig 5. 

On the dataset of cardiac fibroblast, DeepCAPE recovers SOX21, whose ectopic expression 

in embryonic stem cells (ESC) induces their differentiation into specific cell types, 

including those that express markers representative of heart development [33]. In the 

keratinocyte cell line, DeepCAPE recovers TBX2 which represses transcription from the 

long control region (LCR) while the composition of the factors binding and regulating the 

LCR is dependent on differentiation of the host keratinocytes [34]. In the myoblast cell line, 

DeepCAPE recovers NR4A2 which has been previously shown to contain consensus cAMP 

response element binding protein (CREB) binding sites that are occupied by CREB and 

phospho-CREB in myoblasts [35]. On the dataset of natural killer cell, DeepCAPE recovers 

GATA3 which is a critical regulator for natural killer cell terminal maturation [36]. On the 

dataset of monocyte, DeepCAPE recovers EGR2, which shows prominent, transient 

induction in BG-exposed monocytes. It has been demonstrated that enhancers with EGR2 

motifs are mainly associated with genes involved in lipid metabolism and biosynthesis and 

lysosome function [37]. To sum up, DeepCAPE can help us find potential TFs binding in 

specific cell lines.  

Applications of DeepCAPE 

To demonstrate potential applications of DeepCAPE, we collected 334 single nucleotide 

polymorphisms (SNPs) that were possibly associated with liver cancer from GRASP [38]. 
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Each SNP has an association p-value obtained from a genome-wide association study 

(GWAS) regarding liver cancer. We identified a liver cancer cell line (Hepg2) in ENCODE 

and trained a DeepCAPE model using enhancers and DNase-seq data specific to this cell 

line. We then calculated a probability that indicated whether a DNA fragment of 300 bps 

surrounding a SNP was an enhancer for each of the 334 SNPs. We finally classified the 

SNPs into 5 groups according to logarithmically transformed p-values of the SNPs and 

drew box plots of the predicted probabilities for each group. As shown in Fig 6 (a), 

predicted probabilities for SNPs with smaller p-values are relatively higher than those with 

larger p-values. This observation suggests that predictions given by our method using 

genomic and epigenomic data are potentially correlated with p-values obtained from 

genetic studies. 

We further collected 14 enhancers that are shown to be associated with lymphoma from 

the literature [39] and showed the ability of our method to discriminant these enhancers 

from their nearby DNA fragments. For this purpose, we first used enhancers and DNase-

seq data specific to a lymphocyte cell line (GM12878) in ENCODE to train a DeepCAPE 

model. We then used this model to calculate prediction scores for the 14 lymphoma-related 

enhancers and the same number of their adjacent sequences sampled from either 1 kbps or 

3 kbps upstream and downstream. We drew box plot of the prediction scores in Fig 6 (b). 

It is obvious that prediction scores of the lymphoma-related enhancers are significantly 

higher than those of the adjacent sequences (one-sided Wilcoxon test p-value = 7.915e-6 

for adjacent 1 kbps, p-value = 9.032e-7 for adjacent 3 kbps). These results suggest that our 

method has the potential ability to discriminant enhancers linked to lymphoma from their 

nearby DNA fragments. 

Discussion 

We have introduced a deep learning framework named DeepCAPE to integrate DNA 

sequence information and chromatin accessibility data for predicting enhancers. Through 

comprehensive validation experiments, we have shown that DeepCAPE is superior to 

existing methods in a variety of cell lines, capable of making cross cell line predictions, and 

interpretable in extracted features. We have further demonstrated the potential ability of 

DeepCAPE to explain functional implications of genetic variants and discriminate disease-

related enhancers. Our method has two main application scenarios. First, one can use our 

method to establish a landscape of potential enhancers specific to a cell line that still lacks 

systematic exploration of enhancers, thereby promoting the deciphering of regulatory 

mechanisms for the cell line. Second, one can use our method to explore functional 

implications of genetic variants or DNA fragments specific to a cell line, thereby bridging 

genomic and genetic studies towards the understanding of disease development. 

Certainly, our work can further be improved in several aspects. First, the incorporation 

of the long short-term memory (LSTM) network, a kind of recurrent neural network 

architectures, into our framework may further improve the performance, because LSTM 

may be able to capture very long-range interaction in the sequence. In addition, the 

adaptation of an embedding representation of DNA sequences instead of the use of the one-

hot encoding may also benefit the prediction accuracy [40]. Second, since we have shown 
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that the first convolutional layer is an effective motif discoverer, researchers may use our 

model to learn the complex grammar of TF binding in specific cell lines. In addition, one 

can also explore interactions of motifs in higher convolutional layers. Third, our deep 

learning framework can possibly be adapted for the identification of other functional 

elements in the genome, including but not limited to silencers, repressors and insulators. 

Finally, our framework can also be generalized for the prediction of functional impacts of 

genomic mutations and the prioritization of candidate variants in whole genome sequencing 

studies, thereby facilitating both research and practice of precision medicine. 
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Fig 1. The graphical illustration of DeepCAPE. First, a DNA module is used to extract features from 

the input DNA fragment. Second, an auto-encoder module is adopted to embed DNase-seq data into a 

low-dimensional space. Third, a DNase module is used to extract features of chromatin accessibility 

after dimensionality reduction. Finally, a joint module integrates outputs of the DNA and DNase 

modules to predict the probability that an input sequence is an enhancer. 
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Fig 2. The classification performance measured in auPRC and auROC at different ratios of 

positive and negative samples (1:10 and 1:20) with augmentation stride 1. 
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Fig 3. (a) Performance of DeepCAPE with or without the auto-

encoder module and other two strategies that average the replicates 

or randomly select a single replicate. (b) Performance of DeepCAPE 

with either the DNA or DNase module excluded. (c) Performance of 

DeepCAPE on datasets of different augmentation strides. 
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Fig 4. Performance of the cross cell line predicting strategy on 9 

datasets from FANTOM. The performance of DeepCAPE is consistently 

superior to other three baseline methods. 
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Fig 5. Visualization of motifs learned by DeepCAPE from the first 

convolutional kernels (above: known motifs from the JASPAR 

database, below: motifs learned by DeepCAPE).   
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Fig 6. (a) The distributions of predicted functional implication 

scores of the liver cancer-related SNPs according to different 

intervals of transformed p-value ( −𝐥𝐨𝐠𝟏𝟎𝒑 𝐯𝐚𝐥𝐮𝐞 ). (b) The 

distributions of predicted probabilities of the lymphoma-related 

enhancers and their adjacent sequences sampled from either 1 kbps 

or 3 kbps upstream and downstream. 
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Supporting information 

S1 Text. We propose a “fixed-stride” data augmentation strategy as illustrated in S1 Fig. 

Suppose that the CNN model requires input fragments of length L. In the case that a 

fragment is longer than L, we slide a window of size L along the original sequence with 

stride s to obtain a number of sequences of length L. In the case that an enhancer is shorter 

than L, we slide a window of size L along the genome and take sequences overlapping with 

the original one to obtain augmented sequences. A statistical analysis on a total of 43,011 

experimentally verified enhancers in FANTOM shows that the median and mean length of 

these enhancers are 275 and 288 bps, respectively, and hence we set L to 300. We can 

further control the number of augmented sequences by changing the value of stride s. With 

this strategy, input sequences of variable lengths are converted into fixed-length samples, 

and the number of available training samples increase greatly. We also propose an 

alternative “fixed-ratio” augmentation strategy as follows. Given an original sequence of 

length X and a pre-defined augmentation ratio r, we slide a window of size L with a derived 

stride (L+X)/r along the genome to obtain r sequences overlapping with the original one. 

The fixed-stride strategy is used throughout this paper, and the fixed-ratio strategy is used 

to show the robustness of our model to different data augmentation strategies. 

S2 Text. During training, the cross entropy loss, defined as the entropy between a true 

distribution 𝑝 and the estimated class probabilities 𝑞, is adopted as the objective function 

to be optimized, as 

H(𝑝, 𝑞) = − ∑ 𝑝(𝑥)log𝑞(𝑥)
𝑥

                  (5). 

We adopt Adam, a widely used algorithm for first-order gradient-based optimization of 

stochastic objective functions [41], to optimize the objective function, with the initial 

learning rate set to 10-4. The learning rate decay schedule and the early stopping strategy 

are adopted to accelerate the convergence of training and avoid overfitting. Batch-

normalization layers are used to accelerate training by reducing the internal covariate shift 

[42]. A dropout layer is used between the last two fully connected layers, and it randomly 

drops half of units to avoid overfitting [43]. 

S3 Text. We conducted a series of experiments to further illustrate the performance of 

DeepCAPE. First, it is worth noting that the performance of the “seq only” model, which 

only uses DNA sequence information, is also superior to the three baseline methods and 

performs more steadily, suggesting that our model has the advantage in the case of 

predicting only with sequences. Second, the “fixed-ratio” data augmentation strategy does 

not significantly influence the performance of our method. For example, the fixed-stride 

strategy with stride 1 and the fixed-ratio strategy with ratio 100 produces similar number 

of augmented sequences, and two-sided paired-sample Wilcoxon tests suggest that their 

performance is not significantly different (p-value = 0.7972, 0.2304, 0.6999 and 0.161 for 

auPRC (1:10), auROC (1:10), auPRC (1:20) and auROC (1:20), respectively). Third, taking 

the maximum of the scores of sequences augmented from an original test sample as the 

final probability generates slightly worse performance with the mean auPRC and auROC 

decrease by 0.051 and 0.011 respectively when the ratio of positive and negative samples 
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is 1:20. The decline in performance may be due to the outliers with high scores in the 

augmented negative samples. Finally, we also repeated the prediction experiments with 

datasets generated by a less rigorous background model without considering GC content to 

demonstrate the adaptability of our method to different genome contexts. The performance 

on datasets without considering GC content is slightly superior to that on datasets under the 

GC content constraint with averagely improved auPRC of 0.041 and auROC of 0.003 when 

the ratio of positive and negative samples is 1:20. 

S4 Text. Dimensionality reduction of chromatin accessibility scores enabled by the auto-

encoder module significantly reduces the amount of data and alleviates the computational 

burden. To prove that the data after dimensionality reduction is still informative, we 

repeated for each cell line the 5-fold cross-validation experiments with the auto-encoder 

module excluded (and thus the dimensions of input data for the DNase-module are different 

and cross cell line prediction does not work). As shown in Fig 3 (a), the auto-encoder 

module does not significantly influence the performance (two-sided paired-sample 

Wilcoxon test p-value = 0.5813) but slightly improves the stability of the results. These 

observations suggest that the auto-encoder module not only makes cross cell line prediction 

possible, but also maintains superior performance of our method even if the dimensionality 

of the data is reduced. We also compared the performance of models using auto-encoder to 

other two strategies that average the replicates or randomly select a single replicate. As 

shown in Fig 3 (a), the performance of models using auto-encoder is superior to that of 

averaging the replicates with 2.63% and 3.06% improvement of auPRCs when the ratios of 

positive and negative samples are 1:10 and 1:20, respectively, and that are 3.59% and 3.56% 

to the performance of randomly selecting a single replicate. 

S5 Text. We performed a model ablation analysis by repeating the cross-validation 

experiments with either the DNA or DNase module excluded to evaluate contributions of 

these modules. As shown in Fig 3 (b), there are evident differences in the contributions of 

the DNA and DNase modules, especially in terms of the auPRC. After removing the DNA 

module, the mean auPRCs decrease by 4.64% and 5.84% when the ratios of positive and 

negative samples are 1:10 and 1:20, respectively. When removing the DNase module, 

however, the mean auPRCs drop by 36.39% and 49.38%, respectively. Obviously, DNase-

seq data provide more information than DNA sequences to accurately predict enhancers. In 

addition, using DNA sequences and DNase-seq data jointly effectively improves 

performance and stability, indicating that DNA sequences also play an important role in 

promoting the performance of DeepCAPE and making the performance more stable. 

S6 Text. As shown in S1 Table and Fig 2, with even only a few thousand training samples, 

DeepCAPE still performs very well in all the 9 cell lines, while the performance of the three 

baseline methods is greatly affected by the number of training samples. This means that our 

method can automatically adapt to different sizes of training sets for better performance 

and thus achieve superior performance on a dataset with limited number of known 

enhancers. 

We further visualized activated features on the merge layer of the joint module when 

DeepCAPE was trained with datasets augmented by different strides. With a model trained, 

we fed positive and negative samples to the network, calculated values of features for each 
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sample, and defined the activation degree of a feature as the absolute difference of its values 

between positive and negative samples. Taking the cell line of myoblast as an example, we 

plot heat-maps of activation degrees for features coming from different convolutional and 

pooling layers in both the DNA and DNase modules in S2 Fig. Briefly, with abundant 

training samples (e.g., stride 1), DeepCAPE is inclined to activate only low-level features, 

which are extracted by the first three layers. When the sample size is limited (e.g., stride 

300), however, DeepCAPE can also activate high-level features, which are extracted by the 

last three layers. 

S7 Text. The massive training samples are helpful to improve the prediction performance 

of our method. However, it may not be necessary to use all the samples for training with 

the consideration of the computational burden. In order to explore the effect of the number 

of training samples to the final performance, we repeated the cross-validation experiments 

on datasets of different augmentation strides for each cell line. As shown in Fig 3 (c), 

although the performance is gradually decreasing with the augmentation stride becomes 

longer, the performance is still satisfactory when compared with the three baseline methods. 

In more detail, we reported in S2 Table the mean auPRC of DeepCAPE in each cell line 

with different augmentation strides and corresponding time consumed in each epoch when 

the ratio of positive and negative samples is 1:20. When the stride is 5, the mean auPRC 

decreases only 4.026%, while 79.753% of the computational time is saved. More extremely, 

when the stride is 25, the mean auPRC decreases only 6.542% but 96.620% of the 

computational time is saved.  
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S1 Fig. Graphical illustration of the fixed-stride data augmentation strategy. 
Suppose that input fragments of fixed length L is required. When a fragment is longer 

than L, we slide a window of size L along the original sequence with stride s to obtain 

a number of sequences with length L. When an enhancer is shorter than L, we slide a 

window of size L along the genome and take sequences overlapping with the original 

one. 
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S2 Fig. Visualization of activated features on the merge layer extracted by DeepCAPE for 

training sets of different sizes (different augmentation strides). The blue and red points represent 

activation degree of features in DNA and DNase modules, respectively (darker color corresponds to 

higher activation degree). With abundant training samples (e.g., stride 1), DeepCAPE is inclined to 

activate only low-level features, which are extracted by the first three convolutional layers. When the 

sample size is limited (e.g., stride 300), however, DeepCAPE can also activate high-level features, 

which are extracted by the last three layers.  
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S1 Table. Summary of data. Columns are the name of cell line, number of enhancers, 

number of positive samples after fixed-stride data augmentation (stride 1), and ID of the 

corresponding DNase-seq experiment. 

Cell Line Enhancers Samples DNase-seq Experiment 

epithelial cell of esophagus 148 15188 ENCSR000ENN 

melanocyte 424 45244 ENCSR518JGY 

cardiac fibroblast 446 49656 ENCSR000ENH 

keratinocyte 497 54343 ENCSR000EPQ 

myoblast 499 55238 ENCSR000EOO 

stromal cell 710 81295 ENCSR000EMH 

mesenchymal cell 1857 215096 ENCSR405TXU 

natural killer cell 2677 281512 ENCSR723JLG 

monocyte 7347 718064 ENCSR000EPK 
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S2 Table. The mean auPRC of DeepCAPE in each cell line with different 

augmentation strides and corresponding time consumed in each epoch when the ratio 

of positive and negative samples is 1:20. When the stride is 5, the mean auPRC decreases 

only 4.026%, while 79.753% of the computational time is saved. More extremely, when 

the stride is 25, the mean auPRC only decreases 6.542% separately but 96.620% of the 

computational time is saved, indicating that DeepCAPE can achieve satisfactory 

performance with longer augmentation strides to effectively save computational time when 

there are massive enhancer samples. 

Stride 1 5 25 

Cell Line auPRC Time (s) auPRC Time (s) auPRC Time (s) 

epithelial cell of esophagus 0.896 37 0.874 7 0.857 1 

melanocyte 0.919 95 0.913 20 0.911 3 

cardiac fibroblast 0.943 105 0.931 23 0.907 4 

keratinocyte 0.922 121 0.899 25 0.897 4 

myoblast 0.914 126 0.908 25 0.887 4 

stromal cell 0.692 175 0.610 36 0.548 7 

mesenchymal 0.816 475 0.741 89 0.729 17 

natural killer cell 0.857 617 0.802 126 0.765 22 

monocyte 0.966 1631 0.954 328 0.947 51 
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