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Abstract 

 

Population-scale microbiome study poses specific challenges in data analysis, from 

enterotype analysis, identification of driver species, to microbiome-wide association of host 

covariates. Application of advanced data mining techniques to high-dimensional complex 

dataset is expected to meet the rapid advancement in large scale and integrative microbiome 

research. Here, we present tmap, a topological data analysis framework for population-scale 

microbiome study. This framework can capture complex shape of large scale microbiome 

data into a compressive network representation. We also develop network-based statistical 

analysis for driver species identification and microbiome-wide association analysis. tmap can 

be used for exploring variations in a population-scale microbiome landscape to study host-

microbiome association. 

 

Availability and implementation:  

tmap is available at GitHub (https://github.com/GPZ-Bioinfo/tmap), accompanied with online 

documentation and tutorial (http://tmap.readthedocs.io). 

Contact: hk.zhou@siat.ac.cn 

Supplementary information: Supplementary data are available at Bioinformatics online.  

 

 

 

1 Introduction 
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Population-scale microbiome studies have led to the identification of host factors associated 

with gut microbiome (Falony et al., 2016), characterization of gut microbiome enterotypes 

and their driver microbial species (Arumugam et al., 2011). The application of microbiome-

wide association analysis (MWAS) to population cohorts has revealed marker species 

associated with diseases (Gilbert et al., 2016). Standard microbiome data analysis relies on 

ordination techniques and regression analysis to discover variations of microbiome 

community and identify their association with host phenotypes (Knight et al., 2018). With the 

trends in conducting population-scale studies, multi-omics data integration and meta-analysis, 

rapidly advances in microbiome analysis methods and standards are expected, and will 

benefit from machine learning techniques in analyzing large scale high dimensional dataset 

(Mallick et al., 2017). 

Topological data analysis (TDA) provides a promising technique for analyzing large scale 

complex data. The most popular Mapper algorithm is effective in distilling data-shape from 

high dimensional space, and provides a compressive network representation (Singh et al., 

2007; Lum et al., 2013). This algorithm has demonstrated its superior to traditional 

dimension reduction methods in analyzing biological and medical data, in which many of the 

challenges are similar to microbiome studies, such as subtyping of disease (Li et al., 2015), 

clustering of cancer groups, and identification of associated gene features (Nicolau et al., 

2011).  

Here, we present the tmap software as an implementation of the TDA Mapper framework for 

population-scale microbiome data analysis. We developed tmap to enable easy adoption of 

TDA in microbiome data analysis pipeline, providing network-based statistical methods for 

enterotype analysis, driver species identification, and microbiome-wide association of host 

meta-data. As demonstrated in this study, by re-analyzing the FGFP microbiome data (Falony 
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et al., 2016), tmap is a promising microbiome data analysis framework for both large scale 

exploratory analysis and network-based hypothesis testing in population-scale microbiome 

study. 

2 Workflow and implementation 

2.1 tmap workflow 

Fig.1. tmap workflow and steps of topological analysis of microbiome data. Starting with 

inputs of microbiome data (OTU table, beta-diversity distance matrix and sample metadata), 

tmap proceeds with data projection, covering, clustering and TDA network construction. 

Identification of driver species and association analysis of metadata are based on the TDA 

network structure, by calculating the SAFE network enrichment score. 

We implemented tmap as a Python package, consisting of modules and classes for major 

steps of the Mapper algorithm (Fig.1). Design of the modules and classes was motivated to 

provide flexible and consistent application programming interfaces (APIs) for the workflow 

(online documentation). By using the APIs, the workflow can be extended to incorporate 
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machine learning methods from other Python packages, such as Scikit-learn (Pedregosa et al., 

2011). Furthermore, tmap APIs allow for easy integration of the workflow into other 

microbiome analysis pipelines, such as QIIME (Caporaso et al., 2010). tmap has several 

advantages in microbiome data analysis, from the use of precomputed beta-diversity distance 

matrix, helper functions for TDA parameter selection, to the downstream network-based 

species enrichment and meta-data association analysis (online documentation). tmap provides 

an integrated and streamlined workflow to take the results from standard microbiome data 

analysis pipelines (such as QIIME) to advanced analysis and generates insights from 

microbiome data. 

2.2 Steps of tmap analysis 

A typical tmap analysis consists of four major steps, as illustrated in Fig.1. The first step is to 

project microbiome data into a low-dimensional space using dimension reduction methods 

with a specified distance metric. The second step is to make topological covering and 

clustering of the projected data. Depending on sample size and required resolution of 

microbiome variations, parameters of covering and clustering should be chosen and examined 

carefully. We provide a detailed explanation and guideline in the online documentation for 

these parameters. The third step is to generate, visualize and explore the microbiome TDA 

network. This step allows for discovering of patterns in microbiome variations and for 

visualizing how the pattern changes in the network along with meta-data, by mapping colors 

on the network. At last, network analysis is performed to identify driver species responsible 

for the observed community variation, and for metadata association analysis. 

2.3 Network enrichment analysis of driver species 
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Enterotypes and driver species can be identified from microbiome data using ordination and 

regression analysis. In tmap, we used a network enrichment technique for driver species 

analysis, based on a network representation of microbiome variations, which is adapted from 

the spatial analysis of functional enrichment (SAFE) algorithm (Baryshnikova, 2016) 

(Supplementary Material). Our approach successfully recovered all the top ten driver species 

from the FGFP cohort. Our approach also identified new driver species that are separated into 

multiple node clusters, which are also enriched in the network (Supplementary Table 2 and 

Fig. S1). The multi-cluster pattern of these driver species could be hard to detect with linear 

regression methods and therefore missed from the FGFP study. Another advantage of 

network enrichment analysis is a direct assignment and visualization of enterotype for each 

node (Supplementary Fig. S2). 

2.4 Network-based microbiome-wide association analysis 

tmap provides a novel alternative to standard MWAS by using network-based association 

analysis. Instead of association with individual samples, tmap uses SAFE enrichment scores 

at node level, which is a group of samples of highly similar microbiome composition. 

Application of this approach to the FGFP cohort successfully identified most of the reported 

associations, with improved power and effect sizes (Supplementary Table 4). We have also 

identified new associations not reported in the original study (Supplementary Fig. S4). 

3 Conclusion 

tmap is an integrated and advanced framework for topological analysis of microbiome data 

for population-scale study. The framework captures the topological shape of microbiome 

composition and variation into a network representaion, followed by network-based statistical 

analysis. We expect that tmap will enable researchers to obtain more insights from 
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microbiome data, from enterotype analysis, driver species identification, understanding of 

microbiome landscape, to microbiome-wide association analysis. 
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