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Abstract

Popul ati on-scale microbiome study poses specific challengesin data analysis, from
enterotype analysis, identification of driver species, to microbiome-wide association of host
covariates. Application of advanced data mining techniques to high-dimensional complex
dataset is expected to meet the rapid advancement in large scale and integrative microbiome
research. Here, we present tmap, atopological data analysis framework for population-scale
microbiome study. This framework can capture complex shape of large scale microbiome
datainto a compressive network representation. We also develop network-based statistical
analysisfor driver speciesidentification and microbiome-wide association analysis. tmap can
be used for exploring variations in a popul ation-scale microbiome landscape to study host-

mi crobiome associ ation.

Availability and implementation:
tmap is available at GitHub (https://github.com/GPZ-Bioinfo/tmap), accompanied with online

documentation and tutorial (http://tmap.readthedocs.io).

Contact: hk.zhou@siat.ac.cn

Supplementary infor mation: Supplementary data are available at Bioinformatics online.

1 Introduction
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Popul ation-scale microbiome studies have led to the identification of host factors associated
with gut microbiome (Falony et al., 2016), characterization of gut microbiome enterotypes
and their driver microbial species (Arumugam et al., 2011). The application of microbiome-
wide association analysis (M WAS) to population cohorts has revealed marker species
associated with diseases (Gilbert et al., 2016). Standard microbiome data analysis relies on
ordination techniques and regression analysis to discover variations of microbiome
community and identify their association with host phenotypes (Knight et al., 2018). With the
trends in conducting popul ation-scale studies, multi-omics data integration and meta-analysis,
rapidly advances in microbiome analysis methods and standards are expected, and will
benefit from machine learning techniques in analyzing large scale high dimensional dataset

(Mallick et a., 2017).

Topological dataanalysis (TDA) provides a promising technique for analyzing large scale
complex data. The most popular Mapper algorithm is effective in distilling data-shape from
high dimensional space, and provides a compressive network representation (Singh et al.,
2007; Lum et al., 2013). This algorithm has demonstrated its superior to traditional
dimension reduction methods in analyzing biological and medical data, in which many of the
challenges are similar to microbiome studies, such as subtyping of disease (Li et al., 2015),
clustering of cancer groups, and identification of associated gene features (Nicolau et al.,

2011).

Here, we present the tmap software as an implementation of the TDA Mapper framework for
popul ation-scale microbiome data analysis. We developed tmap to enable easy adoption of
TDA in microbiome data analysis pipeline, providing network-based statistical methods for
enterotype analysis, driver species identification, and microbiome-wide association of host

meta-data. As demonstrated in this study, by re-analyzing the FGFP microbiome data (Falony
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et al., 2016), tmap is a promising microbiome data analysis framework for both large scale
exploratory analysis and network-based hypothesis testing in popul ation-scale microbiome

study.

2 Workflow and implementation

2.1 tmap wor kflow
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Fig.1. tmap workflow and steps of topological analysis of microbiome data. Starting with
inputs of microbiome data (OTU table, beta-diversity distance matrix and sample metadata),
tmap proceeds with data projection, covering, clustering and TDA network construction.
Identification of driver species and association analysis of metadata are based on the TDA

network structure, by calculating the SAFE network enrichment score.

We implemented tmap as a Python package, consisting of modules and classes for magjor
steps of the Mapper algorithm (Fig.1). Design of the modules and classes was motivated to
provide flexible and consistent application programming interfaces (APIs) for the workflow

(online documentation). By using the APIs, the workflow can be extended to incorporate
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machine learning methods from other Python packages, such as Scikit-learn (Pedregosaet al.,
2011). Furthermore, tmap APIs allow for easy integration of the workflow into other
microbiome analysis pipelines, such as QIIME (Caporaso et al., 2010). tmap has several
advantages in microbiome data analysis, from the use of precomputed beta-diversity distance
matrix, helper functions for TDA parameter selection, to the downstream network-based
species enrichment and meta-data associ ation analysis (online documentation). tmap provides
an integrated and streamlined workflow to take the results from standard microbiome data
analysis pipelines (such as QIIME) to advanced analysis and generates insights from

microbiome data.

2.2 Steps of tmap analysis

A typical tmap analysis consists of four mgjor steps, asillustrated in Fig.1. Thefirst step isto
project microbiome data into alow-dimensional space using dimension reduction methods
with aspecified distance metric. The second step is to make topological covering and
clustering of the projected data. Depending on sample size and required resolution of
microbiome variations, parameters of covering and clustering should be chosen and examined
carefully. We provide a detailed explanation and guideline in the online documentation for
these parameters. The third step is to generate, visualize and explore the microbiome TDA
network. This step allows for discovering of patterns in microbiome variations and for
visualizing how the pattern changes in the network along with meta-data, by mapping colors
on the network. At last, network analysisis performed to identify driver species responsible

for the observed community variation, and for metadata association analysis.

2.3 Network enrichment analysis of driver species
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Enterotypes and driver species can be identified from microbiome data using ordination and
regression analysis. In tmap, we used a network enrichment technique for driver species
analysis, based on a network representation of microbiome variations, which is adapted from
the spatial analysis of functional enrichment (SAFE) agorithm (Baryshnikova, 2016)
(Supplementary Material). Our approach successfully recovered all the top ten driver species
from the FGFP cohort. Our approach also identified new driver species that are separated into
multiple node clusters, which are also enriched in the network (Supplementary Table 2 and
Fig. S1). The multi-cluster pattern of these driver species could be hard to detect with linear
regression methods and therefore missed from the FGFP study. Another advantage of
network enrichment analysis is a direct assignment and visualization of enterotype for each

node (Supplementary Fig. S2).

2.4 Networ k-based microbiome-wide association analysis

tmap provides a novel aternative to standard MWAS by using network-based association
analysis. Instead of association with individual samples, tmap uses SAFE enrichment scores
at node level, which is a group of samples of highly similar microbiome composition.
Application of this approach to the FGFP cohort successfully identified most of the reported
associations, with improved power and effect sizes (Supplementary Table 4). We have also

identified new associations not reported in the original study (Supplementary Fig. $4).

3 Conclusion

tmap is an integrated and advanced framework for topological analysis of microbiome data
for population-scale study. The framework captures the topological shape of microbiome
composition and variation into a network representaion, followed by network-based statistical

analysis. We expect that tmap will enable researchers to obtain more insights from
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microbiome data, from enterotype analysis, driver species identification, understanding of

mi crobiome landscape, to microbiome-wide association analysis.
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