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Pseudomonas aeruginosa is a clinically significant pathogen 
that has alarming antibiotic resistance rates and very few 
candidate drugs in development. The challenges of novel 
drug discovery are exacerbated by incomplete knowledge of 
the essential genes across the species required for survival 
under infection conditions. We thus sought to define the core 
essential genome of P. aeruginosa by performing transposon 
insertion sequencing (Tn-Seq) on nine strains of P. 
aeruginosa isolated from different infection sites including 
wound, eye, lung, urinary tract, and blood, with an 
environmentally isolated strain for comparison, in five 
different media conditions: three were infection relevant 
media (serum, sputum, urine) and two were lab-based media 
(LB and M9 minimal). We developed a novel statistical 
model, FiTnEss, to classify genes as essential versus non-
essential across all strain-media combinations.  FiTnEss 
required minimal assumptions and had good predictive power 
in a limited set of validation studies with mutant strains of 
PA14 containing clean gene deletions. A core set of 321 
essential genes emerged that are the highest probability 
targets for successful novel drug discovery against this 
important pathogen.  
 
 

Pseudomonas aeruginosa is a clinically significant 
pathogen that is a major cause of bacteremia, pulmonary, 
and urinary tract infections, with high mortality rates [1-3]. 
Due to its ability to evade current antibiotics or develop 
resistance, P. aeruginosa clinical strains are increasingly 
resistant to all current antibiotics [4, 5]. As such, P. 
aeruginosa has recently been classified as a priority 
pathogen in need of research investment and new drugs by 
the World Health Organization [6]. Alarmingly, only 1 in 5 
antibacterial drugs succeed in clinical trials [7], and of the 
48 potential antibacterials in development as of 2018, only 3 
have activity against P. aeruginosa with only 1 of these 
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having a new mechanism of action 
(www.pewtrusts.org/antibiotic-pipeline). 
 
With the sequencing of the first bacterial genome in 1995 
[8], the advent of the genomics era held the promise of 
revolutionizing the antibiotic discovery field by identifying 
a trove of potential new gene targets. However, the 
experience of two major pharmaceutical companies in the 
late 1990s to early 2000s suggests that this promise has 
failed to materialize [9, 10]. Among the factors contributing 
to failure is the existence of “genomic blind spots” that 
result in unforeseen gene redundancies that negate the value 
of a target within species subpopulations, as antibiotics with 
activity only against a subset of clinical isolates of a given 
species would be of little value [9]. A second factor 
contributing to failure is the concept of conditional 
essentiality, wherein the essentiality of a gene is dependent 
on its surrounding environment i.e., its growth condition. It 
has become clear that being essential under in vitro, 
laboratory conditions does not guarantee essentiality in vivo, 
as illustrated by examples of targets or small molecules 
whose essentiality or efficacy, respectively, did not translate 
to in vivo conditions [11, 12].   

Despite the arguably limited impact that genomics has 
had on identifying new, valuable targets for antibiotic 
discovery to date, advances in genomic technologies have 
significantly enabled the systematic studies of bacteria both 
by catalyzing the exponential increase in available bacterial 
genomes for comparative studies and the ability to 
functionally characterize bacteria on much larger-scales, 
including on numerous strains of a given species or in 
multiple conditions. Taking advantage of massively parallel 
sequencing, methods have emerged (Tn-Seq; also known as 
TIS, INseq, HITS, TraDIS, [13-17]) for performing 
genome-wide negative selections studies to quantitatively 
measure the relative fitness of a pool of mutants. Using 
transposon insertion sequencing, genes which are required 
for optimal growth under a specific growth condition can be 
identified by mapping the gene location of the disrupting 
transposon in fitness impaired mutants; at an extreme, 
mutants that cannot be detected at all in the pool correspond 
to genes that are essential under that condition. These 
methods have been applied in numerous bacterial studies, 
including two commonly studied reference strains of P. 
aeruginosa, PA14 and PAO1, with varying numbers of 
essential genes reported and varying essential gene 
identities (reviewed in [18]).  

We sought to more definitively define the core essential 
genome – the complete set of essential genes that are 
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common to all strains of P. aeruginosa and is as 
independent of growth condition as possible, with any bias 
being towards infection relevant conditions – in order to 
comprehensively elucidate the candidate drug targets in P. 
aeruginosa.  To minimize the potential to be misled by 
genomic blindspots and false requirements in lab-based 
media, we performed Tn-Seq against a diverse set of nine P. 
aeruginosa strains from various isolation sources including 
pulmonary, urinary, blood, wound and ocular infections 
under five different growth conditions including media 
intended to simulate the conditions of human infection 
(sputum, serum, urine) and lab-based media (LB and M9). 
Because the value of a drug target is dependent on its binary 
classification as essential versus non-essential, we 
developed a novel, simple statistical method to map 
measurements of fitness to this binary classification with 
good predictive power.  This simple model called FiTnEss 
(Finding Tn-Seq Essential genes) requires minimal 
assumptions and performed well, with a positive predictive 
value of 97% in a limited set of validation studies with 
mutant strains of PA14 containing clean gene deletions. We 
applied FiTnEss to the Tn-Seq data from all strain and 
media combinations in order to define the core set of 
essential genes under infection relevant conditions that are 
the highest probability targets for successful novel drug 
discovery against this important pathogen.  
 

Results 
 

Transposon mutagenesis, sequencing, and mapping of 
transposon insertions. In order to define the core essential 
genes across a diverse set of P. aeruginosa strains, we 
selected strains from a collection of 130 clinical P. 
aeruginosa isolates obtained from various sources (see 
Methods). After performing whole genome sequencing of 
the collection, mapping the isolates to the phylogenetic tree 
formed by 2560 P. aeruginosa genomes in NCBI, and 
testing a subset for their ability to be efficiently 
mutagenized by the Himar1-derived transposon MAR2xT7 
[19-21] we focused on nine strains that represented five 
different infection types (blood, urine, respiratory, ocular 
and wound), with each strain representing a different branch 
of the dendrogram (NCBI ref; Fig. 1A). The genomes of 
these 9 strains varied from 6.34 to 7.15 Mbp.  

We constructed transposon libraries by performing 
tripartite matings of these 9 P. aeruginosa strains with E. 

coli donor strain SM10 carrying an episomal MAR2xT7 
transposon [20] and E. coli strain SM10 carrying an 
episomal hyperactive transposase that results in efficient 
integration at the dinucleotide sequence ‘TA’ [22]. 
Separating the transposase and transposon increased the 
efficiency of insertion sequencing and mapping, relative to 
the more common system of a single plasmid carrying both 
the transposase and the transposon, which resulted in a high 
percentage of reads that did not map to the recipient genome 
due to a second transposon in the donor plasmid which 
inserted itself with high frequency in the donor E. coli 
strain. Using tripartite matings, we obtained at least 5x106 
distinct mutants for each strain from at least two 
independent conjugations, and selected mutants on each of 
five different agar media directly to avoid a bottleneck from 
pre-selecting the libraries on a given medium. A total of 
1x106 mutants were selected on each medium in duplicate, 
yielding approximately a 10:1 mutant:TA insertion-site 
ratio, thus ensuring saturating mutagenesis. The media types 
included opposing rich (LB) and minimal (M9) laboratory 
media, and three media designed to simulate growth on 
infection site fluids: fetal bovine serum, synthetic cystic 
fibrosis sputum [23], and urine (Fig. 1B). We mapped the 
transposon insertions to the corresponding reference 
genomes for each of the 90 Tn-Seq datasets (9 strains grown 
on 5 media, performed in duplicate). Mapped read counts 
averaged approximately 107 for each of the 90 datasets, and 
reads at each TA site were highly concordant between 
replicates, with a mean R2 = 0.98 (Dataset S1).  

Qualitatively, when we examined the distribution of 
insertions across different strains in the different media, we 
could readily identify examples of genes that were variably 
essential under different growth conditions for a certain 
strain, illustrating the conditional essentiality of some genes 
(Fig. 1C).  The relative absence of insertions in the thiamine 
synthesis genes thiD and thiE in M9 which does not contain 
thiamine, is in stark contrast to the abundance of insertions 
in these genes in rich LB media.  Similar variability is seen 
for the hemL gene under different growth conditions. We 
also can clearly identify examples of genes that were 
variably essential in different strains under the same growth 
condition. The lack of insertions in pilY1 of strain BWH013 
compared to the corresponding abundance in the other 8 
strains when grown on LB highlights the genomic plasticity 
of P. aeruginosa (Fig. 1D).  
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To optimize our accuracy in calling genes essential or non-
essential, we first removed confounding TA sites from the 
analysis. At these TA sites, the presence or absence of 
mapped insertions can be influenced by methodological 
artifacts unrelated to the essentiality of gene in which the 
TA is located. To avoid these confounding factors, we  

removed three classes of TA sites from analysis because of 
their potential to mislead: (1) Non-permissive insertion sites 
– The sequence (GC)GNTANC(GC) was recently reported 
to be intolerant to Himar1 transposon insertions in 
Mycobacterium tuberculosis [24], which has a similar GC 
content to P. aeruginosa. This sequence occurs 6367 times 
in P. aeruginosa strain PA14 across 3389 genes. Indeed, we 
found that insertions mapped to these sites at a significantly 
reduced frequency compared to a random subsample of TA 
sites (p < 0.0001, Fig. S1) and thus excluded them from all 
subsequent analysis. (2) Non-disruptive terminal insertions 

– Transposon insertions close to 5’ and 3’ gene termini can 
nevertheless result in the expression of a functional, albeit 
truncated version of the corresponding gene product [25]. 
Rather than selecting an arbitrary distance from the termini 
in which to exclude such potentially confounding TA sites, 
we empirically determined an optimal distance. Using the 
consensus 109 essential genes from previous transposon 
studies of strains PA14 and PAO1 as the truth set for 
essential genes [20, 26-29], we found that 38 of these genes 
in our PA14-LB dataset contained >10 sequencing reads, all 
of which corresponded to TA site insertions located within 
50 bp from the gene termini, regardless of gene size (Fig. 
S1). We thus eliminated from analysis all TA sites that fell 
within 50 nucleotides of either the 5’ or 3’ ends of each 
gene. Removal of these confounding TA sites resulted in the 
exclusion of 9829 TA sites.  (3) Homologous insertion  

Figure 1. Tn-seq of P. aeruginosa clinical isolates. A. Strains selected for mutagenesis displayed on a dendrogram from the 2560 
P. aeruginosa sequences available from NCBI. PAO1 is displayed for reference. B. E. coli SM10 donor cells containing either the 
pC9 transposase or pMAR transposon are mated with recipient P. aeruginosa. Transposon-integrated P. aeruginosa mutants are 
selected on solid medium: LB, M9 minimal, fetal bovine serum, synthetic cystic fibrosis sputum or urine followed by outgrowth 
and Illumina sequencing of the transposon-genomic DNA junction. C. A highlighted region of five genes from strain PA14 
showing sequencing reads mapped to TA integration sites demonstrates variable read counts mapping to hemL, thiE and thiD 
under different growth conditions, thereby highlighting the conditional essentiality of these genes. D. Normalized read counts for 
all strains in LB medium demonstrates variable read counts mapping to the pilY1 gene, thereby highlighting the genomic 
heterogeneity of P. aeruginosa isolates. 
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sequences – Because insertions are assigned to a specific 
TA site in a specific gene based on the mapping of the 
genomic sequences flanking the ends of a transposon onto 
the entire genome, we removed from consideration TA sites 
whose flanking regions are not unique because of the 
possibility of mis-mapping reads. In PA14, 1122 such sites 
were found surrounding TA sites, 204 of which are from 
non-homologous genes. In total, by removing these three 
classes of TA sites from the exemplary genome of PA14, 
we omitted 16499 of 81328 TA sites (20%) from analysis, 
which resulted in our inability to assess 150 genes in PA14 
(2.5%). Combining this with the inability to assess the 
essentiality of genes which contain no TA sites (35) for a 
total of 185 non-analyzable genes, we were able to assess 
the essentiality of 5708 out of the 5893 total genes in the 
PA14 genome (97%). We found similar trends for all strains 

analyzed and are summarized in Table S1. 
 

FiTnEss: a statistical model to identify essential genes.  
We next sought to perform a comprehensive and 
quantitative analysis of our 90 Tn-Seq datasets. However, 
while many methods exist for analyzing Tn-Seq data [13, 
30-32], significant variation exists in the complexity of 
these methods and how conservative they are in calling a 
gene essential. Additionally, because of their complexity, 
many of them require implicit assumptions that may have 
contributed to their widely varying predictions of which 
genes are essential when applied to our datasets (data not 
shown).  We thus developed a simple model and method 
(FiTnEss, Finding Tn-Seq Essentials) for identifying 
essential genes from Tn-Seq data that would require 
minimal assumptions with good predictive power.  

Average number of reads/TA site in a gene 
 

Number of reads in a (random) TA site in a gene 

A B 

C D 

Figure 2. Distributions of numbers of reads in Tn-Seq data. A. Distribution of average number of reads/TA 
site in a gene (ng/NTA) for genes with 1,5,10,15 TA sites. The red curves are theoretical distributions for the non-
essential genes simulated from our parameters; they matched well with the actual TnSeq data. B. Standard 
deviation of average number of reads/TA site in a gene for these NTA categories is decreasing, as expected with 
increasing numbers of TA sites. C. Distribution of number of reads at one random sampled TA site in a gene for 
genes with 1,5,10,15 TA sites. D. Standard deviation of number of reads at one random TA site is relatively 
constant across numbers of TA sites, thus showing that all TA sites are behaving similarly, regardless of gene 
length and numbers of TA sites in a gene. 
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 FiTnEss identifies essential genes based on the numbers of 
sequencing reads at each TA site, absent the 3 classes of TA 
sites that we removed from analysis. Importantly, we 
evaluated essentiality based on consideration of the unit of 
the gene rather than the individual TA site.  Thus, we began 
by calculating for each gene, the total number of reads ng, 
summing over the reads at all TA sites in the gene. Looking 
at the average number of reads per TA site for a gene, 
obtained by dividing the total number of reads per gene by 
the number of TA sites (NTA) in the gene (ng/NTA), we 
observed a clear bimodal distribution for genes containing 
more than a few (≥5 TA) sites (see NTA=5,10,15 in Fig. 
2A). Presumably, in these distributions, essential genes are 
on the left with a small or zero ng/NTA, and non-essential 
ones are on the right (ng/NTA>0). Despite the fact that the 

distribution of the average number of reads per TA site in a 
gene (ng/NTA) is not the same for all NTA categories, with 
the standard deviation decreasing (unsurprisingly) with the 
number of TA sites (Fig. 2B), the distribution of reads at 
single TA sites was similar for all NTA categories (Fig. 
2C,D). This suggested that all TA sites were behaving the 
same, independent of gene length. Given these bimodal 
distributions, we based FiTnEss on modelling of the read-
number distribution for non-essential genes and fitting the 
model parameters from the data. 

We posited that the distribution of the number of reads 
at any TA site in a gene is geometric with probability pg, 
and that the expected number of reads (1/pg) is only a 
function of the fitness of the bacteria when the gene 
function is lost. Assuming a lognormal distribution of 1/pg, 

Figure 3. Validation of FiTnEss predictions on a set of conditionally essential gene deletions. A. FiTnEss 
essentiality predictions (left) of five representative gene deletions from strain PA14 mirror the actual growth on 5 
media (right). The full growth profiles of 24 gene deletions can be found in the Supplementary material. The red box 
identifies the absence of growth of the PA1462130 (the deletion mutant for ilvC (see panel C and D below) thus 
experimentally confirming its essentiality on urine. B. A summary of FiTnEss performance based on actual gene 
deletion growth profiles. Confident and candidate essential gene categories are predicted based on family-wise 
error rate and false discovery rate corrections, respectively; gene/medium instances are indicated in parentheses; 
red and green boxes demonstrate false positive and negative rates, respectively. C and D. Example of FiTnEss 
prediction of essentiality for a gene containing multiple transposon insertions. Representative FiTnEss output for all 
conditionally essential genes in the validation set (C). The grey histogram shows the actual distribution of total reads 
for each gene, the black line shows the theoretical distribution calculated by FiTnEss, and the red line denotes the 
behavior of the gene ilvC (PA1462130) in urine, showing that it clearly falls in the far left (essential part) of the 
bimodal distribution.  ilvC was demonstrated in panel A to be truly essential. Read numbers at each TA insertion site 
of ilvC (D). Blue bars indicate TA sites that were removed from analysis due to their proximity to the gene termini. 
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the model only requires two parameters, the mean and 
variance of this distribution, to be determined from the data. 
Since the model describes non-essential genes, it was 
important to avoid data from essential genes when fitting 
the model parameters. Thus, we used only genes with which 
we had high confidence in their non-essentiality (NTA = 10; 
top 75% of the distribution). Given the fitted parameters of 
the model, a specific dependence of the distribution of ng 
on the number of TA sites was predicted, which agrees well 
with the actual data (red curves in Fig. 2A).  

Applying this model to all 90 datasets, we determined 
p-values for the likelihood of any given gene to be drawn 
from the population of non-essential genes. Parameters for 
datasets from replicates of each condition (i.e. each 
combination of strain and medium) were fitted separately 
and applied to their corresponding dataset. All p-values 
were subsequently corrected in each dataset to account for 
multiple-hypothesis testing. Finally, we called a gene 
“essential” if its adjusted p-value is smaller than 0.05 in 
both replicates. We applied two methods of p-value 
adjustment: a very conservative family-wise error rate 
(FWER) correction offered a high confidence set of 
essential genes (“confidently essential”), and a more 
commonly used but less extreme false discovery rate (FDR) 
correction predicted a larger set of genes that not only 
included the “confidently essential” gene set but also an 
additional set of genes that are likely to be essential 
(“candidate essential”). Virtually all confident calls are 
expected to be true essential genes, while among the 
candidate essential set, a small number of false positives is 
expected.  
 

Validating FiTnEss using strain PA14. In order to 
validate FiTnEss’s approach to predicting gene essentiality, 
we took advantage of the conditional essentiality of a subset 
of PA14 genes on the different growth media to compare 
FiTnEss predictions with actual viability and growth for a 
set of PA14 mutants in which we had disrupted particular 
genes of interest.  We identified 24 genes that were 
identified as non-essential on LB, thus allowing us to create 
clean gene deletions of these genes: 18 of these genes were 
identified by FiTnEss as conditionally essential in at least 
one medium after both FWER and FDR corrections 
(confidently essential), 3 after FDR correction alone 
(candidate essential), and 3 were identified as non-essential 
by both corrections but had p-values approaching the cutoff 
for calling essential (Dataset S2). We determined the 
positive and negative predictive values of FiTnEss by 
growing the 24 mutants on the same 5 media as used in the 

original Tn-Seq experiments, for a total of 120 gene-
medium combinations. Mutant strain viability was 
categorized as essential, growth-defective, and non-essential 
using densitometry (<20%, 20-50%, and >50% relative to 
WT, respectively). (Fig. XA-B and Fig. S2). Of the 36 
combinations predicted to be confidently essential, 30 were 
correctly identified as essential and 5 were growth 
defective. Only a single false positive prediction was made, 
if growth defective strains are considered true positives, for 
the flagellar synthesis regulator gene fleN in the urine 
growth medium, Of the 69 combinations predicted to be 
non-essential, no instances were found as essential, but 6 
instances were found to be growth defective. In this limited 
dataset, FiTnEss had a positive predictive value of 97% (if 
considering growth defective genes as essential) and 83% 
(if growth defective genes are considered non-essential), 
and a negative predictive value of 91% (if considering 
growth defective genes as essential) and 100% (if growth 
defective genes are considered non-essential) thus building 
confidence in its ability to accurately call essential and non-
essential genes. Importantly, FiTnEss correctly predicted 
gene essentiality despite the presence of a small number of 
mapped insertions in the primary Tn-Seq data, as 
exemplified in the case of the ilvC gene encoding ketol-acid 
reductoisomerase (Fig. XC-D).  
 

 
Predicting essential genes to define the core essential 
genome. We applied FiTnEss to all 90 datasets to identify 
confident or candidate essential genes based on FWER or 
FDR corrections, respectively (Table S2). We favored the 
extremely conservative FWER correction when considering 
a single strain-medium combination, and the FDR 
correction when considering multiple strains and/or multiple 
media conditions to avoid missing essential genes, as 
statistical power increases with sample size. 
Before turning to examine essential genes, we first 
identified all genes (both essential and non-essential) that 
are common to all 9 strains, thus defining a 4903 gene 
common genome using the orthogroup clustering software 
Synerclust (https://www.broadinstitute.org/genome-
sequencing-and-analysis/tool-development). Our common 
genome consisted of 4903 single-copy genes. The numbers 
of common genes across these 5 conditions is comparable to 
numbers which have been previously described for the 
common genome for P. aeruginosa using a much larger set 
of strains, after removal of genes that cannot be assessed by 
Tn-Seq (5001 genes, differing by 2%). The accessory  
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genome (all genes that appear in one or more strains but 
not in all strains) consisted of 655-1369 genes. 

Turning to the essential genes, we found that the 
number of essential genes in a single strain in any single 
medium varied between 354 and 727 genes (Table S2). The 
numbers of these genes belonging to the common versus the 
accessory genome revealed that most strain-growth 
condition combinations had approximately the same number 

of essential genes in the common genome (Fig. 4A). In 
contrast, there was significant variation in the numbers of 
essential genes in the accessory genome; interestingly, these 
numbers were proportional to genome size (Fig. 4A and 
Fig. S3). 

Since candidate drug targets should be present and 
essential in all strains under relevant infection conditions, 
we sought to define the essential genes that were contained 
within the set of 4903 common genes, thus making up the 
set of common essential genes for each growth condition. 
Sputum and M9 had the highest number of common 
essential genes (439 and 431, respectively), consistent with 
these being the most nutritionally depleted media. LB had 
424 common essential genes, while urine and serum had the 
fewest (400 and 412, respectively) (Fig. 4A and Table S2). 
While the numbers of common essential genes required in 
each growth condition did not vary significantly from 
condition to condition, the actual gene identities did vary 
such that the overlap of the 5 common essential gene sets 
derived from these 5 media was only 321 genes, now called 
the core essential genome. To ensure that we had analyzed 
sufficient strains to approach an asymptote of the core 
essential genome, we simulated the trajectory of numbers of 
essential genes upon the addition of an increasing number 
of strains in a random order (10,000 simulations) and found 
that indeed, an asymptote was reached after ~4 strains, 
regardless of which strains were selected (Fig. 4B).  

We examined the identities and functions of the core 
essential genes.  263 of the 321 core essential genes 
correspond to cytosolic proteins, with 132 of the cytosolic 
proteins involved in metabolic pathways (50%) and 119 
involved in macromolecular synthesis including DNA 
replication, transcription or translation (45%). 56 of the 321 
genes correspond to cytoplasmic membrane, periplasmic 
and outer membrane proteins with the majority involved in 
cell structure and division, metabolite transport, or act as 
protein chaperones (14, 12 and 13 genes, respectively). 2 of 
the 321 genes are completely uncharacterized (Fig. 5B).  

Figure 4. Assessing the essential genes in P. 
aeruginosa as determined by FiTnEss. A. The 
number of confident (red), candidate (pink), and non-
essential (green) genes common to each strain across 
all media is shown, distributed between the 4903 
common genes (left) and accessory genes (right). B. 
The number of confident, candidate, and non-essential 
genes common across all strains in each medium is 
shown. C. 10,000 random simulations (grey) of the 
trajectory of the number of core essential genes 
determined upon the sequential introduction of 
additional strains, up to a total of 9 strains. The largest 
and smallest simulated trajectories of core essential 
genome sizes are highlighted in black, and the mean 
in red. 
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In addition to the core essential genes, the common genome 
also contains genes which are essential in one or more -- but 
not all -- media. These include 103 genes essential for the 
growth of all strains in LB, 110 genes required in M9, 91 
genes required in serum, 118 genes required in sputum, and 
69 genes required in urine (Fig. 4A and Dataset S4). In 
addition to the 321 core essential genes, there are an 
additional 24 essential genes required for growth in all three 
infection-relevant media (serum, sputum, & urine; Fig. 5A) 
but not in both of the lab-based media (LB, M9). Several of 

these genes are involved in pyrimidine and purine synthesis 
that are not essential in LB, suggesting that sufficient 
nucleotide intermediates may be present in this medium to 
sustain growth compared to the infection-based media.  

Contained within the sets of conditionally essential 
genes are genes that are only essential in a single medium 
for all strains, termed unique conditionally essential genes. 
Considering only the three infection-relevant conditions 
while ignoring the laboratory conditions, sputum had 29, 
serum had 16, and urine had 17 unique conditionally 

Figure 5. Core and conditional essential gene functions. A. Venn diagram representing the number of essential 
genes in all strains across three infection-relevant media. B. A chord diagram showing the relationship between 
subcellular location and general function of the 321 core essential genes. C. KEGG metabolic enrichment analysis of 
the core and conditionally essential genes. Interactions of genes defined by KEGG pathways are shown as gray lines 
and genes are shown in circles colored based on essentiality: core, red; lab-based media (LB and/or M9) only, blue, 
3 infection-relevant media, dark green; 1 or 2 infection relevant media, light green; non-essential, light grey. Notable 
pathways are numbered:  1) Porphyrin synthesis; 2) Lipopolysaccharide biosynthesis; 3) Transcription; 4) DNA 
replication; 5) Purine and pyrimidine synthesis; 6) Terpenoid backbone biosynthesis; 7) Pyruvate metabolism; 8) 
Citrate cycle; 9) One carbon pool by folate; 10) Ubiquinone biosynthesis; 11) Glycine, serine and threonine 
metabolism; 12) Folate biosynthesis; 13) Amino sugar and nucleotide sugar metabolism; 14) Pentose phosphate 
pathway; 15) Polyketide sugar unit biosynthesis. 
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essential genes. These unique conditionally essential genes 
carry the intriguing potential of becoming infection site-
specific targets for infection type specific antibiotics, i.e., a 
urine specific anti-pseudomonal antibiotic.  The essential 
genes unique to sputum consist mainly of biosynthetic 
pathways such as thiamine, pyridoxine, and tryptophan 
synthesis. Even with tryptophan present in sputum, the 
quantities present may not be sufficient for growth [23]. 
Similarly, urine-specific essential genes almost exclusively 
consist of genes involved in amino acid biosynthesis, 
specifically targeting pathways for leucine, methionine, 
isoleucine, and arginine, suggesting that the quantities of 
these amino acids may not be sufficient to support growth 
of an auxotroph. In contrast, while genes required for amino 
acid biosynthesis are not required in serum, likely due to 
their relative abundance in serum [33], multiple cytochrome 
c-related proteins were uniquely essential in serum.  
Although porphyrin biosynthetic genes had previously been 
reported to be essential in P. aeruginosa [20, 26-29] 
(Dataset S3), this study found  them to be dispensable in 
serum, with much higher levels of porphyrins in blood than 
urine [34], suggesting that P. aeruginosa can scavenge 
enough porphyrin from its environment, resulting in the 
dispensability of its synthesis in serum.  

Comparison of the numbers of total essential genes 
gave the expected result: growth on nutrient rich LB 
requires fewer essential genes than growth on stringent M9. 
If we take into account all 5 media, it is also somewhat 
expected that the only condition that had conditionally 
essential genes that were unique to only itself (being 
essential in all 9 strains), but were not essential in any other 
strain in any other condition was M9 (20 genes). If we 
compare only LB and M9 conditionally essential genes, LB 
had 19 essential genes that are not required in M9 and M9, 
as expected, had more (61) essential genes required than in 
LB; genes essential in M9 that are not essential in LB are, 
not surprisingly, predominantly involved in metabolism. If 
we relaxed the stringency just a bit and required a gene to 
be essential in all 9 strains in LB, but allowed it to be 
essential in no more than a single strain in all other 
conditions, we were somewhat surprised to find a small 
number (5) of conditionally essential genes that are, for the 
most part, unique to LB, and are not required in any other 
condition.  These genes include the minC and minD genes 
which play a role in determining the site of the septum 
during cell division [35].  However, minC and minD 
disrupted mutants have been reported [20], suggesting either 
that disruption of minC and minD may retard growth in LB 

more significantly than it does in other media or that the 
reported disrupted mutants may contain compensatory 
mutations or not truly disrupt the function of these genes; 
clearly, further studies are required to understand this 
interesting finding. Finally, when we applied Mulitple 
Correspondance Analysis (MCA) to all sets of essential 
genes for every strain-growth condition, we were reassured 
to find that all strains, for the most part, clustered together 
by growth condition (Fig. S4). Interestingly, one strain 
PA14 was an outlier under two conditions, M9 and urine. 
This behavior could be a result of the strain simply being a 
genetic outlier; alternatively, one might speculate that this 
might be a consequence of PA14 being the one laboratory 
strain which has adapted to laboratory conditions over a 
long period of time; further study is required to understand 
the anomalous behavior of this strain. Together, these 
datasets highlighted the tremendous differences required by 
P. aeruginosa in different microenvironments but also 
allowed the recognition of those genes that are conserved 
and may serve as good drug targets.  
 

Discussion 
Here we used Tn-Seq and a novel method of analysis, 
FiTnEss, to establish the core essential genome of P. 
aeruginosa within multiple clinical and environmental 
isolates and across five different lab and infection-relevant 
media in order to define essential targets for antibiotic 
discovery in this important pathogen. We determined that 
while a single strain has ~400-800 essential genes, the core 
essential genome across all strains analyzed is 321 genes 
which represent the most attractive candidates for discovery 
efforts. Further, there are an additional 24 essential genes 
required for growth in the three infection-relevant media 
examined, which are non-essential in LB and M9 media. 
Finally, we find that there are ~15-30 unique, conditionally 
essential genes for each of the infection-relevant medias 
examined, suggesting that the biological pathways to which 
they belong are important for survival only within a 
particular host tissue and that they may represent a unique 
set of targets for infection-type specific therapeutics. 

Previous transposon mutagenesis studies of two 
common lab strains, PA14 and PAO1, have found varying 
numbers of essential genes, as reviewed in [18]. These 
studies have predominantly focused on identifying genes 
refractory to transposon mutagenesis when selected for 
growth on LB media [20, 26, 28], though more recent 
studies have also examined essentiality on minimal, sputum 
and BHI media [27, 29]. A comparison of all of these 
datasets combined, revealed an intersection of only 109 
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essential genes among these studies (Dataset S3).  This low 
concordance may be due to methodological or analytical 
differences between the studies. 

Experimental methods for identifying gene essentiality 
have varied greatly through the years. The advent of 
genomics made possible significant advancements in 
methods for defining fitness costs of gene disruptions. 
Nevertheless, several limitations to methods such as Tn-Seq 
continue to exist and must be kept in mind when applied to 
comprehensively defining candidate targets for antibiotic 
discovery. First, Tn-Seq studies, including this study, use 
pooled mutants when performing selection under a certain 
growth condition. However, some mutants may behave 
differently in a pool where there can be both competition as 
well trans complementation than when grown individually. 
Secondly, technically, transposon libraries are often 
constructed with an initial isolation on a rich medium and 
then subjected to a selection for growth on the condition of 
interest (often a more minimal media or media that models 
the host [13]. Because the isolation step is in fact a selection 
on rich media, genes that are essential in rich media cannot 
be evaluated in this way. To avoid this limitation, we 
omitted the initial isolation/selection step and plated the 
mating directly to the medium of interest. This approach 
allowed us to identify 103 conditionally essential genes 
which are required in LB, but not in at least one of the other 
4 media. Finally, every transposon has limitations including 
the mariner transposon, which we used. We tried to 
minimize the confounding influences of this particular 
transposon by taking into account its sequence bias for 
insertion [24, 36], discounting from consideration TA sites 
within 50 bps of the 5’ and 3’ termini (a distance that we 
determined empirically based on the behavior of a truth set 
of essential genes), and omitting from analysis TA sites 
with surrounding homology that would result in inexact 
mapping of insertions. Removing  these confounding sites 
from analysis, we were unable to query the essentiality of  
approximately 5% of the genome. Nevertheless, biases and 
limitations remain, including the TA site preference of the 
mariner transposon (which could be mollified by 
performing complementary studies with a different 
transposon with a different sequence preference) and the 
impact that polar effects can have on surrounding genes.  

The analytical tools can also vary significantly, as they 
all have different strengths and weaknesses, often having 
been developed to answer different questions. One of the 
greatest challenges for the analytical tools is to translate 
measurements from Tn-Seq, which is really quantifying a 

continuum of fitness -- from optimal growth in a particular 
condition to slow growth, from static for growth to cell 
death -- to a binary classification of essential versus non-
essential in the service of comprehensively defining 
candidate targets for antibiotic discovery.  The different 
tools can vary dramatically both in the assumptions built 
into the analysis and how conservatively each model calls 
essentiality i.e., whether one is more willing to tolerate false 
positives or false negatives. For example, a Hidden Markov 
Model (HMM) and sliding window approach rely on a 
stretch of TA sites that have zero to very low level 
insertions to denote an essential gene [13, 31]. An 
advantage of these methods is that intergenic regions and 
essential domains within a larger gene can be queried. The 
disadvantage is that genes containing more insertions than 
the HMM and sliding window approaches tolerate in an 
essential gene, can in fact be essential with detectable 
insertions resulting because death of the corresponding 
mutant is slow or delayed. Because FiTnEss considers genes 
rather than individual TA sites as the basic unit for 
determining essentiality, it leverages all TA sites in a gene, 
allowing it to more easily distinguish whether low insertion 
numbers are indicative of low coverage in a non-essential 
gene or background noise in an essential gene. Another set 
of genes that are often discrepant between analytical 
methods is short genes that may be flanked by genes of the 
opposite classification. Here, approaches that examine 
“windows” of adjacent TA sites (~5-10 adjacent sites) can 
misclassify the short gene of interest (<5 TA sites) by 
erroneously integrating in data from the flanking genes 
which are of the opposite classification; because FiTnEss 
examines the gene independent of flanking regions, it can 
avoid being misled by the behavior of the TA sites in the 
flanking genes. In the particular case of longer genes 
containing a mix of essential and nonessential domains, the 
power of FiTnEss to detect essentiality is reduced because of 
it cannot distinguish the even distribution of reads across 
the gene (resulting in a call of non-essentiality) with a 
bimodal distribution of reads among the essential and non-
essential domains (which should result in a call of 
essentiality).  Here, other methods such as HMM 
outperform FiTnEss (Fig. S5 for comparison of methods, 
Dataset S2 for complete FiTnEss /HMM gene calls). While 
the methods are complementary, in the analysis of the 
datasets generated in this study, FiTnEss seemed to be 
generally more powerful for calling essential genes than 
HMM, with greater accuracy in calling the 120 
conditionally essential gene-growth condition combinations 
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that we validated using clean genetic deletions (Fig. X and 
Fig. S2). While the HMM method did not have any false 
positives (if combining essential and growth defective 
categories), it did miss calling many essential genes i.e., 
tolerated a high false negative rate (Table S3).  Meanwhile, 
FiTnEss attempted to balance false positive and false 
negative rates for this limited set of deletions resulting in 
greater overall accuracy. Of note, the genes selected for 
validation were skewed towards falling relatively clearly in 
the essential or non-essential distributions; thus they may 
overestimate the positive predictive power of FiTnEss, 
particularly for genes that lay at the boundary of the 
bimodal distribution. Nevertheless, overall, FiTnEss appears 
to perform well in its binary classification of genes. 

The great majority of core essential genes identified by 
FiTnEss can be broadly categorized as being involved in 
metabolic pathways, DNA replication, transcription or 
translation. Not surprisingly, these are already the 
categories of gene functions that are targeted by antibiotics. 
That the core essential genome is dominated by genes 
involved in macromolecular synthesis (i.e. protein and 
nucleic acid) may explain in part why most antibiotics seem 
to target a limited set of functions, i.e., those involved in 
macromolecular synthesis. There has been greater reticence 
to target metabolic pathways because of concern over the 
ability of bacteria to scavenge nutrients from the host, 
thereby rendering their biosynthesis nonessential during 
infection. To do so requires validation of the target under all 
relevant infection conditions. 

Importantly, we have identified several metabolic 
processes that are part of the core essential genome that 
have not previously and explicitly been defined as essential 
in P. aeruginosa by other studies (Dataset S3). For 
example, chorismate synthase (aroC), the last step of the 
shikimate pathway, is known to be essential in bacteria with 
its role in the biosynthesis of aromatic amino acids and 
folates [37]; previous studies however, have found that it is 
permissive to transposon insertion [20], albeit resulting in 
growth impairment. Here we find that it is indeed essential 
in all media; together with its absence in humans, this 
validation of its core essentiality demonstrates its value as a 
drug target. This example illustrates, FiTnEss’s assignment 
of the classification of essential to a gene, despite the fact 
that the corresponding mutant is growth impaired rather 
than non-viable.  Such cases result from imposing a binary 
classification of genes as essential or non-essential on data 
that is really a relative fitness continuum of mutants within 
a pool.  Additional examples include the genes hfq rpoN, 

and gidA where mutants containing disruptions of these 
genes are available [38-40]. FiTnEss classified them as 
confidently essential or candidate essential in most medias 
including LB, though mutants disrupted in these genes have 
been shown to be viable but with significant growth defects 
and/or reduced virulence in various models [38-40]. 

Genes that are conditionally essential in only infection-
relevant media but not all lab media are of particular interest 
as they highlight the ability to be misled in understanding P. 
aeruginosa pathogenesis by limiting studies to and 
extrapolating behavior from artifical laboratory conditions. 
They also demonstrate the ability of these mutant libraries 
to probe and provide important insight into how bacteria 
cope with these respective growth conditions, as illustrated 
by the recognition of the dependence of amino acid 
biosynthesis and cytochrome C proteins on growth 
condition. With regards to these latter proteins, genes 
involved in oxidative phosphorylation including genes 
encoding the cytochrome bc1 complex (PA14_57540, 
PA14_57560, PA14_57570) and cbb3-type cytochrome c 
oxidase proteins CcoI and CcoN (PA14_44440, 
PA14_44370), are conditionally essential in serum and CF 
sputum but not lab media nor urine, which suggests that 
alternative ubiquitinol pathways are insufficient to support 
growth in serum and CF sputum.  

Importantly, despite the goal to define the core essential 
genome of P. aeruginosa as a means to comprehensively 
identify candidate drug targets, this study is inextricably 
linked to the concept of conditional essentiality by virtue of 
the fact that we had to select some limited set of conditions 
upon which to perform these negative genetic selection 
studies; the set of genes identified as the core essential gene 
set is thus conditionally dependent on the nature and 
intersection of these selected conditions. We tried to 
mitigate this conditionality by including two different lab 
medias, LB (rich) and M9 (minimal), to provide the 
boundaries (extremes of growth conditions) for essential 
gene identification. (Moreover, the inclusion of LB as a 
selection media was important as a benchmark for 
comparison of this study with previous studies.)  
Furthermore, given that the task of defining the common 
essential genome was tied to the goal of identifying relevant 
drug targets in infection, we wished any bias to be toward 
identifying genes relevant for growth in infection-relevant 
conditions. While selected in vitro conditions surely do not 
entirely replicate conditions seen by the bacteria in the 
human host, we propose that they provide a first step in 
validating genes potentially relevant to human infection. 
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Indeed, performing complementary in vitro and in vivo Tn-
Seq studies may be the way forward toward defining and 
validating better targets. Performing selections on in vitro 
conditions simulating host physiologic conditions allowed 
us not only to perform Tn-Seq on many strains, but also to 
perform selections without first going through an LB 
growth bottleneck, which is typically required to define 
genes essential to in vivo animal infection models [28]. By 
plating Tn-Seq libraries directly onto the relevant media 
without pre-expanding and thus pre-selecting the transposon 
library in LB, we were able to query the essentiality of 
genes on the various medias, independent of its essentiality 
on LB, thus providing an important complement to in vivo 
studies.  

The goal of this study was to understand the breadth of 
true core essential genes within a bacterial species that has 
great phylogenetic diversity on media that might most 
closely resemble the human host. We anticipated that these 
in vitro conditions would mirror the nutritional 
requirements available to P. aeruginosa within different 
host tissues at least to a first approximation. This study thus 
defines and refines the scope of potential targets for future 
drug-discovery efforts with the hope of potentially reducing 
the risk of false positive targets that may have caused prior 
drug discovery efforts to fail for reasons such as unforeseen 
gene redundancy within species subpopulations and false 
activities from lab-based media [11, 12, 41]. Further, we 
suggest that the prior apparent failure of genomics to 
transform antibiotic discovery is not due to an inherent 
failure in its ability to reveal valuable targets, but instead 
because the genomic experiment was performed too early, 
when only a limited number of bacterial genomes was 
available.  The advancements in genomic technologies now 
make possible studies on a much greater scale, allowing us 
to define essential genes in an unprecedented way that will 
likely rectify previous shortcomings.  To facilitate future 
large scale studies, we have developed a new, simple 
method for calling essential genes, FiTnEss. We anticipate 
that larger scale Tn-Seq studies -- across many strains and 
growth conditions and using FiTnEss to determine gene 
essentiality, will better define the core essential genomes for 
many other bacterial species, thereby comprehensively 
revealing targets for the discovery and development of new, 
much needed antimicrobial therapeutics. 

 

Materials and Methods 
Strain selection and plasmid construction. A genome tree 
report of 2560 sequenced P. aerguinosa strains was 
downloaded from NCBI (organism ID: 187) and visualized 

with iTOL [42]. Nine strains were selected for genetic 
diversity and graciously gifted from various sources: PA14, 
19660, X13273 obtained from Frederick M. Ausubel [43]; 
BWH005, BWH013, BWH015 were collected through 
Brigham and Women’s Hospital Specimen Bank per 
protocol previously described [44]; BL23 from Bausch & 
Lomb [45]; PS75 from Paula Suarez, Simon Bolivar 
University, Venezuela; and CF77 from Boston Children’s 
Hospital [46]. pC9 was derived from pSAM-Bt [28] by 
digesting with ApaLI + AccI, and pMAR was derived from 
pMAR2xT7 [20] by digesting with ApaLI + StuI. 
Linearized vectors were each blunted, phosphorylated, 
ligated, and transformed into E. coli SM10 donor cells and 
selected on 100ug/ml carbenicillin (pC9) or 15ug/ml 
gentamicin (pMAR). Cloning reagents were obtained from 
New England Biolabs. 
  

Transposon library construction and sequencing. 
Overnight cultures of E. coli SM10(pC9) and E. coli 
SM10(pMAR) donor cells were grown in LB medium with 
their respective antibiotics, sub-cultured 1:100, and grown 
at 37°C while shaking at 250RPM for 3.5 hours until 
OD600nm reached ~0.5. Overnight cultures of recipient P. 
aeruginosa strains were grown in LB medium, sub-cultured 
1:3, and grown at 42°C while shaking at 250RPM for 3.5 
hours. Cells were collected by centrifugation at 5000g for 
10 minutes, washed once, and re-suspended in LB. Cells 
were mixed in a 2:2:1 ratio of pC9:pMAR:recipient and 
collected by centrifugation. The cell mating mixture was re-
suspended to an approximate concentration of 1010 CFU/ml 
and 30ul spots were dispensed to a dry LB agar plate. 
Mating plates were incubated at 37°C for 1.5 hours before 
cells were scraped, resuspended in phosphate buffered 
saline (ThermoFisher), mixed with glycerol to a final 
concentration of 40%, aliquoted, and flash frozen in a dry 
ice/ethanol bath before storage at -80C. A small aliquot of 
each mixture was thawed, diluted and plated to 5ug/ml 
triclosan + 30ug/ml gentamicin for CFU quantification of 
successful integrants. Matings were performed at least twice 
for each recipient strain. 250mL of each medium containing 
1.5% agar, 5ug/ml triclosan, and 30ug/ml gentamicin was 
prepared in a Biodish XL (Nunc). LB agar (US 
Biologicals), M9 minimal agar, synthetic cystic fibrosis 
medium (SCFM)[23] were prepared as previously 
described. Pooled, filter-sterilized urine, and fetal bovine 
serum (FBS) (ThermoFisher) were warmed to 55°C and 
mixed with a 5% agar solution (Teknova) to achieve a 1.5% 
final agar concentration. 500,000 CFU of each transposon-
integrated strain were plated to each medium in duplicate 
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and grown at 37°C for 24 hours (LB, FBS, SCFM) or 48 
hours (urine, M9) before scraping and re-suspending cells in 
PBS. Genomic DNA was isolated using the DNeasy kit 
(Qiagen), and 5ug from each sample was sheared to 1.5kb 
fragments by sonication (Covaris). End repair, dA-tailing, 
P5 adapter ligation, and PCR of the transposon-gDNA 
junction was performed using NEBNext enzymes (NEB) 
and custom primers from IDT (Fig. S7 and Dataset S6). 
Size selection was performed using Agencourt Ampure XP 
beads (Beckman Coulter) and ~500bp libraries were 
quantified using D5000 ScreenTape System (Agilent). 
Sequencing was performed with an Illumina Nextseq 
platform to obtain 50bp genomic DNA reads. 
  

Transposon sequencing analysis. Genomes and 
annotations for each strain were obtained from 
www.pseudomonas.com [47]. Illumina reads were mapped 
to each respective genome using Bowtie [48] using the 
options for exact and unique read mapping. Reads 
potentially mapping to more than one location in a genome 
were discarded and homologous TA sites were removed 
from analysis by searching the genome using custom 
scripts. Reads mapped to each TA site were tallied using 
scripts from [32]. Non-permissive insertion sites containing 
the sequence (GC)GNTANC(GC) (ref) were removed using 
custom scripts. Gene clusters across strains were determined 
using Synerclust (https://www.broadinstitute.org/genome-
sequencing-and-analysis/tool-development). 
 

Model for non-essential genes. 
We assume that each non-essential gene g is characterized 
by a parameter, 𝑝!, the inverse of which comes from a log-
normal distribution  

 𝑝!!! ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 𝜇,𝜎 , (1) 

with parameters 𝜇,𝜎.  

We further assume that for any non-essential gene g with 
certain number of TA sites (𝑁!"), the read counts at any of 
its TA sites, 𝑥!,!, are iid, and are distributed according to   

 
For a specific gene g:  𝑥!,! ∼ 𝐺𝑒𝑜(𝑝!), 

𝑓𝑜𝑟 𝑖 = 1, . . . ,𝑁!". 
(2) 

A possible interpretation of this model is that there is a 
distribution among non-essential genes of the small fitness 
costs of disabling them. Genes that are slightly more 
important would have a higher knockout cost 𝑝!!!, or a 
lower 𝑝!, and thus a lower number of reads per TA site on 
average. 

It follows that the distribution of 𝑛!, the total number of 
reads in a given gene, follows a negative binomial 
distribution: 

 
For a specific gene g: 𝑛! ≡ 𝑥!,!

!!"
! ∼

𝑁𝐵(𝑁!", 𝑝!). 
(3) 

The distribution of 𝑛! among all the genes for some value 
of NTA is the convolution of the lognormal and the 
negative binomial: 

 
𝐹!!
∗ (𝑛) ≡ 𝑃𝑟𝑜𝑏 𝑛! ≤ 𝑛 =

 𝑓!"(
!
!
; 𝜇,𝜎)𝐹!"(𝑛;𝑁!", 𝑝)𝑑

!
!

!!
! , 

(4) 

where 𝑓!" is the probability density function of the 
lognormal distribution and 𝐹!" the negative binomial 
cumulative distribution function.  
 

Fitting model parameters. 
Cramér-von Mises criterion is a goodness of fit criterion, 
measuring the difference between cumulative density 
functions of an empirical distribution and a fitted, 
theoretical one. We use it here for the distributions of the 
total number of reads in a gene with 𝑁!" TA sites (Equation 
4). The empirical distribution 𝐹!!�is obtained directly from 
the data, and we use numerical sampling to approximate the 
theoretical 𝐹!!"

∗  (sampling 100,000 times for each pair of 
parameter values 𝜇,𝜎). 

For any 𝑁!" category, we have  

 

𝜔!!"
! =

𝐹!! 𝑛;𝑁!" −!!
!

𝐹!!
∗ 𝑛;𝑁!"

!
𝑑𝐹!!

∗ (𝑛;𝑁!"), 

(5) 

with 𝜔!!"
!  denoting the integral of squared distance 

between two functions for all genes with 𝑁!" TA sites. 

In order to fit model parameters which describe non-
essential genes, we tried to avoid data that are potentially 
“contaminated” by essential ones in the parameter 
estimation phase. To address this, we use a modified 
version of the Cramér–von Mises criterion 𝜔! as follows:  

 

𝜔!!"
! =

𝐹!! 𝑛;𝑁!" −!!
![!/!]

𝐹!!
∗ 𝑛;𝑁!"

!
𝑑𝐹!!

∗ (𝑛;𝑁!"), 

(6) 

where 𝑛[!/!] is the low 25 percentile of read counts in this 
𝑁!" category. This practically means that minimizing this 
distance is only affected by the goodness of fit to the higher 
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75% of the empirical distribution, which is not expected to 
contain essential genes.   
 
The model parameters can be determined by minimizing the 
sum of this modified 𝜔! for any of the different 𝑁!" 
categories, and the resulting parameters are not affected 
much by this choice. Yet we observed that for genes with a 
low number of TA sites there wasn’t much separation 
between the essential and non-essential populations. 
Conversely, for the gene categories with large 𝑁!", where 
this separation is very pronounced, the number of genes in 
these categories is too small and leads to less robust fits. We 
have estimated the variability of the fitted parameters under 
perturbations of the data, and concluded that using values of 
𝑁!" between 5 and 15 yield robust fits (Fig. S6). The 
parameters used for the results in this paper are based on 
fitting the distributions at 𝑁!" = 10. 
 

Calling essential genes. 
For each Tn-Seq dataset (= a replicate of strain x medium), 
after identifying parameters 𝜇,𝜎 for non-essential genes, we 
construct the background distribution for each 𝑁!" category 
by sampling 100000 observations of (𝑛!∗ ) from the 
theoretical distribution (Equation 4). The actual number of 
reads for each gene is then compared to the background 
distribution for the corresponding 𝑁!" category, and a p-
value is calculated as the probability of obtaining this 
number reads (𝑛!) or less “by chance”: 

 𝑝-𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝑛!∗ < 𝑛!). (7) 

In each medium and strain, we have more than 5000 genes 
being tested simultaneously. Accounting for multiple testing 
is required for obtaining true signals.  

Two-layer multiple comparison adjustments were 
conducted. First, in order to obtain a more conservative 
essential set, we adjusted for family-wise error rate. Family-
wise error rate (FWER) is a conservative correction method 
for multiple hypothesis, by controlling type I error we allow 
low probability of making one or more false discoveries. In 
our analysis, we used Holm-Bonferroni method with type I 
error rate 𝛼 = 0.05, indicating that we have only 5% chance 
of obtaining even a single false positive call in the dataset.  

Second, to reduce the risk of losing important targets by 
being too conservative, we used Benjamini-Hochberg 
procedure, which is a less strict approach controlling for 
false-discovery rate. 

After either correction process, genes with adjusted p-value 
smaller than 0.05 in both replicates are identified as 
“confident essential” (FWER) or “candidate essential” 
(FDR). 

Method validation with clean gene deletions. 
Gene deletions were performed as previously described in 
strain PA14 [49]. Briefly, 800-1200bp regions flanking the 
target deletion gene of interest were PCR amplified, stitched 
and recombined into the pEXG2 [49] plasmid containing 
GentR and SacB markers using Gateway Cloning. Plasmids 
were conjugated into PA14 using the E. coli helper plasmid 
pRK2013 for 8 hours, followed by selection on LB agar 
containing 15ug/ml triclosan + 30ug/ml gentamicin. 
Individual colonies were grown in liquid LB for 4 hours, 
followed by streaking to LB agar supplemented with 10% 
sucrose and grown at 37 °C for 16 hours. Colonies were 
confirmed to be GentS and successful gene deletions were 
confirmed by PCR amplification and sequencing. 
Successful gene deletion strains were grown in duplicate in 
LB at 37 °C for 16 hours before diluting 10-4 in PBS. 5ul 
diluted culture was spotted to the five solid media used in 
this study and grown at 37 °C for 24 hours. Images were 
captured and densitometry was performed using ImageJ and 
growth was categorized relative to 10 wild type replicates: 
essential (0-20%), growth-defective (21-50%), and non-
essential (>50%). 
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