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Abstract

Modern high-throughput experiments provide a rich resource to

investigate causal determinants of disease risk. Mendelian randomiza-

tion (MR) is the use of genetic variants as instrumental variables to

infer the causal effect of a specific risk factor on an outcome. Multi-

variable MR is an extension of the standard MR framework to consider

multiple potential risk factors in a single model. However, current im-

plementations of multivariable MR use standard linear regression and

hence perform poorly with many risk factors.

Here, we propose a novel approach to multivariable MR based on

Bayesian model averaging (MR-BMA) that scales to high-throughput

experiments and can select biomarker as causal risk factors for disease.

In a realistic simulation study we show that MR-BMA can detect true

causal risk factors even when the candidate risk factors are highly

correlated. We illustrate MR-BMA by analysing publicly-available

summarized data on metabolites to prioritise likely causal biomarkers

for age-related macular degeneration.

Mendelian randomization (MR) is the use of genetic variants to infer the

presence or absence of a causal effect of a risk factor on an outcome. Under

the assumption that the genetic variants are valid instrumental variables,

this causal effect can be consistently inferred even in the presence of unob-

served confounding factors [1]. The instrumental variable assumptions are

illustrated by a directed acyclic graph as shown in Figure 1 [2].

Recent years have seen an explosion in the size and scale of datasets with

biomarker data from high-throughput experiments and concomitant genetic
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Figure 1: Directed acyclic graph of instrumental variable assumptions made
in univariable Mendelian randomization. G = genetic variant(s), X = risk
factor, Y = outcome, U = confounders, θ = causal effect of interest.

data. These biomarkers include proteins [3], blood cell traits [4], metabo-

lites [5] or imaging phenotypes such as cardiac image analysis [6]. High-

throughput experiments provide ideal data resources for conducting MR in-

vestigations in conjunction with case-control datasets providing genetic as-

sociations with disease outcomes (such as from CARDIoGRAMplusC4D for

coronary artery disease [7], DIAGRAM for type 2 diabetes [8], or the Interna-

tional Age-related Macular Degeneration Genomics Consortium [IAMDGC]

for age-related macular degeneration [9]). In addition to their untargeted

scope, one specific feature of high-throughput experiments is a distinctive

correlation pattern between the candidate risk factors shaped by latent bio-

logical processes.

Multivariable MR is an extension of standard (univariable) MR that al-

lows multiple risk factors to be modelled at once [10]. Whereas univariable

MR makes the assumption that genetic variants specifically influence a sin-

gle risk factor, multivariable MR makes the assumption that genetic vari-

ants influence a set of multiple measured risk factors and thus accounts for

2

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 21, 2018. ; https://doi.org/10.1101/396333doi: bioRxiv preprint 

https://doi.org/10.1101/396333
http://creativecommons.org/licenses/by/4.0/


measured pleiotropy. Our aim is to use genetic variation in a multivariable

MR paradigm to select which risk factors from a set of related and poten-

tially highly correlated candidate risk factors are causal determinants of an

outcome. Existing methods for multivariable MR are designed for a small

number of risk factors and do not scale to the dimension of high-throughput

experiments. We therefore seek to develop a method for multivariable MR

that can select and prioritize biomarkers from high-throughput experiments

as risk factors for the outcome of interest. In this context we propose a

Bayesian model averaging approach (MR-BMA) that scales to the dimen-

sion of high-throughput experiments and enables risk factor selection from a

large number of candidate risk factors. MR-BMA is formulated on summa-

rized genetic data which is publicely available and allows to maximize the

sample size.

To illustrate our approach, we analyse publicly available summarized data

from a metabolite genome-wide association study (GWAS) on nearly 25 000

participants to rank and prioritise metabolites as potential biomarkers for

age-related macular degeneration. Data are available on genetic associations

with 118 circulating metabolites measured by nuclear magnetic resonance

(NMR) spectroscopy [11] from http://computationalmedicine.fi/data#

NMR_GWAS. This NMR platform provides a detailed characterisation of lipid

subfractions, including 14 size categories of lipoprotein particles ranging from

extra small (XS) high density lipoprotein (HDL) to extra-extra-large (XXL)

very low density lipoprotein (VLDL). For each lipoprotein category, measures

are available of total cholesterol, triglyceride, phospholipid, and cholesterol

esters, and additionally diameter of the lipoprotein particles. Apart from
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lipoprotein measurements, this metabolite GWAS estimated genetic associa-

tions with amino acids, apolipoproteins, fatty and fluid acids, ketone bodies,

and glycerides. This dataset also guides the design of our simulation study.

Results

Multivariable Mendelian randomizaton and risk factor

selection

Multivariable MR is an extension of the standard MR paradigm (Figure

1) to model not one, but multiple risk factors as illustrated in Figure 2,

thus accounting for measured pleiotropy. The current implementation of

multivariable MR is based on an inverse-variance weighted (IVW) linear

regression in a two-sample framework, where the genetic associations with

the outcome (sample 1) are regressed on the genetic associations with all

the risk factors (sample 2) in a multivariable regression. Weights in these

regression models are proportional to the inverse of the variance of the genetic

association with the outcome. This is to ensure that genetic variants having

more precise association estimates receive more weight in the analysis. The

causal effect estimate from the multivariable MR represents the direct causal

effects of the risk factors in turn on the outcome when all the other risk factors

in the model are held constant [12,13]. However, the current implementation

of multivariable MR is not designed to consider a high-dimensional set of

risk factors and is not suitable to select biomarkers from high-throughput

experiments.
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Figure 2: Directed acyclic graph of instrumental variable assumptions made
in multivariable Mendelian randomization. G = genetic variant(s), Xj = risk
factor j for j = 1, . . . , d, Y = outcome, U = confounders, θj = causal effect
of risk factor j.

To allow joint analysis of biomarkers from high-throughput experiments

in multivariable MR we cast risk factor selection as variable selection in a

weighted linear regression model. Formulated in a Bayesian framework (for

full details we refer to the Methods section) we use independence priors and

closed-form Bayes factors to evaluate the posterior probability (PP) of spe-

cific models (i.e. one risk factor or a combination of multiple risk factors). In

high-dimensional variable selection, the evidence for one particular model can

be small because the model space is very large and many models might have

comparable evidence. This is why MR-BMA uses Bayesian model averaging

(BMA) and computes for each risk factor its marginal inclusion probability

(MIP), which is defined as the sum of the posterior probabilities over all

models where the risk factor is present. MR-BMA reports the model aver-
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aged causal effects (MACE ) as the direct causal effect of a risk factor on an

outcome. As we show in a simulation study on real biomarker data, MR-

BMA enables sparse modeling and hence a better and more stable detection

of the true causal risk factors.

Detection of invalid instruments

Invalid instruments may be detected as influential points or outliers with

respect to the fit of the linear model. Outliers may arise for a number of

reasons, but they are likely to arise if a genetic variant has an effect on

the outcome that is not mediated by one or other of the risk factors – an

unmeasured pleiotropic effect. To quantify outliers we use the Q-statistic,

which is an established tool for identifying heterogeneity in meta-analysis

[14]. More precisely, to pinpoint specific genetic variants as outliers we use

the contribution q of the variant to the overall Q-statistic, where q is defined

as the squared difference between the observed and predicted association

with the outcome.

Even if there are no outliers, it is advisable to check for influential obser-

vations and re-run the approach omitting that influential variant from the

analysis. If a particular genetic variant has a strong association with the

outcome, then it may have undue influence on the variable selection, leading

to a model that fits that particular observation well, but other observations

poorly. To quantify influential observations we suggest to use Cook’s dis-

tance (Cd) [15]. We illustrate the detection of influential points and outliers

in the applied example.
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Simulation results on NMR metabolite data

In a simulation study on a realistic data structure based on genetic asso-

ciations with NMR metabolites [11] we compare the performance to detect

true causal risk factors of the existing approach (Multivariable IVW regres-

sion), the Lasso [16], a penalised regression approach developed for high-

dimensional regression models, our novel approach MR-BMA and the best

model with the highest posterior probability from the Bayesian model selec-

tion. To avoid selection bias, we choose genetic variants based on an external

data-set. As the majority of the metabolite measures relates to lipids, we

take n = 150 independent genetic variants that are associated with any of

three composite lipid measurements (LDL-cholesterol, triglycerides, or HDL-

cholesterol) at a genome-wide level of significance (p < 5 × 10−8) in a large

meta-analysis of the Global Lipids Genetics Consortium [17]. We seek to

evaluate two aspects of the methods: 1) how well can the competitors se-

lect the true causal risk factors (those with a non-zero causal effect), and 2)

how well can the methods estimate causal effects. Risk factor selection is

evaluated using the receiver operating characteristic (ROC) curve, where the

true positive rate is plotted against the false positive rate. Causal estima-

tion is evaluated by calculating the mean squared error (MSE) of estimates,

which captures both the bias and the variance properties of estimators. Each

simulation scenario is repeated 1000 times.

Looking at a moderate set of d = 12 risk factors of which four risk factors

are true causal ones, we see that MR-BMA is dominating all other methods

in terms of area under the ROC curve (see Figure 3 A). Next best methods
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are Lasso using cross-validation and the Bayesian best model. Using Lasso

with a weak penalisation (max) improves slightly over the standard IVW

approach, which is showing the worst performance. The impact of the pro-

portion of variance explained is shown in Supplementary Figure 1. Similar

results are observed for setting B with eight true positive causal risk factors

(Supplementary Figure 2). With respect to the MSE (Table 1), Lasso with

the strongest penalty has the best performance for R2 = 0.1, while for a

larger proportion of variance explained MR-BMA has the lowest MSE. How-

ever, the MSE of Lasso with strong regularisation stays constant and does

not decrease with increasing R2 in contrast to all other approaches, suggest-

ing that the low MSE is an artefact of the majority of the estimates being

forced to zero. Again Lasso with weak regularisation gives similar results

than the standard IVW, which performs worst of all methods with respect to

the MSE. When looking at the distribution of causal estimates (Supplemen-

tary Figure 3 and 4) we find that IVW is the only method that gives unbiased

estimates, although at the price of a high variance in the estimates. In con-

trast, estimates from Lasso with strong penalty are highly biased towards

the null, but have very low variance. MR-BMA is a compromise between

the strong Lasso penalty and the IVW estimate since it has a weaker bias

towards the null than the Lasso but a much reduced variance compared to

the IVW estimate.

When increasing the number of risk factors to d = 92 while keeping the

number of true causal risk factors constant to four, the standard IVW meth-

ods fails to distinguish between true causal and false causal risk factors and

provides a ranking of risk factors which is nearly random as shown in the
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ROC curve in Figure 3 B) and Supplementary Figures 5 and 6. Despite being

unbiased (Supplementary Figures 7 and 8), the variance of the IVW estimates

is large and prohibits better performance. The Lasso provides sparse solu-

tions with many of the causal estimates set to zero. This allows the Lasso a

relative good performance at the beginning of the ROC curve, but its perfor-

mance weakens when considering more risk factors. The best performance is

terms of the ROC characteristics is observed for MR-BMA. In terms of MSE

(Table 1), the dominant role of the variance of the IVW estimate again be-

comes apparent as the IVW method has a thousand times larger MSE than

MR-BMA, which has the lowest MSE for all scenarios considered.

Figure 3: A) Receiver Operating Characteristic (ROC) curve for setting A
including a moderate number of risk factors (d = 12) of which four have true
positive effects. B) ROC curve for setting A including a large number of
risk factors (d = 92) of which four have true positive effects. Proportion of
variance explained (R2) is set to 0.3.
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d = 12
risk factors

Setting A Setting B
R2 0.1 0.3 0.5 0.1 0.3 0.5
IVW 0.742 0.180 0.077 0.592 0.158 0.071
Lasso (CV) 0.160 0.051 0.028 0.165 0.066 0.040
Lasso (min) 0.028 0.023 0.024 0.051 0.049 0.051
Lasso (max) 0.603 0.143 0.060 0.476 0.124 0.054
MR-BMA 0.039 0.019 0.011 0.059 0.033 0.023
Best model 0.072 0.032 0.017 0.100 0.050 0.030

d = 92
risk factors

Setting A Setting B
R2 0.1 0.3 0.5 0.1 0.3 0.5
IVW 23.172 6.118 2.558 22.951 5.736 2.494
Lasso (CV) 0.053 0.014 0.008 0.051 0.015 0.011
Lasso (min) 0.345 0.090 0.038 0.341 0.084 0.036
Lasso (max) 18.912 4.991 2.083 18.729 4.673 2.028
MR-BMA 0.005 0.004 0.003 0.009 0.008 0.007
Best model 0.011 0.008 0.006 0.016 0.012 0.010

Table 1: Mean squared error (MSE) of the causal effect estimates from the
competing methods. We mark in bold the lowest MSE in each experimental
setting.
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Metabolites as risk factors for age-related macular de-

generation

Next we demonstrate how MR-BMA can be used to select metabolites as

causal risk factors for age-related macular degeneration (AMD). AMD is a

painless eye-disease that ultimately leads to the loss of vision. AMD is highly

heritable with an estimated heritability of up to 0.71 for advanced AMD in

a twin study [18]. A GWAS meta-analysis has identified 52 independent

common and rare variants associated with AMD risk at a level of genome-

wide significance [9]. Several of these regions are linked to lipids or lipid-

related biology, such as the CETP, LIPC, and APOE gene regions. A recent

multivariable MR analysis has shown that HDL-C may be a putative risk

factor for AMD, while there was no evidence of a causal effect for LDL-C

and triglycerides [19]. Here, we extend this analysis to consider not just three

lipid measurements, but a wider range of d = 49 metabolite measurements as

measured in the metabolite GWAS described earlier [11] for the same lipid-

related instrumental variants as described previously. First, we prioritise

and rank risk factors by their marginal inclusion probability (MIP) from

MR-BMA. Secondly, we perform model diagnostics based on the best models

with posterior probability > 0.01.

When including all genetic variants available in both the NMR and the

AMD summary data (n = 148), the top risk factor with respect to its MIP

(Supplementary Table 1 A) is LDL particle diameter (LDL.D,MIP = 0.523),

all other risk factors have evidence less than MIP < 0.25. In order to

check the model fit, we use the best individual models (Supplementary Table
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1 B) with posterior probability > 0.01. For illustration, we present here

the predicted associations with AMD based on the best model including

LDL.D, and TG content in small HDL (S.HDL.TG) against the observed

associations with AMD. We colour code genetic variants according to their

their q-statistic (Figure 4 A, Supplementary Table 2) and Cook’s distance

(Figure 4 B, Supplementary Table 3). First, the q-statistic indicates two

variants, rs492602 in the FUT2 gene region and rs6859 in the APOE gene

region, as outliers in all best models. Second, the genetic variant with the

largest Cook’s distance (Cd = 0.295 to Cd = 0.565) consistently in all models

investigated is rs261342 mapping to the LIPC gene region. This variant

has been indicated previously to have inconsistent associations with AMD

compared to other genetic variants [19,20].

We repeat the analysis without the three influential and/or heterogeneous

variants (n = 145), and report the ten risk factors with the largest marginal

inclusion probability in Table 2 A) and the full results in Supplementary

Table 4. The top two risk factors are total cholesterol in extra-large HDL

particles (XL.HDL.C, MIP = 0.677), total cholesterol in large HDL particles

(L.HDL.C, MIP = 0.254). XL.HDL.C and L.HDL.C were strongly corre-

lated (r = 0.80), and models including both have very low evidence. Table 2

B gives the posterior probability of individual models. Supplementary Figure

11 shows the scatterplots of βX of each of these two risk factors individually

against βY and their MACE estimates in red. We select the six individual

models with a posterior probability > 0.01 to inspect the model fit (Supple-

mentary Figures 12 and 13). This time, no observation has a consistently

large q-statistic (Supplementary Table 5) or Cook’s distance (Supplementary
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Figure 4: Diagnostic plot of the predicted associations with AMD based on
the model including LDL.D, and S.HDL.TG (x-axis) against the observed
associations with AMD (y-axis) including all n = 148 genetic variants. The
color code shows: A) the q-statistic for outliers and B) Cook’s distance for
influential points. Any genetic variant with q-statistic > 10 or Cook’s dis-
tance > 4/n is marked by a label indicating the gene region. Note rs6859 in
the APOE gene region with a q-statistic of 21.89 and rs261342 mapping to
the LIPC gene region with a Cook’s distance of 0.564.

Table 6) in any top models. Repeating the analysis without the largest in-

fluential point, rs5880 in the CETP gene region, or the strongest outlier,

rs103294 in the AC245884.7 gene region, did not impact the ranking of the

risk factors.

These results confirm previous studies [19,20] that identified HDL-C as a

putative risk factor for AMD and draw the attention to extra-large and large

HDL particles. As a further sensitivity analysis (detailed results not shown),

we repeat this analysis with a different selection of instrumental variables

using n = 56 independent genetic variants that were genome-wide hits for

any metabolite measurement in this dataset [11]. Cholesterol content in large

HDL particles is still selected with high posterior probability for this choice
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A) Model averaging
Risk factor Marginal inclusion Model-averaged

probability (MIP) causal estimate θ̂MACE

1 XL.HDL.C 0.677 0.332
2 L.HDL.C 0.254 0.099
3 Glutamine 0.164 -0.055
4 Tyrosine 0.114 -0.034
5 HDL.D 0.085 0.023
6 XS.VLDL.TG 0.079 -0.018
7 Acetate 0.069 0.017
8 LDL.D 0.061 -0.014
9 IDL.TG 0.061 -0.011
10 S.VLDL.TG 0.059 -0.013

B) Individual models
Risk factor(s) Posterior Model-specific

probability (PP) causal estimates θ̂γ
1 XL.HDL.C 0.068 0.509
2 L.HDL.C 0.034 0.384
3 Glutamine, L.HDL.C 0.014 -0.375,0.413
4 XL.HDL.C, XS.VLDL.TG 0.011 0.457,-0.181
5 IDL.TG, XL.HDL.C 0.011 -0.179,0.495
6 HDL.D 0.010 0.359
7 Tyrosine, XL.HDL.C 0.009 -0.275,0.532
8 Serum.C, XL.HDL.C 0.008 -0.183,0.573
9 Acetate, XL.HDL.C 0.008 0.272,0.494
10 Glutamine, XL.HDL.C 0.007 -0.263,0.514

Table 2: Ranking of risk factors for age-related macular degeneration (AMD):
A) according to their marginal inclusion probability (MIP ) and B) the best
ten individual models according to their posterior probability (PP ). Results
are given after excluding the APOE, FUTC, and LIPC regions. θ̂MACE is
model averaged causal effect and θ̂γ is the causal effect estimate for a specific
model. Abbreviations: HDL.D = HDL diameter, IDL.TG = Triglycerides
in IDL, L.HDL.C = Total cholesterol in large HDL, LDL.D = LDL diame-
ter, XS.VLDL.TG = Triglycerides in very small VLDL, XL.HDL.C = Total
cholesterol in very large HDL
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of variants underlining that the effect of large HDL particles is independent

of the selection of instruments.

Discussion

We here introduce a novel approach for multivariable MR, MR-BMA, which

scales to the analysis of high-throughput experiments. This model averaging

procedure prioritises and selects causal risk factors in a Bayesian framework

from a high-dimensional set of related candidate risk factors. Our approach is

especially suited for sparse settings, i.e. when the proportion of true causal

risk factors compared to all risk factors considered is small. We demon-

strated the approach with application to a dataset of NMR metabolites,

which included predominantly lipid measurements, using variants associated

with lipids as instrumental variables. Previous MR analysis [19,20] including

three lipid measurements from the Global Lipids Genetics Consortium [17]

have identified HDL-C as potential risk factor for AMD. Our new approach

to multivariable MR refined this analysis using NMR metabolites as high-

throughput risk factor set and confirmed HDL-C as a potential causal risk

factor for AMD, further pinpointing that large or extra-large HDL particles

are likely to be driving disease risk.

Other areas of application where this method could be used include imag-

ing measurements of the heart and coronary artery disease, body composi-

tion measures and type 2 diabetes, or blood cell traits and atherosclerosis.

As multivariable MR accounts for measured pleiotropy, this approach fa-

cilitates the selection of suitable genetic variants for causal analyses. In
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each case, it is likely that genetic predictors of the set of risk factors can

be found, even though finding specific predictors of, for example, particular

heart measurements from cardiac imaging, may be difficult given widespread

pleiotropy [21]. This approach allows a more agnostic and hypothesis-free

approach to causal inference, allowing the data to identify the causal risk

factors.

Multivariable MR estimates the direct effect of a risk factor on the out-

come and not the total effect as estimated in standard univariable MR. This

is in analogy with multivariable regression where the regression coefficients

represent the association of each variable with the outcome given all others

are held constant. Having said this, the main goal of our approach is risk

factor selection, and not the precise estimation of causal effects, since the

variable selection procedure shrinks estimates towards the null. If there are

mediating effects between the risk factors, then this approach will identify

the risk factor most proximal to and has the most direct effect on an outcome.

For example, if the risk factors included would form a signalling cascade then

our approach would identify the downstream risk factor in the cascade with

the direct effect on the outcome and not the upstream risk factors in the

beginning of the cascade. Hence, a risk factor may be a cause of the out-

come, but if its causal effect is mediated via another risk factor included in

the analysis, then it will not be selected in the multivariable MR approach.

When genetic variants are weak predictors for the risk factors, this can

introduce weak instrument bias. In 2-sample MR, any bias due to weak

instruments is towards the null and does not lead to inflated type 1 error

rates [22]. Consequently, we need to be cautious about the interpretation
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of null findings, particularly in our example for non-lipid risk factors, as

these might be deprioritised in terms of statistical power by our choice of

instruments. A further requirement for multivariable MR is that the genetic

variants can distinguish between risk factors [13]. We recommend to check

the correlation structure between genetic associations for the selected genetic

variants and to include no pair of risk factors which is extremely strongly

correlated. In the applied example, we included only risk factors with an

absolute correlation less than 0.98. As we were not able to include more

than three measurements for each lipoprotein category (cholesterol content,

triglyceride content, diameter), care should be taken not to overinterpret

findings in terms of the specific measurements included in the analysis rather

than those correlated measures that were excluded from the analysis (such

as phospholipid and cholesterol ester content).

Another assumption of multivariable MR is that there is no pleiotropy

except for the measured risk factors. Pleiotropic variants can be detected as

outliers to the model fit. Here we illustrate how to quantify outliers using

the q-statistic. Outlier detection in the standard univariable MR approach

can be performed by model averaging where different subsets of instruments

are considered [23,24], assuming that a majority of instruments is valid, but

without prior knowledge which are the valid instruments. In multivariable

MR, ideally one would like to perform model selection and outlier detec-

tion simultaneously. Additionally, we search for genetic variants that are

influential points. While these may not necessary be pleiotropic, we suggest

removing such variants as a sensitivity analysis to judge whether the over-

all findings from the approach are dominated by a single variant. Findings
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are likely to be more reliable when they are evidenced by multiple genetic

variants.

In conclusion, we introduce here MR-BMA, the first approach to perform

risk factor selection in multivariable MR, which can identify causal risk fac-

tors from a high-throughput experiment. MR-BMA can be used to determine

which out of a set of related risk factors with common genetic predictors are

the causal drivers of disease risk.

Methods

Methods is available online. The Supplementary Information includes Sup-

plementary Note S1 that describes the derivation of the Bayes Factors and

one Supplementary Material providing Supplementary Tables and Figures to

support the simulation study and application.
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Methods

Mendelian Randomization data input: Summarized data

set-up

One of the key features of Mendelian Randomization (MR) is that the ap-

proach can be performed using summarised data on genetic associations –

beta-coefficients and their standard errors from univariate regression anal-

yses. No access to individual-level genotype data is needed. Additionally,
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these association estimates can be derived from different samples. In two-

sample MR, the genetic associations with the risk factor are derived from

one sample and the genetic associations with the outcome from another sam-

ple [1]. The use of summarised data in two-sample MR allows the sample

size to be maximised by integrating data from large meta-analyses including

hundreds of thousands of participants.

We assume the context of two-sample MR with summarized data [2]. For

each genetic variant i = 1, . . . , n and each risk factor j = 1, . . . , d, we take the

beta-coefficient βXij and standard error se(βXij) from a univariable regression

in which the risk factor Xj is regressed on the genetic variant Gi in sample

one, and beta-coefficient βYi and standard error se(βYi) from a univariable

regression in which the outcome Y is regressed on the genetic variant Gi

in sample two. For simplicity of notation, although the beta-coefficients

are estimates, we omit the conventional “hat” notation and treat the beta-

coefficients as observed data points. When considering multiple risk factors,

we construct a matrix of beta-coefficients βX of dimension n× d, where d is

the number of risk factors and n is the number of genetic variants.

We assume that the genetic effects on risk factors and on the outcome

are linear and homogeneous across the population, and identical between

the two samples [3]. Furthermore, we assume that the n genetic variants

selected as instrumental variables are independent, an assumption common

in MR studies. This is usually achieved by including only the lead genetic

variant from each gene region in the analysis. Finally, we assume that genetic

association estimates are derived from two distinct samples with no overlap

between the samples. These assumptions can all be relaxed to some extent if
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the goal is causal inference rather than causal estimation; see [4] for details.

Multivariable Mendelian randomisaton and the linear

model

Multivariable MR is an extension of the standard MR paradigm (Figure 1) to

model not one, but multiple risk factors as illustrated in Figure 2. Univariable

MR can be cast as a weighted linear regression model in which the genetic

associations with the outcome βYi are regressed on the genetic associations

with the risk factor βXi [5]

βYi = θβXi + εi, εi ∼ N (0, se(βYi)
2). (1)

In multivariable MR, the genetic associations with the outcome are re-

gressed on the genetic associations with all the risk factors [6]

βYi = θ1βXi1 + θ2βXi2 + . . .+ θdβXid + εi, εi ∼ N (0, se(βYi)
2). (2)

Weights in these regression models are proportional to inverse of the vari-

ance of the genetic association with the outcome (se(βYi)
−2). This is to ensure

that genetic variants having more precise association estimates receive more

weight in the analysis. To account for heterogeneity in this equation, we can

use a multiplicative random effects model, which increases the variance of

the error terms by a multiplicative factor [7]. The same weighting can also

be achieved by standardising the association estimates, by dividing βYi and

βXi by se(βYi). In the following derivations, we assume that βY and βX are
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standardised, so that the variances of the εi terms are all 1. Our parameter

of interest is the vector of regression coefficients θ = {θ1, ..., θd}. These are

the direct causal effects of the risk factors in turn on the outcome when all

the other risk factors in the model are held constant [8]. In contrast, univari-

able Mendelian randomization using genetic variants that are instrumental

variables for the specific risk factor of interest estimates the total effect of the

risk factor on the outcome. The direct effect will differ from the total effect

if the effect of the risk factor is mediated via another risk factor included

in the model [9]. In some cases (such as to identify the proximal risk factor

to the outcome), the direct effect is of interest; in other cases (such as to

evaluate the potential impact of intervening on a risk factor), it is the total

effect that is truly of interest [8].

Choosing genetic variants as instruments

In multivariable MR, a genetic variant is a valid instrumental variable if the

following criteria hold:

• IV1 Relevance: The variant is associated with at least one of the risk

factors.

• IV2 Exchangeability: The variant is independent of all confounders of

each of the risk factor–outcome associations.

• IV3 Exclusion restriction: The variant is independent of the outcome

conditional on the risk factors and confounders.

One of the main differences of multivariable MR compared to univariable
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MR is the relaxation of the exclusion restriction condition. In contrast to

univariable MR, multivariable MR alllows for measured pleiotropy [10] via

any of the observed risk factors. It is not necessary for every genetic variant

to be associated with all the risk factors, although if no genetic variants are

associated with a particular risk factor, then the causal effect of that risk

factor cannot be identified. This would also occur if the genetic associations

with two risk factors were exactly proportional. For precise identification

of causal risk factors, it is necessary to have some variants that are more

strongly associated with particular risk factors than others [9].

We initially assume that all genetic variants are valid instruments. There

is an emerging literature [11, 12] on how to perform robust MR analysis in

the presence of invalid instruments; similar extensions can be adapted for

multivariable MR [10].

Risk factor selection as variable selection in the linear

model

We consider the situation in which we have a set of genetic variants that are

instrumental variables for a set of risk factors, and we want to select which

of those risk factors are causes of the outcome. Our implicit prior belief is

that not all of the risk factors are causally related to the outcome and that

the set of true causal risk factors is sparse. We formulate the selection of

risk factors in two-sample multivariable MR as a variable selection task in

the linear regression framework. In order to model the correlation between
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risk factors we base our likelihood on a Gaussian distribution

βY | βX , θ, τ ∼ N(βXθ,
1

τ
). (3)

Following the D2 prior specifications as introduced in [13], we use the fol-

lowing conjugate priors for the causal effects θ, the residual error ε, and the

precision τ

θ ∼ N(0, ν/τ)

ε ∼ N(0,
1

τ
)

τ ∼ Γ(κ/2, λ/2), (4)

where ν = diag(σ2) is the diagonal variance matrix of the causal effects

(independence prior), and the precision τ is assumed to follow a Gamma dis-

tribution with hyperparameters κ as the shape and λ as the scale parameter.

Next, we introduce a binary indicator γ of length d that indicates which risk

factors are selected and which ones are not

γj =


1, if the jth risk factor is selected,

0 otherwise.

(5)

The indicator γ encodes a specific regression model Mγ that includes the risk

factors as indicated in γ. A model Mγ can include one or a combination of

multiple risk factors. To evaluate the evidence of a specific model Mγ, we

calculate the Bayes factor for model Mγ against the null model that does not

include an intercept or any risk factor. The Bayes factor BF (Mγ) has the
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following closed form representation

BF (Mγ) =
|Ω|1/2

|νγ|1/2

(
βtY βY −ΘtΩ−1Θ

βtY βY

)−n/2
, (6)

where Θ = ΩβtXγβY is the causal effect estimate and Ω = (ν−1
γ + βtXγβXγ )

−1

is the inverse of the shrinkage covariance between the genetic associations of

the risk factors. For a detailed derivation of the Bayes factor we refer to the

Supplementary Note S1.

Prior specification

Another important aspect is the prior for the model size k, which we model

using a Binomial distribution

Pr(K = k) =

(
d

k

)
pk(1− p)d−k. (7)

This requires choosing the probability p of including a risk factor in the

model according to prior assumptions regarding the sparsity of the results.

We recommend to select p according to the expected a priori model size,

which is p× d. Currently, all risk factors are assumed to have the same prior

probability, and thus the probability of all models of the same size k is equal.

The prior of a specific model Mγ of size k is defined as

p(Mγ) =

(
d

k

)−1

Pr(K = k) = pk(1− p)d−k. (8)

The second important aspect is the prior for the variance of the risk

27

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 21, 2018. ; https://doi.org/10.1101/396333doi: bioRxiv preprint 

https://doi.org/10.1101/396333
http://creativecommons.org/licenses/by/4.0/


factors ν = diag(σ2), where we assume that all risk factors have the same

prior variance σ2. Following [13] we set σ2 = 0.25, but sensitivity of the

results with respect to this prior should be investigated.

Posterior calculation and marginal inclusion probability

of a risk factor

Let Γ be the space of all possible combinations of risk factors. The posterior

probability (PP) of a model Mγ can be expressed by the prior probability

(8) and the Bayes factor (6) of model Mγ as

PP (Mγ | βY , βX) =
p(Mγ)BF (Mγ)∑
γ∈Γ p(Mγ)BF (Mγ)

. (9)

In high-dimensional variable selection, the evidence for one particular

model can be small because the model space is very large and many models

might have comparable evidence. This is why MR-BMA uses Bayesian model

averaging (BMA) and computes for each risk factor j its marginal inclusion

probability (MIP), which is defined as the sum of the posterior probabilities

over all models where the risk factor is present

MIP (j = 1 | βY , βX) =

∑
γ∈Γ I(γj = 1)p(Mγ)BF (Mγ)∑

γ∈Γ p(Mγ)BF (Mγ)
, (10)

where I(γj = 1) equals 1 if risk factor j is part of the model and 0 otherwise.

An exhaustive evaluation of all possible combinations of risk factors is

computationally prohibitive already for a moderate number of risk factors

(d > 20). To alleviate this issue we have implemented a shotgun stochastic
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search [14] that evaluates all combinations of risk factors with a non-negligible

contribution to the calibration factor
∑

γ∈Γ p(Mγ)BF (Mγ) in equation (9).

This algorithm is based on the assumption that the majority of combinations

of risk factors have a posterior probability close to zero and do not need to

be considered when computing the calibration factor in the denominator of

equations (9) and (10).

Causal estimation

We derive the estimates for the causal effects θ̂γ of model Mγ as

θ̂γ = ΩβtXγβY = (ν−1
γ + βtXγβXγ )

−1βtXγβY , (11)

and the model-averaged causal estimate (MACE) for risk factor j from the

MR-BMA approach as

θ̂MACE(j) =
∑
γ∈Γ

I(γj = 1)PP (Mγ | βY , βX)θ̂γ. (12)

MR-BMA ranks and prioritises risk factors according to their marginal

inclusion probability and estimates the MACE as defined in equation (12).

As an alternative approach, we also consider selecting the ’best model’ based

on the individual model posterior probabilities as defined in equation (9).

Detection of invalid instruments

Invalid instruments may be detected as influential points or outliers with

respect to the fit of a specific linear model Mγ. We recommend to check
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the best individual models for outliers by visual inspection of the scatterplot

of the predicted associations based on Mγ with the outcome β̂Y = βXγ θ̂γ

against the actual observed observations βY . If a genetic variant is detected

consistently as an outlier in several of the top models, it may be advisable

to explore the analyses excluding that outlying variant from the analysis.

To quantify outliers we use the Q-statistic, which is an established tool for

identifying heterogeneity in meta-analysis [15]. It is defined as the sum of

the residual vector q, which is the squared difference between the observed

and predicted association with the outcome

Q =
∑
i

qi =
∑
i

(βYi − β̂Yi)2. (13)

The individual element qi measures the heterogeneity of a genetic variant i

for a particular model Mγ. We refer to it as the q-statistic which we use to

evaluate if specific genetic variants are outliers to the model fit.

Even if there are no outliers, it is advisable to check for influential obser-

vations and re-run the approach omitting that influential variant from the

analysis. If a particular genetic variant has a strong association with the

outcome, then it may have undue influence on the variable selection, leading

to a model that fits that particular observation well, but other observations

poorly. To quantify influential observations for a particular model Mγ we

suggest to use Cook’s distance [16]

Cdi =
qi
s2d

hi
(1− hi)2

, (14)
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where hi is the ith diagonal element of the hat matrix H = βXγ (ν
−1
γ +

βtXγβXγ )
−1βtXγ , and s2 = 1

n−dε
tε is the mean squared error of the regression

model.

Simulation study on metabolite GWAS

To evaluate the performance of MR-BMA, we perform a simulation study

using publicly-available summarized data on genetic associations with risk

factors derived from a recent metabolite GWAS [17] as introduced earlier.

All of the metabolites were inverse rank-based normal transformed, so the

association estimates are all in standard deviation units.

In order to avoid selection bias, we choose genetic variants based on an

external data-set. As the majority of the metabolite measures relates to

lipids, we take n = 150 independent genetic variants that are associated with

any of three composite lipid measurements (LDL-cholesterol, triglycerides,

or HDL-cholesterol) at a genome-wide level of significance (p < 5 × 10−8)

in a large meta-analysis of the Global Lipids Genetics Consortium [18]. We

extract beta-coefficients and standard errors of genetic associations for the

150 genetic variants and the 118 available metabolites. Next, we compute

the genetic correlation structure between metabolites based on the n = 150

instrumental variables and exclude at random one of each pair of metabolites

that are in stronger correlation than |r| > 0.99. Our final data-set βX for the

simulation study comprises associations of d = 92 metabolites measured on

n = 150 genetic variants. This allows us to investigate risk factor selection for

a realistic genetic correlation structure between metabolites and distribution
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of the regression coefficients.

After taking genetic associations with the risk factors from the real dataset,

we simulate genetic associations with the outcome βY based on a subset of

risk factors, which we refer to as the ‘true’ risk factors. We investigate the

following 12 different scenarios:

• Size of the data set: moderate (d = 12 metabolites selected at random)

and large (d = 92 all metabolites available)

• Number of true risk factors: A) four risk factors have an effect of

θ = 0.3, the other risk factors have no effect. B) four risk factors have

an effect of θ = 0.3, and another four risk factors have an effect of

θ = −0.3, the other risk factors have no effect.

• Proportion of variance in the outcome explained by the risk factors:

R2 = 0.1, 0.3, 0.5

We compare four different analysis methods:

• Multivariable inverse variance weighted (IVW) regression (equation 2)

[19]

• Lasso as regularised regression [20]

• MR-BMA using marginal inclusion probabilities

• Bayesian best model selection using posterior probabilities of individual

models
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Lasso is a L1 regularised linear regression method which has been devised for

variable selection in high-dimensional data. The regularisation parameter of

Lasso is set to 0.1 (min, strong penalty) or 0.9 (max, weak penalty), where

a penalty equal to 1 reflects the unpenalised IVW regression. Additionally,

we use cross-validation (CV) to determine the penalty parameter. For the

moderate risk factor space including 12 metabolites, the MR-BMA approach

is performed using an exhaustive search of all possible models with a prior

probability of a risk factor to be included set to p = 0.5, while for the large

risk factor space we employ the stochastic search with 10,000 iterations and

p = 0.1. This reflects an expected a priori model size of six for the moderate

risk factor space and around nine for the large risk factor space. The prior

variance σ2 is fixed to 0.25.

Data pre-processing and analysis for applied example of

age-related macular degeneration

In the applied example we demonstrate how MR-BMA can be used to se-

lect metabolites as causal risk factors for age-related macular degenera-

tion (AMD). As risk factors we consider a range of circulating metabo-

lites measured by nuclear magnetic resonance (NMR) spectroscopy [17] from

http://computationalmedicine.fi/data#NMR_GWAS and we use the same

lipid-related instrumental variants as described previously. We restrict the

risk factor space to include only lipoprotein measurements on total choles-

terol content, triglyceride content, and particle diameter; for the various

fatty acid measurements we only included total fatty acids. This results
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in none of the d = 49 metabolite measures having correlations in their ge-

netic associations of |r| > 0.98 (Supplementary Figure 9). Genetic associa-

tions with the outcome are taken from the latest large-scale GWAS meta-

analysis on AMD [21] including 16, 144 patients and 17, 832 controls which

is available from http://csg.sph.umich.edu/abecasis/public/amd2015/.

To synchronise the genetic data on the metabolite risk factors and the AMD

outcome, we match the effect alleles and we remove two genetic variants miss-

ing in the AMD data, so that the overall analysis includes n = 148 variants.

Finally, we use the Ensembl Variant Effect Predictor [22] to annotate the

genetic variants to the gene that is most likely affected.

We run MR-BMA including all n = 148 available genetic variants on the

d = 49 metabolite associations using p = 0.1 as prior probability, σ2 = 0.25

as prior variance, a maximum model size of 12 risk factors, and with 100,000

iterations in the shotgun stochastic search. To check the impact of the prior

choice we first vary the prior probability (Supplementary Table 7) of selecting

a risk factor from p = 0.01 to p = 0.3 reflecting 0.49 to 14.7 expected

causal risk factors; this alters the posterior probabilities of various individual

models, but the overall marginal inclusion probabilities of the risk factors are

relatively stable. Finally, we vary the prior variance σ2 from 0.01 to 0.49,

which does not change the ranking (Supplementary Table 8).

Web resources

MR-BMA and publicly available summary data on AMD and NMR metabo-

lites as presented in the applied example is public on https://github.com/
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