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Abstract

As viruses continue to pose risks to global health, having a better un-
derstanding of virus–host protein–protein interactions aids in the devel-
opment of treatments and vaccines. Here, we introduce Viruses.STRING,
a protein–protein interaction database specifically catering to virus-virus
and virus-host interactions. This database combines evidence from ex-
perimental and text-mining channels to provide combined probabilities
for interactions between viral and host proteins. The database contains
177,425 interactions between 239 viruses and 319 hosts. The database
is publicly available at viruses.string-db.org, and the interaction data can
also be accessed through the latest version of the Cytoscape STRING app.

Background

Viruses are well known as global threats to human and animal welfare. Viral
diseases such as hepatitis caused by Hepatitis C virus (HCV) and cervical cancer
caused by Human papillomavirus (HPV) each cause more than a quarter of a
million deaths worldwide each year [1]. Outbreaks also present an economic
burden - the 2014 Ebola virus outbreak, cost 2.2 billion USD to contain [2],
and the annual response to Influenza virus costs 5 times this amount in medical
expenses in the US alone [3]. Climate change and changing land use patterns
are causing humans and livestock to be exposed to novel viruses for which there
are currently no vaccines or antiviral drugs [4]. This trend will continue as the
habitats of vectors that carry arboviruses expand [5], and as humans continue
to come into contact with wildlife, creating opportunities for zoonosis [6].

As obligate intracellular parasites, viruses act as metabolic engineers of the
cells they infect as they commandeer the cell’s protein synthesis mechanisms to

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/396184doi: bioRxiv preprint 

https://doi.org/10.1101/396184


replicate [7]. Thus, it is important to study their interactions with host cells
in order to understand their biology, especially how their disruption of the host
protein–protein interaction network causes disease [8]. Antiviral drugs have
been highly effective at preventing the progression of HIV infection to AIDS [9],
however, the effectiveness of antiviral drugs can decrease over time due to the
development of drug resistant viral strains [10, 11, 12, 13]. A more complete un-
derstanding of the host-virus protein-protein interaction network provides more
potential viral drug targets, and also enables alternative strategies such as tar-
getting host proteins to attenuate viral infection [14]. When available, vaccines
are very effective at preventing diseases caused by viruses [15]; however, vaccines
are not available for all viruses, including HIV-1 and HCV, and a universal In-
fluenza vaccine is still elusive [16]. The development of modern vaccines such as
subunit vaccines, which can be administered to immunocompromized patients,
and which eliminate the chance that the vaccine could revert to an infectious
virus [17], also hinges on understanding the protein–protein interactions between
viruses and their hosts.

Novel protein–protein interaction (PPI) information is disseminated primar-
ily in the scientific literature, but it is not always organized in ways that make
it easy to find, access, or extract. Databases such as VirusMentha [18] and
HPIDB [19] make strong efforts to organize virus–virus and virus–host PPIs
into databases, where this information is available in an easily parsable format.
However, with the volume of the biomedical literature growing exponentially
at 4% per year [20], it is not feasible for human curators to thoroughly review
all new publications to add any new evidence to curated databases [21]. Auto-
mated text-mining methods are thus required to get a comprehensive picture of
what is already known about the viruses we study.

We have expanded the popular database STRING [22] to include intra-virus
and virus-host PPIs. The STRING database has been in constant development
for 15 years, and the current version includes protein interaction data for over
2000 species, however all the interactions are exclusively intra-species. In this
work, for the first time, we include cross species interactions into the STRING
database. The PPIs reported by STRING represent functional associations be-
tween proteins. These interactions are not limited to physical interactions, and
may also include interactions such as transcription factor binding, or the inter-
action may represent the fact that the associated proteins appear in the same
biological pathway. In this paper the terms “interaction” and “PPI” are used
to refer to functional associations. STRING combines many different sources
(channels) of information to give a confidence score that measures the proba-
bility that the interaction is true. In a similar fashion, we provide virus-related
probabilistic interaction networks derived from text mining and experiments
channels.
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Methods

Text mining evidence

Text mining for virus species and proteins was conducted using the dictionary-
based software described in [23], the same tool that is used for the STRING
text mining pipeline. The dictionary for virus species was constructed from
NCBI Taxonomy [24], with additional synonyms taken from Disease Ontology
[25] and the ninth ICTV report on virus taxonomy [26] to give 173,767 names
for 150,885 virus taxa. The virus protein dictionary was constructed from the
397 reference proteomes that were present in UniProt [27] on Aug 31, 2015. All
virus protein names and aliases were expanded following a set of rules to generate
variants. This gave 16,580 proteins with 112,013 names. This dictionary was
evaluated against a benchmark corpus of 300 abstracts that were annotated by
domain experts [28]. The host species and protein dictionaries were identical
to those used during the text mining for STRING 10.5 [22]. The text mining
was conducted over a corpus that contained the more than 26 million abstracts
in PubMed [20], and more than 2.2 million full text articles. The interactions
found by this method represent functional associations between the identified
proteins.

Experimental evidence

Experimental data for virus–virus and virus–host PPIs was imported from Bi-
oGrid [29], MintAct [30], DIP [31], HPIDB [19] and VirusMentha [18]. These
virus–host interactions were scored and then benchmarked against a gold stan-
dard set derived from KEGG. This creates a mapping between the number of
interacitons mentioned in a study and the probability that they are true inter-
actions according to the benchmark set [32]. The interactions found by this
method represent physical interactions.

Transfer evidence

Orthology relationships were used to transfer interactions following the same
protocol that STRING uses, which is briefly described here. Both virus and
host orthology relations were taken from EggNOG 4.5 [33]. STRING transfers
an interaction between two proteins of the same species to two orthologous
proteins in another species as is shown in figure 1a, and exactly the same was
done to also transfer virus–virus PPIs. For transfer of a host–virus PPI, three
cases are possible and are illustrated in figure 1b-d. The known interaction
between a virus protein and host protein could be transferred to an orthologous
virus protein in a different virus species (panel b), to an orthologous host protein
in a different host (panel c), or both cases simultaneously, to both a new virus
and a new host (panel d). Transfer is made only between viruses and the hosts
they are known to infect, ie we do not predict new host-virus pairs based on
orthology.
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The score assigned to the transfer of evidence is a scaled fraction of the score
for the original interaction, proportional to how distant the recipient species is.
Paralogs are considered to be orthologs for the purposes of calculating the score
at level lower than the gene duplication, and the score is discounted if it is
being used at a level higher than the gene duplication. For example, figure 1e
shows three orthology levels (LUCA, Chordata, Mammalia) and illustrates a
gene that has duplicated after Chordata but prior to the last common ancestor
of all mammals. Further, there has been a speciation event after Mammalia,
separating human and mouse into separate species. At the level of Mammalia,
these two proteins are placed in different orthology groups, so any interactions
that occur with the darker protein will not be transferred to interaction evidence
for the lighter protein. However, at the level of Chordata, the light and dark
proteins are in the same orthology group and so will both contribute their con-
fidence to the resulting interaction. The contribution of these two proteins will
be penalized since they are paralogs at a lower level. Although it is illustrated
here for cellular organisms, this process is also applied to transfer involving viral
orthology groups. The final transfer scores are then benchmarked the same way
as the scores for the other channels.

Results

We were able to identify 177,425 protein-protein interactions for 239 viruses.
77 of which are human viruses, and the remainder infect a total of 318 other
hosts. The median number of proteins coded for by these viruses is 9. The
majority of all types of interactions are between viruses and their hosts (as op-
posed to being intra-virus interactions), due to viral genomes encoding many
fewer proteins than than their host genomes and thus having fewer potential
interactions. In this and the subsequent analysis, interactions are counted per
channel, disregarding their scores. Excluding orthology transfer, 89% of the
interactions are derived from text mining evidence, and the remaining untrans-
ferred evidence comes from curated experimental databases. For 154 viruses,
representing 19.8% of all evidence in the database, only text mining evidence is
present. For 77 viruses, representing 77.4% of all evidence, all the experimental
evidence is also supported by text mining evidence. The remaining 8 viruses,
representing 2.8% of evidence, have more experimental evidence than text min-
ing, and likely represent opportunities to improve the text mining dictionaries.
Despite the large efforts of database curators, the vast wealth of information
on PPIs is accessible only in the literature. Further, in addition to physical in-
teractions, text mining will also uncover functional associations such as genetic
interactions. As such, text mining provides a very important contribution to
this database.

The top GO terms that are enriched in the set of 1835 human proteins that
interact with any virus protein with a confidence of 0.5 or greater are shown in
table 1. That this list includes terms such as viral process, protein binding and
cell surface receptor signalling pathway provides a sanity check that the human
protein partners in the found interactions are valid.
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Orthology transfer gives a 2.7 times increase in the number of interactions
with text mining results being more readily transferred than experimental re-
sults. A handful of well studied viruses (EBV, HIV-1, Influenza A) are the
subjects of high-throughput studies that make up the bulk of the interactions
in curated experimental databases. These viruses happen to have few close rel-
atives (HIV, Influenza A), and infect a limited number of hosts (EBV, HIV),
which is why their PPIs are not as readily transferred via orthology as inter-
actions found by text mining for other virus proteins. The viruses that receive
the most experimental transfer data are Swine pox virus, Canine oral papillo-
mavirus and Murine cytomegalovirus. The viruses that receive the most text
mining transfer data are Gallid herpesvirus, Murine cytomegalovirus and Equine
herpesvirus 2.

More than half (55%) of pre-transfer evidence relates to human viruses.
However, evidence transferred to human comprises only 26% of all transfered
experimental evidence and 18% of all transferred text mining evidence, which
implies that the majority of transferred evidence is to a new host (case c or
d in figure 1). This is due to the fact that gene duplication events occur less
frequently in viruses compared to their host organisms [33], and additionally
because fewer species from the virus taxonomic tree have been sequenced and
analyzed compared to their hosts [34]. In all, this makes potential transfer
partners rarer for transfer between viruses than between hosts.

The distribution of interactions for the 20 viruses with the most interactions
is shown in figure 2. The viruses with the largest number of intra-virus interac-
tions include the relatively large double-stranded DNA Herpesvirales and well
studied RNA viruses including Influenza and HIV. The same viruses also show
the highest proportion of interactions from the experimental channel. An exam-
ple of two viruses that share interactions based on orthology transfer are human
and murine cytomegalovirus (HCMV and MCMV respectively). The majority
of the evidence for HCMV is direct evidence, and conversely, the majority of
evidence for MCMV is evidence from transfer, which has come from interactions
with HCMV.

The virus-virus and virus-host PPI networks are made publicly accessible
as a resource which is available at viruses.string-db.org. The data can be
browsed online, downloaded from the website, or accessed through the REST
API. Further, the data can also be imported into Cytoscape directly [35] using
the STRING Cytoscape app [22].

Utility and Discussion

Web interface

The Viruses.STRING website enables three variants of protein search: for the
complete set of proteins in a virus, for a single protein in a virus, or for multiple
proteins in a virus. Since most viral genomes encode only a small number of
proteins (the viruses included in the database have a median of 9 proteins), they

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/396184doi: bioRxiv preprint 

https://doi.org/10.1101/396184


can easily be displayed in a network together with the most strongly interacting
host proteins.

The network interface has a similar appearance to STRING, but the visual
styling has been modified to be more flat. The nodes in the network are coloured
only based on their origin, either as viral proteins (brick red) or as host proteins
(blue-green slate).

As is possible on the main STRING site, the viruses.STRING web interface
provides more information about each protein, which is accessed by clicking on
the node. Similarly, clicking on any edge displays a summary of the information
that contributes to that interaction, and provides links to further inspect the
evidence from each channel. Text mining evidence shows highlighted phrases
from relevant publications, whereas experiments evidence shows the specific
database and publication from which it was obtained.

Example: HIV-1

In this example, we will query for all proteins present in Human Immunodefi-
ciency virus type 1. If the host field on the search page is left empty, the server
will auto detect the host species with the most interactions with the specified
virus, in this case, human. An interaction network will then be shown for the
virus proteins and for the 10 human proteins that have the highest interaction
scores with these virus proteins, as in figure 3. Interaction scores have a cut-off
of 0.4 by default, the same as the main STRING site.

HIV-1 consists of 19 proteins, 10 of which are cleaved from 3 polyproteins.
The polyproteins are translated as a single long protein, and then the long
polyprotein is cleaved by the viral protease into functional protein units. The
database includes 24 proteins as it includes some partial cleavage products, such
as both gp160 and gp120 which is cleaved from gp160.

Cytoscape STRING app

The Viruses.STRING interaction data can also be queried from the Cytoscape
STRING app. This requires version 3.6 of Cytoscape or greater and version 1.4
of the STRING app or greater, which is available for free in the Cytoscape app
store (http://apps.cytoscape.org/apps/stringapp).

The STRING app allows for more flexible queries than the Viruses.STRING
website, such as choosing specific additional host proteins to be included in
the network, and displaying multiple hosts and multiple viruses in the same
network. In addition to the Viruses.STRING interaction data, the app auto-
matically fetches node and edge information, which can be used for further
analysis. The former includes the protein sequence for host and virus nodes,
subcellular localization data from the COMPARTMENTS database for human
proteins, and tissue expression data taken from the TISSUES database for hu-
man, mouse, rat and pig proteins [36]. Edge information includes the combined
confidence score from all channels as a probability that the interaction is true.
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Figure 4 illustrates the combined interaction network for HPV 16 and HPV
1a proteins with the top 50 human proteins they interact with ranked by com-
bined interaction score. Since HPV is known to disrupt the cell cycle [37], many
of the proteins that interact with E6 and E7 are associated with the nucleus and
the GO term for cell cycle. A tutorial to reproduce this network in Cytoscape
is available at http://jensenlab.org/training/stringapp/.

Conclusions

The Viruses.STRING database provides a single unified interface to virus–virus
and host–virus PPIs from text mining and many experimental sources. With a
simple web interface, the database can easily be queried to immediately retrieve
the interaction partners for a protein of interest, and the corresponding evidence
can be inspected. The Cytoscape STRINGapp, although it requires software to
be installed, provides more versatility than the website, and can handle much
larger networks — up to at least as large as the human interaction network. This
provides the researcher with more opportunities to answer interesting biological
questions about viruses and their hosts. For example, the virus–host network
could potentially be used to select candidate host proteins as drug targets to
inhibit virus infection, possibly by repurposing existing drugs. This approach
would likely generate less viral resistance to the drug since the host protein is
being targeted, instead of a viral protein that can mutate easily [38, 14].

As this is the first iteration of Viruses.STRING, there are currently some
limitations to the data. The virus data is provided only at the species level,
with the exception of Dengue types 1–4, even though there is some evidence
that different influenza strains show differential protein interactions [39]. This
fine grained resolution will be added in a future version for those viruses where
sufficient data is available, such as Influenza A.

Text mining reveals many more virus-host PPIs in the literature than have
been collected into databases. The text mining gives good precision and recall
for virus species, and good precision for virus proteins [28]. However, the method
performs less well for virus proteins in terms of recall, meaning that many
interactions may still be missed by this approach [28].

Just as a having a broader view of PPIs has provided a deeper understanding
of cellular function [40], having a similar understanding between pathogens and
their hosts will provide new information to combat clinically and economically
relevant viral infections and diseases.
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Figure 1: Orthology transfer in Viruses.STRING. STRING intra-species inter-
actions are transferred between organisms as shown in panel a: an interaction
between two proteins in species 1 (solid thick line) is transferred to two orthol-
ogous proteins in species 2 (dashed line). Orthology relationships are indicated
by solid thin lines. This relationship is identical to transferring an interaction
between two virus proteins of one virus species to two orthologous proteins in
another virus species. Cross species interactions are handled as one of three
cases — same host to closely related virus (panel b), same virus to closely re-
lated host (panel c), or both a new host and new virus (panel d). Panel e shows
the evolutionary history of a gene that underwent a gene duplication event after
the last common ancestor of chordata, but prior to the last common ancestor
of mammals. There was subsequently a speciation event that resulted in the
duplicated gene being present in both human and mouse. Orthology groups can
be read by following the lines up the tree — at the level of mammalia, the light
and dark genes are in separate orthology groups, but at higher levels, they are
in the same orthology group.
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Figure 2: Interactions in viruses.STRING by species (A) Distribution of exper-
imental (red) and text mining (green) interactions, further divided into direct
(dark colours) and transferred (light colours) evidence. Data shown for the
20 viruses with the most evidence. Evidence is counted as interaction pairs per
channel, such that an interaction that is supported by 3 channels will be counted
as 3 evidences. (B) Number of evidences normalized by the number of proteins
coded for by that virus.
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Figure 3: HIV-1 and Homo sapiens interaction network in viruses.STRING
HIV-1 and Homo sapiens interaction network downloaded as a vector image
from viruses.STRING.
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Figure 4: PV and Homo sapiens interaction network in Cytoscape Proteins from
Human Papillomavirus type 16, and HPV type 1a with their human protein
interaction partners. Virus proteins are coloured according to their species
(dark red: HPV 16, light red: HPV 1a). The human proteins are coloured
in shades of green with darker colours showing a stronger association with the
nucleus. The dark halos around human proteins are those that are associated
with the GO term for cell cycle. The HPV E6 and E7 proteins are known to
interfere with the cell cycle. This analysis shows some of the data exploration
and visualization flexibility that is easily possible within Cytoscape.
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Tables

Table 1: Top GO terms by p-value that are enriched for the human proteins
that interact with any virus protein.

Number of genes FDR p-value GO term
549 2.28E-104 positive regulation of macromolecule metabolic process
718 5.96E-93 positive regulation of cellular process
452 3.02E-91 cell surface receptor signaling pathway
758 7.87E-91 protein binding
779 1.23E-90 positive regulation of biological process
539 1.61E-87 positive regulation of cellular metabolic process
459 3.86E-84 multi-organism process
277 4.56E-82 innate immune response
468 5.27E-82 carbohydrate derivative binding
595 1.99E-81 response to stress
240 2.07E-81 multi-organism cellular process
254 2.4E-81 regulation of immune response
239 2.55E-81 viral process
583 4.17E-81 regulation of response to stimulus
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