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Abstract
It is known that many driver nodes are required to control complex biological networks. Previous

studies imply that O(N) driver nodes are required in both linear complex network and Boolean

network models with N nodes if an arbitrary state is specified as the target. In this paper, we

mathematically prove under a reasonable assumption that the expected number of driver nodes is

only O(log2N +log2M) for controlling Boolean networks if the targets are restricted to attractors,

where M is the number of attractors. Since it is expected that M is not very large in many practical

networks, this is a significant improvement. This result is based on discovery of novel relationships

between control problems on Boolean networks and the coupon collector’s problem, a well-known

concept in combinatorics. We also provide lower bounds of the number of driver nodes as well as

simulation results using artificial and realistic network data, which support our theoretical findings.
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I. Introduction

Boolean network (BN) is a sequential dynamical system composing of a large number of

highly interconnected processing nodes the states of which are updated by Boolean functions

of other nodes and/or itself [1]. It is simple but very efficient in modeling genetic regulation

[2–4], neural networks [5], cancer networks [6], quorum sensing circuits [7], cellular signaling

pathways [8], dynamic games [9], computer design [10], and social networks [11]. Each node

in a BN takes either 0 or 1, where 0 and 1 mean the node is inactive and active, respectively.

Since a BN with N nodes has 2N possible states, it will eventually reach a previously visited

state, thus stay in that state circle, called an attractor.

Among various problems on BNs, control of a BN is particularly important in which the

values of a subset of nodes or external signals are manipulated so as to drive the BN to

a desired state [9, 12–16]. For example, in disease treatment, one may need to conduct

therapeutic intervention that drives the cell state of a patient from a current state to a

desired state such as a benign state, and keep this state afterward. Interventions can be

additional drugs, hormones, or the embedded genes that can be manipulated as the control

variables of the networks [16]. However, it is difficult to give many drugs or to manipulate

many genes in practice. Therefore, it is important to select a small subset of nodes from the

nodes in a given BN so that the BN is driven to a desired state by manipulating the values

of these nodes only. These nodes are called the driver nodes.

Extensive studies have been done on control of BNs [15, 17–20], control of complex

networks with linear dynamics [21–23], and the chariterization of multiagent controlability

from network structures [24, 25]. Recently, semi-tensor product (STP) proposed in [13,

18] has been used widely in various control models of BN [16, 26–31]; the stability and

stabilization have also been considered as an important aspect in control of BNs [32–36].

However, it is known that O(N) driver nodes are required to control linear complex networks

[21] if an arbitrary state is specified as the target, although a single driver node is enough

if the network has a special structure (every node has a self loop) [37]. Another approach

has recently been proposed for control of BNs by restricting the target states to attractors

(see also Fig. 1). Posing such a restriction is reasonable because target states are stable

states in many practical cases, for example, healthy and stable states in disease treatment.

Mochizuki et al. showed that the Feedback Vertex Set (FVS) can be a set of driver nodes if

the targets are attractors [38], where the relationship between singleton attractors and FVS
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was previously found [39, 40]. Zañudo and Albert [41] proposed a method to identify driver

nodes for attractors of a BN irrespective of the updating scheme (synchronous/asynchronous)

and the number of time steps with stable motifs each of which is defined as a set of nodes

that forms a minimal strongly connected component of the network. Concerning the scaling

behavior of the minimum control cost of BNs without structural or temporal constraints,

however, there is not yet a conclusive results in literature. While simulation results suggest

that a small number of driver nodes are enough if the target states are restricted to attractors

[38, 41], results from [14, 20] imply that O(N) driver nodes are required if an arbitrary state

is specified as the target.

FIG. 1: Comparison of Normal Control and Attractor-based Control. Circles denote states

where grey ones are initial states and red ones are targets.

In this paper, we mathematically prove that the expected number of driver nodes is

only log2(N) + log2(M) + 2 if the targets are restricted to attractors, under a reasonable

assumption. Since it is expected that M is not very large in many practical networks, this

is a significant improvement. Even if the number of attractors, M , grows as O(exp(
√
N))

[42], it is still O(
√
N), which is much smaller than O(N). Our theoretical analyses are based

on a discovery of novel relationships between BN control problems and Coupon Collector’s

Problem, a well-known concept in combinatorics. Based on these relationships, we also prove

that the expected number of driver nodes is ln(M lnM) + ln 3 (resp., log2(M lnM) + 2) if

both initial and target states are specified (resp., only a target state is specified). Note

that these numbers are very small. For example, the former number is around 8.06 for

M = 200. Since attractors are often regarded as cell types and the number of cell types

in human is often said to be aounnd 200 [43], these results suggests that control of a small
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number of genes is enough to modify types of cells. The differences on three bounds show

a nontrivial nature of mathematical analyses although all results are based on relationships

with BN control problems and Coupon Collector’s Problem. Furthermore, we provide lower

bounds of the number of driver nodes as well as simulation results supporting our theoretical

findings. In particular, we show that the derived upper bounds are close to the lower bounds

in the average case, whereas the lower bounds are much higher if we consider the worst case.

II. Preliminaries

A. Boolean Networks

A Boolean network G(V, F ) consists of a set of N nodes V = {v1, . . . , vN} and a list of

Boolean functions F = (f1, . . . , fN). The state of vi at time t is denoted by vi(t). The vector

v(t) = (v1(t), . . . , vN(t)) denotes the state of the BN at time t. The Boolean function for

node vi is a logical combination of ki (called in-degree) variables in form of fi(vi1, . . . , viki)

where vi1, . . ., viki are ki input nodes of vi. Then the state of node vi at time t + 1 is

vi(t + 1) = fi(vi1(t), . . . , viki(t)), or equivalently, vi(t + 1) = fi(v(t)). The state of the

(synchronous) BN is determined by v(t + 1) = f(v(t)). If v(t + r) = f r(v(t)) = v(t), then

{f j(v(t))} (j = 1, . . . , r) is called an attractor of length r. Additionally, the basin of an

attractor is defined as the set of states leading the system to the attractor. We denote the

number of basins (i.e., the number of attractors) by M , and the set of states in the ith basin

by Ai. Starting from any initial state, a BN eventually falls into one of its attractors (Fig.

2). For two states vi and vj, d(vi,vj) denotes the Hamming distance between vi and vj

(i.e., the number of distinct bits).

B. Problem Definitions

We consider the minimum driver set problem for a BN [14], which is defined as follows.

We are given a BN, an initial state v0, and a target state vT , where the target time step

may or may not be given. Then, a subset U of V is called a set of driver nodes (a driver set,

for short) if there exists a sequence of states of U that drives the BN from v0 to vT (if the

time step is specified, the BN must take state vT at the specified time step). If the number

of elements in U is the minimum among such sets, U is called the minimum driver set. The

task is to find this minimum driver set. Note that there always exists a solution: if we let

U = V , U is a driver set (although it is not necessarily the minimum). A sequence of states

given to U corresponds to a sequence of control signals.
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(a)

v1(t+ 1) = v2(t)

v2(t+ 1) = v1(t) ∨ v2(t)

v3(t+ 1) = v2(t) ∧ v3(t)

v4(t+ 1) = v1(t) ∧ v4(t)

(b)

t v1 v2 v3 v4

0 0 0 0 0

1 1 0 0 0

2 0 1 0 1

3 1 1 0 0

4 1 1 0 1

(c)

t v1 v2 v3 v4

0 0 0 0 0

1 0 0 1 0

2 0 0 1 0

3 0 0 1 0

(d)

FIG. 2: Examples of a BN and its control. (a) Basins & state transitions. (b) Boolean

transition rules. (c) BN control: state 0000 to basin 3. (d) BN control: state 0000 to basin

2.
In this paper, we focus on the case where the target state is any state in the specified

attractor and the control is given only at time step 1. Then, it is enough to drive a BN to

any state in the target basin since the BN then falls into the target attractor. For example,

in Fig. 2(c), the initial state is 0000 and the target state is 1101. If we let v1(1) = 1, the BN

reaches 1101 at t = 4 and stays in the third attractor. In Fig. 2(d), the initial state is 0000

and the target state is 0010. If we let v3(1) = 1, the BN reaches 0010 at t = 1 and stays in

the second attractor. In both cases, we need to change the state of 1 node (i.e., 1 bit), where

{v1} and {v3} correspond to the minimum sets of driver nodes, respectively. Therefore, the

number of driver nodes is 1 in both cases. However, if we are requested to drive the BN to

any attractor using the same set of driver nodes, the minimum set of driver nodes is {v1, v3}.

In these examples, we assumed that the state at t = 1 is determined only by flipping some
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bits in a driver node set, for the sake of simplicity. However, all the results in this paper

hold if we modify the formulation so that state transition and control are applied at the

same time step, where application of a control is limited to step 1.

As mentioned above, a minimum driver set may or may not depend on a target state.

Similarly, it may or may not depend on an initial state. Therefore, we consider the following

three problems.

Problem 1 [Attractor-dependent Control]

Instance: a BN with N nodes, an initial state, a target basin.

Output: a minimum set of driver nodes with which we can steer the BN to the basin in one

control.

Problem 2 [Attractor-independent Control]

Instance: a BN with N nodes, an initial state.

Output: a minimum set of driver nodes with which we can steer the BN to any basin of the

BN in one control.

Problem 3 [Anycast Control]

Instance: a BN with N nodes.

Output: a minimum set of driver nodes with which we can steer the BN from any initial

state to any basin of the BN in one control.

C. Coupon Collector’s Problem

Coupon Collector’s Problem (CCP) is a random allocation problem in probability theory

describing "collect all coupons and win" game. Assume there areM coupons in an urn, each

with a probability Pi(i = 1, . . . ,M) to be collected. In each trail, you can draw one coupon,

and then put it back to the urn. CCP describes at least how many trials are needed to have

i collections (i different coupons have been collected in history). If i = M , then you achieve

a full collection.

III. Theoretical Results

A. Upper Bounds via Coupon Collector’s Problem

We analyze three problems independently and then compare their results. Our common

idea is that the structure of a BN has already been embedded in the generation of the basins

of attractors, therefore by considering driving the BN to basins, we take into account the

topology and dynamic processes together tactfully. Our theoretical results are based on a
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discovery of novel relationships between the three problems and CCP, each in a different

way. Basically, we associate each state of a BN to a type of coupon so that states in the

same basin have the same type, and then analyze how many bits should be flipped in order

to have a specified coupon or all coupons. However, it is difficult to analyze three cases in

a unified way and thus we consider three cases separately.

Although we assume in most parts of theoretical analysis that the basins are obtained by

a random partition of 2N states into M sets of the same size, the restriction of the size will

be considerably relaxed, to be stated in Corollary 1.

Theorem 1. Assume that the basins are obtained by a random partition of 2N states into

M sets of the same size. Then, for M ∈ [3, 1.44N ] with sufficiently large N , the ex-

pected minimum number of driver nodes in Attractor-dependent Control is bounded above

by ln(M lnM) + ln 3.

Proof. We formulate the Attractor-dependent Control problem as CCP. Let v0 be the initial

state. Without loss of generality, we assume v0 is a vector of bits whose values are all 0.

Let k = maxj∈{1,...,M}minv∈Aj
d(v0,v). It means that there exists at least one state with at

most k bits value 1 in each basin and thus this k gives the minimum number of driver nodes

in Attractor-dependent Control.

We sort the N -bit states in the following order (i.e., increasing order of the number of

1s):

00000

00001

00010

...

10000

00011

00101

...
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...

00111

...

Then, each vector is considered as a coupon belonging to one of M types where the type is

essentially differentiating which basin that state belongs to. We draw coupons in the above

order. Suppose that after drawing the hth coupon, we have all M types. Then, the number

of 1s in the hth coupon gives k.

It is well-known that the expected number of trials to have a full collection of allM types

of coupons is

MHM = M(lnM + γ +
1 + o(1)

2M
)

if all types are being collected equally likely [44]. Here HM is the Mth harmonic number,

γ ≈ 0.5772156649 is the Euler-Mascheroni constant. When M ≥ 2, we have

MHM < M(lnM + 1) < 3M lnM.

Note that the probability of drawing a coupon of a new type is increasing actually because

we draw coupons by following the above list without replacement. As a result, the number of

trials needed to have a full collection is actually smaller than MHM , which further indicates

that we are deriving an upper bound.

Here we recall that there exist M basins. Although one basin is specified in Attractor-

dependent Control, one of the elements of this basin must be included in the set of states

with at most k 1s if the size of a driver set is k (since we are assuming that v0 is the zero

vector). Furthermore, in order to have at least one state from any specified basin, 3M lnM

states are needed in the average case. Since the number of states with at most k 1s is

1 +N +

(
N

2

)
+ · · ·+

(
N

k

)
,

we have a required driver set if

1 +N +

(
N

2

)
+ · · ·+

(
N

k

)
≥ 3M lnM (1)

holds. Of course, the expected number of driver nodes does not exactly correspond to the

expected number of coupons. However, since the probability that the number of trials needed

8
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to cover all coupons is larger than 3M lnM is quite small [45], it is enough that InEq. (1)

is satisfied.

Since
(
N
k

)
≤ (N

k
)k holds, InEq. (1) is satisfied if the following is satisfied

(
N

k
)k ≥ 3M lnM. (2)

By taking logarithm of both sides of this inequality, we have

k(lnN − ln k) ≥ ln(3M lnM).

Here, we assume k ≤ N
e
, where e is the base of the natural logarithm. Then, we have

k(lnN − ln k) ≥ k(lnN − (lnN − 1)) = k.

Therefore, InEq. (2) (and thus InEq. (1)) is satisfied if

k ≥ ln(3M lnM) = ln(M lnM) + ln 3

is satisfied.

In order to ensure the existence of such k,

ln(3M lnM) ≤ N

e

must be satisfied because we assumed k ≤ N
e
. Suppose that M < αN holds for some

α < e(1/e). Then, we have

3M lnM < 3αN ln(αN) = (3N lnα)αN .

Since (3N lnα)αN < (e(1/e))N holds for sufficiently large N for any positive constant α <

e(1/e),

ln(3M lnM) < ln
(
(e(1/e))N

)
=

N

e

holds for sufficiently large N for any positive constant α < e(1/e). Therefore, the theorem

follows from 1.44 < e(1/e).

Theorem 2. Assume that the basins are obtained by a random partition of 2N states into

M sets of the same size. Then the expected minimum number of driver nodes in Attractor-

independent Control is bounded above by log2(M lnM) + 2.
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Proof. As in the proof of Theorem 1, we formulate the Attractor-independent Control prob-

lem as CCP. Since we need to use a fixed set of driver nodes for all attractors, we consider

the different ordering of the N -bit states. We sort these states in the increasing order of

their values (see also Fig. 3):

00000

00001

00010

00011

00100

00101

...

Again, each vector is considered as a coupon belonging to one ofM types. We draw coupons

in the above order. Let τ be the number of states needed to collect all M labels. We can

see from the ordering that the first N − dlog2(τ)e bits of all vectors until τ are all 0, which

means that it is enough to control the last dlog2(τ)e bits. As in the proof of Theorem 1, the

expected number of τ is upper bounded by 2M lnM . Since E[log2(X)] ≤ log2(E[X]) holds

from Jensen’s inequality, we have

E[dlog2(τ)e] ≤ E[log2(τ) + 1]

≤ log2(E[τ ]) + 1

≤ log2(2M lnM) + 1

= log2(M lnM) + 2.

Theorem 3. Assume that the basins are obtained by a random partition of 2N states into

M sets of the same size. Then, for M < 1.587N , the expected minimum number of driver

nodes in Anycast Control is bounded above by dlog2(N) + log2(M) + 2e for sufficiently large

N .
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FIG. 3: Attractor-independent Control formulated as CCP: M = 4 as an example.

Suppose all 2N states are balls in an urn (left). Colors yellow, red, blue, green of the balls

are labels showing the ball belongs to basin 1,2,3,4, respectively. In each trial, we draw a

ball, record its label, and then put it back to the urn. Draw results are shown in the table

(right). It shows that in the tenth draw, it is the first time we have drawn balls from all 4

basins in history. Given v0, we can drive v0 to any of these 10 states in one control by the

first dlog2(10)e bits of v0. Notice that dlog2(10)e < log2(M lnM) + 2 with M = 4 which is

consistent with Theorem 2.
Proof. We divide N bits to the first H bits and the remaining L bits, where the last L bits

are used for control (H + L = N). For any bit vector (i.e., state of a BN) v of size N , vH

and vL denote bit vectors consisting of the first H bits and the last L bits, respectively.

Namely, v = vHvL. Although this partition is similar to that of the proof of Theorem 2, we

cannot assume that the first H bits are all 0 since we are considering arbitrary initial states.

If every basin Ai contains states whose first H bits cover all 2H bit patterns (i.e.,

(∀Ai)(|{vH |v ∈ Ai}| = 2H)), we can drive any initial state to any basin. Therefore, we

determine H so that this property (denoted by property (#)) holds with high probability.

Let T be the number of trials needed to collect all M coupons. It is known that T >

βM lnM holds with probability at mostM−β+1, if each type of coupon is selected uniformly

at random (see Section 3.6 of [44]).

We relate Anycast Control with CCP. Different from the previous problems. we regard

the first H bits of each state as a type of coupon. If each basin contains all 2H type coupons,

(#) holds.

Suppose that |Ai| ≥ 3 · 2H ln(2H) holds, where H and L are determined so that this

condition is satisfied. We regard the first 3 · 2H ln(2H) vectors of each Ai as coupons. Then,
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the probability that there is a missed coupon in a basin Ai is at most (2H)−β+1 = 2−2H ,

where β = 3. Since there exist M basins, the probability that (#) does not hold is at most

M

22H
.

Hereafter, we assume M < 2αN and H > (1− β)N (i.e., L < βN), where α, β > 0 are to be

determined later. Then, we have
M

22H
<

2αN

22(1−β)N .

If (#) is not satisfied, we use all N bits as driver nodes. However, contribution of such a

factor to the expected number is less than

N2αN

22(1−β)N .

Therefore, we focus on the case where (#) holds.

In order to satisfy the assumption of |Ai| ≥ 3 · 2H ln(2H), the following inequality must

be satisfied:

3 · 2H ln(2H) ≤ 2N

M

since |Ai| = 2N/M holds. By taking logarithm of both sides, we have

N ≥ log2(M) + log2(3) +H + log2(H) + log2(ln(2)),

N ≥ log2(M) + log2(3) +N − L+ log2(N − L) + log2(ln(2)),

L ≥ log2(N − L) + log2(M) + δ,

where δ = log2(3) + log2(ln(2)) < 2. The last inequality holds if the following holds:

L ≥ log2(N) + log2(M) + δ.

Therefore, the number of driver nodes is bounded above by

dlog2(N) + log2(M) + δe+
N2αN

22(1−β)N ≤

dlog2(N) + log2(M) + 2e

for sufficiently large N if the following are satisfied

α < 2(1− β),

α < β,

where α < β comes from dlog2(N) + log2(M) + 2e < βN . By solving 2(1− β) = β, we have

β = 2/3 and α < 2/3. Since 22/3 > 1.587, we have the theorem.
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Here we note that ln(M lnM)+ ln 3 < log2(M lnM)+2 < dlog2(N)+ log2(M)+2e holds

for M ≤ 2N . This is consistent with the difficulties of the three problems.

Although we assumed in the above that all basins have the same size, this restriction can

be considerably relaxed by adding a constant factor. We show this result only for Anycast

Control since it is most general.

Corollary 1. Assume that the basins are obtained by a random partition of 2N states into

M sets where each basin has size at least 2N/(cM) (c ≥ 1). Then, for M < 1.587N , the

expected minimum number of driver nodes in Anycast Control is bounded above by dlog2(N)+

log2(M) + 2 + log2(c)e for sufficiently large N .

Proof. In the proof of Theorem 3, we assumed that the size of each basin is 2N

M
and thus we

had a condition of

3 · 2H ln(2H) ≤ 2N

M
.

Here, we replace 2N

M
with 2N

cM
where c ≥ 1. Then, the following condition must be satisfied:

3 · 2H ln(2H) ≤ 2N

cM
.

As in the proof of Theorem 3, we have

L ≥ dlog2(N) + log2(M) + δ + log2(c)e

from which the corollary follows.

B. Lower Bounds

We can also show lower bounds of the number of driver nodes for all three problems.

For Attractor-independent Control and Anycast Control, log2(M) is a trivial lower bound

because at least log2(M) bits are required to differentiate M basins.

Proposition 1. For any BN with M attractors, the number of driver nodes in Attractor-

independent Control and Anycast Control is bounded below by log2(M).

For Attractor-dependent Control, we can change driver sets depending on target attrac-

tors. Therefore, we need another analysis method.

Proposition 2. For any BN with M attractors, the number of driver nodes in Attractor-

dependent Control is bounded below by logN(M).
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Proof. Let v0 be the initial state. Without loss of generality, we assume v0 is a vector of bits

whose values are all 0. Let k = maxj∈{1,...,M}minv∈Aj
d(v0,v). It means that there exists at

least one state with at most k bits value 1 in each basin. Then the number of such states is

bounded above by

1 +N +

(
N

2

)
+ · · ·+

(
N

k

)
< Nk.

Since the number of states can be produced by driver nodes must be larger than the number

of basins to make it possible to drive v0 to all basins, we have

Nk ≥M

or equivalently

k ≥ logN(M).

These results suggest that the bounds shown in Theorems 1, 2, and 3 cannot be

significantly improved. Recall that it is assumed in all three problems that control is given

only at t = 1.

In the above, we considered the expected number of driver nodes. If we consider the

worst case, a much larger number of driver nodes are required as shown below.

Proposition 3. Suppose that N is even. Then, the minimum number of driver nodes in

Attractor-dependent Control is lower bounded by (N/2) + 1 in the worst case even if M = 2

and two basins are of equal size.

Proof. We partition the set of 2N states into two basins A1 and A2 such that A1 consists

of states each of which has at most N/2 1s and consequently A2 consists of states each of

which has at least N/2 + 1 1s. Suppose that the initial state consists of N 0s (i.e., every bit

is 0) and the target basin is A2. Then, the minimum Hamming distance between the initial

state and the states in A2 is (N/2) + 1. Therefore, the proposition holds.

Since Attractor-dependent Control is the easiest among the three problems, this worst

case lower bound holds also for Attractor-independent Control and Anycast Control. It is

to be noted that the number of driver nodes is trivially upper bounded by N . Therefore,

this proposition justifies the assumption of considering the average case.
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C. Max-min Analysis Method

We can analyze the minimum number of nodes in Attractor-independent Control without

using CCP and can get a more accurate bound if we adopt an assumption that each basin

is an independently selected multi-set of size 2N/M whose elements are randomly selected

from {0, 1}N . It follows from this assumption that dj ∼ B(N, 1
2
), ∀j = 1, . . . ,M , where dj

is the Hamming distance between a randomly selected initial state v0 to a state in the jth

basin, and B(N, p) denotes the binomial distribution for N trials with success probability p.

To be shown later, this assumption is supported by computer experiments, and the resulting

bound better explains the results of computational experiments.

Theorem 4. The expected minimum number of driver nodes of Attractor-dependent Control

is N −
∑N−1

x=0

(
1−
(∑N

k=x+1

(
N
k

)
(1
2
)N
)m)M , if each basin is an independently selected multi-

set of size 2N/M whose elements are randomly selected from {0, 1}N .

Proof. Recall that dj ∼ B(N, 1
2
). By assumption, |Aj| = 2N

M
, denoted as m. Then d(v0,v)

∀v ∈ Aj is m times repetitive binomial trials. Let the results of all trials be dj1, dj2, . . . , djm
and the order statistics be

dj(1) ≤ dj(2) ≤ . . . dj(m).

The first order statistics dj(1) = minv∈Aj
d(v0,v). Its cumulative distribution function

(CDF) is given by

Fj(1)(x) = P{dj(1) ≤ x} = 1− P{dj(1) > x} = 1− [1− F (x)]m

= 1−
(∑N

k=x+1

(
N
k

)
(1
2
)N
)m

.

Therefore, for dj where j = 1, . . . ,M , we have d1(1), . . . , dM (1). For convenience, we

denote these random variables as ξ1, . . . , ξM . Their order statistics is given by

ξ(1) ≤ ξ(2) ≤ ξ(M).

Then the last order statistic ξ(M) = maxj minv∈Aj
d(v0,v). Its CDF is given by

Fξ(M)
(x) = P{ξ(M) ≤ x} = P{∀iξ(i) ≤ x} = (Fj(1)(x))M

=

(
1−

(∑N
k=x+1

(
N
k

)
(1
2
)N
)m)M

.
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Note that we can calculate the expected value of a non-negative random variable X by

using its CDF F (X),i.e., E[X] =
∑∞

x=0(1− F (x)) because

E[X] =
∑∞

k=0 kP(X = k) =
∑∞

t=1

∑∞
k=t P(X = k)

=
∑∞

t=0 P(X > t) =
∑∞

t=0(1− P(X ≤ t)).

Therefore, we can further give the expected number of maxj minv∈Aj
d(u,v) as

E[ξ(M)] =
N−1∑
x=0

(
1−

(
1−

( N∑
k=x+1

(
N

k

)
(
1

2
)N
)m)M)

= N −
N−1∑
x=0

(
1−

( N∑
k=x+1

(
N

k

)
(
1

2
)N
)m)M

. (3)

D. Non-Uniform Basin Size Distributions

We can extend our result on Attractor-independent Control for arbitrary basin size dis-

tributions by utilizing a known result on CCP with arbitrary probability distributions [46].

It has been proved in [46] that the expected number of trials CM needed to have a full

collection of M different coupons is

E[CM ] =

∫ ∞
0

(1−
M∏
i=1

(1− e−Pit))dt (integral form) (4)

or

E[CM ] =

j−1∑
q=0

(−1)j−1−q
(
M − q − 1

M − j

)∑
|J|=q

1

1− PJ

with PJ =
∑
j∈J

Pj (combinatorial form)
(5)

where Pi is the probability of collecting the ith coupon, J ∈ Ω, and Ω = {1, 2, . . . ,M}. By

using this result, we have:

Theorem 5. The expected minimum number of driver nodes in Attractor-independent Con-

trol for an arbitrary basin distribution is bounded above by log2(E[CM ]) + 1.

Proof. We associate the minimum of driver nodes in Attractor-independent Control to CCP

as in the proof of Theorem 2, with letting Pi = |Ai|/2N . Then, in the same way, the expected

minimum number of driver nodes needed to drive the BN to any one basin is bounded above

by log2(E[CM ]) + 1.
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Since “+1” factor in log2(E[CM ]) + 1 is rather an overestimation, we use log2(E[CM ]) in

computational experiments.

To be discussed in Section IV, we empirically find that the distribution of the basin

size follows a power-law. Therefore, we consider the case where the basin size follows a

power-law.

It has been shown in Example 4.4 in [47] that if the probability of picking the ith coupon

follows a power-law i−b (b > 0), the expected number of trials needed for a full collection is

E[CM ] ∼M lnM/(1− b) for 0 < b < 1,

E[CM ] ∼M ln2M for b = 1,

E[CM ] ∼ζ(b)M b lnM for b > 1

(6)

by letting r in [47] equal to 1, where ζ(·) denotes the Riemann zeta function.

It has been shown that any process generating Zipf rank distribution would also have

a power-law probability density function (see Appendix 2 in [48]) as outlined below. The

relationship between these two is that if X follows a power-law P[X = x] ∼ x−a then it would

also have the rth ranked variable Xr satisfying E[Xr] ∼ Cr−b where a = 1+(1/b). Therefore,

we can apply Eq. (6) to the case when the basin size follows power-law distribution P[X =

x] = Cx−a.

Then, we can apply the analysis method used in the proof of Theorem 2 and obtain the

following upper bounds:

O(log2(M lnM/(1− b))) for b > 2,

O(log2(M ln2M)) for b = 2,

O(log2(ζ(b)M b lnM)) for 1 ≤ b < 2,

(7)

where b = 1/(a− 1).

IV. Computational Experiments

A. Data

The BNs we used for simulation comprise of random BNs and realistic BNs. Random

BNs are generated by using C and R programming languages, including random NK-BNs

(BNs with N nodes and the in-degree is bounded by K) and random scale-free BNs with γ

in different values. There are four realistic BNs constructed from real-valued gene measure-

ments: yeastTS net is a BN with two attractors constructed from real-valued time series
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data of four preselected genes from the yeast cell cycle [49]; cellcycle net is a BN with 10

genes and two attractors constructed from mammalian cell cycle network introduced by [3];

budding net is a BN model of the control of the budding yeast cell cycle regulation from

[50] with 12 genes and seven attractors; flower net is a BN model of the control of flower

morphogenesis in Arabidobis thaliana from [51] with 15 genes and 10 attractors.

B. State and Basin Size Distributions

In Theorem 4, we assumed that the distance between an initial state and the states in

each basin follows a binomial distribution: dj ∼ B(N, 1
2
), ∀j = 1, . . . ,M . It is supported by

computer experiments as follows. Firstly, we generated random BNs and identified all basins

by applying depth-first-search. Next, for a randomly selected initial state v0, we calculated

the Hamming distance between v0 and all other states. Interestingly, the distribution of

d(v0,v) for v ∈ Aj with a fixed j is found to be binomially distributed with p ≈ 1
2
(Fig.4).

Therefore, we hypothesize that dj ∼ B(N, 1
2
). This empirical finding also supports the

assumption of random partition in Theorems 1, 2, and 3.

Basin 4, size=1500 Basin 5, size=128 Basin 6, size=80

Basin 1, size=313123 Basin 2, size=503394 Basin 3, size=230350
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FIG. 4: Distribution of dj in a BN of N = 20 and M = 6 as an example. In each basin, the

larger the basin is, the more the dj follows binomial distribution with p = 1
2
.

We also found empirically that the basin size follows a power-law distribution. We exam-

ined both random BNs with N = 20 and K = 3 (maximum in-degree) and scale-free BNs of

N = 20 and γ = 2.5 (in-degree distribution). The results are shown in Fig. 5, from which

we can see that the basin size follows a power-law. Berdahl et al. had similar findings on

NK-BNs [52]. Specifically, we investigated the log-log plots of the distribution of basin size

and found that the slopes for those BNs with maximum in-degree (bound = 3) are −1s (error

tolerance 0.05), but for those of scale-free BNs are more diverse in [−3,−1] with more than
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60% around −2 (error tolerance 0.05). Recall that a power law distribution has a probability

distribution function of P[X = x] ∼ x−a where −a is the slope of the corresponding log-log

plot because log(y) = log(C)− a log(x) for a power law y = Cx−a. Therefore, we can make

an estimation suggestion that the expected number of driver nodes needed to drive the BN

to all basins can be estimated as O(log2(ζ(b)M b lnM)) and O(log2(M ln2M)) for BNs with

the maximum in-degree K (K ≤ 3) and for those scale-free BNs, respectively.

FIG. 5: Distribution of basin size (BNs of N = 20 as examples). First row: on BNs with

N = 20 and K = 3 (max in-degree). Second row: on scale-free BNs with N = 20 and

γ = 2.5. Left: Linear scale histogram of the distribution of basin size. Right: log-log scale

plot of the distribution of basin size with red lines denoting fitting lines (slope: -0.98(1st

row), - 1.60(2nd row)). Data are obtained from 250 random BNs of each type.
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C. Results on the Number of Driver Nodes

Fig. 6 visualizes our key results that Attractor-dependent Control, Attractor-dependent

Control, and Anycast Control are in the order of increasing the minimum control cost (i.e.,

the minimum number of driver nodes). Additionally, regarding the Attractor-dependent

Control, we generated random BNs for 2,000 times and compared the ξ(M) of each simulated

BN with the expectation given by Eq. (3). We also analyzed 4 realistic BNs and calculated

the corresponding value of ξ(M). Results show that Eq. (3) gives reliable results of the

minimum number of driver nodes for both random BNs and realistic BNs (see Fig. 6),

illustrating the feasibility of taking the minimum set of driver nodes for the control of

gene regulatory networks. Although the results of simulated BNs are a bit larger than the

expectation given in Eq. (3) due to the constraints on in-degree bound, the error is small

and tolerable. Meanwhile, the upper bounds given in Theorems 1, 2, 3 and the lower bound

of logN(M) serve as good boundaries for Eq. (3).

FIG. 6: Comparison of the number of driver nodes between simulation and theoretical

results. “attr”, “UB”, “LB” are short forms of “attractor”, “upper bound”, “lower bound”,

respectively.

Meanwhile, it shows that CCP is a very good model to formulate this problem. Firstly,

we generated random BNs. Next, we drove the BN from a random initial state to all basins

with the least number of bits (denoted as di in the ith simulation) for 1000 simulations.

The value of di was obtained as follows. For di = 1, . . . , N , we checked all combinations of
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di bits in v0 to see if we could drive the BN from v0 to all basins with these di bits. We

returned di if it succeeded, otherwise we increased di by 1. Then we compared the average,
1

1000

∑1000
i=1 di, with log2 (E[CM ]). As shown in Fig. 7, log2 (E[CM ]) provides a very good

prediction on the number of driver nodes (error ≤ 1), indicating that CCP is a very good

model to formulate this problem. Note that although N is small, we are considering all 2N

states in each simulation, which we think is enough to elucidate the comparison.

Recall that we give the formula of E[ξ(M)]. Fig. 6 shows that log2 (E[CM ]) provides a good

upper bound of E[ξ(M)]. The number of driver nodes calculated by log2 (E[CM ]) is greater

than that by E[ξ(M)] because the bits selected in the Attractor-independent Control have to

be specified (fixed) to drive the BN to all basins but it is not in the Attractor-dependent

Control.

FIG. 7: Number of driver nodes obtained by random BNs and that by CCP. First row: dot

plots and fitting surfaces of simulation results (left), Eq. (4) (right). Bottom left: overlap

of figures in the 1st row. Bottom right: connected by colorful segments, black squares and

colorful dots denote the results obtained from simulated BNs and Eq. (4), respectively.

V. Conclusion

In this paper, we theoretically showed under a reasonable assumption that only a small

number of driver nodes are required for controlling Boolean networks if the targets are re-

stricted to attractors. This result explains previous empirical findings [38, 41] and suggests

that control of biological networks might not be so difficult if the targets are steady states.
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We also performed computational experiments using artificial networks and realistic bio-

logical networks for verifying our theoretical findings. In addition, we pioneered the idea

of formulating the minimum control cost-related problem to Coupon Collector’s Problem,

which might be useful for further studies on the minimum driver set problem for other

mathematical models of biological networks. The Max-min Analysis Method is utilized to

get a more accurate bound in Attractor-independent Control problem, while the difficulties

of applying such method in another two problems lie in the complexity of their asymptotic

forms.

We focused on the cases in which control is applied only at t = 1. This assumption is

reasonable since giving heavy controls (e.g., change of gene expression values) at many time

steps is not feasible. However, if we allow control operations at multiple time steps, the

obtained bounds might be improved. Such an improvement is left as an open problem. We

have assumed that the structure of a BN has already been embedded in the generation of

the basins of attractors, However, clarifying the relationship between the structure of a BN

and the distribution of basins is also important but difficult, and thus is left as future work.
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