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Accurate estimation of recombination rates is critical for studying
the origins and maintenance of genetic diversity. Because the in-
ference of recombination rates under a full evolutionary model is
computationally expensive, an alternative approach using topologi-
cal data analysis (TDA) has been proposed. Previous TDA methods
used information contained solely in the first Betti number (β1) of the
cloud of genomes, which relates to the number of loops that can be
detected within a genealogy. While these methods are considerably
less computationally intensive than current biological model-based
methods, these explorations have proven difficult to connect to the
theory of the underlying biological process of recombination, and
consequently have unpredictable behavior under different perturba-
tions of the data. We introduce a new topological feature with a natu-
ral connection to coalescent models, which we call ψ. We show that
ψ and β1 are differentially affected by changes to the structure of
the data and use them in conjunction to provide a robust, efficient,
and accurate estimator of recombination rates, TREE. Compared to
previous TDA methods, TREE more closely approximates of the re-
sults of commonly used model-based methods. These characteris-
tics make TREE well suited as a first-pass estimator of recombina-
tion rate heterogeneity or hotspots throughout the genome. In addi-
tion, we present novel arguments relating β1 to population genetic
models; our work justifies the use of topological statistics as sum-
maries of distributions of genome sequences and describes a new,
unintuitive relationship between topological summaries of distance
and the footprint of recombination on genome sequences.

Recombination is a fundamental source of genetic variation
in many natural populations. By bringing existing mutations
into novel genomic backgrounds, recombination can acceler-
ate the rate at which adaptation occurs, as well as prevent the
buildup of deleterious variants which occurs in asexuals via
Muller’s ratchet (1–3). It is therefore critical to measure the
rates of recombination in order to understand rates of adapta-
tion. Resolution along the genome is also an important factor,
as recombination rates are known to vary substantially along
chromosomes. In particular, hotspots of recombination have
been found associated with a variety of sequence and structural
motifs in natural populations (4–8). In addition to hotspot de-
tection, better estimation techniques for recombination rates
can also improve our understanding of observed levels of link-
age disequilibrium in genome data (9), and consequently the
expected signatures of various evolutionary phenomena such
as selective sweeps and epistatic interactions (10).

In practice, detecting genome-wide heterogeneity in recom-
bination rates is challenging. Empirical approaches require

building linkage maps through involved procedures such as
sperm typing or multi-generational genetic crosses (11). While
these are often the most powerful methods for detecting re-
combination, they are costly and time consuming. With the
recent influx of large-scale sequencing data, alternative al-
gorithmic approaches to inferring recombination rates from
bulk genomic data have become a focus of attention. These
methods, while often faster, have come with their own set of
technical challenges. In order to detect patterns and rates of
recombination along a genome, model-based algorithms infer
properties of the ancestral recombination graph (ARG), an exer-
cise which can be prohibitively computationally expensive on
large datasets (12). This problem has driven the development
of methods which use either a variety of summary statistics
built on quantities such as the distribution of pairwise differ-
ences (13), or only compute partial or composite likelihoods,
such as LDhat and its sister LDhelmet, two of the most widely-
used model-based methods (14, 15). Even with this relaxation,
these methods can take a matter of days to run on realistically
sized sequence data.

In this paper, we present a method that takes advantage of
novel summary statistics based on topological features of the
genomes in a given sample to quickly and accurately provide
estimates of recombination rate heterogeneity. Our method
differs from existing model-based methods in that it is based
solely on distances between sequences and consequently scales
significantly better on large datasets. We find that a topologi-
cal data analysis (TDA)-based approach greatly increases fea-
sibility of the inference problem and implicitly ties genetic
distances to modern models of population genetics via the
coalescent (see Coalescent Intuition for Topological Statistics).

Recently, Camara et al. demonstrated the utility and effi-
ciency of topological data analysis to inference of recombina-
tion rates (16), benchmarked against the methods of Hudson
and Kaplan, Myers and Griffiths, and Chan et al. (15, 17, 18).
They focused on a topological feature known as the first Betti
number (β1, explained in Background on Topological Data
Analysis), which captures the number of cycles in an ARG,
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the canonical graphical representation of recombination events.
We have found that another topological feature of lower dimen-
sion, which we call ψ, is a better predictor of recombination
rate in genomes. Moreover, ψ and β1 used in tandem pro-
vide much more accurate estimates than previous TDA-based
methods. We investigate these two topological features and
their relationships to evolutionary quantities of interest - in-
cluding recombination rate as well as coalescent tree length -
and describe a method of estimating recombination rates from
genome samples using these features. We then compare the
performance of our estimator on whole-genome data to LD-
Helmet; we find that our results justify the use of the TDA
estimator as a rapid approximation method.

Background on Topological Data Analysis

Topological data analysis (TDA) is a new branch of statistics
that applies tools from algebraic topology to describe the shape
of data (19–23). TDA has been successfully applied to a range
of applications in biology, including the study of breast cancer
transcriptional data for the discovery of a cancer subgroup (24),
the construction of phylogenetic trees for analyzing tumor evo-
lutionary patterns (25), and the detection of intrinsic structure
in neural activity (26). In this section, we briefly review the
relevant TDA methodology that we apply to the study of re-
combination. (For a more detailed review of TDA applications
in genomics, see (27).)

TDA associates topological summaries to data sets using a
novel invariant called persistent homology (19–23). We begin
by giving a brief explanation of homology; note that herein,
homology refers to a mathematical concept rather than a biolog-
ical one. Homology refers to a family of ways of associating
an algebraic object (i.e., a vector space) to a geometric ob-
ject. For example, the zeroth homology, H0, is associated with
the number of unique connected components (0-dimensional
holes) in the data, such as independent points or groups of
connected points. The first homology, H1, captures cycles or
loops (1-dimensional holes) in the data, the second homology,
H2, captures voids or hollow spheres (2-dimensional holes) in
the data, and so on. The rank of the ith dimensional homol-
ogy group is known as the ith Betti number, denoted βi, and
roughly speaking it encodes the number of i-dimensional holes
in the dataset (19–23).

For example, a figure-8 consists of a single connected com-
ponent (all the points in the boundary of the figure are con-
nected) and two loops, so for this shape β0 = 1, β1 = 2, and
βk = 0 for k > 1. In contrast, a basketball is one connected
component (all points on the surface are connected) with one
hollow sphere and no loops so its associated Betti numbers
are β0 = 1, β1 = 0, β2 = 1, and βk = 0 for k > 2. To see
why β1 = 0 for this example, consider any loop on the basket-
ball and fix some point p on the surface of the ball. Without
breaking the loop, it’s possible to slide the loop in a continuous
manner (while remaining on the ball) towards p until even-
tually the loop contracts to p. Consequently all loops on the
basketball are trivially equivalent to a point, i.e. β1 = 0.

(a) Sample genealogy without recombination and corresponding
dimension-0 barcode diagram for sequences at the terminals, with
the time to a coalescence event given three and two remaining lineages
labeled.

(b) A sequence of Vietoris Rips complexes for an increasing sequence
of distance parameters on a set of arbitrary data.

(c) Sample ARG with recombination event represented by the loop
in red, and corresponding dimension 0 and dimension 1 barcode di-
agrams, assuming sampling throughout the graph rather than just at
the terminals. We note that the H0 bar lengths no longer have a
straightforward coalescent interpretation under this sampling scheme.

Fig. 1. Persistent homology applied to genealogies in the
absence and presence of recombination.

While shapes and surfaces have well-defined homology
groups, computing the homology of data is less straightforward.
If one were to directly compute the homology of a dataset
consisting of N distinct data points directly, the resulting Betti
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numbers would be β0 = N and βk = 0 for k > 0, since
the data has N connected components (that is, distinct points)
and no higher dimensional holes. In this context the Betti
numbers are clearly non-informative. Consequently, in data-
driven tasks we instead seek to uncover the underlying shape
on which the data lie and then compute the homology of that
shape (19, 21, 23). Algorithmically, this procedure is carried
out by assigning a combinatorial model of a space, called a
simplicial complex, to the data.

Given a dataset X = {x0, x1, . . . , xN} living in some
metric space (S, dS) and a distance parameter ε > 0, we
think of simplicial complexes as an organized set of ver-
tices (0-simplices), edges (1-simplices), triangles (2-simplices),
tetrahedra (3-simplices), and higher dimensional simplices.
The vertex set of the simplicial complex is the collection
of data points {x0, x1, . . . , xN}. Moreover, if dS(xi, xj) ≤
ε
2 , then the edge connecting xi to xj is included in the
simplicial complex of X with respect to ε. Similarly, if
dS(xi, xj), dS(xi, xk), dS(xj , xk) ≤ ε

2 , then the filled tri-
angle with vertices xi, xj , xk is contained in the complex
(19, 21, 23). In general, a simplex is included in the sim-
plicial complex representation of X with respect to ε if the
vertices of the simplex have pairwise distance ≤ ε

2 . This sim-
plicial complex is known as the Vietoris-Rips Complex, and
it is the way in which we construct a simplicial complex from
a set of genomes throughout this paper (where the Hamming
distance provides the metric) (19, 21, 23). For a more rigorous
definition of simplicial complexes, see Supporting Information
and (21).

One can now compute the homology of the simplicial com-
plex representation of a dataset to get non-trivial topological
summaries. The main issue with this procedure is that it is
sensitive to the choice of scale parameter ε. The idea of per-
sistent homology is to avoid making a choice of ε and instead
track how the homology changes as ε varies (21, 28). For each
dimension, persistent homology yields a collection of “ho-
mological features” which appear at some parameter value ε0,
known as the birth time, and disappear at some parameter value
ε1 ≥ ε0, known as the death time. These features are often
represented in a barcode diagram, where each bar represents an
i-dimensional hole which persists within the interval [ε0, ε1],
as shown in Figure 1a (19, 28). One can think of persistent
homology as an extension of hierarchical clustering for higher
dimension homology groups, where dimension 0 persistent
homology is analogous to single linkage clustering (19). See
Figure 1b for an example of persistent homology applied to an
arbitrary dataset via the Vietoris-Rips complex.

Intuitively, in the presence of recombination events the ge-
nealogy contains loops which correspond to dimension 1 homo-
logical features. This hypothesis was explored in certain cases
in (16); the loops do not appear in the absence of recombina-
tion and consequently, β1 can be used to predict recombination
rate. This is illustrated in figure 1c (although we note that in
the context of standard coalescent assumptions, this connec-
tion is more complicated than it appears; see Explaining β1
for details). One of the main discoveries we describe is that

in fact the mean barcode length in dimension 0, denoted ψ, is
an even more accurate predictor of recombination rate than β1.
We note that each bar in the dimension 0 barcode diagram cor-
responds to an individual in the sample population, and the bar
lengths correlate with distance between the individual, or clus-
ter of individuals, and its closest neighbor in Hamming space.
Unexpectedly, this measure of distance between individuals is
positively correlated with recombination. An explanation of
this behavior is located in Coalescent Intuition for Topological
Statistics.

Methodological Overview
We sought to identify topological summary statistics (using
β1 as a baseline for comparison) that can serve as features for
algorithms to perform recombination rate inference. Utilizing
simulated data, we computed a variety of topological sum-
maries of dimensions 0, 1, and 2 from the Hamming distance
matrix between sequences.

The results of our LASSO regression indicated that the
topological features with the highest predictive power for re-
combination rate are, in order: 1) the average dimension 0
barcode length (ψ), 2) the first Betti number (β1), and 3) the
variance of the dimension 0 barcode lengths (Φ). We then
used a nonlinear combination of these three topological statis-
tics to build a novel TDA-based model for recombination rate
inference, the Topological REcombination Estimator (TREE).

We used simulated data to perform an initial validation of
the model. For a more serious validation, we applied TREE to
22 full genome assemblies from the RG Drosophila population
(see Methods for more details) and compared its performance
to ρph, the recombination rate estimator introduced by Camera
et. al in (16), and to LDhelmet. We also benchmarked TREE
on a much larger dataset of Arabidopsis genomes, consisting
of 1,135 individuals and up to 50k SNPs.

Coalescent Intuition for Topological Statistics
The main topological statistics of interest here are β1, the first
Betti number, and ψ, which corresponds to the mean bar length
in the dimension 0 barcode diagram. In order to relate these to
the biological process of recombination, we will use the lan-
guage of coalescent theory. For a detailed introduction to the
field, see (29). We note that our approach differs from the re-
cent considerations of Lesnick, Rabadán, and Rosenbloom (30)
in that we consider a coalescent model with branch lengths and
modelH0 behavior. Furthermore, we assume a more restrictive
sampling regime where only sequences at contemporaneous
terminals of the graph are known, as opposed to sequences all
along the genealogy.

Explaining ψ. We will provide a heuristic argument that the
value of ψ is elevated in the presence of recombination by
demonstrating the desired behavior at the recombination rate
extremes. First, we claim that in the absence of recombination,
the distribution of H0 feature lengths corresponds to the mu-
tation scaled distribution of branch lengths in the coalescent
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tree of the sample, as shown in figure 1a. Since there is a
single, fixed genealogy which describes all positions within
the sequence, it is sufficient to calculate the expected length of
the coalescent tree and divide by the sample size. Assuming
an idealized diploid population of size N , large, and that we
are sampling K individuals with K sufficiently small relative
to N that multiple merger events are rare, the expected wait-
ing time between coalescence events is 4N

k(k−1) generations
(31, 32), where k is the number of remaining lineages. The
full coalescent tree is then made of each kth interval k times,
for the number of remaining lineages at that time. Summing
over all these segments and dividing by the sample size gives
us the following:

E|ψ| = 4Nµ
K

K−1∑
k=1

1
k

where µ is the per-generation mutation rate. Notably,this is
equivalent to the expected number of segregating sites divided
by the sample size per Watterson’s estimator (31).

We now show that in the infinite recombination limit, the
expectation for ψ is strictly larger than in the case where there
is a single fixed genealogy. If there is free recombination,
every site in the sample has an independent genealogy which
we will average over, so all the bars must be of the same length
(Figure 2). In other words, the expected value of ψ becomes
the scaled average coalescence time for two randomly sampled
individuals in the current generation. This is simply 2µN . All
that remains is to show that 2

K

∑K−1
k=1

1
k is less than 1. Since

the partial sum is bounded by log(K − 1) + 1, this holds
for all values of K larger than 5. This additionally suggests
that the variance in the length of the H0 barcodes features
should decrease as the recombination rate increases, which we
observe in simulations. By integrating information both about
the length of the coalescent tree as well as the distribution
of pairwise differences averaged over multiple topologies, ψ
can be viewed as capturing distortions in the expected amount
of independent evolution between samples that occurs when
sequences contain multiple discordant gene genealogies.

Explaining β1. We suggest in addition that the standard intu-
ition for the use of β1 to detect cycles in the ARG (presented
in Camera et al. and Chan et al. (16, 33), as well as here in
Background on Topological Data Analysis), potentially over-
simplifies the rather complicated relationship between recom-
bination events and features in the H1 barcode. For this, we
will consider C̆ech complexes, rather than Vietoris-Rips com-
plexes, as they are closely related (22), and the C̆ech complex
construction allows holes to be formed given only three points
(see Figure 3a). Given the graph in Figure 3b, it is clear that if
one were to sample the sequences at every node, there would
be an H1 feature observed which corresponds precisely to the
hole in the graph. However, in many genetic studies, samples
of the common ancestors of present-day sequences do not exist.
If we restrict our data to the sequences at the terminals, cycle
detection with β1 becomes a function of mutation heterogene-
ity along the graph, and is in fact impossible if we are given

Fig. 2. By averaging over multiple genealogies, the barcode
of H0 features approaches identical bars of length equal to the
expected pairwise coalescence time.

(a) The C̆ech complex for
these points at the drawn ra-
dius is a graph with a cy-
cle (shown with the dotted
lines), as the triple intersec-
tion is empty.

(b) An ARG with lineage
b inheriting p proportion of
its genome from the lineage
leading to a.

Fig. 3. Given the true coalescent distances between the ter-
minals a, b, c, a recombination cycle will not be detected in
the manner shown in panel 3a, and so will not generate an H1
feature in the C̆ech complex at any radius.

only the true coalescent distances between samples along the
genealogy. To see this, take terminals a and c from the graph.
By hypothesis, the amount of time between them and their
most recent common ancestor (MRCA) is the same, which
we will call L. It follows that the minimum radius such that
balls around these points would intersect is L. Then, for the
triple intersection of balls around the terminals to be empty, b
must be a distance greater than L from the MRCA. However,
each portion of its genome has certainly experienced the same
amount of time since the MRCA regardless of recombination
history. Therefore, we require that there be a more than ex-
pected amount of mutations generated along the path to b in
order for this event to be detected, given the actual sequence
data. It still holds true that β1 reflects only these recombination
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Fig. 4. Exponential population expansion creates multiple-
merger events and shrinks internal branches. This can give a
similar signal in H0 as increased recombination, but does not
change cycle detectability via β1 in the ARG.

events, assuming no sequence convergence and infinite sites,
but this sampling reality may bias β1 detection in subtle ways.
This also implies that the length of the H1 bar will not neces-
sarily be indicative of features of the actual cycle in the graph,
as it will increase in length as additional mutations are placed
on the lineage leading to b, even if the cycle itself is untouched.
We find via simulations (see supplement Filtering β1) that
filtering small H1 bars only hurts our inference capabilities, as
we would then expect.

Combining ψ and β1. These explanations for the behavior
of ψ and β1 also implies differences in behavior between ψ
and β1 under different population models. For example, while
rapid demographic changes such as exponential population
growth will distort ψ-based estimation (Figure 4), β1 counts
features generated by recombination at a rate independent of
the underlying tree structure, since the relative distances to the
MRCA are unchanged with multifurcations. On the other hand,
we find empirically ψ is very robust (especially compared
to β1) to perturbations in the form of missing data, which
serve only to minorly rescale the H0 bars on average. These
differences suggest that a reliable predictor should incorporate
both features. A more formal follow-up to the behavior of these
statistics under different models of demography and selection,
as well as further characterization of the behavior of ψ using
the sequentially Markov coalescent (SMC) model (34) will be
conducted in future work.

Results
Coalescent Simulations. We generated simulated data for an
idealized population of fixed size Ne, with per-generation
crossover rate r and mutation rate µ. Given this, we ran re-
gression analyses to discover relationships between various

Fig. 5. The relationship between ψ and recombination rate
(left), and β1 and recombination rate (right) for a simulated
dataset with fixed sample size n = 50 (top) and n = 140
(bottom).

topological summary statistics and ρ = 4Ner, the popula-
tion recombination rate. The topological statistics analyzed
were the mean and median bar lengths, variance of bar lengths,
total number of bars, and number of bars above varying noise-
filtering thresholds for dimensions 0, 1, and 2.

Our intention was to test various topological features as
predictors of known recombination rates and to demonstrate
comparable performance of these features to a comparator
method, LDhelmet. However, given the computational bot-
tlenecks inherent to LDhelmet, we were unable to run this
software over the full set of >3600 alignments. We are nev-
ertheless satisfied in that the parameters to be estimated are
known from simulation, and so we save the use of LDhelmet
for our empirical analyses where the truth is unknown.

As a preliminary analysis, the weight vectors of LASSO re-
gression models provided insight into which barcode statistics
were the strongest predictors of ρ. The results of this analysis
showed that two key topological features, β1 and the mean
dimension 0 bar length, which we will denote as ψ, correlate
strongly with ρ given a constant sample size n > 10. Thus,
these topological summaries became the main foci of our work.
Moreover, we found no correlation between our barcode statis-
tics and θ = 4Neµ, the population mutation rate, as expected,
since changes in θ with a constant Ne only linearly rescale the
distances.

In studying the information content of these various statis-
tics, we found ψ stood out as an even better predictor of re-
combination rate than β1, and performed better on its own in
predicting recombination rates from simulated datasets. Fig-
ure 5 demonstrates the relationships between ρ and β1, and
between ρ and ψ for sample sizes n = 50 and n = 140. We
note that both topological summaries exhibit an exponential
relationship with recombination rate, and that the relationship
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Table 1. R2 values for the exponential regression model for
different feature inputs and sample sizes.

Sample Size ψ β1 (ψ2, β2
1 , ψ, β1,Φ)

25 0.724 0.456 0.792
50 0.847 0.749 0.894
75 0.883 0.827 0.927
95 0.898 0.862 0.941

140 0.909 0.887 0.959
mixed 0.414 0.164 0.851

is tighter for ψ than β1, especially for smaller sample size.
As a baseline, we fit our simulated data with a fixed sample

size of 160 to the β1 based model of Camara et al. (2017), ρph
(the “ph" stands for persistent homology). This model is given
by the equation

ρph = g[(1 + 1
f

)β1 − 1],

where the parameters g and h are coefficients related to sam-
ple size and are independently calculated for a given dataset.
The best fit over the simulated range of recombination rates
simulated is R2 = 0.86. We found a relationship between
ρ and ψ with R2 = 0.90, suggesting that this new parame-
ter has comparable or greater power for predicting population
recombination rates.

We demonstrated that the two parameters ψ and β1 are dif-
ferentially stable under violations of assumptions about the
data. Notably, ψ is robust to large amounts of missing data,
whereas β1 is robust to rapid changes in population size. The
former we show empirically: ψ maintains its relationship with
ρ with R2 = 0.76 with 10% of each sequence missing as a
tandem indel, while β1 loses this relationship quickly with
R2 = 0.036 under the same missing data scheme. The as-
sumption of 10% missing data is somewhat conservative; next-
generation sequencing data sets have less missing data, but this
figure is realistic for many older sequencing data sets. As one
would expect, we note that performance of each method de-
clines as missing data become more prevalent (See supplement
Missing Data ). However, if missing data is located randomly
throughout the genome, it is unlikely to bias relative measures
of recombination rates within a dataset. While β1 is expected
to be robust to rapid changes in population size since this does
not change the number of cycles in the ARG, ψ will be more
sensitive to these changes as rapid demographic expansion
generates multifurcations in the genealogy which converge to
the same branch lengths as in the infinite recombination case.

TREE Model. We implemented several machine learning and
regression models to build an accurate and robust model relat-
ing topological summaries to ρ, including LASSO, polynomial
regression, exponential regression, and linear regression. We
varied model parameters and input features (subsets of the
aforementioned barcode statistics) across each learning algo-
rithm.

Fig. 6. ψ continues to be accurate under a missing data sce-
nario (R2 = 0.76 with 10% of the data missing in large blocks)
while the accuracy of β1 under the same scenario drops to
R2 = 0.036.

Table 2. Five-fold cross validation R2 values for the full
model.

Sample Size k = 1 k = 2 k = 3 k = 4 k = 5

25 0.797 0.769 0.738 0.696 0.786
50 0.857 0.901 0.905 0.884 0.881
75 0.901 0.934 0.906 0.925 0.928
95 0.938 0.934 0.944 0.936 0.952

140 0.956 0.963 0.949 0.958 0.961
mixed 0.849 0.847 0.849 0.852 0.858

A subset of model comparison results are presented in Table
1, where we show the R2, or goodness-of-fit measure, values
for the model ρ = exp(αT~x), where ~x corresponds to a vector
of different barcode statistics. We ran the model separately
on datasets generated with varying sample sizes, as well as
on a dataset consisting of simulations of varying population
size. An R2 value close to 1 signifies a nearly perfect model,
whereas R2 near 0 indicate that the model has low predictive
power.

The results show that ψ is an overall stronger predictor
than β1, and as expected, recombination rate is predicted more
accurately for higher sample sizes. Importantly, β1 fails as a
predictor in the case of small sample size, while ψ maintains
decent predictive power for sample size as low as 25.

A thorough comparison of the different model outputs
showed that an exponential model in ψ2, β2, ψ, β1, and the
variance of the dimension 0 bar lengths, which we will denote
Φ, is the best predictor for ρ. While we also tested more topo-
logical features as inputs to different models, the increase in
R2 values was negligible in comparison to the increased risk
of over-fitting.

Summarizing, we propose the following Topological RE-
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Fig. 7. TREE predictions on testing sets compared to the true
recombination rate for sample size = 50 (left) and sample size =
140 (right). The dotted line corresponds to perfect predictions.

combination Estimator (TREE) model:

ρ = exp(α ∗ ψ2 + β ∗ β2
1 + γ ∗ ψ + δ ∗ β1 + ε ∗ Φ + ζ),

where 
α
β
γ
δ
ε
ζ

 =


−1.797× 10−4

−5.934× 10−5

5.530× 10−2

1.813× 10−2

−3.744× 10−4

2.248


Figure 7 shows TREE’s performance on blind testings set

for sample sizes of 50 and 140. While the model preforms best
when restricted to datasets corresponding to high sample size,
TREE was trained on mixed sample size data in an attempt to
make the model as robust and have as little bias as possible.

To analyze the robustness of the model we preformed five-
fold cross validation. The results are presented in table 2, and
they show that the model maintains high accuracy regardless
of the training set.

Empirical Analysis. We compared the performance of TREE
on empirical datasets to a widely used estimator, LDhelmet
v1.9. We first benchmarked each method on a large genomic
dataset from the Arabidopsis 1000 Genomes project consisting
of 1,135 samples. We used subsets of 1k, 10k, and 50k SNPs
in 100 SNP windows from the total dataset in order to test
the computational speed of each program. We found that LD-
helmet cannot process datasets with greater than 50 samples,
failing to complete the first step of the likelihood table compu-
tations for the smallest of these datasets. However, TREE was
able to process each dataset in full within a reasonable time
frame (Table 3). By sub-sampling these data, we can illustrate
one advantage of TREE’s ability to analyze this quantity of
individuals. We find that as the number of samples is increased
from 20% to 50% to 100% of the full set, the distribution of
recombination events along the genome shifts such that the top
10% of windows contain 17.4%, 19.8%, and 23.9% of events
respectively, as the signal of hotspots grows more pronounced.
In addition, the importance of efficiency is underscored by
the fact that as more samples are included, more SNPs are
realized in the data, and more windows are required for a full

Table 3. Benchmarking TREE’s runtime on a large dataset
(1135 Arabidopsis individuals)

Number of SNPs Runtime (hours)

1k 0.521
10k 5.556
50k 27.866

Fig. 8. Relative accuracy of TREE and Camara’s ρph with
respect to LDhelmet. The blue line plot represents TREE, the
red represents LDhelmet, and the green in the second panel
represents ρph. Due to issues with ρph orders of magnitude
more recombination rate variation than LDHelmet, we rescale
the estimate given by ρph to the exact range of LDHelmet.
For TREE, we only multiply by a uniform window length
conversion factor of 1

1000 .

analysis. As we could not compare recombination estimates
on the full Arabidopsis genome due to LDhelmet’s processing
times, we turned to a smaller Drosophila dataset with 22 sam-
ples and >22Mbp. For these datasets, LDhelmet takes on the
order of hours to complete a run over a single chromosome,
whereas TREE terminates on the order of minutes and in all
cases finished running in under one hour.

We first take a broad look at the relative performance of
TREE to LDhelmet on genomic datasets, looking for concor-
dance in predicting an increase, decrease, or no change between
each window of our analysis. We find that TREE is concor-
dant with LDhelmet 69.2% of cases where ρ increases and in
69% of cases where ρ decreases. We note that since LDhelmet
applies a smoothing with TREE does not, we cannot directly
compare the accuracy with which TREE generates adjacent
windows of identical recombination rate.

To characterize TREE’s behavior in these cases, we looked
at the magnitude of the difference between the TREE prediction
and LDhelmet’s. We found that in the cases where LDhelmet
predicts no change in ρ, TREE’s predicted change is less than
0.05 72.5% of the time, less than 0.01 18.1% of the time, and
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Table 4. Comparison of TREE to LDhelmet’s ρ estimates

Chromosome Kendall’s Tau P-value Spearman’s Rho P-value

2L 0.026 0.230 0.039 0.237
2R 0.178 5.7e-21 0.260 8.7e-21
3L 0.241 7.5e-44 0.346 1.1e-42
3R 0.225 1.8e-36 0.326 6.1e-36
X 0.067 8.0e-05 0.097 1.6e-4

less than 0.001 1.8% of the time. These results suggest that
TREE is good at detecting large changes in recombination
rate, and is thus well-suited for hotspot detection. However, it
can have difficulty differentiating between subtler changes in
recombination rate ranging in magnitude between 0 and 0.01.

Finally, we looked directly at the correlation between the
absolute predicted values of TREE and LDhelmet for the most
fine-grained comparison. We used two measures of correlation
- the Kendall-Tau rank test, and Spearman’s ρ. With the ex-
ception of chromosome arm 2L, Kendall’s Tau between TREE
estimates and LDhelmet estimates ranges between 0.067 and
0.241 with P-values less than 0.0001. Similarly, Spearman’s ρ
ranges between 0.097 and 0.346 with P-values less than 0.0002.
These positive correlation coefficients and low p-values sug-
gests global agreement between LDhelmet’s and TREE’s rank-
ings of recombination rates across sliding windows, indicating
that TREE is useful in detecting global hotspots of recombina-
tion.

Chromosome X and arm 2L are outliers here, as their cor-
relation coefficients are substantially lower and associated P-
values substantially higher than the remaining chromosome
arms in the dataset (Table 4). Despite attempts to discover why
these two chromosomes in particular are outside of the average
ranges of performance, we were unable to find a compelling
reason. It may be that each of these chromosomes have many
more cases of subtle recombination rate changes between 0-
0.1, such that LDhelmet’s estimates are most different from
TREE’s.

We also compared the model of Camara et al. to LDhelmet
in the same framework to discover its relative performance,
in order to discover whether the addition of the feature ψ is
necessary for greater accuracy. We found that the ρph model
in β1 alone is dramatically less concordant with LDhelmet
estimates across all windows than is TREE (Table 5). For each
chromosome arm analyzed using ρph, the rank coefficients of
Kendall’s Tau or Spearman’s ρ are less than 0.01, sometimes
negative, and not statistically significant. This indicates poor
concordance between the two methods and, in some cases,
disagreement, suggesting that the addition of ψ to an estimator
of recombination rate substantially improves accuracy as well
as computation time compared to LDhelmet. We see evidence
of the differences in prediction between TREE and LDhelmet
as well as ρph in Figure 7, which shows that TREE approxi-
mates the estimates of LDhelmet across the entire span of the
chromosome without rescaling, whereas ρph fails to capture
similar detail to TREE and requires an informed re-centering

Table 5. Comparison of ρph to LDhelmet’s ρ estimates

Chromosome Kendall’s Tau P-value Spearman’s Rho P-value

2L 0.017 0.446 0.02 0.430
2R -0.104 4.1e-8 -0.154 5.0e-8
3L 0.005 0.754 0.008 0.745
3R -0.002 0.879 -0.003 0.918
X 0.013 0.449 0.019 0.435

Table 6. Compared of TREE to LDhelmet by chromosome arm
in terms of the change in ρ

Chromosome Increase Decrease

2L 283/408 (69.4%) 278/394 (64.3%)
2R 407/560 (72.7%) 406/568 (71.5%)
3L 425/637 (66.7%) 427/635 (67.2%)
3R 454/632 (71.8%) 485/680 (71.3%)
X 358/546 (65.6%) 365/568 (64.3%)

to the range of LDHelmet to be competitive.

Discussion
We have discovered a new feature of the distribution of
genomes in Hamming space, which we denote ψ, that im-
proves the performance of topological estimators of recombi-
nation. While the field of TDA is in its infancy, our work
provides a novel demonstration of the power of persistent
homology-based estimators for fundamental questions in evolu-
tionary biology. Notably, our feature is related to biologically-
meaningful quantities in coalescent models; this is some of
the first work we are aware of to make such a tight connection
between TDA estimators and coalescent theory.

Our ψ-based approach to recombination rate inference is
able to quickly scan large genomic datasets for regions of
recombination rate heterogeneity. Due to its speed, it can
serve as a first-pass estimate of recombination rate variation
prior to targeted use of much more computationally expensive
inference methods. While ψ itself can potentially be influenced
by distortions to the genealogical structure of a sample, it is
naturally complemented by higher dimensional topological
features (namely β1) of the data explored in prior work (16, 33),
while maintaining accuracy in the face of missing data which
confounds β1-only methods.

Similarly to how ψ can supplement and guide usage of

Table 7. Comparison of ρph to LDhelmet by chromosome arm
in terms of the change in ρ

Chromosome Increase Decrease No Change

2L 199/408 (48.77%) 215/394 (54.57%) 8/116 (6.90%)
2R 133/560 (23.8%) 128/568 (22.5%) 64/118 (54.2%)
3L 290/637 (45.5%) 283/635 (44.6%) 12/204 (5.8%)
3R 298/632 (47.2%) 321/680 (47.2%) 3/78 (3.8%)
X 243/546 (44.5%) 262/568 (46.1%) 30/411 (7.3%)
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evolutionary-model driven methods, ψ can also add a degree
of finer-scale detection and biological intuition to topology-
driven methods, bringing us closer to bridging the gap between
population genetics and persistent homology. The differing
behaviors ofH0 andH1 derived statistics on genomic data also
point towards the potential of TDA as a source for summary
statistics which can tease apart the signatures of demography,
selection, or population structure, a fundamental goal of popu-
lation genetics. The behavior of ψ also suggests that topologi-
cal quantities could be merged with a fully coalescent model
of recombination, as a more rigorous SMC-based modeling
could make explicit predictions for the distribution of the effect
sizes of a single recombination events on ψ. In addition, the
ordering of the H0 features by duration of persistence hints at
additional connections between barcodes and the look-down
construction of the coalescent (35, 36). We will explore these
avenues in a future theoretical treatment of these statistics.

Summarizing, we have shown that a combination of TDA
and machine learning techniques can detect recombination
rate heterogeneity in biological data faster than previously
possible and with greater accuracy than previous TDA-based
approaches. We demonstrate that while the behavior of 0-
dimensional barcodes has been previously ignored with respect
to genealogical inference problems, these features are robust
and increase the overall accuracy of inference compared to
using 1-dimensional barcodes alone. Our coalescent analyses
also suggest a promising future endeavor: building a fully
coalescent-motivated model explaining the behavior of Betti
numbers on distributions of genome sequences.

Methods

Topological Data Analysis. We created a pipeline which takes
as input a sequence file in FASTA format, computes a Ham-
ming distance matrix DH , uses DH to extract the corre-
sponding dimension 0 and dimension 1 persistent homol-
ogy barcodes, and then calculates barcode summary statistics.
The barcodes were computed using Ripser, a publicly avail-
able C++ package for computing Vietoris–Rips persistence
barcodes, and all other computations were done in Python
2.7 (37). The scripts are available on our Github page at:
https://github.com/MelissaMcguirl/TREE.

Simulations. We simulated over 50,000 datasets of genetic se-
quence data with known recombination rates, each of length
1000 bp, using the programs ms and seq-gen (38). Given an
idealized population, we varied the parameters for the pop-
ulation recombination rate ρ = 4Ner, sample size n, and
population mutation rate θ = 4Neµ to capture a variety of
mutation-recombination regimes in the data. The datasets had
recombination rates varying from 0 to 1000 (that is, no recom-
bination up to free recombination between all sites under the
population recombination model ρ = 1000).

For each population we computed dimension-0 and
dimension-1 persistent homology barcodes using Ripser (37).
We ran regression analyses to discover topological predictors

for recombination and then confirmed that our method predicts
ρ directly and does not predict a covariate such as θ.

Model Selection. Initially, we applied polynomial regression of
degree two, linear regression, LASSO regression, polynomial
LASSO regression, and exponential regression using several
different combinations of barcode statistics as inputs for pre-
dicting recombination rate using Scikit-learn (39). We sought
the simplest model with the least number of parameters that
was able to predict recombination rate while still maintaining
high accuracy.

Each model was trained on a randomly selected subset of
the input data, whose size was chosen to be 30% of the total
dataset. The model was then tested on the remaining 70%
of the input data, where R2 values were computed to access
the goodness-of-fit of the resulting model. This process was
repeated several times to test the robustness of the learned
parameters with respect to different training sets.

Based on the R2 values, we were able to narrow down to
three barcode statistics, ψ (average dimension 0 bar length),
β1 (first Betti number), and Φ (variance of dimension 0 bar
lengths), as inputs for an exponential regression model of the
form

ρ = exp(α ∗ ψ2 + β ∗ β2
1 + γ ∗ ψ + δ ∗ β1 + ε ∗ Φ + ζ).

The coefficients (α, β, γ, δ, ε, ζ) were determined via ordi-
nary least squares from simulated training data in scikit-learn
Python 3.0).

This model was tested on input data consisting of 53,461
barcode statistic files corresponding to simulations of varying
sample size, mutation rate, and recombination rate. Five-fold
cross validation was preformed for different sample sizes, and
for the complete dataset.

Empirical Analysis. We obtained 22 full genome assemblies
from the RG population (from the African survey of Drosophila
melanogaster) for our analyses. We ran LDhelmet and TDA
in parallel and compared the mean estimates of recombina-
tion rate ρ in sliding windows of 500 SNPs. Since LDhelmet
provides estimates of ρ between any two SNPs, whereas our
method computes ρ within windows of 500 SNPs, we take
the mean of every 500 ρ estimates from LDhelmet to com-
pare to our windows. Moreover, since LDhelmet estimates
ρ = 2×Ne×r per base pair, and TREE predicts ρ = 4×Ne×r,
where Ne is the population size and r is the probability of a
crossover event from ms, then we apply a uniform normaliza-
tion of 1

2×#(base pairs) = 1
2×500 = 1

1000 to the TREE predictions
for comparison to LDHelmet.

We also ran Camara et al’s model using only β1 as a pre-
dictor within our sliding window framework to compare this
to our method and LDhelmet. We looked at the results in 3
different ways: 1) in terms of absolute estimates compared
to each other, 2) in terms of concordance in the change in ρ
across windows (i.e. do both methods predict an increase or
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decrease in ρ in the same window), and 3) in terms of con-
cordance of estimates above the 75th and 90th percentiles
of the distribution of estimates. All analyses were done in
Python 3.0, and scripts are available on our Github page:
https://github.com/MelissaMcguirl/TREE.

We additionally included an analysis of 1,135 publicly avail-
able Arabidopsis genomes. We converted the raw VCF file to
FASTA using a combination of bcftools and VCF-kit’s phylo
fasta function, subsampling up to 50k SNPs in order to run the
software within Stampede2’s 48 hour time limit. We ultimately
used this dataset to benchmark the computational efficiency
of TREE over LDhelmet, as LDhelmet is unable to process
the full dataset with so many samples for us to use this as a
comparator of accuracy.
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Supplemental Information.

Topological Data Analysis. Topology is a branch of mathematics that
concerns itself with classifying spaces or objects that have the same
‘shape.’ Spaces are considered to be topologically equivalent if you
can deform one into the other without breaking, tearing, or gluing. A
topological invariant of interest in algebraic topology is the homology.
Homology can be thought of as a family of ways to associate a vector
space to a geometric object. For the scope of this paper it suffices
to restrict ourself to homology with Z/2Z coefficients in dimensions
0,1, and 2. For simplicity we can think of the dimension 0 homology
group as a representative of the connected components of a topological
space, the dimension 1 homology group as a representative of the
loops within a topological space, and the dimension 2 homology group
as a representative of the void within a topological space. That is, the
0-th dimension homology group of an object is a vector space whose
dimension is the number of connected components of that object, and
similarly for higher dimensions.

Topological data analysis (TDA) lies at the intersection of alge-
braic topology, statistics, and data science. The main goal of TDA is to
extract descriptive topological features from large, high-dimensional
data sets and one of the primary tools for doing so is called, persistent
homology.

Let X be a data set consisting of N data points living in some
metric space (S, dS). Observe, X itself is simply a discrete set of
points and thus it has no interesting homological properties beyond
dimension 0. However, if each data point x ∈ X is replaced by a ball
Br(x) = {y : dS(x, y) ≤ r} of radius r > 0 centered at x, then the
union of these balls over all points x ∈ X yields a new topological
space with non-trivial homology. Repeating this for a sequence of r
values yields a sequence of topological spaces for which the homology
can be computed. Analyzing how the homology changes across this
sequence of topological spaces is the main idea behind persistent
homology.
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Formally, let X be a data set living in a metric space and choose
r > 0. In order to compute the homology of X with respect to r
we first build a simplicial complex representation of

⋃
x∈X

Br(x). In

this paper we focus on the Vietoris–Rips complex, but we note that
there are several ways in which one can build a simplicial complex
representation of

⋃
x∈X

Br(x).

We define a k-simplex as the convex hull of k + 1 affinely indepen-
dent points, i.e. the k-simplex of k + 1 affinely independent points
is the convex polygon whose vertices are precisely the k + 1 affinely
independent points (21, 22). For example, a 0 simplex is a point, a
1 simplex is an edge, and 2 simplex is a triangle, and so on. Denote
a k-simplex corresponding to the convex hull of (xi0 , xi1 , . . . , xik )
as σk(xi0 , xi1 , . . . , xik ). Then, the Vietoris–Rips complex of X with
respect to r is the union of all k-simplices σk(xi0 , . . . , xik ) such
that BR(xil ) ∩ BR(xij ) 6= ∅ for all l, j = 0, 1, . . . , k. Note, an-
other common simplicial complex is the Cech complex (mentioned
in Coalescent Intuition for Topological Statistics), which instead re-
quires non-empty mutual intersections of the k-simplices rather than
non-empty pair-wise intersection.

The homology is computed on the simplicial complex representa-
tion of

⋃
x∈X

Br(x) instead of the original union. Simplicial complexes

are easier to work with computationally, and there exist theoretical
guarantees that make it feasible to compute the homology of simplicial
complex instead of

⋃
x∈X

Br(x) (See Nerve theorem in (21)).

Lastly, we take a sequence of parameters {ri}N
i=1, build the sim-

plicial complex of X with respect to ri and compute its homology for
all i. This yields a sequence of a families of vector spaces associated
to X, known as the persistent homology of X .

We represent the persistent homology of X with a barcode diagram
Bi for each dimension i (28). A bar (b, d) ∈ Bi represents a generator
of homology in dimension i. The birth time b of the bar corresponds
to the r value at which the homological feature first appeared and
the death time d of the bar corresponds to the r value at which the
homological feature collapsed. Bars with longer bar length (d-b) are
of particular interest since they persist throughout the sequence of
simplicial complexes.

In this work, X is a collection of genomes and we use the Ham-
ming distance dH to build Vietoris Rips representations of sampled
populations using Br(x) = {y : DH(x, y) ≤ r}. We then compute
the persistent homology of X and extract statistics from the corre-
sponding dimension-0 and dimension-1 barcode diagrams as input for
the Topological Recombination Estimator.

Filtering β1. Some authors on the subject of TDA have suggested
that some bars in a persistence diagram may arise due to topological
noise, especially those bars are that short-lived. It is unclear whether a
universal threshold exists to filter out potentially noisy bars, however.
In the case of our own study, we took it upon ourselves to test whether
filtering out short-lived bars improves the relationship between exist-
ing topological models of recombination and β1, specifically using
Camara et al’s ρph for goodness of fit. We find that filtration of short-
lived bars only lowers the R2 value for goodness of fit to this model
in our simulated datasets, thus we opt not to use any filtration of these
bars in practical applications (Figure S1).

Missing Data. As large quantities of missing data are frequently en-
countered in empirical datasets, we investigated the performance of
both ψ and β1 under various scenarios involving different amounts
of missing data using the same datasets we simulated for our main

Fig. 9. R2 values decrease as we filter out bars of increasing
lengths in terms of percentiles of the overall distribution of bar
lengths across all simulated datasets.

coalescent investigation. Specifically, we took these existing datasets,
duplicated them, and then converted randomly chosen sites or blocks
of sites to N, in order to simulate missing data. For each dataset, a
total of 10% of each sequence (and therefore, 10% of the total align-
ment) was converted to Ns. Since in all cases, 10% missing data
was introduced into the alignments, we note that our specific interest
here is in how robust each topological feature is to either a) a random
distribution of missing sites, as would be common with sequencing
error, or b) tandemly linked missing sites, as common in indels.

We find that, overall, ψ is much more robust to missing data than
is β1 when predicting ρ. Specifically, we looked at the expectation of
β1, ψ given ρ as in Camara et. al’s model, looking to see how well the
model fits each topological feature under each missing data scenario.
We did this in order to evaluate the strength of the relationship without
a prior expectation for the expectation of ψ, and found a greater fit
to the Camara model describing the expectation of ψ in place of β1
given ρ in these circumstances than their original expectation of β1
given ρ.

Looking at the reverse case, the prediction of ρ from ψ or β1 with
missing data, we lose the fit to the Camara model, but may still observe
differences in variance of the predictions and a clear relationship
between ψ and ρ that is lost in β1 under these circumstances.

Mixing Populations. We explored the robustness of ψ and β1 under
mixed populations of varying recombination rate. In particular, we
randomly sampled N individuals from a population of known re-
combination rate ρ1, along with M individuals from a population of
known recombination rate ρ2. We keptN +M = 160 constant while
varying N, M, ρ1, and ρ2. These experiments were all done on the
simulated data, and we fixed θ = 25.

For each randomly concatenated population we computed the
weighted mean recombination rate ρ̄ = N

160 ∗ ρ1 + M
160 ∗ ρ2. The

results of comparing our main topological summary statistics ψ and
β1 to the weighted mean recombination rate are presented in figures
12-13. We see that under randomly mixed populations ψ maintains a
tight exponential relationship with ρ̄. In comparison, in this setting
the relationship between β1 and ρ̄ becomes noisier. The nice behavior
of ψ is expected as mixing two distant populations only adds one
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Fig. 10. Expectations of ψ and β1 given ρ̄ when 10% of
data is missing in large tandem blocks. In the case of β1,
the R2 value has dropped from 0.9 in the case of no missing
data to 0.03, suggesting that this feature is highly sensitive to
minimal missing data. In comparison, ψ maintains an R2 of
0.76, suggesting greater robustness to loss of information in
sequence data.

non-informative coalescence event between the populations, and as
a result has little effect on ψ other than averaging the recombination
parameters of the samples.

Lasso Weights. In order to gain intuition for which barcode statistics
would be the best predictors for recombination we first ran a LASSO
regression analysis using 15 barcode statistics as input and analyzed
the outputted weight vector. We used the LASSO weight vectors as a
proxy for the predictive power of each barcode statistic.

The barcode statistics we studied were the Betti number (βi), mean
barcode length (ψi), medium barcode length (mi), maximum barcode
length (Mi), and the thresholded Betti number (βT

i ) in dimensions
0,1, and 2. Here, the thresholded Betti number refers to the number
of bars whose bar length is greater than a specified cutoff, where the
cutoff is set as a percentage of maximum bar length Mi. In these
experiments we tested thresholds corresponding to 10− 60% of the
maximum bar length.

Fig. 11. β1 and ψ as predictors of ρ̄ when 10% of data is
missing in large tandem blocks. Though we lose the fit to
the expectation model, we find a noticeable difference in the
variance of the values of ψ and a visually tighter correlation to
ρ than we see for β1.

We ran LASSO on the simulated data with fixed sample size using
Scikit-learn (39) in Python 2.7. For each threshold, we ran LASSO
20 times on randomly selected training data. Initially we used all 15
barcode summary statistics as input and then analyzed the absolute
vector of the LASSO weight vectors for all 20 runs across the varying
thresholds. These weight vectors are visualized in a heat map in
Figure 14.

Observe, consistently ψ0 (or ψ), m0, and βT
0 are among most

heavily weighted inputs, with ψ0 having the most influence over-
all. This motivated our rigorous exploration of ψ as an estimator
for recombination rate. Also note that β0 has zero weight since β0
is precisely the sample size, which is constant in this experiment.
Consequently, βT

0 only varies as M0 varies.
In contrast to the dimension-0 statistics, the dimension-1 barcode

statistics have negligible weights across all model runs and all thresh-
olds. Moreover, almost all of the dimension-2 barcode statistics have
low weights across all model runs, with the exception of M2 whose
weight increases as the threshold for βT

i increases.
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Fig. 12. β1 versus ρ̄ rate from randomly mixed populations of
different recombination rates.

Fig. 13. ψ versus ρ̄ from randomly mixed populations of
different recombination rates.

In an attempt to extract the best dimension-1 topological predictor
for recombination, we re-ran the 20 runs of LASSO for varying
thresholds using only the dimension-1 topological summary statistics
as input. The results of this refined analysis are presented in Figure
15. Here we see that out of all the dimension 1 topological statistics,
β1 is the most heavily weighted input feature when the threshold is
set to ≤ 30% of Mi. For increased threshold values the weight of
β1 decreases significantly and ψ1 is the most heavily weighted input
features for the dimension 1 barcode statistics, although its weights
vary greatly across different model runs. This is consistent with
the results presented in Filtering β1, which suggest that filtering out
short-lived bars hinders the predictive power of β1 for recombination
estimates.

The results of these LASSO analyses provided us with the motiva-
tion to focus on understanding the significance of lower dimensional
topological statistics as predictors for recombination. Moreover, we
used the results of the dimension-1 LASSO analysis to decide which
higher dimensional statistics to use in tandem with ψ. We chose to
exclude dimension-2 statistics as predictors due to their overall low
weight vectors and the lack of biological significance.

Fig. 14. Absolute value of LASSO weight vectors across 20
model runs on randomly selected 15-dimensional training data
for varying thresholds for βTi .

Noise Experiments. We further tested whether topological noise may
contribute to relationships we observed between β1, ψ, and ρ by
adding noise or randomizing sequences within datasets to obtain
topological structures unrelated to recombination. In one experiment,
we simulated realistic cases of sequencing error in each dataset by
adding a random base over a range of error rates from 0 to 140 / 1000
bases. As this error rate increases, we find a reduction in the fit of
topological models in β1 to the data, but the decrease in fit is slow
over all realistically expected error rates (around 10% sequencing
error, we see no reduction in R2 for ρph.

Other Relationships. We tested for relationships between our topo-
logical features ψ and β1 and Watterson’s θ, as well as for possible
correlations between the topological features themselves.

We computed each feature from the set of 3600 simulated sequence
alignments with varying values of ρ and θ, and produced similar
correlation plots showing relationships between each pair of variables.
We find that neither β1 nor ψ is correlated with Watterson’s θ, thus
we can confidently assert that this is not a confounding factor in our
analyses (Figure 17).

In contrast to this, we do find that β1 and ψ are correlated quite
tightly in our work (Figure 18). Though this is the case, we have noted
in other experiments that ψ nevertheless adds unique information.
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Fig. 15. Absolute value of LASSO weight vectors across 20
model runs on randomly selected dimension 1 training data for
varying thresholds for βTi .

Fig. 16. R2 values decrease as we include increasing sequence
errors, but remains greater than 0.75 over all realistic and
slightly more extreme possible error rates.

Fig. 17. ψ and β1 are uncorrelated with variance in θ.

Fig. 18. ψ and β1 are tightly correlated over variable values
of ρ.
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