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ABSTRACT  

The integration of publicly available and new patient-derived transcriptomic datasets is not 

straightforward and requires specialized approaches to deal with heterogeneity at technical and 

biological levels. Here we present a methodology that can overcome technical biases, predict 

clinically relevant outcomes and identify tumour-related biological processes in patients using 

previously collected large reference datasets. The approach is based on independent component 

analysis (ICA) – an unsupervised method of signal deconvolution. We developed parallel consensus 

ICA that robustly decomposes merged new and reference datasets into signals with minimal mutual 

dependency. By applying the method to a small cohort of primary melanoma and control samples 

combined with a large public melanoma dataset, we demonstrate that our method distinguishes cell-

type specific signals from technical biases and allows to predict clinically relevant patient 

characteristics. Cancer subtypes, patient survival and activity of key tumour-related processes such 

as immune response, angiogenesis and cell proliferation were characterized. Additionally, through 

integration of transcriptomes and miRNomes, the method identified biological functions of miRNAs, 

which would otherwise not be possible. 
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INTRODUCTION 

Genomic and transcriptomic research has accumulated a vast collection of publicly available cancer-

related data. Integrating this information still poses a considerable obstacle as genomic and 

transcriptomic data from cancer patients are characterized by significant heterogeneity at two levels. 

First, results are generally collected using different sample preparation protocols and transcriptome 

analysis platforms and are then interrogated by constantly changing techniques. Although these 

techniques have improved on accuracy, sensitivity or genome coverage, they restrain backward 

compatibility, e.g., expression level analysis has evolved from qPCR through microarrays toward NGS 

sequencing in the last 10-15 years. Second, collected patient samples are intrinsically heterogeneous 

at tissue and cellular levels. Bulk analysis of transcriptomes can mask different types of heterogeneity 

in the sample as tumour biopsies contain many cell types that are mixed in different proportions. 

Furthermore, there are well-documented variations of tumour cells within the same neoplasia, which 

can conceal low abundant, but critical cell subtypes such as drug-resistant tumour cells. These facts 

plus the lack of standardised analysis pipelines limits discoveries and can lead to erroneous clinical 

conclusions (Patel, Tirosh et al., 2014, Zhao, Hemann et al., 2014). The experimental approach to 

resolve the complex issue of working with heterogeneous cancer samples involves physical 

separation of tissue into homogeneous cell populations or even single cells (by cell sorting, single cell 

technologies or microdissection) before the actual measurement (Legres, Janin et al., 2014, Patel et 

al., 2014, Weaver, Tseng et al., 2014). Technologically, this is an expensive and laborious task, which 

is not yet accessible routinely and which can introduce experimental errors (Debey, Schoenbeck et al., 

2004, Shannon, Balshaw et al., 2014). 

Alternatively, computational approaches can be applied to separate or deconvolute multivariate 

signals from different cell types, accounting for variable biopsy sample composition and intra-tumour 

heterogeneity. One of the most promising methods of assumption-free transcriptome deconvolution is 

independent component analysis (ICA). This method originated from the domain of signal processing 

aiming at detecting individual components from a complex mix of mutually independent non-Gaussian 

signals. It allows to identify sources of transcriptional signals, cluster genes into functional groups and 

cell type-related signatures (Biton, Bernard-Pierrot et al., 2014, Teschendorff, Journee et al., 2007) 

and deduce interactions between biological processes (Lee & Batzoglou, 2003). Importantly, ICA 

results are concordant with clinical data, such as cancer subtypes (Biton et al., 2014) and survival, 

suggesting ICA as a potentially useful tool for patient diagnostics and prognostics. The method can 

also recognise and remove biologically irrelevant signals such as technical factors and/or confounders. 

Therefore, such an approach can make use of large sets of high-throughput transcriptomic (or other) 

data that were collected through different stages of technological progress. 

For cancer research, one of the most valuable data sources is The Cancer Genome Atlas (TCGA), 

which holds over 10 000 patient-derived samples including various levels of omics data: DNA, RNA, 

and proteins. The data have been continuously collected using massive financial and scientific efforts. 

Now, the question arises if this resource can also be used to support clinicians in making rapid and 

accurate assessments leading to tailored treatments for individual cancer patients. Therefore, 
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methods that can incorporate newly generated "omics" data (further addressed as “investigation 

dataset”) in large public reference datasets are required for improved diagnostics of new patients. 

Here we propose an ICA-based method to combine reference and investigation datasets for patient 

diagnostics and detailed inspection of biological processes in cutaneous melanoma (Hayward, 

Wilmott et al., 2017).  

Melanoma arises through the malignant transformation of melanocytes and presents a very 

aggressive form of skin cancer with increasing global case numbers (https://www.cancer.gov/about-

cancer/understanding/statistics). Approximately 50-60% of patients express mutated BRAF or NRAS,  

rendering the BRAF kinase signalling cascade constitutively active, impacting  on both MAPK and 

PI3K/AKT pathways (Holderfield, Deuker et al., 2014). The introduction of specific kinase inhibitors of 

the activating BRAF kinase mutation and downstream MEK kinases, and the further use of immune 

checkpoint inhibitors have improved patients’ overall survival (Luke, Flaherty et al., 2017). However, 

resistance or severe side effects can arise rapidly against both types of therapies, leaving hardly any 

treatment options for the majority of advanced stage melanoma patients resulting in a low 5-year 

survival rate (Schadendorf, Fisher et al., 2015, Sullivan & Flaherty, 2013). Melanoma’s extremely high 

mutation rate (>10 somatic mutations/Mb) and the concomitant genetic heterogeneity make it difficult 

to distinguish true cancer driver genes from noise and low frequency mutations in bulk samples using 

current technologies (Lawrence, Stojanov et al., 2013, Zhang, Dutton-Regester et al., 2016). 

Nevertheless, according to mutational hotspots, melanoma patients have recently been allocated to 

four groups: BRAF, NF1, RAS or Triple WT (wild type), while the analysis of gene expression data 

resulted in three functional groups: “immune subclass”, “keratin subclass” and “MITF-low subclass”, 

which according to the authors have implications for patient survival (Cancer Genome Atlas, 2015). 

Interestingly, the majority of primary melanomas belonged to the “keratin subclass” having a worse 

prognosis than the other two subclasses.  

In this study, we used the SKCM TCGA cohort with over 470 patients diagnosed with cutaneous 

melanoma as the reference dataset. Two layers of sequencing data were considered and integrated: 

mRNA and microRNA (miRNA). The investigation dataset included a small cohort of three primary 

melanoma tumours and two controls: matched cancer patient-derived normal skin and NHEM cells 

(normal human epidermal melanocytes). First, for the reference cohort, we demonstrated that ICA 

deconvolution was successfully applied to classify patients based on their tumour subtypes and to 

build the hazard score that predicts patient survival. The hazard score was then tested using an 

independent validation cohort of 44 patients, obtained by microarray gene expression technology. The 

strong difference between reference RNA-seq data and microarray-derived validation datasets was 

overcome by our method. Next, the investigated dataset was studied in depth and key processes 

involved in cancer aetiology were detected: immune response and inflammation, angiogenesis, self-

sufficient cell proliferation and other.  

We show here that consensus ICA can integrate data from different biological sources, time points 

and platforms to predict clinically important characteristics of cancer in a bias-free, unsupervised and 
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potentially automatable fashion, suggesting consensus ICA as a useful module of future clinical “one-

click” support systems. 

RESULTS 

ICA of combined data sets can remedy technical biases 

Reference, validation and investigation datasets. Using publicly available data sets for 

diagnostic/prognostic purposes on new patients is often hampered by the fact that different technical 

platforms, data formats and analysis pipelines are used to generate the reference data and the patient 

samples to be investigated. Thus, reference and newly generated data do not come from the same 

distribution, which often introduces strong technical biases despite different normalisation schemes. It 

has recently been shown that ICA, when applied to heterogeneous datasets affected by technical 

factors, can identify such biases and single out one or several components to account for them (Biton 

et al., 2014, Taroni & Greene, 2017). As soon as the technical bias is captured by an independent 

component, it is isolated from the core data, which can then be analysed in a more accurate way. 

In this study, graphically outlined in Figure 1, we used public TCGA data as the reference dataset, 

published microarray data (Bogunovic, O'Neill et al., 2009) as a validation set and an investigation set 

based on clinical samples – three primary melanoma tumours (denoted P2PM, P4PM, P6PM) and 

two control samples (matched normal skin P4NS and NHEM cell line) as described in Table 1. We 

developed a method to assign a prognostic hazard score based on the reference set and validated 

our approach on an independent public microarray data set, followed by testing the method on clinical 

samples. The underlying ICA was done on single or combined datasets (reference only, 

reference/validation and reference/investigation) by the developed consensus ICA method. 

Stability of deconvolution. ICA was applied to two types of transcriptomic data: mRNA and miRNA 

expression. Based on the reasoning provided in Supplementary Methods, 80 independent 

components were used for the deconvolution of mRNA data (named RIC1-80) and 40 for miRNA data 

(denoted as MIC1-40). ICA was run 1000 times in order to achieve robust results. Of 80 RICs, 26 

showed high reproducibility (mean coefficient of determination between the detected metagenes 

R2 > 0.8 after 1000 runs of ICA) while 23 had reasonable reproducibility (0.5 < R2 ≤ 0.8). Among 40 

MICs, 23 had R2 > 0.8 and 13 – 0.5 < R2 ≤ 0.8. As mentioned in Supplementary Methods, RICs were 

automatically reoriented in order to make the biologically relevant sets of genes contribute positively 

to the matrix of metagenes S. MICs were reoriented based on the negative sign of correlation with 

RICs. 

ICA identifies technical biases. The combined reference/investigation dataset profiled by RNA-seq 

is presented in the space of two first principal components (Figure 2A) and of two selected 

independent components (Figure 2B). The two principal components included 33% of total variability 

and mainly reflected technical effects: PC1 was linked to the RNA-seq library size (data not shown) 

and PC2 segregates reference and investigation data. Among all RICs, the components that reflected 

data clustering according to gender (RIC3) and sample type (primary or metastatic, RIC5) were 

chosen. Both components were detected with high reproducibility (R2
RIC3 = 0.996, R2

RIC5 =0.993). The 
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investigation data were clearly integrated within the reference data and showed reasonable clustering 

in Figure 2B. P2PM and P4PM samples originated from primary tumours of female patients, P4NS 

normal skin corresponding to P4PM samples and NHEM was extracted from eyelid skin of a female. 

P6PM was a primary tumour of a male patient. Functional analysis showed that genes involved in 

RIC5 participate in keratinocyte-specific functions and thus weights of RIC5 could be used as a 

marker of keratinocyte presence. Indeed, the vast majority of metastatic samples had low values of 

RIC5 weights, while primary tumours showed high values. NHEM (pure melanocytes) are devoid of 

keratinocytes and therefore clustered with metastatic tissues. 

An even stronger normalisation effect of ICA was observed for miRNA data. As mentioned above, the 

techniques used for miRNA detection and quantification were different: miRNA-seq for the reference 

dataset and whole miRNome qPCR arrays for the new samples. PCA showed strong differences 

between log2 transformed counts and inverted Ct values (Figure 2C). However, in the space of 

independent components, the new samples were properly located again (Figure 2D). Here, two 

miRNA components MIC1 and MIC9 were depicted. MIC1 showed a strong relation to survival (Cox-

based log rank p-value=9.4e-4) while MIC9 was correlated with the skin-related signal of RIC5. 

ICA yields clinically relevant information 

ICA as a feature-selection method for sample classification. As observed for patient gender and 

sample type in Figure 2B, the weights of the components can be used as features with predictive 

potential. We investigated whether clinical factors could be predicted by ICA deconvolution, only 

analysing RICs for simplification. Three factors were selected for the report: gender, sample type and 

RNA cluster, that could be considered as cancer subtype and was previously introduced in (Cancer 

Genome Atlas, 2015). We validated the random forest classification directly on the reference set 

using leave-one-out cross-validation (LOOCV), as described in Material and Methods. Then, the new 

samples were classified and the results are presented in Table 2. Gender and sample types were 

accurately predicted for all the new samples but NHEM cells were considered metastatic: the best 

location predictors were weights linked to the transcriptional signal of keratinocytes, which was low in 

metastatic tumours and also in this primary cell line. 

ICA provides prognostic features linked to patient survival. Next, prognostic abilities of the ICA 

weights were examined by a Cox regression model. All components, their significance and log hazard 

ratios (LHRs) are summarised in Supplementary Tables S1 and S2. Eleven RICs and 3 MICs were 

found significantly linked to patient survival after multiple testing adjustment (FDR-adjusted log rank p-

value for Cox regression < 0.05). Among them, 6 RICs and 2 MICs showed very high stability of 

R2>0.8: RIC2, RIC4, RIC5, RIC7, RIC25, RIC75, MIC1 and MIC20. Although these 11 RICs and 3 

MICs were statistically linked to survival in our reference set, the predictive power of any of them may 

have not been sufficient to predict survival of new patients. Therefore, we combined the weights of 

these components into a hazard score (HS) as described in Material and Methods. Combined HS 

showed high significance (Cox log rank p-value = 2.2e-13) for the TCGA dataset. 

In order to validate the proposed hazard scoring approach on an independent cohort of patients, we 

repeated the ICA on the combined TCGA RNA-seq data (reference set) and microarray data E-
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GEOD-19234 (additional validation set). Notably, the metagenes of the new decomposition were 

strongly correlated with the metagenes from the initial reference-set; only ICA and 44 of them showed 

R2>0.5 (95% prediction interval for R2 values between metagenes of the same decomposition was: 

0<R2<0.004). The components that showed a significant (adj.p-value<0.05) link to survival on the 

reference set were then used to compose HS for the validation data and also showed significant 

prognostic properties (log rank p-value of 0.0013); Kaplan-Meyer plot shown in Figure 3. The 

developed HS separated patients with low hazard (only one death among 7 patients, blue line in 

validation set, Figure 3) from the group of patients with a high hazard score. 

For the three primary melanoma samples from the investigation set, the calculated HS was the lowest 

for the P2PM sample (HS=1.16) and the highest for P6PM (HS=1.92). This was in agreement with 

clinical observations, as patient P6 suffered from a very aggressive form of melanoma and deceased 

shortly after sample collection. From the quantitative results obtained from the validation dataset and 

qualitative differences observed for the investigation dataset, we concluded that weights of 

independent components can be combined into a hazard score, suitable to predict patient survival. 

Independent components provide information about biological processes in tumours 

General strategy. The most challenging part of ICA is assigning components to specific biological 

processes, cell types and technical factors. The approach we have taken is outlined in Supplementary 

Figure S1 and the automatically generated reports describing the components can be found in the 

Supplementary Results. Briefly, the weights of components were linked to clinical factors using 

ANOVA and to survival by Cox regression. RIC metagenes were submitted to an over-representation 

analysis, resulting in enriched categories (GO terms (Alexa & Rahnenfuhrer, 2016), cell types, 

chromosome locations, etc. (Kuleshov, Jones et al., 2016)). Next, we compared the detected RIC 

metagenes to previously published ones derived using ICA from bladder cancer transcriptomes (Biton 

et al., 2014) and to the LM22 leukocyte gene signature matrix (Newman, Liu et al., 2015). 

Comparison to the published metagenes showed common signals between melanoma and bladder 

cancers (Supplementary Figure S2A), while the LM22 signature matrix helped to better identify types 

of leukocytes (Supplementary Figure S2B). LM22 contains 547 genes and distinguishes 22 human 

hematopoietic cell types, including several T cells, B cells, NK cells and others. The biological origin 

of the detected signals was confirmed using melanoma single-cell data reported by Tirosh et al. 

(Tirosh, Izar et al., 2016) – correlation of several components is shown in Supplementary Figure S3. 

MICs were linked to RICs using correlation between weights of the components and literature mining. 

Genomic locations of MICs were further used to find cytogenic bands enriched with top-contributing 

miRNAs. Finally, we used the weights of the components linked to biologically relevant signals in 

order to acquire new knowledge about processes in the investigated samples. 

Immune components. The biggest cluster of RICs was linked to immune cells and immune response. 

Based on functional annotation it included seven components: RIC2, RIC25, RIC27, RIC28, RIC37, 

RIC57 and MIC20. RIC2, RIC25 and RIC27 showed correlated weight profiles between themselves 

and with RIC74, RIC79 and MIC20 (Figure 4A, Supplementary Results).  
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Immune component RIC2 was strongly linked to survival (LHR=-0.89, p-value=1.8e-4) and most 

probably originated from B cells (Enrichr "B cells" category enriched, adj.p-value=3.9e-6). The 

metagenes of RIC2 were also correlated with the LM22 signatures for B cells ("plasma cells" r=0.63, 

"B cells memory" r=0.58, "B cells naïve" r=0.57, Supplementary Results, and also showed the highest 

correlation with B cell profiles measured in single cells (Supplementary Figure S3)). RIC27 showed a 

very similar collection of enriched gene sets. These two components most probably represent naïve 

and activated B-cells. 

Functionally, RIC28 was linked to inflammatory responses to wounding (adj.p-value=6.3e-22), 

neutrophil degranulation (adj.p-value=1.3e-7), TNF (adj.p-value=4.7e-8) and IL1-mediated signalling 

pathways (adj.p-value=2.2e-9); RIC37 was connected to interferon signalling (adj.p-value = 5.1e-22) 

whose metagenes were also reciprocally correlated with M5_INTERFERON of the Biton dataset 

(Biton et al., 2014). Components RIC74 and RIC79 contained a very limited number of top-

contributing genes, but both were significantly linked to survival (p-values of 1.3e-3 and 3.2e-3). No 

specific cell type was associated with these components. RIC74 was, however, associated with 

positive and negative regulation of immune response and receptor-mediated endocytosis (all adj.p-

values=2.6e-4). 

The weights of miRNA component MIC20 were positively correlated with the weights of RIC2, RIC25 

and RIC27 (correlation of 0.69, 0.86 and 0.64 accordingly) and were positively linked with survival 

(LHR= -1.32, p-value=1.2e-4). Among the top miRNAs in MIC20 were miR-155, miR-150, miR-342, 

miR-146b, and miR-142. MiR-155 is known to be a regulator of immune response in cancer cells 

(Huffaker, Lee et al., 2017, Ji, Wrzesinski et al., 2015) while miR-150, miR-155 and miR-342 have 

been proposed as markers for melanoma patient survival (Segura, Belitskaya-Levy et al., 2010). 

Interestingly, four of those positively contributing miRNAs formed a cluster on chr1q32.2 (adj.p-value 

7.3e-3). 

The new samples were characterised by the involvement of the above immune response-related 

components (Figure 4A). The results are presented in Table 3. All components linked to 

subpopulations of immune cells (RIC2, RIC25, RIC57, MIC20) showed little involvement in the new 

patients suggesting moderate overall immune reactions to the tumour except specific interferon 

responses, which had high weights in the new samples (RIC28, RIC37). 

Stromal and angiogenic components. The second cluster of RICs was linked to the signals of 

stromal cells and showed enrichment in genes related to angiogenesis. It included four correlated 

components: RIC13, RIC49, MIC22 and MIC25 (Figure 4B, Supplementary Results). Genes of 

component RIC13 were enriched in extracellular matrix organisation (adj.p-value = 2e-26) and 

vasculature development (adj.p-value = 5e-23). The component's metagenes were strongly correlated 

with metagene M3_SMOOTH_MUSCLE of Biton et al. (Biton et al., 2014). In the single cell study, the 

highest correlation of RIC13 metagenes was observed with cancer-associated fibroblasts. Most 

probably, this component is linked to cells of tumour stroma. Another component from this cluster, 

RIC49, showed enrichment in GO-terms linked to blood-vessel development and angiogenesis (both 

with adj.p-value = 6e-24). Its most correlated single cell type was endothelial cells, which also form 
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part of the tumour microenvironment. Thirteen of the positively contributing miRNAs from MIC22 were 

strongly concentrated in a narrow genomic region in chr14q32.2 (adj.p-value 5.8e-11). MiRNAs of 

MIC25 were significantly enriched in four cytogenetic locations: chr1q24.3, chr5q32, chr17p13.1 and 

chr21q21.1 (adj.p-values of 5.0e-6, 2.6e-3, 4.1e-02 and 9.7e-5, respectively). 

In the new clinical samples, the highest amount of stromal and endothelial cells were observed in 

P2PM and P4NS samples. The primary cell line NHEM showed almost no signal of stromal cells. 

Interestingly, MIC25 was heavily weighted in all new patient samples, excluding this cell line. 

Skin-related components. RIC5, RIC7, RIC19, RIC31 all showed an enrichment in GO terms related 

to processes of the skin including epidermis development (adj.p-value < 2e-15 for all mentioned 

components) and keratinisation (adj.p-value < 1.4e-10). Enrichr suggested that the signals of these 

components are specific to skin (adj.p-value < 1e-50). The dataset contained 48 keratins and many of 

them were observed among the top-contributing genes: 20 for RIC5, 28 (RIC7), 30 (RIC19) and 13 

(RIC31). RIC5 and RIC7 were negatively correlated with survival, which is in concordance with 

previous observations (Cancer Genome Atlas, 2015). MIC9 with the skin-specific miR-203 (Yi, Poy et 

al., 2008), was linked to RIC5, RIC7 and RIC31. Furthermore, several components (RIC4, RIC16, 

MIC11 and MIC14) were connected to the activity of melanocytes. Top-contributing genes of RIC4 

were enriched in the melanin biosynthesis process (adj.p-value 1.2e-5) and Enrichr linked these 

genes to melanocytes (adj.p-value 2.8e-25). RIC14 showed an inverse correlation of the weights with 

RIC4. Both components were linked to survival, but with an opposite effect: while RIC4 increased the 

risk (LHR=0.18, p-value=5.4e-3), RIC16 increased the survival (LHR= -0.23, p-value=5.1e-4) 

(Supplementary Results). Many positively contributing miRNAs of the MIC11 component (16 of 33) - a 

miRNA cluster associated with early relapse in ovarian cancer patients (Bagnoli, De Cecco et al., 

2011)- were located on chrXq27.3 (adj.p-value<1e-7).  

Other tumour-related components. Some components could be linked to transcriptional signals and 

regulation of cancer cells. For example, RIC55 captured the cell cycle process (adj.p-value 6.6e-29) 

and the majority of the 383 genes positively associated to this component are known to be involved in 

cell cycle control with tumour cells contributing the most to cell division activities. Increased cell 

proliferation was linked to survival (Cox p-value=3.0e-2). In the investigated samples, the highest 

weight was observed for the most aggressive tumour P6PM and the lowest value for normal skin 

P4NS.  

Several RICs showed linkage to neural tissue. As an example, both positive and negative top-

contributing genes of RIC6 were linked to brain in the ARCHS4 tissue sets of Enrichr (both adj.p-

values < 1e-33). This component was as well associated with patient survival (Cox p-value=5.5e-3). 

The component indicates the ability of melanoma cells to show expression patterns specific for cells 

of the neural crest of human embryos and can be linked to motility of malignant melanocytes. 

MiRNA component MIC1 showed an interesting bi-modal distribution in the reference dataset (see 

two clusters in Figure 2D) and was strongly linked to patient survival (Cox p-value=9.4e-4), 

suggesting two subgroups of melanoma patients with different prognosis. This component most 

probably was linked to regulation of EMT, as many miRNA positively or negatively influencing the 
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component are known to be EMT regulators or linked to metastasis formation: miR-551, miR-206, 

miR-34a, miR-1269, miR-205, miR-876, miR-301b, and miR-365a. Based on our analysis of the 

reference TCGA dataset, these miRNA listed in Supplementary Results can be further investigated as 

potential survival markers for melanoma patients.  

ICA-derived biological networks 

Given the promising results with regard to immune- and angiogenesis-related components, we 

performed text mining on the terms “B-cell, miRNA and/or cluster”, “T-cell, miRNA and/or cluster” and 

“angiogenesis, miRNA and/or cluster”, and compiled a list of published miRNAs involved in immune 

responses and angiogenesis. For the shared top-contributing miRNAs from MIC20, 22, and 25 

(Figure 4 and Supplementary Results), experimentally confirmed target genes were extracted (from 

miRTarBase (Chou, Shrestha et al., 2018)). In order to investigate possible miRNA-target gene 

interactions as an underlying biological reasoning for clustering, we next overlaid the extracted target 

genes with gene lists of connected RICs (Figure 4). Finally, enrichment analysis was performed and 

final gene lists were analysed by STRING (Szklarczyk, Morris et al., 2017) to visualise potential 

protein-protein interactions. Overall, all networks (Figure 5, Supplementary Figures S4 and S5) 

showed a significant enrichment of interactions suggesting a non-random relation between top-

contributing miRNAs and genes. STRING network analysis captured key biological interactions 

reflecting the ICA-based RICs and MICs, from which they were initially derived. 

 

DISCUSSION 

Here we investigated the applicability of ICA-based deconvolution of transcriptomes, originated from a 

large set of bulk melanoma samples, for acquiring clinically and biologically relevant information about 

new patients. ICA decomposes transcriptomics data into components that are characterised by two 

matrices: a matrix of metagenes, which shows how each gene is involved in each component, and the 

matrix of weights that represents the involvement of the components in each sample. Importantly, this 

analysis does not require any preliminary knowledge about biology or sample composition. Unlike 

other deconvolution methods that use signatures (Yoshihara, Shahmoradgoli et al., 2013) or pure 

transcriptomic profiles (Quon, Haider et al., 2013), ICA is an assumption-free, unsupervised approach. 

The method directly works with the data from bulk samples without any preliminary assumption about 

the transcriptomes of the purified cell types. Among the components, one can expect to see not only 

those defined by "pure" tumours or stromal cells, but also those originating from tumour/stroma 

interactions including tumour-induced stromal cell reprogramming. One example of such interactions 

is angiogenesis, further discussed below. 

We implemented a robust consensus ICA method and applied it to several datasets from patients with 

cutaneous melanoma (SKCM). These included (a) a large cohort of SKCM patients from TCGA, used 

as reference set; (b) an independent cohort of 44 patients with publicly available microarray mRNA 

data and (c) 5 in-house clinical investigation samples: 3 primary melanomas, a normal skin sample 

and a normal melanocyte cell line (NHEM). Both mRNA and miRNA datasets were obtained for the 

reference and investigation samples. Despite the fact that different techniques were used for data 
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acquisition, ICA was able to identify common signals in the datasets and properly allocate the new 

samples within the reference set (Figure 2). This was particularly evident for miRNA data where the 

reference set was obtained by small RNA-seq and the new samples by qPCR arrays with PCA 

showing a strong difference between these two datasets. With ICA, technical biases in the data were 

isolated within several components and thus separated from biologically relevant signals leading to a 

better and more correct characterisation of the samples. 

The fact that ICA should be rerun for every series of new samples could be considered as a drawback 

of our approach. However, recalculation of the components does not require supervision and could be 

done automatically. In the case when investigation and reference datasets come from the same 

distribution, one can use the matrix S obtained from the reference dataset in order to define the 

weights (M) for the samples forming the investigation dataset (Eq.1). However, in reality, the 

variability in the data requires recalculation of the components for the new investigated samples. 

We demonstrate here that when analysing data from melanoma patients, the weights of independent 

components can be used as predictive features of patient subgroups and can also be linked to patient 

survival. While the ICA-based feature extraction method has been previously discussed (e.g. (Aziz, 

Verma et al., 2016, Teschendorff et al., 2007)), no studies have been devoted, to our knowledge, to 

estimating patient prognosis using ICA-based data deconvolution. We combined weights of several 

significant components into a hazard score, for which a high predictive power was shown both in the 

reference cohort (460 patients with known survival status) and in the independent validation cohort 

(44 patients). Thus, the developed approach could help clinicians in estimating the risks and 

potentially optimising the selection of adequate treatment strategies. Three of the survival-associated 

components were connected to immune response. As expected, higher immune signal indicated 

lower risk for the patients (Bogunovic et al., 2009). Interestingly, two of the skin-related components 

were as well linked to survival; however, their presence increased the risk, which is in agreement with 

previous observations (Cancer Genome Atlas, 2015).  

Next, the biological relevance of the components was examined in depth. Components that 

represented signals from various cell subpopulations (e.g. different immune cells, stromal cells, 

melanocytes) and cellular processes (e.g. cell cycle) were identified. These signals were also 

detected in the new samples, providing hints of active processes and tissue composition of these 

samples. We associated mRNA and miRNA components that showed similar weight profiles in all the 

patients and hypothesised that such components were probably derived from the same cell types or 

process. For example, MIC20 was correlated with RIC2 and RIC25 – the components associated with 

leukocyte activity. Indeed, miR-155, one of the markers of immune cells (Emming, Chirichella et al., 

2018), was found among the most involved miRNAs of MIC20. Therefore, we could link all other top-

contributing miRNAs within MIC20 to leukocytes and immune response and thus assign functions to 

these miRNAs. 

Another group of components were assigned to tumour-stromal interactions and angiogenesis. One of 

them, MIC22, contained an almost complete miRNA mega cluster miR-379/miR-410, with 11 of 13 

miRNAs significantly involved. The cluster is located on chromosome 14 (14q32) in the so-called 
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imprinted DLK1-DIO3 region. Lower levels of this miRNA cluster have been described to favour neo-

vascularisation (Welten, Bastiaansen et al., 2014) and shown to play a role in development, neonatal 

metabolic adaption but also in tumorigenesis. Deregulation of miRNAs in this locus has recently been 

shown to predict lung cancer patient outcome (Enfield, Martinez et al., 2016, Valdmanis, Roy-

Chaudhuri et al., 2015). Most miRNAs in this cluster (68%) were significantly downregulated in 

glioblastoma multiform, 61% downregulated in kidney renal clear cell carcinoma and 46% in breast 

invasive carcinoma indicating a tumour suppressive role of this miRNA cluster, especially in 

glioblastomas (Laddha, Nayak et al., 2013). Moreover, Zehavi et al. (Zehavi, Avraham et al., 2012) 

have shown that the miR-379/miR-410 cluster was silenced in melanoma, which favoured 

tumorigenesis and metastasis.  

Overall, we observed that ICA on miRNA expression data grouped together many miRNAs that 

belong to genetic clusters and by connecting MICs with genes (RICs), biological functions of miRNAs 

could be inferred. As an example, MIC11 represents a cluster on chrX q27.3 associated with early 

relapse in advanced stage ovarian cancer patients (Bagnoli et al., 2011). In our analysis, the miRNAs 

from that cluster were linked to activity of malignant melanocytes. All this is suggestive of a concerted 

role for miRNAs of a given cluster in regulating functionally related genes (Haier, Strose et al., 2016, 

Wang, Luo et al., 2016). 

The results for the ICA-derived biological networks implied that the combination of ICA with text 

mining (biological expressions enriched in statistically correlated RICs and MICs) potentially uncovers 

two hidden connections: biological reasons for statistical correlations and detection of those genes 

actually responsible for the biological link between MICs and RICs. This in turn might give new 

insights into the significance of biological processes involved in cancer in general or in certain cancer 

subtypes.  

Similarly to PCA, ICA could be integrated into standard analysis pipelines in the future. Unlike PCA, 

which only groups samples in the space of a few principle components, ICA could extract biologically-

based signals. These signals can be further used to acquire clinically relevant information about new 

samples, thus helping patient diagnostics and prognostics. Taken together, consensus ICA approach 

represents a versatile tool to dissect complex data cohorts into individual components allowing for 

better use of such datasets. 
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MATERIAL AND METHODS 

Preparation of the reference and validation datasets 

Expression data. As reference dataset, we used the open-access TCGA skin cutaneous melanoma 

(SKCM) datasets, namely RNA-seq (HTSeq raw counts, FPKM and TPM) and miRNA-seq data 

(miRNA isoform read count) from the Genomic Data Commons (GDC) data portal of the National 

Cancer Institute of the National Institutes of Health (NIH, https://portal.gdc.cancer.gov/). The RNA-seq 

dataset comprises data from 468 different individuals (472 samples). Of those, 368 originated from 

metastatic samples (1 individual provided 2 samples) and 103 from primary melanoma tumours; one 

sample represented a solid normal tissue. MiRNA-seq data were available for 452 individuals, with 

353 metastatic, 97 primary tumour and 2 normal skin tissue samples. The miRNA-isoform read counts 

data were collapsed per isoform and IDs were mapped to miRNA-names based on miRBase v. 21 

(http://www.mirbase.org/). 

A validation dataset of gene expression data was taken from Bogunovic et al. (Bogunovic et al., 2009), 

available from ArrayExpress under E-GEOD-19234. This Affymetrix GeneChip Human Genome U133 

Plus 2.0 microarray dataset consisted of 44 metastatic samples from melanoma patients 

accompanied by survival information. As microarray expression data have very different dynamic 

range compared to RNA-seq (Nazarov, Muller et al., 2017), we shifted and scaled the microarray data: 

the 5th percentile of expression was used as the lowest meaningful signal and was subtracted from 

microarray gene expression. All negative values were set to 0. The data were then scaled to unify the 

75th percentile between reference RNA-seq and validation microarray data. 

Clinical data. To explore the possibility of assigning clinical traits to TCGA samples, we compiled a 

small dataset based on public TCGA data with “fail-safe” items covering gender and sample type 

(primary tumour and metastatic). Additionally we added publication-based data for RNA-seq 

clustering (immune / keratin / MITF-low) (Cancer Genome Atlas, 2015) as this information has been 

claimed to be relevant for disease prognosis. Survival data were extracted by parsing related 

information out of publicly available individual clinical data files (XML files provided by GDC). We 

extracted and processed the information assigned to the tags: bcr_patient_barcode, days_to_death, 

vital_status, year_of_initial_pathologic_diagnosis, age_at_initial_pathologic_diagnosis, 

days_to_last_followup and person_neoplasm_cancer_status. The full survival and clinical datasets 

are described in Supplementary Tables S3 and S4, respectively.  

Preparation of the investigation dataset: clinical samples, data acquisition and analysis 

The investigation dataset, represented by RNA-seq and miRNA qPCR array data, is composed of 

primary tumour samples of three melanoma patients and two control samples (one matched normal 

skin and a healthy melanocyte cell line, NHEM). Sample annotation is presented in Table 1. Details of 

sample collection, preparation, transcriptome and miRNome analyses are described in 

Supplementary Methods. RNA-seq data for these samples are available by GEO accession number 

GSE116111 and Ct-values for all quantified miRNAs are available in Supplementary Table S5. 
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To harmonise miRNA annotation of qPCR arrays and TCGA-derived miRNA isoform read count data, 

we first re-annotated our qPCR arrays to miRNA version 21. To have comparable data between 

qPCR arrays and TCGA, we worked with miRNA isoform data referring to miRNA IDs, so that 

mapping of stem loop IDs to mature miRNA IDs was possible. 

Data Analysis 

RNA-seq expression measures. Four metrics of gene expression were considered: raw counts, 

DESeq2-normalized counts (Anders & Huber, 2010), Fragments Per Kilobase of transcript per Million 

(FPKM) and Transcripts Per kilobase Million (TPM). All expression values were log2 transformed. Raw 

gene expression data were represented by 60446 features, of which many were lowly expressed. In 

order to reduce the number of uninformative features, we applied soft filtering, by the maximum 

expression level as described in (Nazarov, Reinsbach et al., 2013): only genes that showed over 

1000 counts in at least one sample of the reference TCGA SKCM dataset were considered 

(Supplementary Figure S6A shows distribution of maximum gene expression and the threshold in log2 

scale). This resulted in 16579 informative genes (distribution is presented in Supplementary Figure 

S6B). ICA of raw counts showed the best performance for patient stratification with smaller number of 

components using gender and sample type as benchmark (described in Supplementary Materials, 

Figure S6C and S6D).   

Independent component analysis. Independent component analysis (ICA) was applied to the 

combined reference and investigation datasets for unsupervised separation of signals and feature 

extraction (Figure 1). By combining the datasets, we expect that technical biases between the 

reference and investigation data are estimated by the method and isolated within some of the 

components. Each layer of omics data: mRNA and miRNA was analysed independently at this stage. 

ICA implementation from the fastICA package of R was used (Marchini, Heaton et al., 2017). Let us 

denote Enm the expression matrix of n genes or miRNAs measured in m bulk samples. ICA 

decomposed such a matrix into a product of k statistically independent transcriptional signals Snk 

(addressed further as matrix of metagenes) and a weight or mixing matrix Mkm (matrix of 

metasamples) (Hyvarinen, 1999, Kairov, Cantini et al., 2017, Zinovyev, Kairov et al., 2013).  

��� � ��� � ��� (Eq.1) 

The values represented in the columns of S (metagenes) can be interpreted as the level of influence 

of the corresponding genes/miRNAs on the components. When a component captures a specific cell 

type, its corresponding set of top-contributing genes can be considered as markers of this cell type. 

Weights in rows of M show how the metagenes are mixed in the samples. Again, if a component is 

linked to a cell type, its weight may be considered as an estimation of the fraction of those cells in 

each sample. In order to distinguish independent components obtained after ICA of mRNA and 

miRNA data, we introduce the terms RICs (mRNA) and MICs (miRNAs). Thus, each RIC and MIC is 

associated with two vectors: one shows the involvement of the genes in this component (a column of 

S); the second represents the weights of the component in the samples (a row of M). Unlike non-

negative matrix factorization, both metagenes and weights can be positive or negative and ab initio 
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the selection of the direction is random, depending on the initial estimation. Because of this, ICA may 

suffer from reduced reproducibility for at least some components. To mitigate this drawback, we ran 

the analysis multiple times (100 runs during the exploratory step and 1000 for the final analysis). The 

detailed algorithm of consensus ICA is described in the Supplementary Methods. Multithreading was 

implemented in R code to speed-up calculations using the foreach package and either doMC (Linux) 

or doSNOW (MS Windows) packages available in R/Bioconductor. The script of the implemented 

consensus ICA and other tools used here for investigation of the components are available online: 

https://gitlab.com/biomodlih/consica. 

The top-contributing genes and miRNAs per component were detected using the following 

significance analysis approach. A p-value was independently assigned to each gene/miRNA within 

each component, based on the probability that it came from a normal distribution with estimated 

parameters. As a small subset of genes had extremely high values in S, while the majority was 

normally distributed, we used non-parametric measures to estimate the centre and scale of the 

distribution (median and median absolute deviation). Then these p-values were corrected for multiple 

testing (Benjamini & Hochberg), and those with an adj.p-value<0.01 were reported as top-contributing 

genes of a component. Two lists of top-contributing genes/miRNAs resulted from the analysis – 

positively and negatively involved. The lists of top-contributing genes of each RIC were afterwards 

used for over-representation (enrichment) analysis. The 16579 informative genes were used as a 

background gene list and significantly enriched (adj.p-value<0.01) GO terms were investigated. In 

order to simplify the interpretation and to increase the robustness for runs on different datasets, we 

reoriented the components in order to have the most significantly enriched categories associated with 

positive top-contributing genes (Supplementary Methods). For MICs, the direction could not be 

identified by enrichment analysis, therefore we reoriented only those MICs that showed strong 

negative correlation with RICs. As we ran ICA on a combination of reference and investigation 

datasets, several components captured the platform difference between these datasets. We labelled 

such components as technical components. Accordingly, the remaining components could be 

considered as being clean from this confounding effect.  

Prediction of new sample classes. Random forest (RF) classifier, implemented in the randomForest 

R package (Liaw & Wiener, 2002), was used with the default settings to predict classes of patients. 

Columns of the weight matrix M were used as inputs and clinical variables (e.g. gender, sample type) 

as outputs. Each variable was analysed independently. First, leave-one-out cross-validation (LOOCV) 

was performed on the reference set in order to address the ability of predicting sample classes and 

estimate the accuracy of prediction. Then the RF, trained on all reference data, was used to predict 

classes for the new clinical samples of the investigation dataset.  

Integration of mRNA and miRNA expression data for survival prediction. Weights of the 

components (rows of matrix M) were statistically linked to patient survival using Cox partial hazard 

regression implemented in the survival package of R (Therneau & Grambsch, 2000). FDR-adjusted p-

values of the log rank test were used to select significant components. However, the prognostic power 

of each individual component might not have been high enough to be applied to the patients from the 
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new cohort. Therefore, we integrated weights of several components, calculating the hazard score 

(HS) with an improved predictive power. For each patient, its HS is the sum of the products of log 

hazard ratio (LHR) of the univariable Cox regression (LHR, only significant), the component stability 

R2 (see Supplementary Methods) and the standardised row of weight matrix M: 

��� �  	 ��

�

���


�
	��,�

�  (Eq.2) 

�� � ��

0 �   for significant components

for non-significant components
 (Eq.3) 

The validity of the proposed score was checked using the validation set. 

Biological relevance of the components. Our strategy to investigate the biological relevance of the 

components is presented in Supplementary Figure S1. First, we attempted to connect the metagenes 

of all the components from the mRNA data to biological functions and cell types. We analysed 

separately the positively and negatively involved genes using several tools. Automatic analysis was 

done by topGO (Alexa & Rahnenfuhrer, 2016) followed by a manual analysis with Enrichr (Kuleshov 

et al., 2016, http://amp.pharm.mssm.edu/Enrichr/) that checked for enrichment in multiple categories 

originated from various databases (we used Reactome 2016, GO Biological Processes 2017, Human 

Gene Atlas, ARCHS4 Tissues and Chromosome Location, 

http://amp.pharm.mssm.edu/Enrichr/#stats). In addition, we compared the metagenes to the ones 

previously published by Biton et al. (Biton et al., 2014) and assigned the component number to the 

reciprocally corresponding metagene as explained in Cantini et al. (Cantini, Kairov et al., 2018) using 

the DeconICA R package (https://zenodo.org/record/1250070). As enrichment of immune-related 

processes and functions was observed, we also correlated our metagenes to the immune cell type 

signature matrix named LM22 (Newman et al., 2015) in order to identify components originated from 

different types of leukocytes; cell-types were associated with components through highest correlation. 

Finally, for some components we confirmed their biological origin by correlating the metagenes with 

averaged gene expression profiles of cell types measured at a single-cell level and reported by Tirosh 

et al. (Tirosh et al., 2016). For miRNA data we considered enrichment of genomic locations of 

contributing miRNAs annotated by the cyto_convert tool of NCBI 

(https://www.ncbi.nlm.nih.gov/genome/tools/cyto_convert/). Standard hypergeometric tests with p-

value adjustment was used to associate over-representation of miRNAs from MICs within cytogenic 

bands.  

Integration of components for data at miRNA and mRNA levels. Pearson correlation between 

weights of the components was used to link the components found within mRNA and miRNA data. 

Here we hypothesized that if two components show significant correlation of the weights in all the 

samples, they should be functionally linked. Of note, these MICs have been linked to their respective 

RIC, purely based on the high correlation of component weights, without considering any biological 

knowledge. Due to the lack of tools providing data with regard to biological functions or cell types for 

miRNAs, we performed literature mining, searching for all publications related to miRNAs-clusters and 
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additional biologically relevant keywords. Based on intermediate results suggesting a connection of 

network-related RICs to specific cell types, namely T- and B-cells or angiogenesis, we used these 

expressions as keywords, assuming a biological link between MICs and RICs. After automatically 

extracting miRNA-names and clusters from publication titles and abstracts by an inhouse Python 

script (available on demand), we compared those with the miRNA-metagenes comprised in the 

correlation-based networks, to identify a possible enrichment of miRNAs related to the proposed 

biological function. Additionally, we compared our miRNA-metagenes to miRCancer 

(http://mircancer.ecu.edu/ (Xie, Ding et al., 2013)).  

In order to explore the link or edges between MICs and RICs we extracted the target genes with a 

strong support from miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/php/index.php, (Chou et al., 

2018)) for those miRNA-metagenes mapping the miRNAs and clusters found by literature mining. 

Additionally, we filtered these target genes to ensure that they were part of the reference gene set 

based on top-contributing genes as determined by the mRNA-reference set. We then overlapped 

these target genes with the metagenes of the respective linked RIC and applied Enrichr tool through 

the automated Python-based API using the following reference gene set collections: KEGG_2016, 

GO_Biological_Process_2017b, GO_Cellular_Component_2017b, Jensen_TISSUES, 

Jensen_DISEASES (script available on demand). Moreover, we explored the overlapping target- and 

metagenes by STRING (https://string-db.org/, (Szklarczyk et al., 2017)) to detect significantly enriched 

protein-protein interaction networks. Both the results of the link-analysis between RICs and MICs as 

well as the investigation of MIC-metagenes have been finalised by visual inspection and evaluation by 

biological experts. A detailed schematic illustration is shown in Supplementary Figure S1.  

The involvement or the weight of each component in the new samples was not centred and scaled. 

To visualize the involvement of the components in the new samples, we replaced the weights of the 

components by a ranking score that changed from 0 to 1 (only reference set data were considered to 

define the ranking). If the weight of the considered component in a new sample was below (or above) 

the weights in the reference set, such component automatically was assigned to a limiting value of 0 

(or 1). Values of ranking score around 0.5 in the new sample suggest that the weight of the 

considered component was close to the median in the reference set. 
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DATA AVAILABILITY 

RNA-seq and miRNA-seq of investigation set: 

GDC data portal: https://portal.gdc.cancer.gov/ 

Expression data of validation set: 

Array Express: https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-19234/ 

New expression data of investigation set: 

 The sequencing data for 3 primary melanoma tumours and 2 controls are freely available 

under the GEO accession number GSE116111. Data for miRNAs are in the Supplementary Table S5. 

Tools: 

Consensus parallel ICA:  https://gitlab.com/biomodlih/consica  

R/Bioconductor v.3.4.3 with packages fastICA, doMC, doSNOW, topGO, randomForest, 

survival  https://cran.r-project.org/  

Enrichr  http://amp.pharm.mssm.edu/Enrichr/  

STRING https://string-db.org/  

miRTarBase http://mirtarbase.mbc.nctu.edu.tw/php/index.php  

miRBase http://www.mirbase.org/  

miRCancer  http://mircancer.ecu.edu/ 

DeconICA  https://github.com/sysbio-curie/DeconICA 

cyto_convert https://www.ncbi.nlm.nih.gov/genome/tools/cyto_convert/  

 

SUPPLEMENTARY DATA 

Supplementary materials that include Supplementary Figures, Supplementary Tables, Supplementary 

Methods and Supplementary Results are available online. 
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TABLE LEGENDS 

Table 1. Parameters of clinical samples and controls in the investigation dataset. 

Table 2. Performance of ICA-based feature extraction. Accuracy was calculated using leave-one-out 

cross-validation on the TCGA reference set; predictions for the investigation set are reported. 

Table 3. Biologically relevant components and their ranked weights in the new samples (investigation 

dataset). Rank is calculated in comparison to the TCGA reference set (red – weight is above majority 

of TCGA samples, blue - below). Risk is assigned using Cox regression and log-rank p-value is 

reported. For MICs the enriched cytogenic bands (adj.p-value<0.05) are presented. 

 

FIGURE LEGENDS 

Figure 1. Schematic workflow of ICA application to the reference, validation and investigation 

datasets. Left panel (green): preliminary ICA of reference TCGA data. We established the technique, 

investigated the RNA-seq measures (counts and FPKM), selected the number of components, 

showed that weight matrix M can be used for patient classification and set up a hazard score. Middle 

panel (blue): the developed hazard score was tested on the additional validation dataset. Left panel 

(red): application of the method on an unpublished investigation dataset of 5 samples: 3 primary 

tumours, one normal skin and one NHEM cell line. Transcriptome and miRNome data integration and 

in-depth investigation of the biologically relevant signals seen in S-matrix were performed. 

Figure 2. Data variability captured by the first components of PCA (A) and two selected components 

of ICA (B) in gene expression data. Independent components were selected based on the predictive 

power of their weights for patient gender (RIC3) and sample type (RIC5). MiRNA data showed even 

higher discrepancy comparing miRNA-seq and qPCR results by PCA (C). However, in the space of 

independent components (MIC1 and MIC9), the samples studied by miRNA-seq and qPCR overlap 

(D). 

Figure 3. ICA-based hazard score (HS) can predict patient survival. Performance of the score on the 

TCGA reference set (A). Validation of the hazard score on the independent cohort composed of 44 

metastatic melanoma patients (B). Cox regression log hazard ratio (LHR), together with its 95% C.I. 

and log rank p-value, are reported. In order to visualize the results as Kaplan-Meyer curves, patients 

were divided into two groups by their HS (low - blue and high - red). 

Figure 4. Component clusters. Cluster A is based on gene components (RICs) linked to immune 

response via enrichment analysis of top-contributing genes; cluster B is based on RICs linked to 

angiogenesis and stroma transcriptional signal. The size of the circles illustrates the number of top-

contributing genes and miRNAs in the components.  RIC and MIC components have been linked to 

each other via correlation analysis (edges between components show absolute correlation over 0.5). 

Survival analysis was performed by Cox regression with weights of the components used as 

predictors. See also Supplementary Results (online Supplementary Data) for the details about the 

components. 
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Figure 5. STRING network based on overlapping MIC22-target genes and RIC13 metagenes, 

showing a significant protein interaction network (PPI enrichment p-value: 1.27e-13) representing 

main players within angiogenesis. The gene list uploaded into STRING represents the overlap 

between the target genes of top-contributing miRNAs of MIC22 found in angiogenesis-related 

publications and top-contributing genes of RIC13 (also see Figure S2, red overlap in the green box for 

biological relevance). 
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Table 1.

Sample ID Sample Source Gender Age Size of lesion Body site Stage
% cancer 

cells

P2PM patient primary tumour F 81 4 mm left cheek pT1aN0M0 n/a

P4PM patient primary tumour F 84 10 mm right lower arm pT4bNxcMx 80

P6PM patient primary tumour M 30 10 mm head pT4bNxMx 90

P4NS patient normal skin F 84 n/a right lower arm n/a 0

NHEM healthy melanocytes F n/a n/a eyelid n/a 0

Parameters of clinical samples and controls in the investigation dataset.
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Table 2.

Predicted 

variable
Groups

Accuracy on 

training set 

(LOOCV)

P2PM P4PM P6PM P4NS NHEM

female: 179

male:    293

primary:     105

metastatic: 367

immune: 170

keratin:   102

MITF-low: 59

Performance of ICA-based feature extraction. Accuracy was calculated using leave-one-out 

cross-validation on the TCGA reference set; predictions for the investigation set are reported.

RNA cluster

sample type

gender 0.996

0.871

0.9

female female male female female

keratinkeratin keratin

primary primary

keratin keratin

primaryprimary metastatic
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Table 3.

Cluster Component Risk (p-value) Meaning P2PM P4PM P6PM P4NS NHEM

RIC2 decreased (1.8e-4) B cells 0.11 0.07 0.02 0.19 0.01

RIC25 decreased (2.8e-7) T cells 0.26 0.06 0.24 0.18 0.00

RIC27 no effect B cells 0.80 0.37 0.31 0.80 0.00

RIC28 no effect response to wounding 0.34 0.57 0.78 0.43 0.84

RIC37 no effect IFN signalling pathway 0.97 0.66 0.99 0.90 1.00

RIC57 no effect monocytes 0.00 0.25 0.24 0.02 0.00

MIC20 decreased (1.2e-4) T cells, chr1q32.2 0.14 0.08 0.37 0.02 0.19

RIC13 no effect cells of stroma 0.81 0.40 0.50 0.86 0.03

RIC49 no effect endothelial cells 0.73 0.12 0.29 0.84 0.00

MIC22 no effect miR-379/miR-410 cluster, chr14q32.2,14q32.31 0.29 0.20 0.27 0.38 0.16

MIC25 no effect
potentially related to stromal cells; clusters: 

chr1q24.3, 5q32, 17p13.1, 21q21.1
0.97 0.85 0.76 0.80 0.26

RIC5 increased (5.8e-3) epidermis development and keratinisation 0.92 0.93 0.96 0.92 0.87

RIC7 increased (8.9e-6) epidermis development and keratinisation 0.94 0.93 0.93 0.95 0.57

RIC19 increased (4.0e-2) epidermis development and keratinisation 1.00 0.62 0.22 1.00 0.93

RIC31 increased (2.2e-2) epidermis development and keratinisation 0.98 0.85 0.89 0.99 0.28

MIC9 increased (2.9e-2) skin-specific miRNAs 0.95 0.88 0.87 0.91 0.83

RIC4 increased (5.4e-3) melanin biosynthesis 0.62 0.77 1.00 0.21 0.96

RIC16 decreased (5.1e-4) melanosomes (negative gene list) 0.68 0.77 0.54 0.75 0.39

MIC11 no effect
potential regulators of malignant cells, 

chrXq27.3
0.21 0.96 0.62 0.13 0.48

MIC14 decreased (1.5e-2) potential regulators of melanocytes, chrXq26.3 0.01 0.29 0.67 0.29 0.38

RIC55 increased (3.0e-2) cell cycle 0.48 0.46 0.88 0.00 0.53

RIC6 decreased (5.5e-3) potentially linked to neuron differentiation 0.43 0.73 0.59 0.46 0.01

MIC1 increased (9.4e-4) regulators of EMT 0.11 0.07 0.02 0.19 0.01

Biologically relevant components and their ranked weights in the new samples (investigation 

dataset). Rank is calculated in comparison to the TCGA reference set (red – weight is above 

majority of TCGA samples, blue - below). Risk is assigned using Cox regression and log-rank p-

value is reported. For MICs the enriched cytogenic bands (adj.p-value<0.05) are presented.
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