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Abstract

Sparse data describing mouse cortical neurogenesis were used to derive a model

gene regulatory network (GRN) that is then able to control the quantitative cellular

dynamics of the observed neurogenesis. Derivation of the network begins by

estimating from the biological data a set of cell states and transition probabilities

necessary to explain neurogenesis. We show that the stochastic transition between

states can be implemented by the dynamics of a GRN comprising only 36 abstract

genes. Finally, we demonstrate using detailed physical simulations of cell mitosis,

and differentiation that this GRN is able to steer a population of neuroepithelial

precursors through mitotic expansion and differentiation to form the quantitatively

correct complex multicellular architectures of mouse cortical areas 3 and 6. We

find that the same GRN is able to generate both areas though modulation of only

one gene, suggesting that arealization of the cortical sheet may require only simple

improvisations on a fundamental gene network. We conclude that even sparse

phenotypic and cell lineage data can be used to infer fundamental properties of
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neurogenesis and its organization.

Keywords: development, neocortex, cortical cell lineage
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1. Highlights1

• Estimation of the cell states and transition probabilities of neurogenesis from2

experimental data.3

• Design of an abstract gene regulatory network (GRN) whose dynamics4

implement cell states and their stochastic transitions.5

• Detailed simulation of GRN-guided neurogenesis for mouse cortical areas 36

and 6.7

• Different dynamics of neurogenesis of distinct cortical areas arise through8

modulation of only a single gene.9

2. In brief10

Pfister et al. show how sparse phenotypic and cell lineage data can be used to11

infer a small abstract gene regulatory network (GRN), which, when inserted into12

model precursor cells, is able to control in a distributed manner the quantitative13

cellular dynamics of neocortical neurogenesis.14
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3. Introduction15

Unlike human engineered systems that are explicitly designed and constructed,16

the rules for self-construction of biological organisms are implicit in the information17

contained in their initial cells. Although many details of this remarkable process18

have been described experimentally, there are as yet no detailed generative models19

that describe formally the principles of control and global coherence amongst20

proliferating, locally independent, cellular agents. Here we describe a number21

of significant advances toward this goal in the context of the development of the22

laminated neocortex from its neuroepithelial precursors. We show how sparse23

phenotypic and cell lineage data can be used to infer a small abstract gene network,24

which, when inserted into model precursor cells, is able to steer in a distributed25

manner the quantitative cellular dynamics of neocortical neurogenesis. Our results26

offer an insight into principles of physical self-construction of biological neural27

networks.28

Neocortical pyramidal cells are generated, and migrate to form a type specific29

lamination, however, the cellular mechanisms that underly this cortical neurogene-30

sis remain elusive (Greig et al., 2013). Cortical neurogenesis begins from a sheet31

of neuroepithelial stem cells. These cells differentiate predominantly into radial32

glial cells (RGC) (Hartfuss et al., 2001; Miyata et al., 2001; Noctor et al., 2001,33

2002; Anthony et al., 2004). RGCs divide at the apical surface of the ventricular34

zone (VZ), where they undergo stereotypical sequences of cell divisions: Sym-35

metric divisions lead to similar offspring and amplify the pools of precursor cells;36

asymmetric divisions give rise either to various intermediate precursors, (Franco37

and Müller, 2013; Guo et al., 2013), or directly to cortical neurons (Heins et al.,38

2002; Malatesta et al., 2003; Anthony et al., 2004; Cárdenas et al., 2018) (reviewed39
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in Götz and Huttner (2005)). Some precursors are restricted to the VZ (Haubensak40

et al., 2004; Miyata et al., 2004; Noctor et al., 2004), and are the major source of41

the deep layer pyramidal neurons. Other precursors form a second germinal layer,42

the subventricular zone (SVZ). There they undergo a few rounds of symmetric43

division and generate neurons largely fated for the superficial layers (Noctor et al.,44

2004; Kowalczyk et al., 2009).45

The genealogical lineages whereby the neuroepithelial stem cells give rise46

to differentiated neurons are only partially known (Haydar et al., 2003; Noctor47

et al., 2004; Gao et al., 2014; Vasistha et al., 2015; Telley et al., 2016; Beattie48

and Hippenmeyer, 2017; Kaplan et al., 2017; Zhong et al., 2018). Every cell in49

the lineage has the same genotype, but the phenotype of each cell is due to its50

particular gene expression pattern, and interaction with environmental factors. The51

lineage tree describes the genealogy and division history of successive precursors,52

where each cell is associated with a particular phenotype. Ideally, the structure53

of the lineage tree should reflect the progressive restriction of cell fate. It would54

exhibit the variety of successive precursors that could be generated as neurogenesis55

proceeds, and thereby offers insights into the mechanisms that lead to the generation56

of experimentally observed neural cell types.57

Although recent work points to an orderly and deterministic proliferation, and58

neurogenic behavior of precursors (Gao et al., 2014), the underlying organization59

of their lineage trees are not completely known. In principle, the progression of60

cell types through the tree can be characterized by their phenotypic description.61

The overall phenotype of a given cell can be represented as a vector of features62

f = { f1, f2, . . . , fn} that include its gene expression pattern, morphology, biochem-63

ical or physiological properties, and behavior. Some of these features may be64
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observable, but others are hidden. We assume that this vector of cell features65

is conditioned by the internal unobservable cell state S that completely explains66

their distribution. The individual genealogical trees are the result of particular67

cell states, and the probabilistic transitions between them. Thus, the process of68

neurogenesis can be described in two complementary ways: The Cell Lineage Tree69

(CLT) that describes the genealogical relationship between the individual cells gen-70

erated during development; and the State Diagram (SD) that describes the possible71

states that cells may take, and the stochastic transitions between these states. The72

functional mechanism underlying these descriptions is the mitotic process and its73

interaction with the gene regulatory network (GRN). Our challenge is to estimate74

the distribution of CLTs; to identify their underlying states and transitions; and75

then to posit a biologically plausible generative mechanism for their occurrence.76

The purpose of this paper is to show that even sparse phenotypic and cell77

lineage data can be used to infer fundamental properties of neurogenesis and its78

organization. We begin by using previously published data to derive a stochastic79

state transition model of cortical neurogenesis, and from this we implement an80

abstract gene network that carries out the stochastic process. We then use a81

simulation of physical cell growth and mitosis to demonstrate that this GRN is able82

to steer in a distributed manner the quantitative cellular dynamics of neocortical83

neurogenesis.84

4. Results85

4.1. Cell lineage Trees86

The Cell Lineage Tree is an acyclic directed graph in the form of a rooted87

binary tree, in which the vertices represent physical cell instances, and the directed88
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edges represent the genealogical relationships between mothers and their daughter89

cells. The root of the tree is the earliest stem cell (neuroepithelial cells in this case);90

the internal nodes of the tree are dividing multipotent or pluripotent precursor cells;91

and its leaf nodes are non-dividing terminally differentiated cells (neurons and92

glial cells).93

Measurements of lineage subtrees indicate that at least in vertebrates the lineage94

mechanism is stochastic rather than deterministic (He et al., 2012). Thus, vertebrate95

lineage trees form a distribution over possible genealogies. When two new cell96

instances are generated by mitosis, fate transitions occur between the precursor97

and its offspring. If the precursor divides symmetrically it will produce two98

daughters with identical cell fates, and thus identical phenotypes. However, if it99

divides asymmetrically, the precursor will produce two cells that inherit distinct100

gene expression products, and as a consequence may have different cell fates. In101

principle, we could measure the feature vector f over all cell instances. But such102

an exhaustive description is not yet technically feasible. Thus, for the present103

purposes, we assume that the feature vectors can be observed only over terminally104

differentiated cells. That is, we can observe and classify the phenotypes of terminal105

cells in terms of their neuronal morphology and behavior. Figure 2A shows a simple106

CLT, for purpose of explanation. The terminal states of this CLT are categorized107

into three types (A, B, C) based on a set of features { fA, fB, fC}, which we assume108

can be observed only in terminal cells.109

4.2. Cell Lineage Trees for mouse cortical neurogenesis110

We obtained estimates of the distributions of terminal neuronal types in mouse111

area 3 and 6 from the work of Polleux et al. (1997a), who used pulse 3H-thymidine112

injections made throughout corticogenesis to measure the variation of cell cycle113
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duration, cell cycle exit probability and laminar fate as functions of developmental114

time. Following their data and methods, we computed the temporal generation115

of neuronal types by numerical solution of the continuous differential equations116

describing cell proliferation and differentiation (Polleux et al., 1997b) (Figure 1).117

We then used these population distributions together with a probability-generating118

function (Bremaud, 1988) to generate probabilistically instances of cortical cell119

lineages (Figure 1).120

4.3. State Diagrams121

An alternative view of neurogenesis is one that describes the underlying generic122

cell states and their transitions, rather than the genealogical relationships between123

particular cell instances. We will call this alternative view the State Diagram (SD).124

It is a weighted directed graph whose vertices represent cell states, and whose125

weighted edges represent the stochastic transitions between states that occur at126

cell mitosis. Whereas the CLT describes both terminal cell identities and their127

individual ontogenies, the SD explains the experimentally observed numbers and128

dynamics of production of neuronal types in terms of state transition probabilities.129

The SD begins from an initial precursor cell state; for example, the state of130

a neuroepithelial cell. When a cell undergoes mitosis, it generates two daughter131

states that will themselves generate subtrees of states, until a terminal state is132

reached. Because the SD vertices are states and not specific cells, cells that have133

exactly the same state are represented by the same single vertex. The numbers134

of cell transitions between one state and a different one are accounted for in the135

probabilistic weights of the edges that join the states. However, the sum of the136

probabilities across all the possible transitions away from a mother state is 2 not 1,137

because always two daughter states must be generated.138
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The SD can have different degrees of resolution, according to the mapping139

of individual physical cells to their possible underlying cell states. Trivially, any140

collection of lineage trees can be encoded exhaustively by an SD in which each141

and every cell instance is assigned to its own unique state (Figure 2B). Although a142

high resolution representation of this type is easy to generate, the number of states143

increases exponentially with the complexity of the cell lineage trees. The SD soon144

becomes intractably large, and the number of unique states and transitions rapidly145

exceeds the amount genetic information available to encode it.146

A more suitable mapping of cells onto states assumes that biological processes147

are often best explained by models with low but noisy dimensionality. This is148

likely true for cell lineages, where only a very small set of all possible internal149

genetic expression profiles are visited by cells during development (Kauffman and150

Kauffman, 1993), and because very similar cell division sequences occur across151

the distribution of all lineage trees. Such a reduced encoding involves collapsing152

high dimensional graphs into subgraphs that have the same or similar underlying153

states and transitions. The example SD (Figure 2C) shows the principle of this154

reduction of redundant subtrees. The result is a more compact representation that155

describes the same developmental process, but using fewer states.156

The general problem is to find such a low dimensional SD that is still able157

to account for most of the variance in the experimental data. We approached158

this problem by spectral clustering (Chung, 1997; von Luxburg, 2007), a type159

of clustering algorithm that can be applied to graphs. Our goal was to obtain an160

appropriate embedding of the full dimensional SD into a similarity matrix, such161

that the pairwise distance between cell states in the embedding space reflects162

their similarities in terms of terminal cell types than those two states give rise to.163
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Once the full SD is embedded into an Euclidean space, simple algorithms such as164

hierarchical clustering can be used to cluster cell states into smaller subsets and165

thereby generate a lower dimensional, more easily interpretable SD representation166

of the cell lineage.167

Since the SD states can be characterized by feature vectors, the reduced SD also168

models implicitly the statistical distributions over the feature profiles characteristic169

of each state, and the genealogical relationships between these feature states.170

Unfortunately we do not have data for the internal nodes of the SD (but see (Pfeiffer171

et al., 2016)). However, the feature vectors for the terminal states are known, and so172

we can estimate the feature profiles of the hidden vertices by propagating the known173

features backward into the hidden network. In this way the precursor states are174

mapped to corresponding linear combinations of terminal features. These profiles175

are a prediction of the contributions of the various precursors to the different176

final neuronal fates. For convenience we visualize these relationships by suitable177

coloring of the SD graph. The feature vectors of terminal states are associated178

with unique color vectors. These colors are then propagated backward into the179

network as proxies for features. The ‘colors’ of the precursor cells provide a visual180

impression of the fates to which they will contribute (Figure S2 and Figure S4).181

The SD states are an estimate of the hidden biological cell states S . For example,182

we may take this estimate to be f . And so each node of the SD is labeled with a183

vector whose elements correspond to experimentally observable features f j, such184

as the expression of a particular set of genes, or morphological features.185

4.4. State Diagrams for mouse cortical neurogenesis186

We used our spectral clustering method to estimate the SD underlying the187

development of cortical areas 3 and 6 of the mouse. The dynamics of cellular188
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division and differentiation during development of these areas have been quantified189

using the mitotic history technique, which selectively monitors the proliferative190

behavior of defined cohorts of precursor cells generated at particular time points191

(Polleux et al., 1997b; Dehay and Kennedy, 2007). However, the behavior of the192

individual lineage trees supporting these population dynamics is unknown. There-193

fore we reconstructed probable lineage trees by sampling from the experimentally194

determined cell distributions (Figure 1). While the topologies of these trees are195

stochastic, their overall distribution is constrained by the experimentally observed196

distribution over different terminal cell fates.197

We analyzed 60 such reconstructed lineages from area 3 and 6 of the mouse198

cortex. These lineages contained a total of 3263 cell instances (1549 in area 3 and199

1714 in area 6). The terminal cells were labeled as either Layer 6b (L6b), Layer 6a200

(L6a), Layer 5 (L5), Layer 4 (L4), Layer 2/3 (L2/3), or Glia. Precursor cells were201

labeled as Unknown. The complete, unreduced, SD was composed of 6 terminal202

states; with 765 unknown precursor states in area 3 and a further 848 unknown203

precursor states in area 6. Spectral clustering for both areas was performed on the204

combined dataset. The combination of data allows the method to exploit possible205

similarities between the SDs of the two areas (Figure 3).206

The original data is fully described by a SD of 519 dimensions, in which each207

cell has a corresponding state. Similar states generate cells with identical fates,208

and so can be collapsed into a unique state leading to a reduced SD with only 10209

dimensions with negligible loss of accuracy. Models with even fewer dimensions210

are also able to describe the data, but with less accuracy. In order to compare211

the performance of SD models of different dimensions, we estimated the model212

error as the number of incorrectly generated terminal cells types over the total213

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394734doi: bioRxiv preprint 

https://doi.org/10.1101/394734
http://creativecommons.org/licenses/by-nc-nd/4.0/


number of cells produced at the end of the developmental process. This error was214

compared against that of a complementary scrambled model, obtained by random215

permutation of cell states.216

The accuracy of the SD models for area 3 and 6 was assessed for the homoge-217

neous (HM), the non-homogeneous (NM) and the time-dependent (TM) Markov218

process. In the HM model, transition probabilities are independent of time, and219

so at low model dimensions the cell output distributions have long tails because220

of small state transition probabilities, which cause a small proportion of cells to221

undergo many rounds of division (Figure S6 and S7). Convergence to the target222

distribution occurs only after a great number of cell divisions, which is unrealistic223

for biological processes. We therefore introduced time dependence by applying224

age-dependent probability distributions in the NM model: Each state has unique225

outgoing transition probabilities, and a maximal number of possible self-replicative226

divisions. This assumption truncates the long tails of the HM approach, forcing227

cells to progress through the differentiation path. Finally, in the TM model, each228

transition probability is computed for each round of cell division. This model229

reproduces accurately the cell distributions as well as their temporal dynamics.230

However, this accuracy comes at the cost of a large number of parameters. By231

contrast, the HM model requires a large number of cell states for an accurate232

prediction. Both cortical areas are best described by the NM model, which is able233

to reproduce closely the system dynamics, and offers a good trade-off between234

model complexity (31 or 10 dimensions) and model accuracy (11% or 18% model235

error) (Figure 4A, B).236

The NM 10 dimensional SD model explains 82% of the data, and is the237

most visually intuitive for reasoning over the logic underlying the developmental238
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processes of area 3 and 6. The black node (with centered white dot) represents239

an initial homogeneous population of precursor cells, which then divide into240

subpopulations of precursor cells having different neurogenic potentials. A small241

proportion of cells are fated very early on to develop exclusively toward granular242

(L4) or supragranular layers (L2/3); and a large pool of heterogeneous precursor243

cells are less fate restricted (Figure 4B). The 31 dimension SD model is more244

precise: It explains 89% of the data, but it is less intuitive. A striking difference245

of this model with respect to the 10 dimension SD case, is the presence of two246

distinct initial populations that develop differently according to their fate restriction247

(Figure 4A). It is noteworthy that the precursor pool has some degree of plasticity in248

the sense that many cell states have bidirectional transitions, as has been observed249

in the cortical lineages of primates (Betizeau et al., 2013).250

The SD’s above were computed over the combined lineage datasets for areas 3251

and 6. However, we track the contributions of each dataset, and so it is straightfor-252

ward to decompose the combined SD into the separate SDs describing each area253

(Figure S5). The reduced SDs for area 3 and 6 are strikingly similar (Figure 4C, D),254

suggesting that only minimal changes in a single model are sufficient to explain255

observed differences of neurogenesis in individual areas.256

4.5. Estimates of SD gene expression patterns257

So far we have interpreted the SD in terms of its propagation of terminal cell258

fates that are largely morphological, e.g. L2/3 pyramidal cell. However, SD models259

can also be interpreted in the light of the underlying gene expression process.260

For example, one might choose for features { f1, f2, . . . , fn} the real, observed261

transcription factor expression levels. Such data were not available to us at the262

beginning of this project. However, for illustration of the principle we used263
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calibrated gene expression levels in cortical neurons obtained from a transcriptome264

atlas of cortical layers in the adult mouse area 3 (Belgard et al., 2011). Of the 11411265

gene probes used in that atlas, we consider only the subset of 1751 transcription266

factors. We applied k-means clustering to this dataset and thereby identified 12267

clusters of transcription factors that have similar expression patterns across the268

cortical laminae (Table S1). Each lamina is associated with one of the terminal269

neuronal types, and so each neuronal type is associated with a characteristic270

distribution across the 12 transcription factor clusters. Because the clustering is271

based on adult expression data, the distributions of the feature vectors are known272

only for terminal cell fates. However, as described above, our spectral clustering273

method can be used to propagate the adult values backward into the lineages and274

thereby provide a prediction of the expected transcription factor profiles to be275

found in the various SD precursor states (Figure 5).276

4.6. Abstract Gene Regulatory Networks277

The second, complementary model, is functional. The states and state tran-278

sitions are implemented implicitly by a genotypic model (or Gene Regulatory279

Network, GRN) (Figure S1C). In this case the interactions between genes and280

transcription factors are explicitly modeled. The network is designed in such a way281

that the global developmental process arises from the local dynamics of genes in282

individual cells. This model is visualized as a graph (not a tree), in which the nodes283

represent genes, and the edges represent interactions between genes. Importantly,284

the genotypic model is mechanistic in that it not only expresses allowable states285

and state transitions, but also declares the causal mechanisms by which the states286

are implemented, and reached.287
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4.7. An abstract GRN for mouse cortical neurogenesis288

We will describe in detail below how the State Diagram (SD) can be estimated289

from experimental data, and how a GRN can be constructed that expresses this290

SD (and therefore the observed experimental data). Briefly, we first show that a291

low dimensional SD, composed of a small set of states, is sufficient to explain292

the generation of the different morphological cell types of the neocortex. This293

phenotypic model is then matched to a corresponding genotypic model. Because294

this problem is ill-posed (multiple genotypic models are able to explain a single295

phenotypic model), we restrict the domain of solutions by seeking a biologically296

realistic model based on a GRN. In our implementation, division asymmetry leads297

to differential inheritance of transcription factors in the daughter cells. This process298

is used to drive changing rates of cell numbers and types produced.299

The SD generative model derived above is an example of a phenotypic model300

that describes the observed experimental data by assigning to each cell a state, and301

probability of transitions between those states at the time of cell division. This is302

essentially a phenomenological description of the statistics of neurogenesis. How-303

ever, the question of the actual biological mechanism that expresses this statistical304

behavior is a much deeper one. Biological systems do not have a single constructor305

with global knowledge, able to direct all aspects of development. Instead, the only306

construction information available resides in the genetic instructions present in, and307

essentially localized to, each cell. The challenge then, is to implement the complex308

process of biological development as a genotypic model of neurogenesis. In this309

model developmental control is localized to gene regulation within individual cells310

(Figure S1C). The result of the operation of the GRN, distributed in its various311

configurations across all the lineages of neurogenesis, should be observable as the312
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SD. Thus, we need to make the bridge from gene-level dynamics in individual313

cells, to the population-level stochastic behavior of the SD.314

We have previously reported a formal language able to describe cellular and315

molecular processes that support cortical development (Zubler and Douglas, 2009).316

In particular, that language is able to control the development of a simple laminated317

cortical column (Zubler et al., 2013). However, in that previous work the generation318

of different cell types required precise ad hoc tuning of a system of differential319

equations. By contrast, our goal here was to create a genetic network model320

based on observed cellular mechanisms that is robust to intrinsic noise, reliable in321

execution, and flexible in the range of cell types it can generate.322

The cellular machinery is composed of several layers of regulation. At the323

outermost layer, functional proteins fulfill specialized tasks such as structural324

support, movement, and cell morphology. Deeper in the regulatory machinery,325

DNA-binding regulatory proteins (transcription factors), define the progression326

through different cell activity states by regulating the gene expression profile of327

each cell. Transcription factors influence one another’s expression over time by328

binding to specific gene regulatory regions. The overall combination of the core329

regulatory network composed of transcriptions factors as well as the functional330

genes responsible for the cell phenotype, is referred to as a Gene Regulatory Net-331

work (GRN). However, the description below focuses largely on the transcriptional332

aspect of the GRN.333

The concentration of each gene xi is computed as a function of the concentration

of other genes x = x1, x2, , · · · , xn by the rate equation:

ẋi = k1Fi(x) − k2xi (1)
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with:

Fi(x) =

n∑
j

βi j

n∏
j

Zi j(x j) (2)

The function Fi(x), or sigma-pi function, is a linear combination of elements334

Zi j, each of which represents the binding of a transcription factor j on gene i as335

a function of its concentration x j according to a sigmoidal probability binding336

function, the Hill function Z. Linear combinations of Z elements, determined by the337

coefficients βi j ∈ {0, 1}, describe how transcription factors interact with each other338

by steric interactions. This formulation provides a model to express transcriptional339

networks as compositions of continuous Boolean logic gates (Figure S8), for which340

we propose an intuitive formal language based on logic gates.341

Decisions leading to the acquisition of an appropriate cell fate rely on the ability342

of cells to commit to different stable states. A system that can perform such a343

task is a module with competitive and cooperative interactions. The most simple344

example of such a system is the bistable switch (Niwa et al., 2005; Huang et al.,345

2007), in which two auto-catalytic transcription factors A and B negatively regulate346

each others expression:347

a = k1AND[OR[Z(a),NOT [Z(b)]],Z(I)] − k2a

b = k1AND[OR[Z(b),NOT [Z(a)]],Z(I)] − k2b
(3)

where a and b refer to the concentrations of the proteic product of genes A348

and B, and k1 = 1 and k2 = 1 represent production and degradation constants349

respectively. The system can be driven toward a specific state by an input I and350

is explicitly designed to display hysteric behavior upon input withdrawal: The351

network can remember the existence of past input signals (Figure S9). This design352

feature confers remarkable stability of the gene expression, and makes the dynamics353
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of the module dependent only on an initial input signal (Jacob and Monod, 1961;354

Glass and Kauffman, 1973; Hartwell et al., 1999).355

Biological development can be viewed as a sequential progression of precursors356

through different gene expression profiles; each cell state is associated with a357

characteristic profile. Thus, each lineage tree expresses one stochastic lineage of358

profiles arising from a given root precursor. The crucial question for understanding359

the dynamics of neurogenesis is how distinct profiles arise during the mitoses of the360

lineage, and so allow different fates for daughter cells. In our model this important361

property is due to possible differential distribution of transcription factors to the362

daughters. Each gene X is characterized by an asymmetry constant parameter αX,363

corresponding to the asymmetric division constant of its protein. Asymmetrical364

cell divisions lead to different distributions of transcription factors in the daughter365

cells, and thus to different gene expression profiles. Thus, cells regulated by a366

single bistable switch with asymmetry constants αA and αB can produce a range of367

cells with differing fates as a function of the division angle ω, the orientation of the368

mitotic spindle with respect to the internal distribution of substances (Figure 8). We369

set the required α for each substance in the bistable switch given a normalization370

constant N, such that −1 ≤ αX ≤ 1:371

αA = N
(

sin(ω)
cos(ω)+sin(ω)

)
αB = N

(
1 − sin(ω)

cos(ω)+sin(ω)

) (4)

Beginning with the initial state “0” with low expression of both genes A and B372

(black cells), the activation of the input signal pushes cells to an undecided state373

“AB” characterized by high levels of A and B expression (orange cells). Either by374

the presence of an external influence, or by asymmetric cell division, cells can375

jump to states “A” or “B”, where only one gene of the bistable switch dominates the376
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expression (pink or blue cells). Depending on the extent of the jump, each cell has377

a defined probability to reach new, otherwise inaccessible states. The irreversibility378

of jumps in the genetic landscape is implemented here as a dependency of the379

asymmetry constants on the gene product concentrations of the bistable genes.380

Once the motif reaches status “A” or “B”, further asymmetric division are inhibited,381

thereby limiting backward jumps to previous undifferentiated states.382

The stochastic progression of precursors down differentiation paths can be383

modeled by a sequence of multiple genetic bistable switches, where each switch384

represents a branch in the differentiation decision tree and transition probabilities385

are mapped to cell division angle probabilities. Additional genes are required to386

detect specific transcription factor expression profiles and activate downstream387

functional programs. Control of precursor division is implemented by an inde-388

pendent clock mechanism that abstracts the complexities of the cell cycle and its389

phases. For simplicity it is assumed here to be a Gaussian distributed variable,390

independent on other events of the GRN. This basic genetic circuit is used to391

control cell fate decision at the moment of cell division, and to link the activa-392

tion of different functional genes, such as genes responsible for cell migration,393

differentiation or apoptosis.394

4.8. Self-construction of a volume of cortex in Cx3D395

Finally, we validate the behavior of the GRN in a simulated physical environ-396

ment using Cortex3D (Cx3D) (Zubler and Douglas, 2009), an agent and Java based397

simulation environment for investigating the physical growth of multicellular struc-398

tures. This approach demonstrates the principles underlying the self-construction399

of a simple laminated cortical column and its neuronal connectivities (Zubler et al.,400

2013). In contrast to our earlier ad hoc system of differential equations for gene401
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regulation (Zubler et al., 2013), we propose here a formal genetic language to402

design biologically plausible gene regulatory networks. We go on to demonstrate403

that the derived genetic network is able to control the generation of cortical laminae404

for different cortical areas by intrinsic genetic specification and by the information405

provided by the environment.406

For the design of the GRN, sequences of bistable genetic motifs are used407

to encode cell fate decision at division and implement a genetic version of the408

state diagram for area 3 and 6. The SD was enhanced to introduce states for the409

generation of additional cell types (L1, subplate, and glial precursors cells), and410

to further reduce the overlap in the production of different cell types in time, as411

this has a dramatic effect on the stability of the simulation and the generation of412

homogenous layers.413

Each state in the SD is mapped to 2 genes whose interactions implement the414

required bistable behavior. In addition, these genes are coupled to members of other415

bistable switches, or possibly to functional genes that execute cellular behaviors416

(Figure 6). State transition probabilities are encoded in the mitotic division angles417

that control the stochastic distribution of symmetric and asymmetric cell divisions.418

The core transcriptional network regulating the asymmetric distribution of cell fate419

determinants is composed of 36 genes. Further 24 housekeeping genes decode420

transcriptional expression into function, such as cell differentiation, migration, and421

other behavioral outcomes.422

The developmental model was then implemented in Cx3D (Figure 7). The423

simulation begins with an array of precursor cells in the neural epithelium lining424

the lateral ventricles (Figure 7, black cells). Each of these cell contains an identical425

copy of the genetic regulatory network (Figure 6A), initialized to its neuroepithelial426
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precursor configuration. The precursors are aligned on the apical surface, and this427

orientation is used to establish the cell internal polarity axes.428

From this point onward, the behaviors of the distributed GRNs and the cells429

that they control are entirely autonomous. There is no intervention by a global430

controller, no explicit or global clock, and no explicit spatial coordinate frame.431

The only spatial cues are a pair of complementary morphogenic gradients in the432

medial/lateral axis of the neuroepithelial plate (Greig et al., 2013). The expres-433

sion states of the distributed GRNs trigger their cells to undergo symmetrical434

or asymmetrical divisions according to their division angle, thereby forming the435

desired populations of successive precursors. The expression profiles at mitosis436

steer the stochastic transitions to successor states in the daughter cells. Mitosis is437

controlled by individual local cell cycle machines that induce cell cycle progression438

in precursors cells until they reach terminal differentiation. The entire process of439

neurogenesis from neuroepithelial cell to differentiated neurons involves some 20440

mitotic divisions (Figure 6B).441

Initially (E9-E12), the precursors progress through a sequence of increasing442

asymmetric divisions that lead to the production of the marginal zone (L1) and443

subplate cells, forming the early preplate. At the same time the VZ is formed. It444

is composed of radial glial cells (RGC) characterized by the extension of a radial445

process that often reaches the pial surface. Differentiating precursor cells that446

exit the cell cycle migrate along radial glial processes, constituting the successive447

waves of cell types that form the cortical plate in a inside-out manner. Migration448

is directed by local integration of guidance cues secreted by the marginal zone.449

A membrane bound stopping signal prevents cells from migrating past the pia.450

The density of cells in the marginal zone was also increased to provide physical451

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394734doi: bioRxiv preprint 

https://doi.org/10.1101/394734
http://creativecommons.org/licenses/by-nc-nd/4.0/


containment of upwardly migrating cells.452

In a subsequent phase (E13-E16) a second germinal layer, the SVZ is formed.453

In contrast to the VZ, precursor cells of this zone, the BPs, loose their radial process454

and apical polarity. In our simulation, lost processes are not degraded and continue455

to provide a scaffold along which neurons can migrate, increasing significantly456

the stability of the formation of distinct laminae. In this second phase, granular457

(L4) and supragranular (L2/3) are produced. The construction process ends with458

the establishment of the cortical sheet, and a residual germinal layer composed of459

glial cell precursors. Subsequently, corticogenesis would continue with a sequence460

of symmetric division for the generation of glial cells, and the growth of the first461

neural connectivities. These aspects are beyond the scope of the present paper,462

which is concerned only with the general principles of the GRN and its derivation.463

The simulation exhibits a clear arealization of laminar organization that con-464

form to the characteristics of areas 3 and 6 (Figure 7). The percentages of various465

neuronal types produced by the simulation in both areas also conform remarkably466

well to experimental observation (Table 1). There is a short intermediate zone be-467

tween these two areas, corresponding to a cytoarchitectural boarder. This transition468

zone in the simulation may be analogous to area 4 that is interposed between areas469

3 and 6 in mouse cortex, but which was not explicitly modeled.470

In the simulation, areal specificity is cued by the initial gradient of morphogens471

aligned with the medial/lateral axes of the developing sheet. The concentrations472

of these morphogens are transcription factors for a gene pair (‘g89A’ and ‘g89B’,473

Figure 6). These genes bias neurogenesis toward either an area 3 or an area474

6 phenotype by slightly changing the distribution of the precursor pool, when475

threshold conditions on the morphogen concentrations are satisfied. The ‘g89’ is476
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expressed on lineages leading towards L5 pyramidal cells. The onset occurs some477

4 divisions before final differentiation, and there affects the relative generation of478

precursors fated towards layers 4/5. Thus, development towards area 3 or 6 occurs479

through a small and bias in the distribution of precursor cells, localized to particular480

region of the lineage tree (and so a time window) well before differentiation481

(Figures S5, 6B).482

5. Discussion483

We use ‘self-construction’ to refer to the process whereby a system is able484

to make use of physically encoded rules to steer its own elaboration, without485

the intervention of any kind of external supervisor. By contrast, ‘development’486

refers to the biological process whereby a single, or small number of precursors487

replicate and differentiate toward a very large, diverse population of differentiated488

and functionally organized cell types. Thus, questions of self-construction are489

concerned with the abstract principles that underlie development of biological490

systems, but might equally well be applied to a future technology.491

We choose to study biological self-construction in the neocortex, because cor-492

tical development presents many interesting challenges. For example, cortical493

neurons are produced far from their final location in the adult and so must undergo494

a long migration before they can complete their differentiation and formation com-495

plex long-distance connections. Further, the cortical construction process results496

in a rather uniform laminar sheet on which is superimposed a more detailed struc-497

tural and functional arealization, suggesting that subtle modifications of a general498

process of neurogenesis may be sufficient to explain the apparent complexity of499

cortical neural circuits.500
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Cortical cytoarchitecture and its parcellation into distinct areas reflects the501

spatiotemporal modulation of neurogenesis (Dehay et al., 1993; Polleux et al.,502

1997a; Dehay and Kennedy, 2007; Rakic, 2009). From its simple origins as a single503

layer of proliferative cells in the embryonic dorsal ectoderm, the cortex grows504

through self-replication of a small population of precursor cells. The interplay505

between these many local mechanisms of cellular interaction, and their relationship506

to global system behavior, are easier to grasp through detailed models and their507

simulations (Fisher and Henzinger, 2007).508

Here we have used a modeling approach to address the question of how a single509

cellular regulatory system could determine the generation of a diversity of neurons,510

including their laminar location. Of course, sufficiently detailed data describing511

the full mechanism of gene regulation and its consequences for the behavior of512

individual precursors underlying development are not yet available. However, we513

demonstrate here that it is possible to obtain substantial insight into developmental514

mechanisms using only sparse experimental data. With less than 40 genes we are515

able to recapitulate the steps of cortical development in silico with Cx3D.516

Our approach has two phases. In the first phase the experimental data describing517

the generation of various neuronal types is used to estimate the stochastic SD518

governing the generation of possible cell lineage trees (phenotypic model). Then,519

in the second phase we implement the SD with a compact GRN-like state model520

(genotypic model) whose behavior then satisfies the experimentally observed521

dynamics of neurogenesis with quantitatively very similar cell distributions. This522

GRN is composed of abstract genes, whose patterns of expression determine the523

observed range of cell behavior.524
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5.1. State model of cortical neurogenesis525

Hidden Markov Trees, which model Markov Tree processes over a set of trees of526

observed variables, and their conditional dependencies, have been used successfully527

to cluster cells and infer cell states from partial lineage tree reconstructions (Olariu528

et al., 2009; Pfeiffer et al., 2016). However, such inference requires a relatively529

large amount of data and is impractical for very sparse samples unless there are530

additional constraints on the probability distributions. Instead, we derived a lower531

dimensional representation of lineages using a simpler approach based on spectral532

clustering on graphs, whereby it is possible to exploit lineage information to cluster533

cells according to their phenotype, and that of their daughters.534

We have introduced the concept of a SD to capture the complexity of the cell535

lineages. The SD model assumes that the underlying biological mechanisms can be536

modeled as a Markov process, according to which each cell, with its characteristic537

features, can be completely described by an unobserved state. The evolution of538

cell states is defined by the cell’s current state, which comprises the cell’s internal539

state and its immediate surroundings. In contrast to our related work (Pfeiffer et al.,540

2016) in which phenomenological data is used to classify progenitors cells in the541

primate cortex, we address here the use of genetic markers (transcription factors)542

to infer the probable developmental pathways followed by precursor cells until543

their terminal differentiation during murine corticogenesis.544

Because we have only sparse data (i.e. we observe gene expression profiles on545

terminal cells only), we have used a simple approach based on spectral clustering,546

by which we cluster potential cell states according to the distributions of cell547

types that they are able to generate. The method was applied on cortical lineages548

inferred from experimental developmental data for areas 3 and 6. By this method549
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we obtained a low dimensional age-dependent model that explains neurogenesis in550

both cortical areas, and which, in contrast to homogeneous Markov processes is551

able to explain this developmental process using only a restricted number of states552

and parameters.553

The SD model predicts that already at the neuroepithelial stage the precursor554

pool may be somewhat heterogeneous in terms of their fate potential. For example555

multipotent progenitor cells may coexist with a more specific population of cell fate556

restricted cells, as suggested experimentally (Franco et al., 2012; Guo et al., 2013).557

Interestingly, because transitions in our model are stochastic, progenitors may558

exhibit some plasticity, including the limited ability to revert to less differentiated559

states. Such transitions have been observed recently in primate corticogenesis, but560

have not yet been observed in the rodent cortex (Betizeau et al., 2013).561

Surprisingly, the models for adjacent areas display many similarities and few562

significant differences. Key parameters in a single GRN distinguish the specifica-563

tion of cortical areas 3 versus 6. This observation suggests the presence of genetic564

control points, that is a small set of genes whose expression is able to control the565

switch between alternative cortical developmental programs. This finding agrees566

with the observed molecular similarity reported in neighbouring areas of the human567

frontal cortex (Johnson et al., 2009). More generally, this property suggests that568

the many areas of cortex within a species, could be affected by the settings of a569

small number of parameters in an otherwise rather generic control structure in570

accordance with biological observations (Ng et al., 2009; Bernard et al., 2012;571

Hawrylycz et al., 2012). This discovery poses the questions whether the emergence572

in the evolution of the primate neocortex is also due to changes in few, key genes,573

which lead to the generation of a much complex and diversified cerebral cortex,574
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and the significance of control points in biological processes in general (Dehay575

et al., 2015; Florio et al., 2015, 2016; Fiddes et al., 2018; Mitchell and Silver, 2018;576

Suzuki et al., 2018).577

Obviously, the quality of the model depends strongly on the initial experimental578

classification of differentiated cell types, and a more extensive collection of data579

are required for a more precise version. In order to establish the general concept580

presented in this paper, we have relied heavily on the published cell birthdating data581

following pulse 3H-thymidine injections made throughout murine corticogenesis582

(Polleux et al., 1997a). However the same principles can be readily applied to gene583

expression (e.g. Figure 5) and other phenotypic data (e.g. (Pfeiffer et al., 2016))584

in future. While the recording in parallel of cell lineages and associated genetic585

markers is still a challenging technical endeavour, single cell tracking (Amat and586

Keller, 2013; Beattie and Hippenmeyer, 2017) or single cell profiling technologies587

(Bendall et al., 2014) would provide data at the necessary level of resolution.588

5.2. Gene regulation by asymmetrical division589

Our stochastic model of neurogenesis requires a number of distinct cell states in590

order to satisfy at least the experimental observations on which the model is based.591

The method of estimation of these states is constrained by additional more general592

structural knowledge such as the existence of lineage trees, binary mitosis, terminal593

states, etc. It is for this reason that it is possible to circumvent the seemingly594

ill-posed nature of moving from sparse data to an elaborate dynamical system that595

not only generates the original data, but will likely generalize to entirely different596

kinds of developmental data (e.g. gene expression, Figure 5).597

The State Diagram alone provides a mathematical description of neurogenesis.598

However, it is difficult to relate that level of description to a biological mechanism.599
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The most interesting and experimentally useful aspect of this paper is the recog-600

nition that it is possible to implement the global dynamics of a state model with601

plausible biological mechanisms that have implications for further experimental602

exploration. The implementation is based on basic cellular processes such as gene603

regulation, cell division, and asymmetrical repartition of cellular components. In604

particular, the importance of planar segregation of fate determinants during cortical605

developmental processes has been recognized experimentally (Noctor et al., 2008).606

We employ the concept of genetic regulation using a gene network design based607

on small modules composed of bistable switches, each acting as an independent608

functional component. The importance of multi-stability and modular organization609

in molecular and genetic control has been recognized for over half a century610

(Delbrück, 1949; Jacob and Monod, 1961; Glass and Kauffman, 1973; Hartwell611

et al., 1999; Alon, 2006), however the modular networks reported here are arguably612

the largest such systems yet, that have been configured to control the development613

of complex tissue. We were surprised to find that the design of the GRN was less614

difficult than we had anticipated. Because the individual modules are functionally615

independent and self-restoring in their behavior, the interconnections between616

modules are rather insensitive to parameter settings. The overall network inside a617

given cell will converge toward its stable state, and it will finally trigger a mitotic618

division, though which it copies itself to its offspring. Thus reliable modules619

generate, by means of stochastic asymmetrical divisions, the desired distribution620

of cells over neuronal types. In this way, even an homogeneous pool of precursors621

can lead to the generation of diverse cell types. That is, the control of cell type and622

numbers is implicit in the asymmetric distribution of gene products, and how the623

genes influence one another’s expression.624
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Currently, the model GRN is composed of arbitrarily named abstract genes.625

Their significance rests only in that this set and their interactions are necessary to626

satisfy the expression states and transitions required to control the developmental627

process. The relationship between those model genes and actual experimentally628

named genes expressed in particular developmental systems needs to be compre-629

hensively established. Establishing these relationships, as we have demonstrated by630

predicting the activation of transcription factors in the pool of precursor cells, and631

improving the model using the informative gene expression atlases will provide632

fruitful avenues for future research.633

5.3. Simulation of cortical neurogenesis634

The performance of the GRN was verified by simulation of neurogenesis using635

Cx3D (Zubler and Douglas, 2009). Cx3D respects physical processes such as mi-636

tosis, cell-cell interactions, movement and chemical diffusion in three-dimensional637

space. Each cell is an autonomous agent exerting only local actions, and using only638

locally available information. The physical behaviors of the cells are determined639

by the intracellular molecular processes expressed by the GRN. This large scale640

simulation of the physical mechanism makes it possible to bridge the scale between641

molecular processes and cell behavior.642

The GRN is inserted into neuroepithelial prtecursor cells and initialized to a643

unique starting state. Each neuroepithelial cell contains also a simple cell clock644

that forces cells to divide at regular time intervals. Although the cell cycle length,645

in particular the length of the G1-phase, is correlated with the mode of cell division646

(Dehay and Kennedy, 2007; Pilaz et al., 2009; Lange et al., 2009; Arai et al.,647

2011) it was modeled here as an independent mechanism as the biological detail of648

this correlation is still unclear. The GRNs then orchestrate through their various649
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stochastic expressions in the successively generated cells, different molecular and650

physical processes leading to cortical lamination. It is by virtue of asymmetrical651

division that progenitor cells undergo progressive cell fate restriction in accordance652

with experimental observations (Shen et al., 2006; Gaspard et al., 2008).653

Modulation of only a single gene was sufficient to steer neurogenesis towards654

the characteristic architectures of either area 3 or 6. This finding suggests a generic655

developmental program for corticogenesis across the cortex, where a few localized656

factors elicit the differences in neuron number that characterize cortical areas. This657

locally modifiable generic program could account for the multiplicity of cortical658

areas, despite a relatively restricted number of transcription factor gradients in659

the early forebrain (O’Leary et al., 2007; Sur and Rubenstein, 2005; Greig et al.,660

2013). During evolution there is a progressive increase in the number of cortical661

areas reaching as many as 140 in macaque (Essen et al., 2011), despite an expected662

conservation of the early patterning of the forebrain (Donoghue and Rakic, 1999;663

Rash and Grove, 2006; Monuki and Walsh, 2001; Bayatti et al., 2008; Šestan et al.,664

2001; Sur and Rubenstein, 2005). It is likely that such a generic developmental665

program can be spatiotemporally modulated by extrinsic factors including afferent666

fibers originating from the sensory periphery as shown experimentally (Dehay et al.,667

1996; Dehay and Kennedy, 2009; Rakic et al., 2009; Krubitzer and Kaas, 2005),668

which coupled to genetic changes could lead to diverse evolutionary scenarios669

(Striedter, 2005).670

We have shown in this paper that sparse phenotypic and cell lineage data can671

be used to derive an abstract GRN whose dynamics are able to control the detailed,672

quantitative, neurogenesis of the areas from which the original data was obtained.673

The remarkable reliability of the modeled neurogenesis rests in the multi-stable674
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and modular architecture of the GRN. Although mitosis may create offspring with675

different initial conditions, they will each reliably converge towards a permitted676

gene expression state and so to a recognizable precursor type of the cell lineage.677

Subtle and localized changes induced by mitosis in the stochastic distribution of678

transcription factors across offspring, can steer the overall profile of differentiated679

cells and their laminar location. The model can be used to explore and predict680

the forms of lineage and the resultant precursor pool sizes and relationships that681

precede the final adult cortical architecture.682

While the present model of cortical neurogenesis is only an approximation to683

vast biological detail, is starts to explain the nature of the global coherence amongst684

multiple, distributed, locally independent cellular agents; and provides a useful685

tool for exploring the complex relationship between individual cell gene expression686

and population behavior underlying the development of the brain. Additionally it687

will also be a valuable tool for explaining diseases associated with gene regulation688

during cortical development.689
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7. Methods699

7.1. Cortical cell lineages reconstruction700

We used published cell birthdate data from sensomotory cortex (Polleux et al.,701

1997a) to estimate the distribution of lineage trees underlying the neurogenesis702

of mouse area 3 and 6. Polleux et al. (1997a) employed pulse 3H-thymidine703

injections made throughout corticogenesis to measure the variation of cell cycle704

duration, cell cycle exit probability kQ(t), and laminar fate kQX(t) as functions of705

developmental time t. Following their data and model we computed the temporal706

generation of neuronal types by numerical solution of the continuous differential707

equations describing cell proliferation and differentiation (Polleux et al., 1997b).708

We used these population distributions across developmental time to generate709

probabilistically instances of cortical cell lineage trees (Figure 1).710

Cell proliferation can be seen as a discrete branching process whose time step711

∆t is equal to the cell cycle length. At each time step, cells either differentiate712

terminally with probability p1 = kQ(t), or they divide with probability p2 =713

(1 − kQ(t)) to form two daughter cells. These possibilities can be represented714

formally by the probability-generating function (pgf) (Bremaud, 1988):715

f (s) =

2∑
i

pisi = kQ(t)s + (1 − kQ(t))s2 (5)

where pi is the probability that a cell gives i offspring in the next generation and716

si is a dummy variable that accounts for the different numbers of cells generated.717

The pgf enumerates all the possible outcomes after one time step, and has the718

property
∑

i pi = 1. We used this formula recursively to generate possible sequences719

of cells from single precursor cells. Sixty probabilistic lineage trees were computed720

for each of the two areas.721
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7.2. Graphical representation of the State Diagram722

The State Diagram (SD) describes the states of cells that appear in the CLT,723

and the genealogical relationship between these states. For each state there is724

a corresponding vector of observed features 〈 f1, f2, · · · , fL〉. States for which725

features have been observed experimentally are defined as labeled, otherwise the726

states are unlabeled or hidden. We assumed that observed features (e.g. neuronal727

morphologies, gene expression) are available only for terminal cell states, and that728

the features of all the precursors are hidden.729

It is convenient to represent the State Diagram in the form of a directed graph.730

Recall that G = {V,E} is a directed graph with vertices V = {v1, v2, . . . , vn}731

and directed edges E = {ei j} ⊆ V × V. In a weighted graph, each edge is732

assigned a specific value, its weight. For such weighted directed graphs, there is733

an asymmetric, non-negative adjacency matrix W that associates each edge with a734

weight as following: wi j = 1 if there is a direct link that connects node i to node735

j or wi j = 0 otherwise. Also, we define the in-degree matrix Din as the diagonal736

matrix of the sum of weights on incoming edges and the out-degree matrix Dout as737

the diagonal matrix of the sum of weights on outgoing edges:738

Din( j, j) =
∑

i

wi j,Dout(i, i) =
∑

j

wi j (6)

Given a directed weighted graph, there is a natural random walk on the graph739

defined by a transition probability matrix P, where pi j = wi j/dout(i) for all edges,740

and 0 otherwise. Thus, in this naive random case, transitions on the outgoing741

edges are equally probable, and sum to 1. The situation for the State Diagram is742

somewhat different. Each vertex V of the State Diagram corresponds to a cell state,743

and each edge E asserts a genealogical relationship between connected states. Now744
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the transition probability matrix P represents the strength of these genealogical745

paths between states. That is, it represents the proportion of cells in the source746

state that will undergo each of the allowable transitions, multiplied by 2 to account747

for the doubling of cell number by mitotic division. P must be estimated from data.748

7.3. Dimensionality reduction of the State Diagram749

Given an SD and vectors of observed features 〈 f1, f2, · · · , fL〉 for its labeled750

terminal nodes, we consider the task of computing a pairwise similarity measure751

between all nodes of the SD based on how unlabeled nodes are connected to labeled752

nodes. For undirected graphs, a widely used method for computing structural753

similarity is spectral clustering (Chung, 1997; von Luxburg, 2007). This method754

makes use of the spectrum (eigenvalues) of a similarity matrix to cluster data into755

groups of highly similar nodes. For our case of directed graphs, we introduce an756

approach based on the Laplacian L of the normalized directed matrix:757

L = I − D−1
outPDin = UΛUT (7)

where P is the directed transition probability matrix, Dout is the out-degree758

matrix, Din is the in-degree matrix, and I is the identity matrix. Λ = diag[λ1 ≤759

λ2 ≤ · · · ≤ λn] is the diagonal matrix of eigenvalues, and U = [u1u2 . . . un] is the760

orthonormal matrix with eigenvectors of L in each column. U : V → Rn provides761

an embedding of each vertex in an n-dimensional metric space. Each column762

of U corresponds to an axis of the space, while each row of corresponds to the763

coordinates of a vertex in that space. The Euclidean distance δ between pairs of764

nodes (r, s) provides a distance matrix:765

δ2
rs = (fr − fs)(fr − fs)T (8)
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Mapping of the State Diagram to a n-dimensional space is particularly useful,766

because conventional algorithms such as hierarchical clustering can be applied767

there. We used the single linkage algorithm to perform clustering on the distance768

measure. Nodes whose distance was less than a specified threshold were clustered769

into a single node, which was assigned the average of their transition probabilities.770

The projection is in Euclidean space and so the feature vectors for each clustered771

node can be computed by solving a linear equation, because we assume that each772

node can be represented by a linear combination of feature vectors:773

F = UF (9)

where F is a n x l matrix containing the features of the observed states, U is774

a n x n matrix, and F is a n x l matrix with observed and estimated features. For775

visualization purposes, each terminal state was also matched to a 3-element feature776

vector FRGB representing a unique color, and colors of all states were estimated by777

FRGB = UFRGB.778

We validated our spectral clustering method by measuring its performance on a779

set of artificial lineages generated by ‘ground truth’ models. The classification of780

cells to states by the algorithm was compared against 100 deterministic, stochastic781

and random cell lineages each composed of 5 states. The fraction of states mis-782

classified by the algorithm are shown in the confusion matrices of Figure S3. The783

columns of the matrices represent instances of predicted states, while the rows784

represent instances of ground truth states. We found that deterministic ground truth785

models are recovered in 100% of cases, while probabilistic ground truth models786

are recovered in 80%. This decrease in performance on probabilistic models is due787

to misclassification of states as well as to the existence of multiple equally likely788
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solutions. The chance of random prediction of 5 states is estimated at 18%. These789

results demonstrate that a low dimensional SD can indeed capture the statistical790

variation of the cell lineage data at above chance level.791

7.4. Multi-type Markov Branching Process792

A State Diagram can be interpreted as a Markov branching process with mul-793

tiple states. A branching process is a discrete-time random process that models794

a population in which each particle in generation t produces some number of795

individuals in generation t + 1, each of which can assume one of m different states.796

Let S denote a finite set of states S = {s1, s2, . . . , sm}, and Zn = (z1, z2, . . . , zm)797

the vector of variables describing the population size at the n’th generation in each798

state. Then the time-invariant transition probability pi j describes the probability799

that a particle will transit from state i to state j (Markov property):800

pi j = P(Zn, j = z j|Zn−1,i = zi) (10)

The system evolution is completely characterized by the set of states, the801

marginal distribution of its initial state Z0, and the transition probabilities between802

states. We write the joint probability distribution of Zn:803

P(Zn) = P(Z0)
n∏

t=1

P(Zt|Zt−1) (11)

By setting the elements of the weight matrix P equal to the probability of mov-804

ing from state i to a state j, the equation may be rewritten in matrix representation:805

P(Zn) = P(Z0)
n∏

t=1

P(Zt|Zt−1) = Z0Pn (12)
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Markov models have limited ability to describe complex time-dependent pro-806

cesses using only a restricted set of states. Therefore, we extended this homoge-807

nous Markov model (HM, probability P) by two further approaches. First, as a808

non-homogeneous model (NM, age-dependent probability P(a)). Here each state809

transition probability is multiplied with an additional parameter that is set to 0810

once a maximal number of self-replicating divisions is reached. This has the811

effect of truncating the long tails that are characteristic of Markovian processes.812

Second, as a time-dependent model (TM, time-dependent probability P(t)) that813

explicitly encodes the state transition probabilities for each time point. In order814

to compare branching processes for these three different approaches and different815

model dimensions, we computed their errors as the number of misclassified cells816

(cells in wrong terminal states) over the total number of cells produced at the end817

of the developmental process.818

7.5. Formal genetic language definition819

We designed a genetic “language” in order to describe gene regulatory networks820

(GRNs). This language was based on a set of variables x ∈ R≤0 that represent821

substance concentrations, and a set of allowed operations on the substance con-822

centration values. This formalism greatly simplifies the construction of GRNs for823

developing systems as it is based on the design of the network topology, so that824

parameter tuning is reduced to a minimum. Although abstract, the formalism can825

be cast directly into the corresponding kinetic differential equations:826

Read. Information about transcription factor concentrations is obtained from827

the environment through the Hill function Z, which computes the binding prob-828

ability of a transcription factor to a promoter region given affinity constant θ,829

cooperativity m and binding bias b.830
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Z(x + b, θ,m) =
(x + b)m

θm + (x + b)m (13)

Write. Information can be written to the environment by the production of831

a given substance according to the rate equation, which influences the current832

substance concentration. F takes the form of one of the possible logic operations,833

or combinations thereof.834

ẋ = k1F [Z(x)] − k2x (14)

Distribute. Information is encapsulated by the cell membrane, which prevents835

external agents from directly interacting/modifying the cellular molecular com-836

ponents, and so provides a protected environment in which the cell performs its837

local computation. During development, a cell c divides and distributes its internal838

components asymmetrically to daughter cells 2c and 2c + 1.839

x2c = xc + αxc

x2c+1 = xc − αxc

(15)

Logic operations. Logic operations are used to compute the result of the840

binding of multiple transcription factors to the promoter region, where y’s can be841

either the output of Z or the output of another logic operation.842

AND(y1, y2) = y1 · y2 (16)

OR(y1, y2) = y1 + y2 − AND(y1, y2) (17)

NOT(y) = 1 − y (18)
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Derived logic operations. The elementary operations can be composed into843

derived operations, for example:844

XOR(y1, y2) = AND(NOT(AND(y1, y2)),OR(y1, y2)) (19)

NAND(y1, y2) = NOT(AND(y1, y2)) (20)

NOR(y1, y2) = NOT(OR(y1, y2)) (21)

NXOR(y1, y2) = NOT(XOR(y1, y2)) (22)

TRUE(y) = AND(y, y) (23)

FALSE(y) = NOT(TRUE(y)) (24)

Another useful derived operation is the threshold function Zo, that indicates a845

threshold at any desired value tr ∈ [0, 1]:846

Zo(y, tr, θ,m→ ∞) = Z(y + θ − tr, θ,m→ ∞) (25)

Notice that for co-operativity m → ∞, values of x are bounded to the set {0, 1},847

logic operations behave as Boolean logic gates, and the genetic language reduces848

to conventional Boolean algebra.849

7.6. Software850

Spectral clustering was implemented in Matlab R2012a. Graph visualizations851

were performed using a Cytoscape 3.0 plugin (DynNetwork). Cortical simulations852

were performed using Cortex3D (Cx3D) (Zubler and Douglas, 2009).853
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Figure 1. Probabilistic generation of lineage trees. Lineage trees are generated by sampling

from the experimentally determined probability distribution (re-analysed from data of Polleux et al.

(Polleux et al., 1997a)). (A,C) Probability distributions for area 3 and 6. Points, experimental data;

lines, fits to data. (B,D) Example of sampled lineage trees. Trees layed out to correspond with the

time axis of the experimental data. Black: precursor cell; blue: layer 6b; green: layer 6a; yellow:

layer 5; orange: layer 4; red: layer 2-3; dashed lines, proliferation of glial precursor cells (not

modeled).
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Figure 2. Cell Lineage Trees and their corresponding State Diagram. (A) Illustrative example

of two cell lineage trees. Each node corresponds to a cell, and connecting edges to cell divisions.

Two progenitor cells (dark gray) divide to form various hidden proliferative cells (light gray) and

thereby give rise to 22 observable, terminally differentiated cells. Colors represent vectors of

observed features 〈 fA, fB, fC〉. (B) State Diagram describes how the various cell states in lineage

trees of A) are related. The hidden states are numbered in correspondence with each hidden cell in

the lineages. Colored cells in the lineages have the same phenotypic features and so are represented

by only a single state here. Edges between nodes indicate the transition probabilities pi j from states

i to j (the probabilities account for 2 offsprings per division). (C) Reduced State Diagram obtained

by combining the redundant hidden states of B).
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Figure 3. State Diagram of cortical area 3 and 6. (A) State diagram of cortical lineages in area

3 and 6 combined. Nodes represent cell states, arrows state transition probabilities. Cell states are

labeled: blue: layer 6b; green: layer 6a; yellow: layer 5; orange: layer 4; red: layer 2-3; glia: pink,

unknown; gray. Initial states are depicted as dark gray. (B-D) State clustergrams of computed

distance between every state pair with dimensions D = 519, D = 158, D = 31, and D = 10

(percentage of data represented in parenthesis). Dendrograms indicate hierarchical binary linkage

of states. (E) Spectral label propagation on models, where each nodes is colored according to the

estimated feature distribution. (F) Model error as percentage of the correct final cell states

distribution for spectral clustering (black) versus random model (gray, standard deviations on 100

trials). HM, Homogeneous Markov model; NM, Non-Homogenous Markov Model. Black arrow

indicates dimensionality of model.
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Figure 4. State Diagram details. (A-B) State Diagrams describing the combined lineages of

areas 3 and 6. These 31 and 10 dimensional diagrams are enlarged from Figure 3. The initial

precursor population(s) in these two cases are marked by centered white dots. The 31 dimensional

SD declares a small second precursor population, whereas the 10 dimensional case collapses these

two into a single initial population (with a small loss in ability to capture the experimental data).

(C-D) Comparison of the two reduced State Diagrams for areas 3 and 6 respectively. The subtle

differences can be seen in the shades of the three green/ocre small nodes in the upper left quadrants

of the networks. The differences in shade indicate slight differences in predisposition towards

terminal fates. (Networks enlarged from Suppl.Figures S6 and S7).
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Figure 5. Prediction of transcription factor expression across precursors The expression

patterns of 1751 transcription factors was measured in the adult mouse cortex by Belgard et al.

(2011). We clustered these patterns into 12 groups according to similarity of their laminar

distribution (see Table S1). The expression pattern of one representative factor from each group is

shown in the 12 schematic cortical columns (grey value in proportion to observed expression). For

each case, the adult expression pattern was assigned to the terminal states of the D = 10 State

Diagram (Figure 3). These values were propagated backwards into the SD as explained in the text.

Grey shades of precursors indicate their predicted expression of that transcription factor. Thus, the

12 SDs together predict the profiles of expression of the 12 factors (and their groups) across all the

cell states of neurogenesis as encoded by the State Diagram.
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Figure 6. GRN controlling simulated development of mouse cortex. (A) Core Gene

Regulatory Network controlling the production of marginal zone cells, and 5 different neuronal

types of cortical area 3 and 6 in the mouse. Colored genes are expressed in neuron terminal states,

and trigger differentiation. (B) Temporal expression pattern of core genes along lineages to 6

randomly selected cells of different type. Each panel shows the expression pattern of the initial

precursor above, then patterns expressed by the next approximately 20 generations along lineage

path, until terminal differentiating state is reached (below). Gene labels are shown beneath the

lowest panel (L2/3). The expression patterns were measured immediately before mitosis, or at

differentiation. At these times the genetic network reaches an attractor state. Expression levels

range from 0 (blue) to 1 (green). Expression of gene ‘g89’, that biases neurogenesis towards either

the area 3 or area 6 architectural phenotype, is indicated by white asterisk on path to layer 5 neuron.
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Figure 7. Simulation of cortical development. (A-C-E) Schematic visualization of cortical area

3, 4, and 6 derived from 500 µm paraffin sections counterstained with cresyl violet. Adapted from

Polleux et al. (1997b). P.S., pial surface; W.M., white matter, SP, subplate. (B,D,F) Cx3D

simulation of cortical development. For visualization, only a thin slice through the overall

developing sheet is shown. (B) E11, with formation of marginal zone, subplate and radial glial

cells; (D) E13, established infragranular layers; and (F) E16, established granular and

supragranular layers, production of first glial cells. Area 3 and 6 boundaries marked by vertical

black lines. There is a short transition zone between the 3 and 6 boundaries. Black: neuroepithelial

cells; white/light gray: subplate cells; brown: intermediate precursors from subventricular zone;

red: layer 6a and 6b; green: layer 5; blue: layer 4; cyan: layer 2/3; yellow: Marginal Zone or layer

1; pink: apoptotic cells; vertical lines, radial glia processes.
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Table 1

Area 6 Area 3

Layer Experimental Cx3D Experimental Cx3D

1 0.9 ± 0.9 13.7 ± 0.0 1.2 ± 0.2 13.7 ± 0.0

3-2 27.1 ± 6.4 23.8 ± 3.8 28.4 ± 4.2 22.1 ± 3.5

4 12.0 ± 2.1 12.3 ± 2.7 19.7 ± 5.6 20.5 ± 3.1

5 27.0 ± 6.0 24.9 ± 3.1 18.6 ± 1.4 17.8 ± 2.3

6 32.9 ± 3.8 27.0 ± 4.1 33.5 ± 0.7 26.0 ± 4.5
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Table 1. Laminar distributions of differentiated cells. Cells produced by simulations of GRN

guided neurogenesis in areas 3 and 6. Quantification of simulated final neuronal production in each

layer (before apoptosis) are compared with experimental data (Polleux et al., 1997a). Values are

given in % with standard deviation. Experimental values were averaged and normalized to 100%.
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Figure 8. Genetic attractor landscape of a bistable switch with asymmetric cell division.

Distributions of different division types as a function of division angle ω. Different division

patterns arise: (A) {AB} −→ {AB}, {AB}; (B) {AB} −→ {A}, {AB}; (C) {AB} −→ {A}, {B}; (D)

{AB} −→ {A}, {AB}. Red straight traces are simulated jumps at different angles, and red curvilinear

trajectories show the time evolution after the jump. Blue lines indicate the ω angle with respect to

the internal distribution of proteins. (E) Schematic representation of an attractor landscape P as a

function of the concentrations of two genes A and B, in absence of an input stimulus. The

landscape is determined by the manner of interaction between the genes. Each point on landscape

corresponds to a possible gene expression profile. Spheres correspond to cells in different attractor

basins; dotted lines to possible state transitions. (F) State diagram of bistable switch. Transitions

are possible only by influence of the expression of another gene (e.g. through input I, Figure S9),

or asymmetric cell division.
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9. Supporting Information: Tables1112
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Table S1
Cluster 1 Barx2, Batf2, Bhlhe22, Cited4, Cux1, Cux2, Egr4, Emx2, Fgf2, Foxc1, Foxp3, Hmgn5, Hnf1a, Hsf4, Inhba, Kcnh4, Kcnh5, Klf2, Luc7l3, Maf, Mef2c, Mkx, Neurod1, Neurog3, Nkx3-1, Nog, Npnt, Nr2f1,

Pou6f1, Pparg, Rbfox3, Rbms1, Rora, Rorb, Sox4, Tshz1, Wnt10a, Zfhx4, Zfp459, Zfpm1

Cluster 2 0610031J06Rik, 6030422M02Rik, Ablim2, Aes, Akap8l, Arid4a, Atrx, Bbx, Cacna1a, Camk2a, Camta2, Cc2d1a, Ccdc112, Chd2, Chd5, Cited2, Crtc1, Csdc2, Dand5, Dapk3, Dbp, Dek, Dlg4, Dmrta2,

Dnajc1, Edn1, Egr3, Ehmt2, Ell3, Emx1, Eng, Ercc2, Fosl2, Foxf2, Foxo3, Foxp1, Fzd1, Gcfc1, Gtf2f1, H1fx, H2afj, Hdac7, Hes5, Heyl, Hivep3, Ikzf4, Ing2, Irf7, Jdp2, Jund, Kcnh3, Kctd1, Khdrbs2, Kif5c,

Klf13, Lhx2, Lmo4, Mapk11, Maz, Mbd3, Med25, Med29, Mll5, Mllt1, Mt3, Mtf2, Mxd4, Mybbp1a, Mzf1, Nfic, Nfix, Notch3, Nr2f6, Pbxip1, Pias4, Pim1, Pkn1, Poll, Polr2e, Polr2i, Ppargc1b, Ppp3ca, Prox2,

Ptov1, Ptrf, Rbck1, Recql5, Rere, Rfc5, Rrp8, Rsf1, Sap25, Scand1, Scrt1, Setbp1, Smad3, Smarca2, Smarcd3, Snapc4, Sox17, Sox18, Ssbp4, Ssrp1, Taf3, Tceal7, Tcf4, Thap3, Thap7, Tle3, Trerf1,

Trim28, Ttf1, Usp2, Vgll4, Wfs1, Wnt4, Wnt9a, Zbtb46, Zfp316, Zfp329, Zfp444, Zfp462, Zfp523, Zfp575, Zfp579, Zfp628, Zfp771, Zfp821, Zfp827

Cluster 3 2310045N01Rik, Acd, Actl6b, Agap2, Agt, Ahdc1, Akt2, Ankrd49, Arid1a, Arid3b, Arid4b, Ascl1, Atf5, Atf6b, Atn1, Banf1, Bcl9l, Bmp7, Bptf, Brd2, Brd3, Brms1, Cand2, Cbfa2t3, Cck, Ccnt2, Cdk5r1, Cdk9,

Cdkn1c, Cenpb, Chd4, Chd8, Cic, Cnot3, Crebbp, Crtc3, Ddb2, Ddit3, Ddx21, Ddx41, Deaf1, Dot1l, Drap1, Dvl1, Dyrk1b, Ell, Elof1, Erf, Esf1, Fbxl19, Fbxw7, Fiz1, Flywch1, Foxq1, Frzb, Fzd2, Gm9887,

Golga4, Gsk3a, Gtf2ird2, H2afx, Hdac5, Hic2, Hras1, Ighmbp2, Impdh1, Ing1, Ing4, Ino80b, Irf2, Irf2bp1, Jhdm1d, Jmjd6, Kcnh2, Kdm5a, Klf16, Klf7, Ldb1, Lig1, Lmna, Lmo1, Lrp5, Lyl1, Maml3, Map3k10,

Mcrs1, Med19, Mll1, Mll2, Mtap1s, Mtdh, Mxd3, Mypop, Naa15, Nat14, Ncor1, Ndufa13, Nedd8, Nfil3, Nfkbia, Npas4, Nr2e1, Nr4a1, Paf1, Pcbp4, Pde8b, Per1, Per3, Phc2, Phf12, Phip, Pkd2, Polr2j,

Ppp1r12a, Preb, Prr13, Psen2, Psip1, Rad54l, Rai1, Rbpj, Rdbp, Rfx1, Ring1, Rnf10, Rnf20, Rnf31, Rtf1, Rxrb, S100a1, Safb2, Samd1, Sdpr, Sec14l2, Sertad1, Set, Sirt7, Sltm, Smarca4, Smg6, Snapc2,

Snw1, Sox11, Sox12, Sox9, Spen, Srrm1, Srsf10, Tada3, Taf10, Taok2, Tcea2, Tnrc18, Traf2, Trrap, Ubtf, Upf1, Usp16, Usp21, Vps72, Wbp7, Xpa, Ybx1, Yy1, Zbed3, Zbtb17, Zbtb7a, Zbtb8a, Zfat, Zfhx2,

Zfp148, Zfp213, Zfp219, Zfp414, Zfp513, Zfp524, Zfp580, Zfp641, Zfp768, Zfp777, Zfp787, Zfp825, Zfp865, Zglp1, Zgpat, Zkscan17, Zmiz2

Cluster 4 0610010F05Rik, 1700048O20Rik, 2210018M11Rik, 2310047B19Rik, Ablim3, Acvr1b, Akap8, Akt1, Apbb2, Aptx, Arid1b, Arid5b, Arnt2, Arntl, Arrb1, Ash1l, Asxl1, Atmin, Atp6v0a1, Bach2, Bclaf1, Bdp1,

Becn1, Brca2, Btaf1, C230052I12Rik, Calcoco1, Calr, Camk1d, Camta1, Carm1, Casp8ap2, Cbfa2t2, Cbx7, Cdk13, Cdkn1b, Cebpg, Cep290, Ciao1, Cnot4, Cnot7, Commd6, Coq9, Cry2, Csnk2a1, Csrnp2,

Ctbp1, Dab2ip, Ddx52, Dmtf1, Dnajb5, Dnttip1, Dnttip2, Dpf1, Dpf2, E2f3, Ecsit, Eid2, Eif4g3, Ern1, Esrra, Fancm, Fbxw11, Fmn1, Fosb, Foxk2, Fzd4, Fzd6, Gatad1, Gatad2a, Gm20517, Grlf1, Gsk3b,

Gtf2a2, Gtf2f2, Gtf2h1, Gtf2h4, Gtf2h5, Gtf3c4, H2afz, Hcfc1, Hdac3, Hdac8, Hexim1, Hif1an, Hinfp, Hist3h2a, Hlf, Hmg20a, Hmga1, Hmgn3, Hnrnpd, Hnrnpu, Hnrpdl, Homez, Iws1, Jarid2, Jrk, Kat5,

Kcnh7, Kdm1a, Kras, L3mbtl3, Leo1, Lrrfip1, Maged1, Map3k9, Mapre3, Mcm9, Mdm2, Med1, Med12l, Med13, Med15, Med18, Med27, Men1, Mrpl12, Msh3, Mtpn, Myh9, Ncoa1, Ncoa2, Nlk, Nom1,

Npas2, Nr1d1, Nr1i3, Nrip1, Nsd1, Nufip1, Nusap1, Orc2, Paip1, Parp2, Paxip1, Pcgf3, Pcgf6, Pcid2, Pdcd4, Pdgfb, Pdpk1, Peo1, Per2, Pex14, Pgr, Phb2, Pik3r1, Plcb1, Polb, Poldip2, Poli, Polr1a, Polr3d,

Polrmt, Pou3f3, Ppm1f, Ppp2r5b, Ppp2r5d, Prdm4, Prdx2, Prim2, Prkrir, Prmt6, Prmt7, Prpf19, Prpf6, Psma6, Psmc5, Psmd10, Psmd9, Ptges2, Pygo1, Rad1, Rad50, Rad51l3, Rbbp7, Rbm15, Rhoq, Rnf4,

Rnf6, Rps6ka3, Rptor, S1pr1, Sap130, Sap30, Satb2, Scrt2, Setd3, Smc5, Smug1, Smyd2, Srcap, Srxn1, Supv3l1, Tada2b, Taf11, Taf1b, Taf5l, Taf8, Tagln3, Taok1, Tbl1x, Tbpl1, Tceb1, Tceb3, Tcerg1,

Tcf25, Tdg, Tgfb3, Tgfbr3, Thap4, Thrb, Ticam1, Tigd2, Tmem18, Tnfrsf11a, Top3a, Topors, Tox3, Trim37, Ube3a, Vegfa, Vldlr, Vps25, Wnt2b, Wwc1, Wwp2, Xrcc5, Yaf2, Ywhab, Ywhah, Zbtb25, Zbtb8b,

Zbtb9, Zeb1, Zfp105, Zfp187, Zfp202, Zfp238, Zfp239, Zfp251, Zfp273, Zfp334, Zfp369, Zfp410, Zfp422, Zfp451, Zfp472, Zfp511, Zfp512, Zfp532, Zfp566, Zfp612, Zfp64, Zfp784, Zfp788, Zfp866, Zfp933,

Zfp941, Zfp942, Zfp959, Zhx3, Zxdb

Cluster 5 1810035L17Rik, 2310004N24Rik, 2410016O06Rik, 2410022L05Rik, 2610301G19Rik, 4933421E11Rik, Abt1, Akna, Ankrd33b, Anp32a, Apbb1, Apex1, Ar, Arid2, Ascc1, Atf7ip, Atf7ip, Atp8b1, Atxn1,

Atxn1l, Atxn7l3, Bag1, Bahd1, Baz1b, Baz2a, Bcl6b, Bcl9, Bcor, Bmyc, Bod1l, Brf2, Brwd1, C80913, Camk4, Camsap3, Cbx1, Cby1, Ccar1, Ccnk, Ccnt1, Cdk12, Cdk5, Cdk8, Cebpz, Chd1, Chmp1a,

Chrac1, Chtf8, Cobra1, Cramp1l, Creb1, Creb3, Cry1, Csda, Csnk2a2, Ctcf, Ctnnd2, Cxxc1, Cxxc5, Daxx, Dbx2, Dcaf6, Ddx17, Ddx50, Ddx54, Ddx56, Dedd2, Dlx1, Dmap1, Dusp22, Dvl3, E2f4, E2f5,

E430018J23Rik, Ecd, Egr1, Eif2c1, Elk1, Elk4, Eme1, Ep400, Epas1, Epc2, Ercc1, Ercc4, Ercc5, Fbxo18, Fhod1, Fli1, Fosl1, Foxg1, Foxj2, Foxo1, Fus, Gli2, Gli3, Glo1, Gm6563, Gmcl1, Gmeb1, Gmeb2,

Gon4l, Gtf3a, Gtf3c2, H2afy2, Hdac11, Hdac4, Hdgf, Hdgfrp2, Hipk1, Hira, Hist3h2ba, Hivep2, Hnrnpl, Hnrnpul1, Hr, Hsf1, Htatsf1, Hyal2, Ift74, Igf1, Ikbkap, Ilf2, Impdh2, Ing5, Ino80, Jmy, Kat8, Kcnh1,

Kdm2a, Kdm4b, Kdm5b, Keap1, Khsrp, Klf15, Klf5, Klf6, Klf9, L3mbtl2, Lcor, Lonp1, Maf1, Mafg, Mamld1, Mapk14, Max, Mcm5, Mcm7, Mcts2, Mecp2, Med13l, Med26, Med28, Med9, Mef2d, Meis3, Mier2,

Mkl1, Mnat1, Morf4l1, Mpg, Mphosph8, Mta1, Mta2, Mxi1, Myd88, Mysm1, Myst3, Nacc1, Narfl, Nbn, Ncl, Ncor2, Ndp, Neurod2, Nfat5, Nfe2l1, Nfrkb, Nipbl, Nolc1, Npas1, Nr2c2, Nrarp, Nucb1, Nup62,

Obfc2b, Ogg1, Otud7a, Pa2g4, Patz1, Pbx2, Pcbp3, Pdcd11, Pds5b, Phb, Phf1, Phf5a, Pias1, Pkd1, Plagl2, Pogz, Pole3, Polg, Polr1c, Polr1d, Polr2c, Polr2f, Polr2l, Polr3h, Pot1b, Ppap2b, Ppard, Pprc1,

Pqbp1, Prdm11, Prdm2, Prdx5, Prkcz, Prmt5, Prr12, Psmd4, Puf60, Pura, Purg, Rad54l2, Rai12, Rb1cc1, Rbbp4, Rbm39, Rcor1, Rcor2, Rfc1, Rfc2, Rfc4, Rfxank, Rfxap, Rnf187, Rprd1b, Rps6ka4, Safb,

Sap30bp, Sap30l, Sbno1, Senp2, Setd2, Sf1, Sfswap, Ski, Smarcb1, Smarcc1, Smarcc2, Smarcd1, Smo, Snip1, Son, Sox2, Sox21, Sra1, Srrt, Ssbp3, Stat5b, Stk16, Strn3, Suds3, Supt5h, Swap70, Taf5,

Taf6, Tceal5, Tef, Terf2, Tfip11, Thap11, Thoc1, Thrsp, Tinf2, Top1, Tox4, Traf7, Trim27, Trp53bp1, Tsc22d1, Tshz3, Tsn, Tspyl2, Ube2l3, Ubqln4, Upf2, Usf2, Vps36, Wdr5, Wdtc1, Whsc1l1, Whsc2, Wnt7a,

Wrnip1, Wwtr1, Xbp1, Xpc, Xrcc1, Ylpm1, Zbtb22, Zbtb3, Zbtb38, Zfand3, Zfp113, Zfp119a, Zfp160, Zfp174, Zfp180, Zfp235, Zfp263, Zfp28, Zfp286, Zfp319, Zfp498, Zfp553, Zfp574, Zfp592, Zfp61, Zfp629,

Zfp653, Zfp668, Zfp672, Zfp687, Zfp689, Zfp746, Zfp809, Zfp81, Zfp810, Zfp867, Zfp954, Zfr, Zkscan14, Zkscan4, Zmat2, Znfx1, Zscan29, Zzz3

Cluster 6 Aff3, Ahr, Aifm2, Ankrd42, Arx, Bcl6, Bhlhe40, Bhlhe41, Bmp2, Ccnh, Ctbp2, Cxxc4, Dusp5, Elp4, Esrrg, Etv1, Fezf2, Gas6, Hat1, Hes1, Il4, Lmo3, Msh2, Nck1, Nkrf, Nr1d2, Nrip2, Obfc2a, Parp1, Phf6,

Ppargc1a, Prdx3, Prkaa2, Ralgapa1, Reln, Rgmb, Rnf14, Sall2, Satb1, Shh, Sla2, Smad9, Snapc3, Sod2, Tfb1m, Tgfbr1, Tox, Tox2, Trib2, Tsc22d3, Uchl5, Zc3h8, Zfp260, Zfp367, Zfp458, Zmat4

Cluster 7 1500003O03Rik, 2700050L05Rik, Aifm1, Arhgef11, Atf4, Blm, Brms1l, Btrc, Cand1, Cask, Cd38, Cdk7, Cops2, Cops5, Creb3l1, Crebl2, Crem, Csde1, Csrnp3, Ddx1, Ddx3x, Dnaja3, Dpy30, Dr1, E2f6,

Eif4g2, Eme2, Ets2, Fam120b, Fbxo11, Fgfr3, Fzd9, Glyr1, Gm14296, Gm14326, Gpbp1, Grm5, Gtf2b, Gzf1, Has3, Hey1, Hif1a, Hmbox1, Hmox1, Hspa8, Igbp1, Ikbkg, Il16, Insig2, Klf12, Lass4, Lbh, Lig4,

Lonp2, Lpin2, Lrpprc, Mafb, Map3k13, Mcts1, Med14, Med21, Med30, Med31, Mlx, Msh6, Mterfd3, Mtor, Ncoa7, Ndnl2, Neurod6, Nfyb, Nif3l1, Nr3c2, Phf17, Pid1, Pole4, Polr1b, Polr3a, Polr3f, Polr3k,

Pou3f4, Prkaa1, Psmc3ip, Ptch1, Ptprk, Rabgef1, Rad23b, Rbfox2, Rpa1, Rpap2, Rqcd1, Rrn3, Setd7, Slc30a9, Sos1, Srfbp1, Ss18l1, Strap, Taf2, Taf9, Tax1bp1, Tceal1, Terf2ip, Tmf1, Traf3, Trim32, Txlng,

Uba3, Ube2b, Ube2n, Ubqln1, Wwp1, Yeats4, Zbtb10, Zbtb16, Zfp248, Zfp27, Zfp35, Zfp426, Zfp599, Zfp647, Zfp655, Zfp7, Zfp703, Zfp759, Zfp786, Zfp9, Zfp940, Zfp943, Zkscan1

Cluster 8 2210012G02Rik, 2700060E02Rik, 9130019O22Rik, A430033K04Rik, Abl1, Ablim1, Adnp, Alyref, Alyref2, Arnt, Atf1, Atxn7, AW146020, Bmp6, Brd7, Btg2, C130039O16Rik, Capn3, Cbfb, Cbx4, Cdc5l,

Cdk5rap3, Cebpa, Cebpb, Cenpt, Chd3, Chtf18, Clpb, Clu, Cnot6, Commd7, Crebzf, Ctdsp1, Ctnnd1, Cyld, Dap, Ddx39b, Dicer1, Dnajb6, Dnmt3a, Dvl2, Edf1, Eepd1, Egln1, Elf1, Ewsr1, Foxk1, Foxo4,

Foxp4, Fzd3, Gm10093, H2afv, H2afy, Hip1, Hipk2, Hist1h1c, Hist2h2aa1, Hmgb1, Hopx, Hp1bp3, Id1, Ifnar2, Ift57, Ilk, Irf9, Jun, Junb, Kdm5c, Kdm6b, Limd1, Malt1, Maml2, Map2k1, Mapk3, Mapk8ip1,

Mcf2l, Mll3, Mmp14, Mnt, Myo6, Myst4, Myt1l, Nab2, Naca, Nfe2l2, Nfkb2, Nod1, Notch1, Nras, Nrf1, Ntn3, Nucb2, Pask, Pbrm1, Pcna, Pde2a, Pfdn5, Pfn1, Phc1, Pknox1, Plag1, Pogk, Pola2, Polm,

Ppp1r10, Prkch, Rbak, Rbpjl, Rela, Rgs14, Ripk1, Rpa2, Rps3, Rps6ka1, Ruvbl1, Sbno2, Scap, Scmh1, Sertad2, Setd1b, Sfpq, Sfrp1, Sin3b, Smad4, Sorbs3, Sox15, Sp9, Srf, Stat3, Stat5a, Sub1, Taf9,

Tcea1, Tceb2, Tcfl5, Tesc, Tfcp2l1, Tgfb1, Tgif2, Thra, Thrap3, Tigd3, Trim11, Trps1, Tsc22d4, Tsnax, Ube2i, Ubp1, Usf1, Vhl, Vopp1, Xrcc6, Ywhaq, Zeb2, Zfp161, Zfp276, Zfp282, Zfp36l1, Zfp40, Zfp41,

Zfp438, Zfp473, Zfp521, Zfp536, Zfp560, Zfp652, Zfp710, Zfp772, Zfp811, Zhx2

Cluster 9 2610008E11Rik, Abtb2, Adar, Adi1, Aff4, Arhgef2, Ascc2, Asf1a, Atf7, Atxn3, Axin1, Basp1, Bcl11a, Brd8, Brf1, Chaf1a, Cnbp, Ctif, Ctnnbip1, Dcp1a, Ddx5, Dedd, Dmd, Dnmt1, E2f1, Eapp, Eif2a, Ep300,

Epc1, Fer, Fgf1, Fhl2, Flii, G3bp1, Gatad2b, Gm9833, Gpbp1l1, Gtf3c1, H3f3b, Hace1, Hbp1, Hes6, Hipk3, Hist1h2bc, Hist2h2be, Id2, Irak3, Irf8, Itch, Khdrbs1, Klf11, Klf3, Lass5, Lass6, Loxl3, Lrp6, Lrp8,

Lrwd1, Mafk, Mapk1, Mbd2, Med24, Mms19, Mtf1, Ncoa6, Neo1, Nfatc3, Npas3, Nr3c1, Orc4, Orc6, Pcbp1, Peli1, Phf10, Phf2, Phf8, Ppm1a, Ppp1r8, Prkd1, Psen1, Pxmp3, Rb1, Rbl2, Rbm14, Rc3h2,

Recql, Rev1, Rhoa, Rnf141, Rnf2, Ruvbl2, Ryr2, Sin3a, Smad1, Smad5, Smarca5, Snd1, Snrnp200, Sos2, Sp1, Sp4, Spin1, Srebf1, Srebf2, Supt6h, Suv420h1, Taf12, Taf4a, Tfap4, Tgfbrap1, Th1l, Thap2,

Trak2, Trip4, Txn1, Uhrf2, Usp22, Wasl, Xrn2, Zbtb5, Zfand5, Zfand6, Zfp108, Zfp110, Zfp119b, Zfp146, Zfp212, Zfp287, Zfp3, Zfp46, Zfp516, Zfp52, Zfp59, Zfp709, Zfp775, Zfp90, Zik1, Zscan18, Zxdc

Cluster 10 1810074P20Rik, 3110052M02Rik, A530054K11Rik, AA987161, Abcg1, Actr8, Adnp2, Aebp2, Akirin2, Aplp2, App, Ascc3, Atf2, Atf6, AW146154, Birc2, Bmpr1a, Brdt, Bzw1, Carf, Cbx5, Ccpg1, Cdc73,

Cenpc1, Cggbp1, Cirh1a, Clpx, Cnot1, Cnot2, Cnot8, Commd1, Csrnp1, Ddb1, Ddx20, Dkk3, Eaf1, Ednrb, Eif2ak3, Eif2c2, Eif4g1, Ell2, Elp2, Elp3, Eny2, Ercc3, Ercc6, Etv3, Ezh1, F2r, Fam58b, Fntb,

Foxj3, Gabpa, Gclc, Gm10094, Gtf2e1, Gtf2e2, Gtf2i, Hdac2, Hexb, Hivep1, Hmga1-rs1, Hnrnpa2b1, Hnrnpab, Hsf2, Huwe1, Ilf3, Ino80c, Insig1, Insr, Jazf1, Jmjd1c, Kcnip3, Kdm3a, Kdm5d, Khdrbs3,

Lancl2, Ldb2, Mbd1, Mbd5, Meaf6, Med17, Med4, Mef2a, Mlh3, Mllt11, Mta3, Mterfd1, Myc, Myef2, Ncbp1, Ndn, Nfx1, Ngly1, Npat, Pcbd2, Pcbp2, Pex1, Phc3, Picalm, Pkia, Pnrc2, Polh, Polr2a, Polr2b,

Polr3b, Prkcb, Prkdc, Prmt2, Prnp, Prpf8, Pspc1, Pten, Rad21, Rad23a, Rbbp5, Rfx7, Rprd1a, Scai, Setdb1, Sfmbt1, Smad2, Smarcad1, Snapc1, Snx6, Sox5, Sp3, Stat1, Supt7l, Suz12, Tada1, Taf1, Taf13,

Taf7, Tbk1, Tbl1xr1, Tceal8, Tcf20, Tlr3, Tmpo, Tmsb4x, Tnks, Top1mt, Top2b, Topbp1, Traf6, Trim33, Tsg101, Ubqln2, Ubr2, Usp47, Usp7, Wac, Wdr61, Wdr77, Xrcc2, Xrcc4, Zbtb1, Zbtb33, Zbtb41, Zbtb6,

Zfml, Zfp101, Zfp169, Zfp189, Zfp191, Zfp192, Zfp280d, Zfp317, Zfp322a, Zfp382, Zfp386, Zfp397, Zfp418, Zfp445, Zfp507, Zfp51, Zfp518a, Zfp518b, Zfp53, Zfp58, Zfp597, Zfp60, Zfp605, Zfp654, Zfp68,

Zfp719, Zfp763, Zfp770, Zfp780b, Zfp790, Zfp791, Zfp82, Zfp84, Zfp871, Zfp874a, Zfp874b, Zfp948, Zfp949, Zfp958, Zhx1, Zmym2

Cluster 11 Abca2, Actl6a, Bcl10, Bmp5, Cat, Ccna2, Chd1l, Creb3l2, Ctnnb1, Dynll1, Etv5, Fbxo21, Foxj1, H3f3a, Id4, Il33, Irak4, Kat2b, Map3k2, Mcm2, Mcm4, Mcm6, Med10, Mkl2, Nab1, Nck2, Nedd4, Nfib,

Pcna-ps2, Prickle1, Rad51, Ramp3, Rbmxl1, Rnasel, Runx1t1, Rxra, Rybp, Sall1, Sik1, Sirt2, Smad7, Tfdp1, Trib1, Trp53inp2, Whsc1, Xrcc3, Zfhx3, Zfp266, Zfp551, Zmiz1

Cluster 12 Bcl11b, Bmp3, Cdon, Crym, Erbb2, Fgf10, Fgfr2, Foxo6, Gabpb2, Gm98, Id3, Itgb3bp, Jup, Kif4, Klf10, Lass2, Lbr, Litaf, Med12, Mif4gd, Nfe2l3, Olig1, Olig2, Otx1, Pbx1, Phox2a, Pou6f2, Prkcq, Prox1,

Rcbtb1, Rhog, Rps6ka5, Rsc1a1, Setdb2, Skil, Sox10, Sox8, Stat6, Tbr1, Tle4, Traf5, Trf, Xpo1, Zfpm2, Zkscan16
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Table S1. Transcription factor clusters 751 Transcription factors (Belgard et al., 2011) were

clustered according to the distribution of their normalized expression values across layers 6a, 6b, 5,

4 and 2-3 . The transcription factors of each cluster that were chosen as representative examples for

Figure 5 are highlighted in bold.
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10. Supporting Information: Figures1113
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Figure S1
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Figure S1. Aspects of biological development. The process of development can be understood in

terms of three complementary models (A) The cell lineage tree describes the mitotic process rooted

in a given precursor. Each cell divides symmetrically or asymmetrically to produce two similar or

dissimilar daughter cells. Colors denote the different fates of terminal cells. (B) A phenotypic

model of the possible states taken by cells of lineage tree. Each node represents a cell state that is

characterized by a vector of observable features. Each edge represents a possible transition route

between states. Colors denote the features expressed by terminal cell. (C) A genotypic model that

is the mechanism underlying the lineage tree description, or the state diagram description. Each

cell state is encoded by the expression of a subset of genes (squares) layed out on the DNA (gray

line). The progression through the successive cell states of the lineage tree is controlled by gene

interactions (black lines), and the degree of asymmetrical of cell division and gene interactions

(black lines). These interactions may be positive (arrow) or negative (plate) with respect to their

target genes. Colors represents genes linked with a particular terminal cell type.
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Figure S2
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Figure S2. Reduction of State Diagram to lower dimensionality. (A) State diagram of example

lineages (as Figure 2B). Nodes represent cell states, arrows state transition probabilities. States are

labeled according to 3 observed features: A = 〈1,0,0〉 (blue), B = 〈0,1,0〉 (green), C = 〈0,0,1〉

(orange), and # = 〈?,?,?〉 (gray) for states with hidden features. Initial states are depicted in dark

gray. (B-D) State clustergrams of computed distance between every state pair with dimensions

D = 23, D = 13, D = 11, and D = 7 (percentage of data represented in parenthesis). Dendrograms

indicate hierarchical binary linkage of states. (E) Spectral label propagation on models, where each

hidden node is colored according to its estimated feature distribution. (F) Model error as

percentage of the correct final cell state distribution for spectral clustering (black) versus random

model (gray, standard deviations for 100 trials). HM, Homogeneous Markov model.
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Figure S3

A B C

Deterministic Probabilistic Random Control
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Figure S3. Classification performance of spectral clustering. The ability of spectral clustering

to recover the correct Markov branching process was assessed on 100 lineages generated with 10

random 5-state models. Spectral clustering assigns a unique class to each cell, which is then

compared to the known model class. (A) Confusion matrix of spectral clustering on deterministic

model (0 ± 0% classification error). (B) Confusion matrix of spectral clustering on probabilistic

model (20.3 ± 17.8% classification error). (C) Confusion matrix of random model (88.2 ± 18.7%

classification error).
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Figure S4
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Figure S4. Cell type distributions generated by a State Diagram of decreasing

dimensionality. (A) A State Diagram of an example sublineage is progressively reduced from

dimension D = 23 to D = 13, D = 11, and D = 7. Nodes represent cell states, arrows state

transition probabilities. (B) Output generated by Hidden Markov implementation of a State

Diagram. Mean cumulative number of differentiated cells produced at each time step. (C) Mean

instantaneous number of differentiated cells produced at each time step. Dashed lines, original

distribution; colored lines, model distribution; shaded area, standard deviation. The D = 7 model

fails to capture the original data.
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Figure S5
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Figure S5. State Diagrams areas 3 and 6 combined, and separated. (A) 519-dimensional State

Diagram of combined lineages for area 3 and 6. Nodes represent cell states, arrows state transition

probabilities. (B) Combined SD reduced from D = 519 to D = 10 (area 3 and 6). (C) D = 10 SD

for area 3 alone. (D) D = 10 SD for area 6 alone. Cell states: Layer 6b, blue; Layer 6a, sea green;

Layer 5, green; Layer 4, orange; Layer 2/3, red; Glia, pink; and Unknown, gray. (E) Performance

(% error against original data) of stochastic generator models (black traces) corresponding to the

SDs above. The performance of the stochastic models is compared against a model free random

control (grey traces). HM, Homogeneous Markov model; NM, Non-Homogenous Markov Model.

Model dimension indicated by black arrow.
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Figure S6
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Figure S6. State Diagrams and model generated cell distributions for cortical area 3. (A)

Original State Diagram D = 257 and its reduced D = 10 version for cell lineages in cortical area 3.

Nodes represent cell states, arrows state transition probabilities. Cell state colors are the same as

for Figure S5. (B) Generation of cells by various stochastic models. Mean cumulative number of

differentiated cells produced at each time step. (C) Mean instantaneous number of differentiated

cells produced at each time step. Dashed lines, original distribution; colored lines, model

distribution; shaded area, standard deviation. HM, Homogeneous Markov model; NM,

Non-homogeneous Markov model; TM, Time-dependent Markov model. Low-dimensional HM

model fails to capture the data, whereas TM performs well.
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Figure S7
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Figure S7. State Diagrams and model generated cell distributions for cortical area 6. (A)

Original State Diagram D = 292 and its reduced D = 10 version for cell lineages in cortical area 6.

Nodes represent cell states, arrows state transition probabilities. Cell state colors are the same as

for Figure S5. (B) Generation of cells by various stochastic models. Mean cumulative number of

differentiated cells produced at each time step. (C) Mean instantaneous number of differentiated

cells produced at each time step. Dashed lines, original distribution; colored lines, model

distribution; shaded area, standard deviation. HM, Homogeneous Markov model; NM,

Non-homogeneous Markov model; TM, Time-dependent Markov model. Low-dimensional HM

model fails to capture the data, whereas TM performs well.

88

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394734doi: bioRxiv preprint 

https://doi.org/10.1101/394734
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S8
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Figure S8. Combinatorial transcription logic. Cis-regulatory constructs can implement

conventional canalizing logic gates (A) AND, (B) NAND, (C) OR, (D) NOR and non-canalizing

(E) XOR, (F) EQV, (G) FALSE, (H) TRUE. The z-axis represents the output partition function P

given [X] and [Y]. The computation depends on the steepness of the sigmoidal function H, ranging

from (top to bottom row) continuous, approximately Boolean and discrete Boolean.
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Figure S9. Dynamics of a 2-dimensional genetic switch. (A) Scheme of subnetwork with

mutual inhibition between two transcription factors A and B, each with positive feedback; an

external input I; and two outputs. (B) Vector field representing the gradient direction as a function

of concentrations A and B, for switch without input (I = 0). The system has 4 attractor states,

which means that the attractor states at high concentrations have hysteresis. (C) Vector field

representing the gradient direction as a function of A and B for switch with input I = 1. Attractors

at either high A or B represent downstream differentiation pathways. Red traces are simulated

trajectories from various initial points.
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