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Abstract 24 
Animals acclimate to changes in their environment through diverse responses, 25 

including phenotypic plasticity and shifts in their microbiome. These microbial 26 
communities are also taxonomically distinct across the geographical distribution of the 27 
host. It is less known, however, whether taxonomic differences in host-associated 28 
bacterial communities between geographically distinct populations mask shifts due to 29 
environmental changes within a population. We tested for potential ecological masking 30 
using larvae of the echinoid Strongylocentrotus droebachiensis from three coastal 31 
locations in the Pacific and Atlantic Oceans that were exposed to four feeding regimes. 32 
When considering OTU membership and the relative proportion of those taxa, the 33 
composition of the larval-associated bacterial communities were best explained by 34 
location, not feeding regime. Similarly, predicted metagenomic gene profiles from these 35 
bacterial communities were congruent with population specificity and may suggest a role 36 
in metabolism. We hypothesize that, while much of the differences in the bacterial 37 
communities is related to the large geographic distances between these locations, the 38 
predicted overlapping functions of the microbiome may relate to responding to ecological 39 
variation experienced by these larvae. Taken together, these results suggest that 40 
differences in community composition between populations masks local variation, and 41 
that scaling should be considered in when studying microbiome dynamics.  42 
  43 
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Introduction 44 
 Acclimating to environmental variability through morphological, developmental, 45 
and/or physiological plasticity is a common trait of animals (Boidron-Metairon 1988, 46 
Bradshaw 1965, DeWitt et al 1998, Miner et al 2005, Schlichting and Smith 2002, Sterns 47 
1989, West-Eberhard 2003). Over the past decade, the appreciation for the role that 48 
animal-associated microbial communities play in ameliorating environment-induced 49 
stress has grown profoundly (Apprill 2017, Carrier and Reitzel 2017, Carrier and Reitzel 50 
2018, Kohl and Carey 2016, Macke et al 2016, Shapira 2016, Theis et al 2016). When 51 
experiencing a heterogeneous environment, the animal host may recruit, expel, and/or 52 
shuffle the relative proportion of associated microbiota (Bordenstein and Theis 2015, 53 
Zilber-Rosenberg and Rosenberg 2008), to assemble a community with particular 54 
molecular pathways for the environmental conditions (Burke et al 2011, Louca et al 55 
2016, Roth-Schulze et al 2018).  56 
 Microbial communities associated with animals often vary in response to diverse 57 
abiotic and biotic factors, including temperature, salinity, diet quality and quantity, 58 
season, and habitat-type (see reviews by Carrier and Reitzel 2017, Kohl and Carey 2016). 59 
Of these, dietary responses are best studied and have a major impact on the composition 60 
of and potential mutualistic functions for this community (David et al 2014, Kohl and 61 
Dearing 2012, Rosenberg and Zilber-Rosenberg 2016, Sonnenburg et al 2016). When 62 
faced with prolonged food deprivation, for example, the community composition and 63 
diversity of microbiota associated with both invertebrate and vertebrate hosts shift 64 
considerably (Carrier and Reitzel 2018, Kohl et al 2014), a response hypothesized to 65 
buffer against reduced exogenous nutrients.  66 
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Microbial communities associated with animals are also species-specific (Carrier 67 
and Reitzel 2018, Fraune and Bosch 2007, Schmitt et al 2012) and taxonomically 68 
variable across the geographical distribution of the host species (Dishaw et al 2014, 69 
Huang et al 2018, Marino et al 2017, Marzinelli et al 2015, Mortzfeld et al 2015). 70 
Habitat-specific microbial communities are primarily controlled by environmental 71 
conditions (Pantos et al 2015) and diverge with respect to dispersal limitations (Moeller 72 
et al 2017). Despite this taxonomic variation, microbial communities can remain 73 
functionally similar due to shared genes across bacterial species (Roth-Schulze et al 74 
2018). The bacterial communities of the green alga Ulva spp., for example, are too 75 
variable to define a ‘core’ community; however, nearly 70% of the microbial genes are 76 
biogeographically consistent (Roth-Schulze et al 2018). How components of host ecology 77 
attribute to the taxonomic variation in these bacterial communities is less understood and 78 
are needed to identify the relative strength and importance of each abiotic or biotic factor. 79 
 Planktotrophic (feeding) larvae are one biological system to compare the 80 
components of host ecology and their dynamics on animal microbial communities. At a 81 
local scale, many planktotrophic larvae (e.g., the pluteus of sea urchins) inhabit 82 
heterogeneous feeding environments and are morphologically and physiologically plastic 83 
to food availability (Adams et al 2011, Boidron-Metairon 1988, Byrne et al 2008, Carrier 84 
et al 2015, Hart and Strathmann 1994, McAlister and Miner 2018, Miner 2004, Miner 85 
2011, Soars et al 2009). Feeding-induced plasticity in the echinoid Strongylocentrotus 86 
droebachiensis, specifically, is correlated with phenotype-, diet-, and development-87 
specific bacterial communities (Carrier and Reitzel 2018). At a regional scale, adult S. 88 
droebachiensis have an Arctic-boreal distribution (Scheibling and Hatcher 2013) and can 89 
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be divided into genetically distinct populations across multiple oceans (Addison and Hart 90 
2004, Addison and Hart 2005). Attributes of the reproductive biology of S. 91 
droebachiensis (e.g., sperm morphology) have significant phenotypic variation between 92 
populations, suggesting potential directional selection (Manier and Palumbi 2008, Marks 93 
et al 2008). How these differences in reproductive characteristics relate to the variation in 94 
other phenotypic traits, such as larval morphological plasticity or symbioses with bacteria 95 
have not been studied, although population-specific variation and differential selection 96 
would not be surprising given the differences experienced in their natural environments.  97 

The ability of S. droebachiensis larval holobionts to acclimate to local feeding 98 
variation across its broad geographic distribution was used as a biological system to 99 
evaluate local versus regional effects. Specially, using S. droebachiensis larvae, we tested 100 
the hypothesis that host geographical origin better correlates with community 101 
composition than does local variations on food availability, and that the predicted 102 
functional gene profiles converge between host habitats. To test these hypotheses, S. 103 
droebachiensis larvae from three sites (Figure 1) were differentially fed, and the 104 
associated bacterial communities were assayed and used to coarsely predict functions of 105 
the metagenome. 106 
 107 
Experimental Procedures 108 
Adult urchin collection and larval rearing 109 

Adult S. droebachiensis were collected from populations in the North Sea in 110 
March 2015, the Salish Sea in April 2016, and the Gulf of Maine in February 2017 111 
(Figure 1). Individuals from the North Sea were collected by divers in Droebak, Norway 112 
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(59°39’ N, 10°37’ E) and transported in cold and aerated seawater to the Sven Lovén 113 
Centre for Marine Infrastructure (Kristineberg, Sweden). Urchins were maintained in 114 
natural seawater and fed ad libitum on a live mix of Ulva lactuca and Laminaria spp. 115 
collected from the Kristineberg shoreline. Urchins from the Salish Sea were hand-116 
collected at low tide at Cattle Point, San Juan Island, USA (48°27' N, 122°57' W), 117 
transferred to the Friday Harbor Laboratories within one hour, suspended in sub-tidal 118 
cages off the dock at FHL, and fed Nereocystis spp. ad libitum until spawning two weeks 119 
later. Lastly, individuals from the Gulf of Maine were collected from Frenchman Bay, 120 
Maine (44°25' N 68°12' W), shipped overnight to the Darling Marine Center, and were 121 
maintained in flow-through aquaria and fed Saccharina latissima ad libitum until 122 
spawning within one week. 123 

Adult urchins were spawned with a one- to two-mL intracoelomic injection of 124 
0.50 M KCl. For each population, gametes from three males and three females were 125 
separately pooled. Fertilization of eggs and larval rearing followed Strathmann (1987), 126 
except, to include the environmental microbiota, embryos and larvae were reared using 127 
5.0-μm filtered seawater (FSW). Briefly, embryos were incubated in one-liter of FSW at 128 
ambient temperature and salinity, and two hours post-fertilization were transferred to 129 
three or five-L of FSW, divided into triplicates, and larval density was adjusted to two 130 
larvaemL-1 and subsequently diluted as larvae reached the 6- and 8-armed stages. Larval 131 
cultures were given 90 to 95% water changes every other day by reverse filtration. 132 

Monocultures of Rhodomonas lens were grown at room temperature with f/2 133 
media and a combination of ambient and artificial lighting (Guillard 1975). 134 
 135 
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Experimental feeding and larval morphometrics 136 
 At 48 hours post-fertilization, prism-stage larvae were divided into three replicate 137 
jars for each of the four experimental feeding treatments varying in R. lens quantity: 138 
10,000, 1,000, 100, or 0 cellsmL-1. For each experiment, larvae fed 10,000 cellsmL-1 139 
were reared through metamorphosis while diet-restricted and started larvae were cultured 140 
until developmental stasis (Supplemental Table 1). Larvae (n=100) from each replicate 141 
for each treatment were sampled weekly. Immediately after sampling, larval samples 142 
were concentrated into a pellet using a microcentrifuge and all seawater was removed. 143 
Pelleted larvae were then preserved in RNAlater and stored at -20 °C before DNA 144 
extractions. 145 

Complementary to sampling S. droebachiensis larvae, the environmental 146 
microbiota from the seawater was also sampled. When larval cultures were sampled 147 
weekly, triplicates of ~1-L of seawater was filtered onto a 0.22-µm Millipore filter to 148 
retain the environmental microbiota. Full filter disks were then preserved in RNAlater 149 
and stored at -20 °C before DNA extractions. 150 

In addition to sampling larvae to assay the associated bacterial communities, 151 
twenty larvae (n=20) from a single replicate from each dietary treatment were sampled 152 
for morphometric analysis. Larvae were imaged using a compound microscope (Salish 153 
Sea: Nikon Eclipse E600; camera: QImaging MicroPublisher 5.0 RTV; Gulf of Maine: 154 
Zeiss Primo Star HD digital microscope; North Sea: Leica stereomicroscope) and 155 
morphometrics (length of larval body, post-oral arms, and stomach area; Supplementary 156 
Figures 1-2) were measured using ImageJ, v. 1.9.2 (Schneider et al 2012). We tested 157 
whether larval morphology and stomach volume were influenced by differential feeding 158 
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over time using a two-way ANOVA (JMP Pro v. 13), and a whether this pattern was site-159 
specific using a one-way ANOVA. Where statistical differences were observed (p<0.05), 160 
we used a post-hoc test to determine the affect at each time point and for each diet. 161 
 162 
Assaying microbial communities 163 
 We extracted total DNA from larval samples using the GeneJet Genomic DNA 164 
Purification Kit (Thermo Scientific). For filtered seawater samples, we extracted eDNA 165 
using the FastDNA Spin Kit for Soil (MP Biomedical). DNA was then quantified using 166 
the NanoDrop 2000 UV-Vis Spectrophotometer (Thermo Scientific) and diluted to 5 167 
ngμL-1 using RNase/DNase-free water. 168 

Bacterial sequences were amplified using ‘universal’ primers for the V3/V4 169 
regions of the 16S rRNA gene (Forward: 5′ CTACGGGNGGCWGCAG, Reverse: 5′ 170 
GACTACHVGGGTATCTAATCC) developed by (Klindworth et al 2013). Products 171 
were purified using the Axygen AxyPrep Mag PCR Clean-up Kit (Axygen Scientific), 172 
indexed via PCR using the Nextera XT Index Kit V2 (Illumina Inc.), and then purified 173 
again. At each of these steps, fluorometric quantitation was performed using a Qubit 174 
(Life Technologies) and libraries were validated using a Bioanalyzer High Sensitivity 175 
DNA chip (Agilent Technologies). Illumina MiSeq sequencing (v3, 600 cycles) was 176 
performed at the University of North Carolina at Charlotte. 177 

Forward and reverse sequences were paired and trimmed using PEAR (Zhang et 178 
al 2014) and Trimmomatic (Bolger et al 2014), respectively, converted from fastq to fasta 179 
using custom script (Supplemental Note 1), and, prior to analysis of bacterial 16S rRNA 180 
sequences, chimeric sequences were detected using USEARCH (Edgar et al 2011) and 181 
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removed using filter_fasta.py. Using QIIME 1.9.1 (Caporaso et al 2010), bacterial 16S 182 
rRNA sequences were analyzed and grouped into operational taxonomic units (OTUs) 183 
based on a minimum 97% similarity. The biom table generated by the 184 
pick_open_reference_otus.py script was filtered of OTUs with less than ten reads as well 185 
as sequences matching chloroplast for cryptophytes (i.e., R. lens; after (Carrier and 186 
Reitzel 2018). 187 

Using the filtered biom table and “biom summarize-table” function to count total 188 
sequences per sample, the rarefaction depth of 3,193 was determined and applied to all 189 
subsequent analyses (Supplemental Figure 1). Beta diversity was calculated using the 190 
weighted UniFrac (Lozupone and Knight 2005), and principal coordinate analyses 191 
(PCoA) were visualized in EMPeror (Vazquez-Baeza et al 2013) and recreated using 192 
PhyloToAST (Dabdoub et al 2016) or stylized for presentation in Adobe Illustrator CS6. 193 
Community composition was generated using summarize_taxa_through_plots.py script 194 
and visualized using Prism 7 (GraphPad Software). Community similarity across 195 
phenotypes, dietary states, and developmental stages were compared statistically using an 196 
ANOSIM as part of the compare_categories.py script. 197 

A step-by-step listing of QIIME scripts used to convert raw reads to OTUs for 198 
visualization of the data is located in Supplementary Note 1.  199 
 200 
Functional predictions using PICTUSt 201 
 For the QIIME-generated OTU (i.e., biom) table to be compatible with PICTUSt 202 
(Langille et al 2013), all de novo OTUs were filtered according to the Greengenes (v. 203 
13.5) database. Closed OTU tables (that retained 57.8% and 88.2% of OTUs from full 204 
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and ‘shared’ communities, respectively) were normalized by copy number, upon which 205 
metagenomic gene profiles were predicted and categorized by biological function. The 206 
PICTUSt output was made compatible for STAMP using biom_to_stamp.py from 207 
Microbiome Helper (Comeau et al 2017). These metadata were subsequently analyzed 208 
using STAMP (Parks et al 2014) to test for a population-specific predicted functional 209 
profile. The principle coordinate from STAMP were compared statistically using a one-210 
way ANOVA (JMP Pro, ver. 13), as part of the STAMP package. We then generated taxa 211 
plots for Gene Ontology groups of interest using metagenome_contributions.py and 212 
custom scripts. 213 

A step-by-step listing of PICTUSt scripts used to convert from QIIME and the 214 
subsequent data analysis is located in Supplementary Note 1. 215 
 216 
Results  217 
Larval holobionts and the feeding environment 218 

Diet-induced morphological plasticity was recorded for S. droebachiensis larvae 219 
from each population, with the pattern of expression being location-specific (ANOVA, 220 
p<0.0001; Supplemental Figures 2-3). Diet-restricted larvae from the Salish Sea and Gulf 221 
of Maine exhibited a higher post-oral arm to mid-body line ratio than ad libitum 222 
counterparts (ANOVA, p<0.0001; Supplemental Figure 2; Supplemental Table 2), even 223 
though analyses of Gulf of Maine larvae were confounded by developmental stage 224 
(Supplemental Table 1). Larvae from the North Sea, however, exhibited the opposite 225 
response: ad libitum feeding induced a higher post-oral arm to mid-body line ratio than 226 
diet-restriction (ANOVA, p<0.0001; Supplemental Figure 2; Supplemental Table 2). 227 
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S. droebachiensis larvae from each population associated with a diet-specific 228 
bacterial community (Supplemental Figures 4-6; ANOSIM, Supplemental Table 4). 229 
Larvae from the Salish Sea and Gulf of Maine exhibited similar diet-specific community-230 
level patterns (Supplemental Figures 4-5; ANOSIM, Supplemental Table 4), where the 231 
bacterial consortium of food-restricted individuals generally were more similar to each 232 
other than to well-fed counterparts. Larvae from the North Sea, on the other hand, 233 
exhibited the opposite response (Supplemental Figure 6), where diet-specific bacterial 234 
communities were still observed (ANOSIM, Supplemental Table 4) except that all food 235 
rations were more similar to each other than to starved individuals (Supplemental Figure 236 
6). In addition to diet-specificity, larvae from each population associated with bacterial 237 
communities that were specific to phenotype (Supplemental Figure 7; ANOSIM, 238 
Supplemental Table 4) as well as varied with developmental stage and/or 239 
ecological/stochastic drift (Supplemental Figure 8-10; ANOSIM, Supplemental Table 4) 240 
and were distinct from the environmental bacterial community (Supplemental Figure 11; 241 
ANOSIM, Supplemental Table 4). 242 
 243 
Location-specific bacterial communities 244 

Variation in OTU diversity and the relative proportions of those taxa associated 245 
with S. droebachiensis larvae were best correlated with geography (ANOSIM, p<0.001; 246 
Figure 2), where larvae from the Western and Eastern Atlantic Ocean were more similar 247 
to each other than to those from the Pacific Ocean (Figure 2; Supplemental Figure 12A). 248 
Site-specific bacterial communities of S. droebachiensis larvae were independent of 249 
plasticity state, developmental stage, and feeding regime (Figure 2; Supplemental Figures 250 
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4-10, 13-14; Supplemental Table 2), even though larvae at each site associated with 251 
phenotype- (Supplemental Figure 7), diet- (Supplemental Figure 8-10), and development- 252 
(Supplemental Figure 4-6) specific bacterial communities (Supplemental Table 2). 253 
Moreover, the structure of the bacterial community associated with Gulf of Maine larvae 254 
are taxonomically richer and the most diverse while larvae from the Salish Sea were the 255 
least rich and diverse, leaving those from the North Sea as intermediate (Table 1). 256 

Of the thousands of OTUs associated with S. droebachiensis larvae across sites, 257 
phenotypes, developmental stages, and diets, ~32.7% were found in at least one sample at 258 
each of the three sites (Supplemental Figure 15). Moreover, ~8.1% to ~13.0% of all 259 
OTUs were shared between two sites, and ~10.8% to ~12.7% were unique to a single site 260 
(Supplemental Figure 15). When clustered by bacterial classes, S. droebachiensis larvae 261 
from the North Sea primarily associate with γ-proteobacteria (34.2%; Phylum: 262 
Proteobacteria), α-proteobacteria (26.8%; Phylum: Proteobacteria), Flavobacteriia 263 
(19.5%; Phylum: Bacteroidetes), and Saprospirae (12.3%; Phylum: Bacteroidetes), while 264 
larvae from the Gulf of Maine primarily associated with γ-proteobacteria (49.1%;), α-265 
proteobacteria (17.8%), Flavobacteriia (17.7%), and, lastly, larvae from the Salish Sea 266 
primarily associate with Flavobacteriia (44.3%), α-proteobacteria (23.2%), and γ-267 
proteobacteria (20.0%) (Supplemental Figure 15). 268 
 269 
Dynamics of shared taxa  270 

For balanced inter-population comparisons, only OTUs in at least one sample 271 
from each population were retained. This restriction yielded 4,502 shared OTUs 272 
(Supplemental Figure 15), which were divided by population and subsequently filtered to 273 
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only include ‘core’ taxa (i.e., those found in all samples for a given urchin population). 274 
Inclusion of the ‘core’ OTUs for each population totaled 178 OTUs (Supplemental Figure 275 
16). An unweighted and weighted comparison of these OTUs suggest that these ‘core’ 276 
communities associated with S. droebachiensis larvae is, again, best correlated with 277 
geography (ANOSIM, p<0.001; Figure 3), with larvae from the Atlantic Ocean being 278 
more similar to each other than larvae from the Pacific Ocean (Figure 3; Supplemental 279 
Figure 12B). 280 
 Of the combined ‘core’ bacterial communities associated with S. droebachiensis 281 
larvae, three OTUs (~1.8%) were found in all samples within and between populations: 282 
an unclassified species in the class γ-proteobacteria (OTU number: 1106577), an 283 
unclassified species in the family Flavobacteriaceae (OTU number: 1105269), and an 284 
unclassified species in the genus Polaribacter (OTU number: 586650). Of the 178 OTUs, 285 
27 OTUs were shared between North Sea and Gulf of Maine samples, four between all 286 
Gulf of Maine and Salish Sea samples, and three between all Salish Sea and North Sea 287 
samples (Supplemental Figure 16). Furthermore, 6, 52, and 78 OTUs were specific to S. 288 
droebachiensis larvae from the Salish Sea, Gulf of Maine, and North Sea, respectively 289 
(Supplemental Figure 16). When clustered by bacterial classes, these ‘core’ communities 290 
associated with S. droebachiensis larvae, individuals from the North Sea primarily 291 
included α-proteobacteria (41.8%; Phylum: Proteobacteria), γ-proteobacteria (34.8%; 292 
Phylum: Proteobacteria), and Flavobacteriia (20.9%; Phylum: Bacteroidetes), while 293 
larvae from the Gulf of Maine primarily associated with γ-proteobacteria (57.0%), α-294 
proteobacteria (17.4%), and Flavobacteriia (17.1%), and larvae from the Salish Sea 295 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394486doi: bioRxiv preprint 

https://doi.org/10.1101/394486
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

associate with Flavobacteriia (67.3%) and α-proteobacteria (30.0%) (Supplemental 296 
Figure 16). 297 
 298 
Predicted community function and representative taxa 299 
 Similar to the 16S rRNA assays, PICRUSt-generated metagenomic gene profiles 300 
of the full (ANOVA, p<0.0001; Figure 4A) and shared (ANOVA, p<0.0001; Figure 4B) 301 
bacterial community associated with S. droebachiensis larvae were specific to urchin 302 
biogeography. Predicted gene content of PICRUSt-generated metagenomes were, on 303 
average, ~55.1% metabolism, ~17.9% genetic information processing, ~12.5% 304 
environmental information processing, and ~7.2% cellular processes and signaling 305 
(Supplemental Figures 17-18). Of these, total gene content was significantly different 306 
between locations for metabolism (ANOVA, p<0.0001), cellular processes (ANOVA, 307 
p<0.0001), and cellular processes and signaling (ANOVA, p<0.0001) (Supplemental 308 
Figure 17-18). Moreover, of only the shared or ‘core’ community ~55.8% metabolism, 309 
~17.3% genetic information processing, ~12.8% environmental information processing, 310 
and ~6.8% cellular processes and signaling (Supplemental Figure 19-20), with total gene 311 
content being significantly different between locations for metabolism (ANOVA, 312 
p<0.0001), cellular processes (ANOVA, p<0.0001), and cellular processes and signaling 313 
(ANOVA, p<0.0001). 314 
 More than half of the gene content of the predicted S. droebachiensis larval 315 
metagenome was related to metabolism (Supplemental Figures 17-18). Several of the 316 
bacterial classes from the Salish Sea, Gulf of Maine, and North Sea are predicted to 317 
contribute to metabolism. For S. droebachiensis larvae from the Salish Sea this group of 318 
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bacteria primarily included the α-proteobacteria (41.5%), γ-proteobacteria (29.7%), and 319 
Flavobacteriia (21.8%); larvae from the Gulf of Maine primarily included α-320 
proteobacteria (41.9%), γ-proteobacteria (39.1%), Flavobacteriia (16.5%); and larvae 321 
from the North Sea primarily included γ-proteobacteria (40.5%), α-proteobacteria 322 
(29.8%), and Flavobacteriia (25.8%) (Figure 6). 323 
 324 
Discussion 325 
 Comparisons of the bacterial communities associated with S. droebachiensis 326 
larvae across dietary treatments and host biogeography suggests three primary findings. 327 
First, the composition of the bacterial community associated with S. droebachiensis 328 
larvae is best correlated with location. Second, for each of the geographical regions, 329 
urchin larvae associated with a microbial community specific to phenotype, 330 
developmental stage, and dietary state. Lastly, the predicted metagenomic profiles are 331 
site-specific and primarily related to metabolism. 332 

Marine invertebrate larvae experience a feeding environment that varies in space, 333 
time, and composition (Bidigare and Ondrusek 1996, Chevez et al 1996, Cloern and 334 
Jassby 2010, Milici et al 2016, Needham and Fuhrman 2016). In response to this 335 
variation, planktonic larvae can arrest their development and/or increase the frequency of 336 
encounter rates by enlarging their feeding structure (Boidron-Metairon 1988, Byrne et al 337 
2008, Carrier et al 2015, Carrier and Reitzel 2018, Hart and Strathmann 1994, McAlister 338 
and Miner 2018, Miner 2004, Miner 2011, Soars et al 2009). Plasticity in development 339 
and morphology have historically been viewed as a means for the host to acclimate 340 
(Bradshaw 1965, Hart and Strathmann 1994, McAlister and Miner 2018, Miner 2011, 341 
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Soars et al 2009, West-Eberhard 2003). Recent work suggests this response is also linked 342 
to the associated bacterial communities (Carrier and Reitzel 2018). 343 

Inter-population comparisons of the dynamics of the bacterial community 344 
associated with S. droebachiensis larvae suggest three additional, not mutually exclusive 345 
inferences. First, composition of the bacterial communities is seemingly a product of the 346 
host feeding environment. Second, while both community composition and predicted 347 
functional profiles are dynamic across and specific to host feeding environment, the 348 
functional profiles are more informative for understanding hologenomic acclimation. 349 
Third, urchin larval holobionts may be locally adapted. Of these, the data presented here 350 
largely support the first inference, while the latter two are supported but require specific 351 
validation (e.g., using molecular, genomic, and physiological assays and manipulations 352 
(Williams and Carrier 2018). 353 

Population-specific bacterial communities is an emerging theme of animal-354 
microbiome ecology (Dishaw et al 2014, Huang et al 2018, Marino et al 2017, Marzinelli 355 
et al 2015, Mortzfeld et al 2015). For the three populations of S. droebachiensis used 356 
here, the bacterial communities were region specific, with Gulf of Maine and North Sea 357 
individuals being more similar to each other than to Salish Sea larvae. The environmental 358 
conditions of these regions are different, and the selective pressures on the microbial 359 
partners, larva, and holobiont likely vary (Bordenstein and Theis 2015). Differential 360 
selection on multiple components of the S. droebachiensis larval holobiont may result in 361 
local adaption (Pespeni et al 2013, Sanford and Kelly 2011). The feeding environment-362 
specific differences in the microbial community and predicted metagenomic gene profiles 363 
are suggestive of potential adaptation, where the functional microbial community may aid 364 
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in acclimating to unique oceanographic conditions of these three S. droebachiensis larval 365 
populations face.  366 

Previous studies on the populations of S. droebachiensis larvae documented that 367 
phenotypic traits varied across host geography. Manier and Palumbi (2008), for example, 368 
reported significant differences in sperm morphology between urchins across this spatial 369 
scale and found evidence of strong directional selection for sperm traits between 370 
locations, particularly between S. droebachiensis in the Pacific and Western Atlantic. 371 
Population genetic studies of S. droebachiensis, on the other hand, show significantly 372 
higher FST values between the Eastern and Western Atlantic than the Pacific and Western 373 
Atlantic due to more frequent genetic exchange through the Bering Strait (Addison and 374 
Hart 2004, Biermann et al 2003, Manier and Palumbi 2008, Palumbi and Wilson 1990). 375 
Consistent with sperm morphology, the population-specific differences in bacterial 376 
communities and predicted metagenome is suggestive of environmental influence 377 
shaping this variation over, perhaps, the last few hundred thousand years. Future 378 
population genomic studies of S. droebachiensis should identify outlier loci that correlate 379 
with specific differences in OTUs and characterize the larval metagenome to provide a 380 
window into how animal genetic variation and the environmental conditions may shape 381 
the associated microbial community. 382 
 A growing body of literature suggests that planktotrophic larvae utilize diverse 383 
‘alternative’ nutritional resources (Feehan et al 2018, Manahan et al 1993, Rivkin et al 384 
1986). Based on our predicted metagenomic gene profiles, we propose that planktotropic 385 
larvae are aided by metabolites derived from their bacterial symbionts. This is of 386 
particular importance because larvae often inhabit food-limited environments (Fenaux et 387 
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al 1994, Olson and Olson 1989, Pauley et al 1985). To decrease mortality due to 388 
starvation (Morgan 1995, Rumrill 1990, Young and Chia 1987), a metabolic input from 389 
the symbiont community may serve as a physiological buffer and complement metabolic 390 
depression induced by diet-restriction (Carrier et al 2015).  391 
 Our comparisons of the bacterial communities associated with S. droebachiensis 392 
larvae suggest that geographic location better correlated with community composition 393 
than local biological (e.g., phenotype) and ecological variation (e.g., diet quantity). This 394 
type of specific comparison suggests that in studying the dynamics of animal—and 395 
perhaps plant—interactions with their associated bacterial community, location may drive 396 
the taxonomic profiles, and that in transitions towards functional or predicted functional 397 
comparisons, the potential for local adaptation should be considered (Kelly et al 2014, 398 
Pespeni et al 2013, Sanford and Kelly 2011). 399 
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Figure and Table Legends 418 
 419 
Figure 1. Location of Strongylocentrotus droebachiensis experiments. Cartoon 420 
representation of adult populations and the geographical distribution for where 421 
differential feeding experiments were conducted.  422 
 423 
Figure 2. Similarity of the microbial communities associated with Strongylocentrotus 424 
droebachiensis larvae between sites. Community similarity of the S. droebachiensis 425 
larval microbiome between three geographic locations, independent of phenotype, 426 
developmental stage, and dietary state when considering only taxa (A) and taxa and their 427 
relative abundance (B). 428 
 429 
Figure 3. Similarity of the shared bacterial OTUs associated with Strongylocentrotus 430 
droebachiensis larvae between sites. Community similarity of the bacterial OTUs found 431 
in at least a single sample of S. droebachiensis larvae from each of the three sites of 432 
interest. Comparisons were made between three geographic locations, and independent of 433 
phenotype, developmental stage, and dietary state when considering only taxa (A) and 434 
taxa and their relative abundance (B). 435 
 436 
Figure 4. Similarity of the predicted Strongylocentrotus droebachiensis larval 437 
metagenome at each site. Community similarity of the gene profiles of the 438 
Strongylocentrotus droebachiensis larval metagenome as predicted by PICTUSt. 439 
 440 
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Figure 5. Bacterial taxa of predicted metabolic function. Relative proportions of bacterial 441 
classes linked to the predicted metabolic functionality of the Strongylocentrotus 442 
droebachiensis larval metagenome, as predicted by PICTUSt. 443 
 444 
Table 1. Alpha diversity indices of the microbial communities associated with 445 
Strongylocentrotus droebachiensis larvae from three geographical locational.  446 
 447 
  448 
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 1 

Table 1. Alpha diversity indices of the microbial communities associated with Strongylocentrotus 
droebachiensis larvae from three geographical locations. 
 

  
Salish 

Sea 
Gulf of 
Maine 

North 
Sea  

SS F-ratio P 

Fisher Mean 252.3 464.69 347.49   1.08E+06 81.67 <0.0001 
 SE 8.82 13.09 14.65     

   C A B     
Shannon Mean 4.66 7.48 6.71   2.21E+02 108.79 <0.0001 

 SE 0.02 <0.01 0.01     
   C A B     
Simpson Mean 0.77 0.97 0.95   1.31E+00 61.35 <0.0001 

 SE <0.01 <0.01 <0.01     
   B A A     
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