Environmental DNA for the enumeration and management of

Pacific salmon

short title: Counting salmon with eDNA

Taal Levi ${ }^{1 *}$, Jennifer M. Allen ${ }^{1}$, Donovan Bell², John Joyce ${ }^{2}$, Joshua R. Russell², David A.
Tallmon ${ }^{3}$, Scott C. Vulstek ${ }^{2}$, Chunyan Yang ${ }^{4 *}$, Douglas W. Yu ${ }^{4,5,6}$
${ }^{1}$ Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
${ }^{2}$ Auke Bay Laboratories, National Oceanic and Atmospheric Administration, Juneau, AK 99801
${ }^{3}$ Biology and Marine Biology Program, University of Alaska Southeast, Juneau, AK 99801, USA
${ }^{4}$ State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
${ }^{5}$ Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan, 650223 China
${ }^{6}$ School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK
*Correspondence authors: taal.levi@oregonstate.edu, yangyahan@mail.kiz.ac.cn

Abstract

Pacific salmon are a keystone resource in Alaska, with an economic impact of well over \sim US $\$ 500$ million/yr. Due to their anadromous life history, adult spawners distribute amongst thousands of streams, posing a huge management challenge. Currently, spawners are enumerated at just a few streams because of reliance on human counters and, rarely, sonar. The ability to detect organisms by shed tissue (environmental DNA, eDNA) promises a more efficient counting method. However, although eDNA correlates generally with local fish abundances, we do not know if eDNA can accurately enumerate salmon. Here we show that daily, and near-daily, flow-corrected eDNA rate closely tracks daily numbers of immigrant sockeye and coho spawners and emigrant sockeye smolts. eDNA promises accuracy and efficiency, but to deliver the most robust numbers will need higher-resolution stream-flow data, at-least-daily sampling, and to focus on species with simple life histories, since shedding rate varies amongst jacks, juveniles, and adults.

Keywords: environmental DNA, qPCR, Southeast Alaska, fisheries management, Oncorhynchus, ecosystem services, ecosystem functions

Introduction

Pacific salmon (Oncorhynchus spp.) support a $\$ 449$ million/yr commercial fishery and play a significant role in the $\$ 470$ million/yr sport fishery (National Marine Fisheries Service 2017) in Alaska alone and remain a key cultural and subsistence resource for humans. Salmon are also a major source of marine nutrients and energy, which subsidize terrestrial and aquatic food webs (Gende et al. 2002a; Gende et al. 2002b; Gende et al. 2004; Schindler et al. 2003), including large numbers of bears and eagles, which are themselves important to the regional ecotourism industry. Due to their anadromous life history, salmon fisheries are often managed by setting escapement goals, where escapement refers to the number of fish that escape the mostly oceanbased fishery and are thus available for spawning in fresh water. For example, from April to October each year, the Alaska Department of Fish and Game (ADFG) continuously estimates salmon breeding population sizes in some western Alaskan streams and issues temporary fishery closure notices to ensure that these escapements exceed minimum target sizes per species. Current salmon monitoring. - Of course, it is very costly to count fish. A typical salmon weir consists of a series of closely spaced bars across an entire stream to prevent the passage of salmon, except through a single, narrow gate over which a human observer tallies and identifies to species salmon as they file through (alternatively, Didson sonar can be used to count and size salmon individuals as they pass with species inferred from body size and run timing). The annual running cost of a weir is approximately $\$ 80,000$, not including installation or major maintenance (Fox 2018), and even this setup might be prone to undercounting (Eggers et al. 2009).

More than 6,000 streams are used by Pacific salmon in Southeast Alaska alone, and more than 1000 of those streams have been documented as hosting spawning populations (Johnson \& Blossom 2018; Fig. S1). Not surprisingly, almost all these salmon runs are left unmonitored or
are monitored only every few years with crude indices, such as visual transects conducted on foot or from the air. Detailed sampling effort varies depending upon budgets, but only a few streams are enumerated and are given escapement targets in any given year. For example, coho salmon (O. kisutch) are managed in Southeast Alaska by monitoring escapements and commercial fishery take from four to nine full indicator stock streams (Shaul et al. 2005). Full indicator stock streams are systems in which juveniles (usually outmigrating smolt) are tagged with coded wire tags and marked with an adipose fin clip. The proportion of marked fish sampled upon return, along with fishery and escapement sampling, are used to estimate smolt production, fishery interception rate, and escapement. Additional coho streams near urban centers are surveyed by air or on foot, and in some cases escapement goals are established, but there is no guarantee that these intermittent surveys overlap with the peak abundances of runs. Similarly, sockeye salmon (O. nerka) escapements are at least partially enumerated at 14 streams in Southeast Alaska (Munro \& Volk 2016). Nearly all pink (O. gorbuscha) and chum (O. keta) salmon runs are left un-enumerated by weirs or sonar, despite these species making up the majority of salmon biomass, harvest, and economic value in this region. Instead, several larger chum and pink streams are surveyed by air or on foot several times each year (Munro \& Volk 2016), but even this is complicated by the difficulty of distinguishing pink and chum because their migration timing and habitat use often overlap. Finally, enumeration is naturally focused on the largest, most economically valuable streams, leaving large numbers of subdominant runs for most salmon species unmonitored most years.

Fry and smolt production resulting from spawning salmon is monitored even less, which limits inference of future expected recruitment and harvest. Poor understanding of fry and smolt production also limits inference regarding the degree to which salmon productivity is limited by
spawning habitat for adults or by rearing habitat for juveniles, and whether changes in marine or freshwater productivity are responsible for changes in salmon recruitment and abundance. Such information is critical for informed management and for judging the potential efficacy of stock enhancement programs.

More generally, the under-monitoring of Pacific salmon stocks hinders the construction of reliable spawner-recruit models, which are used to determine escapement goals for maximum sustainable yield, increases uncertainty about whether, and where, there are sufficient spawners to maximize salmon recruitment, and, finally, increases the risk of long-term decline or loss, especially of the small, subdominant components of salmon runs. These smaller salmon runs have value in that they could be increasing the resilience of salmon stocks through portfolio effects (Schindler et al. 2010) or by restocking of a dominant component that has suffered a negative shock, and they provide key resources for wildlife by extending the spatial range and phenology of salmon availability to terrestrial and aquatic food webs (Gende et al. 2002b; Schindler et al. 2013). As fisheries increasingly transition towards ecosystem-based fisheries management, identifying, monitoring, and maintaining such spatially and temporally distributed salmon resources becomes increasingly important for conservation and management.

Environmental DNA. - The advent of environmental DNA (eDNA) methods that detect DNA shed by organisms (Bohmann et al. 2014; Goldberg et al. 2016) provides a promising tool for monitoring salmon escapements and juvenile production, which could increase managementrelevant information at low cost. However, while the efficacy of using eDNA for species detection is now widely recognized (Goldberg et al. 2016; Rees et al. 2014) and while several studies have demonstrated that eDNA is generally correlated with fish abundance in mesocosm
experiments, lakes, and streams (Doi et al. 2015; Handley et al. 2018; Lacoursière-Roussel et al. 2016; Takahara et al. 2013; Tillotson et al. 2018; Wilcox et al. 2016), we do not yet know whether eDNA contains sufficient information to allow robustly accurate estimates of fish abundance, particularly for anadromous fish as they enter and leave a watershed. By robust, we mean accuracy that is not greatly affected by variation among inter alia years, species, stream, and/or details of the sampling protocol.

Anadromous fish such as salmon provide a potentially straightforward scenario for testing whether eDNA can be used to count fish, because large numbers of salmon release their DNA as they pass a fixed sampling point, either as they swim up a river or stream as immigrating adults or swim downstream as emigrating juveniles. If eDNA degrades or settles quickly (as suggested by Jane et al. 2015; Jerde et al. 2016; Sassoubre et al. 2016; Shogren et al. 2016; Turner et al. 2015), then eDNA concentrations should primarily detect fish that are locally present in space and time. Thus, rather than simply accumulating as fish enter a watershed, eDNA concentrations might spike up and down as a pulse of fish swims past a sampling point, with the size of the spike correlated with fish number and/or biomass. Because the concentration of eDNA in streamwater results from both the amount of DNA shed by organisms and the flow of water, the product of eDNA concentration and streamflow (measured in units of water volume per time) can be used to calculate absolute quantities of eDNA per unit time. Such 'flowcorrected eDNA rates' measured at regular intervals (e.g. daily) could then be substituted for or complement gold-standard count data from weirs.

In the most comprehensive and relevant study to date, Tillotson et al. (2018) have demonstrated that local counts of sockeyes in a spawning creek, particularly dead sockeye, indeed predict local eDNA concentrations. As Tillotson et al. (2018) put it, the next step is
"reversing the model to predict abundance from eDNA." Here we take advantage of a daily census of sockeye and coho salmon carried out at the Auke Creek research weir in Juneau, Alaska to test whether eDNA concentrations and stream-flow measurements together produce quantitative and management-relevant indices of salmon escapement and juvenile outmigration. To explore the general ecology of eDNA, we also quantify the relative influences of salmon counts on the same day of water sampling, salmon that entered the watershed one day prior, and salmon that entered two days prior to an eDNA measurement, and we assess the eDNA signal produced by salmon of different life stages and body sizes. The purpose of these latter analyses is to test for two possible sources of error (long-distance transport of eDNA and differential shedding rates by body size and type) when using eDNA to enumerate salmon.

Methods

Weir operation

The Auke Creek research weir is located 19.2 km north of Juneau, Alaska, 400 m downstream from the outlet of Auke Lake above the high tide line at the mouth of Auke Creek. The ~ 1072.5 ha watershed includes five tributaries that feed into Auke Lake, which is 1.6 km long and 1.2 km wide, with a surface area of 67 ha. The weir is cooperatively operated by the National Marine Fisheries Service, in collaboration with the University of Alaska, and the Alaska Department of Fish and Game, with the objective of capturing all emigrant and immigrant fish at Auke Creek. All emigrant fish (from upstream) are enumerated from the beginning of March to the middle of June and released below the weir, after which the weir is converted to capture immigrating adult salmonids (from downstream), which are released above the weir. During monitoring of adult salmonids, fish are classified by species and life stage. The Auke Creek dataset represents probably the highest-temporal-resolution and most accurate salmon census data in Alaska, if not
the world. Life stages for coho salmon include a 'juvenile’ life-history strategy in which young coho rearing in the estuary and ocean return upstream, early maturing and small-bodied 'jack' males, and typical adult male and female fish. Sockeye salmon can also produce jacks, but infrequently. Complete methods for weir operation can be found in Vulstek et al. (2018) (Weir photos in Supporting information S2). River height is recorded daily and converted to streamflow (cubic feet per second) using an established rating curve (Bell et al. 2017).

Environmental DNA quantitation

We collected water samples for three years, from 2014-2016, after each day's salmon enumeration. In a 2014 pilot study, we collected three 1L water samples weekly from 28 May to 11 December. Based on promising results, and to minimize reduce costs, in 2015, we sampled weekly when few fish were entering the river and then increased sampling frequency up to daily during periods in which many salmon were entering the river. Because salmon eDNA disappeared entirely after October in 2014, we sampled from 12 May to 3 November in 2015. Based on further promising results from 2015, we increased sampling frequency to daily in 2016 from 10 May to 20 October. Because previous technical replicates had yielded consistent results, and because of the high frequency of water collection, we collected only two 1L water samples daily in 2015 and 2016. All water samples were collected using 1L disposable sterile Whirlpak bags and filtered through a 0.45 micron cellulose nitrate filter. Filters were then folded and stored in 100% ethanol at 4C until laboratory processing.

We maintained strict protocol to prevent contamination of filters and reagents. We performed DNA extraction and PCR setup inside of separate heap-filtered and UV-irradiated PCR cabinet (Air Science LLC, Fort Meyers, FL) within a separate lab where PCR product is prohibited. Filters were first removed from ethanol and air-dried overnight in sterile, disposable
weigh boats. A modified protocol for the Qiagen DNeasy Blood and Tissue kit was used to isolate DNA. This included the addition of 1.0 millimeter zirconia/silica beads to the initial lysis buffer and then a 15 minute vortex step to loosen the DNA from the filters. Incubation in lysis buffer was increased to 48 hours. After incubation, 300 ul of the lysed product was transferred to a new 1.7 ml microcentrifuge tube. Thereafter, we followed the manufacturers protocol for isolation of tissue. DNA was eluted in a total volume of 100 ul .

Using species-specific primers and TaqMan minor groove binder (MGB) probes (ThermoFisher Scientific, Waltham, MA), developed by Rasmussen Hellberg et al. (2010) (Table 1), we targeted a fragment of the cytochrome c oxidase subunit 1 (COI) gene. For each species, each sample was run in triplicate PCR reactions. Each 20 ul qPCR reaction contained 6 ul of DNA template, 10ul Environmental Master Mix 2.0 (ThermoFisher Scientific, Waltham, MA), 0.2 uM of both forward and reverse primers, 0.2 um of the TaqMan MGB probe, and sterile water. Additionally, each plate contained a four-point standard curve using DNA obtained from salmon tissue from each species. Extracted tissue was quantified using a Qubit Fluorometer (ThermoFisher Scientific, Waltham, MA) and diluted 10 -fold from 10^{-1} to $10^{-4} \mathrm{ng} / \mathrm{ul}$. PCR cycling conditions involved an initial denaturation step of 10 min at 95 C to activate the HotStart Taq DNA polymerase, followed by 50 cycles of 95 C for 15 s and 60 C for 60 s . All reaction plates contained a negative control (water) as well as extraction blanks. PCR was performed on an ABI PRISM 7500 FAST Sequence Detection System (Applied Biosystems, Foster City, CA), and analyzed on 7500 Software v2.0.6 (Applied Biosystems, Foster City, CA). Cycle values were converted to target-DNA concentration using on the standard curve derived from the tissue samples, and each day's eDNA concentration was taken as the mean across the two extractions and the three qPCR replicates from that day for that species.

Data analysis

To calculate the flow-corrected eDNA rate, we multiplied each day's qPCR-estimated targetDNA concentration $\left(\frac{n g}{\mu l}\right)$ against that day's streamflow $\left(\frac{\text { cubic } f e e t}{s e c}\right)$. There is no need to harmonize units because the product is now an estimate of DNA biomass rate ($\mathrm{ng} / \mathrm{sec}$) multiplied by a dimensionless constant (volume/volume): $\frac{n g}{\sec } \cdot \frac{\text { cubic } f e e t}{\mu l}$, and the fitted model parameters incorporate the conversion factor. Streamflow was usually taken at 8 AM each day, near the time that eDNA was sampled. However, this measure is only for one time point and might not be fully representative of streamflow during the whole day. We return to this point in the Discussion. We predicted salmon counts from flow-corrected eDNA rate using a quasipoisson regression in order to account for overdispersion. The quasipoisson model produces the same coefficients as standard Poisson generalized linear models for count data, but it is more inferentially conservative (i.e. lower Type I error rates due to wider confidence intervals). We fit separate models in 2015 and 2016 for immigrating adult sockeye salmon, immigrating total coho salmon, and outmigrating sockeye smolts. In our analysis, we included data for adult sockeye salmon from 18 June - 1 August, adult coho salmon from 15 August - 30 October, and outmigrating sockeye smolts from 15 April - 10 June. This time period captured the full runs of each species and life stage, but did not include a time period after the adult sockeye salmon run when DNA was transported downstream as salmon died in the lake. We used total coho, not just adult coho, because the coho run includes a varying mixture of juveniles, jacks, and adults, which are different sizes. We return to this point also in the Discussion.

To determine whether the relationship between flow-corrected eDNA and salmon counts was consistent between the two years, we combined data for the two years (the adult datasets only) and fitted a model with an additional interaction term between year and flow-corrected
eDNA. A significant interaction effect would indicate a different relationship between count and eDNA between years, which would indicate a lack of model transferability.

Ecology of eDNA. - We also used the dataset to explore the 'ecology of eDNA,' using salmon counts from the same and previous days to predict that day's flow-corrected eDNA rate. The purpose is to test for the possibility that long-distance, albeit attenuated, transport of eDNA from far-upstream salmon degrades the real-time quantitative accuracy of eDNA. We also test for the possibility that body size and/or life-history affects per-fish shedding rates.

To directly estimate the timescale over which eDNA was detected in Auke Creek, we used a series of three linear regression models to relate daily counts of sockeye salmon in 2016 (the year with daily sampling) to flow-corrected eDNA concentration. We first modeled flowcorrected eDNA as a function of salmon counts from the same day. We then used the residuals from that model in a second regression that instead included salmon counts from the previous day as a predictor. Finally, we used the residuals from the second model in a regression using salmon counts from two days prior as a dependent variable. We interpreted significant lag variables from salmon counts in the second or third models as evidence that salmon entering the river one or two days ago influence the measured flow-corrected eDNA concentration. In order to explore the eDNA production by coho salmon of different life stages, we additionally used multiple linear regression with counts of adults, jacks, and juveniles in 2015 and 2016 as predictors of flow-corrected eDNA measured that same day.

Results

Neither the concentration of eDNA nor flow-corrected eDNA rate increased monotonically as salmon accumulated in the Auke Creek watershed. Instead, flow-corrected eDNA rates reflected
a highly local signal of salmon abundance in space and time, effectively tracking salmon that had passed near the water sampling site over the previous day (Figs. 2-4). This was true for both adult salmon and smolts.

Tracking of salmon phenology and abundances with eDNA. - The product of stream flow (cubic feet per second, cfs) and eDNA concentration ($\mathrm{ng} / \mu \mathrm{l}$), which we refer to as flow-corrected eDNA rate, was highly predictive of the counts of immigrating adult sockeye and coho salmon, as well as of outmigrating sockeye salmon smolts in both 2015 and 2016 (Fig. 5; Adult sockeye 2015: β $=3.83 \pm 1.05, p<0.003$; Adult sockeye 2016: $\beta=4.34 \pm 0.76, p<10^{-5} ;$ Total coho 2015: $\beta=$ 3.61 $\pm 0.49, p<10^{-8}$; Total coho 2016: $\beta=8.87 \pm 2.32, p<0.004$; Sockeye smolts 2015: $\beta=$ 570.24 $\pm 128.09, p<0.004 ;$ Sockeye smolts 2016: $\beta=681.99 \pm 148.83, p<0.002$).

The combined models for 2015 and 2016 produced unambiguously non-significant interaction effect between year and flow-corrected eDNA rate for adult sockeye salmon ($p=$ 0.71) or sockeye salmon smolts $(p=0.60)$, indicating that eDNA had a consistent relationship with sockeye adult counts across years. However, the interaction term was significant for coho, indicating that the same value of flow-corrected eDNA rate was associated with a higher count of total coho in $2016(\beta=5.26 \pm 2.20, p<0.02)$, which is likely due to a higher abundance of smaller-bodied life stages of coho salmon in 2016 (many more juveniles and jacks).

With the exception of coho salmon in 2016, which were composed of a diverse mix of life histories and body sizes, the quasipoisson regression models using flow-corrected eDNA rate as a single predictor produced visually representative predictions of counts through time that captured the phenology, temporal dynamics, and relative abundance of each run (Fig. 6).

However, while the quasipoisson model correctly predicted the timing and size of the peaks in
salmon counts, the models also consistently predicted small but nonzero counts of salmon even when no salmon where counted (Fig. 6). This occurred because the model estimated a positive intercept term despite near zero eDNA concentrations in the absence of salmon (Fig. 2-4). When we used this biological information to fix the intercept to zero at zero flow-corrected eDNA rate, the model fit was worsened in periods when salmon were abundant. Inspection of the residuals gave us no reason to infer zero-inflation in the data-generating mechanism. We thus retained the original models with non-zero intercepts. Similarly, we tried models with water temperature as a second predictor, but saw no consistently significant effects and we were concerned about spurious correlations caused by the temporal trend in temperature data. This result is not surprising since visual inspection of the temperature timelines (Figs. 2, 3, 4) reveals no covariance between temperature and fish count peaks.

Ecology of eDNA. - Sockeye salmon counts from the current day in 2016 significantly predicted flow-corrected eDNA rate $\left(\beta=0.0011 \pm 0.00016, p<10^{-7}\right.$), but salmon from one day prior was only marginally related to any residual variation from the first model $(\beta=0.00026 \pm 0.00015, p<$ 0.09), and salmon from two days prior was completely unrelated to residual variation not accounted for by salmon counts from the same day and one day prior $(p=0.99)$.

Of the three coho salmon life-history categories (adults, jacks, and juveniles), adults produced the strongest flow-corrected eDNA signal $\left(\beta=0.0060 \pm 0.00045, p<10^{-15}\right)$, which was an effect 3.5 times higher than that produced by each juvenile fish $(\beta=0.0017 \pm 0.00058, p<$ 0.005). When accounting for the eDNA signal produced by adults and juveniles, counts of jacks were negatively associated with flow-corrected eDNA ($\beta=-0.0020 \pm 0.00080, p<0.02$), but a jack-only model (no adults) yielded no relationship ($\beta=0.002 \pm 0.0012, p=0.14$). Statistically
speaking, jacks are invisible on the eDNA radar, which is intriguingly consistent with their reproductive strategy of gaining access to females via 'sneaking.'

Discussion

Since the efficacy of eDNA was first demonstrated for the detection of invasive bullfrogs (Ficetola et al. 2008), a rapidly growing body of literature has highlighted the efficacy of eDNA for rare species detection (Rees et al. 2014; Wilcox et al. 2016), has explored the technical aspects of eDNA (Goldberg et al. 2016), and has suggested that eDNA holds promise for quantifying the abundance of species (Doi et al. 2015; Lacoursière-Roussel et al. 2016; Takahara et al. 2013; Tillotson et al. 2018). The next, and most transformative, technical step for mobilizing the use of eDNA for environmental management is to determine whether, and under what conditions, eDNA can be used to precisely enumerate organisms. The possibility of enumerating Pacific salmon as they immigrate and emigrate represents a particularly promising application, with large economic and risk-management implications for a multibillion dollar fishery and keystone wildlife resource.

To test the efficacy of eDNA for salmon enumeration, we coupled a complete census of immigrating and emigrating anadromous salmon with daily quantitation of environmental DNA. We demonstrate that flow-corrected eDNA rate
(1) predicts same-day, daily counts of two species of adult salmon immigrating into the watershed (Figs. 2, 3) and of one species of emigrating salmon smolt (Fig. 4),
(2) does not simply accumulate over time, which would have otherwise reflected the total number of salmon that have entered the watershed this season,
(3) is highly accurate at delimiting the phenologies of immigrating adult and emigrating juvenile salmon, and
(4) appears to be affected by differential DNA-shedding rates across different life-history strategies.

However, we have also identified several remaining obstacles to straightforward implementation of eDNA for the enumeration of salmon. Most importantly, accurate measures of streamflow are crucial. This is particularly true because pulses of adult salmon immigration sometimes coincide with high streamflow events (Figs. 2-4), and the error in estimating streamflow is exacerbated because the ratings curves that relate river height (the measure that is actually recorded daily) to flow contain more error at extreme values, since extreme-flow estimates are either based on few calibration points or on none at all and just represent extrapolations.

The 2015 and 2016 adult sockeye runs are excellent examples of the importance of obtaining accurate streamflow data (Fig. 2). In 2015, non-flow-corrected sockeye eDNA concentration ('DNA' timeline) was highest around 1 July and declined monotonically through the month despite few adult immigrating sockeye in early July. However, early July was also a period of low stream flow. Only after accounting for stream flow ('Flow X DNA' timeline), which included a flood event around 15 July, did eDNA correctly predict the observed sockeye immigration peak on 15 July ('Counts' timeline).

In 2016, there were three non-flow-corrected eDNA peaks ('DNA' timeline), the timings of which very closely matched the three count peaks. However, the first two non-flow-corrected eDNA peaks, in early July, were taller than the third peak, which is the opposite to that seen in the count data. The reason is that the third eDNA concentration peak, in late July, occurred just as streamflow also rose, diluting the eDNA ('Flow (cfs)' timeline). The third eDNA peak's shape and size more closely matched the count data after flow correction ('Flow X DNA' timeline), although the third eDNA peak is still too small, relative to the sizes of the first two peaks. We
hypothesize that the streamflow value that we used to multiply the first day of the third eDNA concentration peak was too low, probably recorded before most of that day's flow increase had occurred, causing us to under-correct and thus under-predict. We have informally substituted in the next day's much higher streamflow value (flow during the third sockeye peak rapidly more than tripled from 6.6 to 23.1 cfs between 23 and 24 July), and the third flow-corrected eDNA peak matches the count data more closely (data not shown).

A second critical consideration for quantifying anadromous fish counts with eDNA is the time scale of inference being made by an eDNA measurement. As adult salmon move upstream, the signal produced by their shedding of DNA attenuates and is eventually not detectable. Therefore, effective monitoring of anadromous fish with highly variable daily counts requires eDNA to be sampled at least daily. Even with daily sampling, we can imagine that the eDNA signal produced by a medium-sized pulse of fish could be the same strength as the signal produced by a large pulse of fish that passed by only hours ago. This potential timescale mismatch produces errors that set an upper limit on the accuracy of eDNA for quantifying anadromous fish abundance.

How much the above two within-stream sources of error reduce reliability in decisionmaking depends in part on the level of variation across streams. If a single stream, regardless of how expensively and accurately it is censused, does not reflect regional escapement sizes, due to temporal variation in salmon abundance across streams, it might be more robust to collect data from multiple streams (presumably only feasible with eDNA), even at a cost of reduced accuracy per stream. Currently, the Alaska salmon fishery does not have enough data to judge this possibility.

A third consideration is that some salmon runs contain a mix of individuals with different life histories. This was particularly the case for coho salmon in 2016, for which jacks were numerically dominant early in the run and a juvenile coho life history strategy was dominant late in the run. Both juveniles and jacks were rare in 2015. The many arriving jacks and juveniles did not produce levels of DNA concordant with the production by adult salmon (Fig. 3), which introduced substantial error into the relationship between flow-corrected eDNA and salmon counts (Figs. 5-6). In contrast, flow-corrected eDNA was a much better index of coho salmon counts in 2015 when the coho salmon run was dominated by adult fish (i.e. not jacks and juveniles) despite fewer data points collected in that year (Figs. 3, 5, 6).

Pacific salmon are a valuable resource, but their distributed spawning and rearing habitat, due to their anadromous life history, makes monitoring their distribution and abundance a formidable challenge, which consequently injects an unknown but probably non-trivial amount of inefficiency and risk into management. Our results suggest that using eDNA quantitation to estimate fish abundance has serious potential for reducing inefficiency and risk, but will require (1) accurate and ideally time-averaged streamflow measures and (2) frequent (at-least-daily) eDNA sampling due to the ephemeral nature of the eDNA signal. On the other hand, this very ephemerality is what makes eDNA such a sensitive correlate of salmon abundance.

Given the strong observed correlations between daily eDNA samples and fish counts (Figs. 5-6), investment in technology to allow frequent or even near real-time eDNA quantitation, and stream flow measurement, could provide a more accurate and cost-effective means of enumerating anadromous fish and thus informing management. This would be especially true if daily eDNA samples from many streams turn out to provide a more accurate estimate of regional escapement sizes than do intensive measurements at just a few streams.

Even with the same budget, it should be possible for a technician who would otherwise be paid to count fish in a single stream to instead collect water samples from many spawning streams across a watershed. In addition, water sampling could be extended to quantify smolt runs, which are currently only estimated in Southeast Alaska at a limited number of index systems.

Moreover, because post-sampling filters can be stored in a refrigerator or freezer for many days after sampling, it should be feasible to train and pay a network of citizen scientists to carry out sampling across multiple watersheds. Note also that although our analysis focused on sockeye and coho salmon, the same eDNA sample can be used to monitor any number of aquatic species with the development of appropriate assays. Against these potential gains in sampling efficiency and information must be balanced the additional cost of the qPCR assays to be carried out in a dedicated eDNA lab.

Our study is of a single stream in Southeast Alaska. However, it provides strong justification for an expanded effort to sample salmon eDNA over more streams, more species, and more days, both in the streams that currently have weirs, so that a robustly transferable model can be parameterized and validated, and in some of the many streams that are not currently monitored, to test for the possibility that multiple streams sampled daily with eDNA provide more useful information than a few streams counted intensively. Given the huge size of the Alaska salmon fishery, even a small improvement in management effectiveness and/or a small decline in the risk of population decline or establishment by alien salmonids would more than justify this investment.

Acknowledgements

We thank Oregon State University and The National Geographic Society (\#9493-14) for funding this work. D.W. Yu and C.Y. Yang were supported by the National Natural Science Foundation of China (41661144002, 31670536, 31400470, 31500305), the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC024), the Bureau of International Cooperation project (GJHZ1754), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20050202, XDB31000000), the Ministry of Science and Technology of China (2012FY110800), the University of East Anglia, and the State Key Laboratory of Genetic Resources and Evolution (GREKF16-09) at the Kunming Institute of Zoology. D.A. Tallmon was supported by North Pacific Research Board project \#1710. The findings and conclusions in the paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

Bell DA, Kovach RP, Vulstek SC, Joyce JE, Tallmon DA (2017) Climate-induced trends in predator-prey synchrony differ across life-history stages of an anadromous salmonid. Canadian Journal of Fisheries and Aquatic Sciences 74, 1431-1438.
Bohmann K, Evans A, Gilbert MTP, et al. (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology \& Evolution 29, 358-367.

Doi H, Uchii K, Takahara T, et al. (2015) Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 10, e0122763.
Eggers DM, Zhang X, Bachman RL, Sogge MM (2009) Sockeye salmon stock status and escapement goals for Chilkoot Lake in Southeast Alaska. In: Fishery Data Series. Alaska Department of Fish and Game, Anchorage.

Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biology Letters 4, 423-425.
Fox L (2018) Meeting minutes.

Gende SM, Edwards RT, Willson MF, Wipfli MS (2002a) Pacific salmon in aquatic and terrestrial ecosystems: Pacific salmon subsidize freshwater and terrestrial ecosystems through several pathways, which generates unique management and conservation issues but also provides valuable research opportunities. AIBS Bulletin 52, 917-928.
Gende SM, Edwards RT, Willson MF, Wipfli MS (2002b) Pacific salmon in freshwater and terrestrial ecosystems. BioScience 52, 917-928.

Gende SM, Quinn TP, Willson MF, Heintz R, Scott TM (2004) Magnitude and fate of salmonderived nutrients and energy in a coastal stream ecosystem. Journal of Freshwater Ecology 19, 149-160.
Goldberg CS, Turner CR, Deiner K, et al. (2016) Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in ecology and evolution 7, 1299-1307.

Handley LJL, Read D, Winfield I, et al. (2018) Temporal and spatial variation in distribution of fish environmental DNA in England's largest lake. bioRxiv, 376400.

Jane SF, Wilcox TM, McKelvey KS, et al. (2015) Distance, flow and PCR inhibition: e DNA dynamics in two headwater streams. Molecular Ecology Resources 15, 216-227.

Jerde CL, Olds BP, Shogren AJ, et al. (2016) Influence of stream bottom substrate on retention and transport of vertebrate environmental DNA. Environmental science \& technology 50, 8770-8779.

Johnson J, Blossom B (2018) Catalog of waters important for spawning, rearing, or migration of anadromous fishes - Western Region, Effective June 1, 2018. In: Special Publication (ed. Game ADoFa). No. 18-07, Anchorage.
Lacoursière-Roussel A, Côté G, Leclerc V, Bernatchez L (2016) Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. Journal of Applied Ecology 53, 1148-1157.

Munro AR, Volk EC (2016) Summary of Pacific salmon escapement goals in Alaska with a review of escapements from 2007 to 2015. In: Fishery Manuscript Series. Alaska Department of Fish and Game, Anchorage.
National Marine Fisheries Service (2017) Fisheries Economics of the United States, 2015. In: U.S. Dept. of Commerce, NOAA Technical Memo, p. 247p.

Rasmussen Hellberg RS, Morrissey MT, Hanner RH (2010) A multiplex PCR method for the identification of commercially important salmon and trout species (Oncorhynchus and Salmo) in North America. Journal of food science 75, C595-C606.

Rees HC, Maddison BC, Middleditch DJ, Patmore JR, Gough KC (2014) The detection of aquatic animal species using environmental DNA-a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51, 1450-1459.

Sassoubre LM, Yamahara KM, Gardner LD, Block BA, Boehm AB (2016) Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environmental science \& technology 50, 10456-10464.

Schindler DE, Armstrong JB, Bentley KT, et al. (2013) Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish. Biology Letters 9, 1-4.
Schindler DE, Hilborn R, Chasco B, et al. (2010) Population diversity and the portfolio effect in an exploited species. Nature 465, 609.
Schindler DE, Scheuerell MD, Moore JW, et al. (2003) Pacific salmon and the ecology of coastal ecosystems. Frontiers in ecology and the environment 1, 31-37.
Shaul L, Jones SE, Crabtree K (2005) Coho salmon stock status and escapement goals in Southeast Alaska. In: Stock status and escapement goals for salmon stocks in Southeast Alaska 2005 eds. Der Hovanisian JA, Geiger HJ). Alaska Department of Fish and Game, Anchorage.

Shogren AJ, Tank JL, Andruszkiewicz EA, et al. (2016) Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments. Journal of the Royal Society Interface 13, 20160290.
Takahara T, Minamoto T, Doi H (2013) Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8, e56584.

Tillotson MD, Kelly RP, Duda JJ, et al. (2018) Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biological Conservation 220, 1-11.
Turner CR, Uy KL, Everhart RC (2015) Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation 183, 93-102.

Vulstek SC, Russell JR, Joyce JE, Gray AK (2018) 2017 Auke Creek Research Station Report: Data Summary and Historical Trends from 1980 to 2017. In: NOAA Technical Memorandum NMFS-AFSC.

Wilcox TM, McKelvey KS, Young MK, et al. (2016) Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biological Conservation 194, 209-216.

Data Accessibility

The R scripts and data for analyses are at github.com/dougwyu/2014_2015_2016_Auke_qPCR

Author Contributions

TL, DWY, DAT, and CYY conceived the research and designed the experiments. DB, JJ, SCV, and JRR collected field samples. JA and CYY performed laboratory analyses. TL and DY performed the statistical analysis. TL, DWY, and DAT wrote the manuscript, with comments from all other authors.
Target species \quad Forward Primer (5'-3') \quad Reverse Primer (5'-3') \quad Probe (5'-3')

Sockeye $($ Oncorhynchus nerka)	GGAAACCTTGCCCACGCG	AAAAGTGGGGTCTGGTACTGAG	FAM-CTCTGTTGACTTAACCATC-MGB
Coho (Oncorhynchus kisutch $)$	CGCTCTTCTAGGGGATGATC	CTCCGATCATAATCGGCATG	FAM-ATTTACAACGTAATCGTC-MGB
495			

Figure 1. The Auke Creek research weir is (A) located in Juneau, Alaska at the outflow of Auke Lake. (B) The weir is a permanent structure used to sort and enumerate immigrating juvenile salmon and emigrating adult salmon.

Figure 2. Timeline from June 18 to August 1 of adult sockeye salmon counts, flow-corrected eDNA concentration ($\mathrm{ng} / \mu^{*} \mathrm{cfs}$), uncorrected eDNA concentration ($\mathrm{ng} / \mu \mathrm{l}$), stream flow (cfs, cubic-feet/sec), and stream temperature (C) in 2015 and 2016. Environmental DNA results from consecutive days are connected by lines. Male and female salmon are denoted by yellow-brown and blue lines respectively, and jacks are denoted by green lines. Total adult sockeye salmon counts are denoted by thick red lines.

Figure 3. Timeline from August 15 to October 30 of coho salmon counts, flow-corrected eDNA concentration ($\mathrm{ng} / \mu \mathrm{l} * \mathrm{cfs}$), uncorrected eDNA concentration ($\mathrm{ng} / \mu \mathrm{l}$), stream flow (cfs), and stream temperature (C) in 2015 and 2016. Environmental DNA results from consecutive days are connected by lines. Male and female coho salmon are denoted by yellow-brown and blue lines respectively, jacks are denoted by green lines, counts of a juvenile nomadic life history strategy are denoted by teal lines, total adult (male + female) coho salmon counts are denoted by red lines. Total coho salmon counts including jacks and juveniles are denoted by pink lines. Note that the adult male and female coho salmon were the dominant component of the run in 2015 while the jack and juvenile life history strategy was a major component of the run in 2016.

Figure 4. Timeline from April 15 to June 10 of outmigrating sockeye salmon smolt counts, flowcorrected eDNA concentration ($\mathrm{ng} / \mu \mathrm{l} * \mathrm{cfs}$), uncorrected eDNA concentration ($\mathrm{ng} / \mu \mathrm{l}$), stream flow (cfs), and stream temperature (C) in 2015 and 2016. Environmental DNA results from consecutive days are connected by lines.

Flow x DNA
Figure 5. Results of quasipoisson regression models relating flow-corrected eDNA concentration to adult sockeye salmon counts (2015: $\mathrm{p}<0.003,2016$: $\mathrm{p}<2 \mathrm{e}-6$), total coho salmon counts (2015: $\mathrm{p}<2 \mathrm{e}-9,2016$: $\mathrm{p}<0.004$), and counts of sockeye salmon smolts (2015: $\mathrm{p}<0.005$, 2016: $\mathrm{p}<0.002$). Gray shading denotes the 95% confidence interval.

Figure 6. Counts of adult sockeye salmon, total coho salmon (including all life history strategies), and sockeye salmon smolts (black dots) and the predicted number of counts based on the flow-corrected eDNA concentration predictor in the quasipoisson regression model (blue dashed lines). Gray shading denotes the 95% confidence interval.

Supplemental Information for:

Environmental DNA for the enumeration and management of

Pacific salmon

Taal Levi ${ }^{1 *}$, Jennifer M. Allen ${ }^{1}$, Donovan Bell ${ }^{2}$, John Joyce ${ }^{2}$, Joshua R. Russell², David A.
Tallmon ${ }^{3}$, Scott C. Vulstek ${ }^{2}$, Chunyan Yang ${ }^{4, *}$, Douglas W. Yu ${ }^{4,5,6}$
${ }^{1}$ Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
${ }^{2}$ Auke Bay Laboratories, National Oceanic and Atmospheric Administration, Juneau, AK 99801
${ }^{3}$ Biology and Marine Biology Program, University of Alaska Southeast, Juneau, AK 99801, USA
${ }^{4}$ State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
${ }^{5}$ Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan, 650223 China
${ }^{6}$ School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK

*Correspondence authors: taal.levi@oregonstate.edu, yangyahan@mail.kiz.ac.cn
Table of Contents:

S1. Salmon spawning streams in Southeast Alaska	Page 1
S2. Photos of weir structure	Page 2

Supporting Information

S1. Salmon spawning streams in Southeast Alaska

S2. Photos of weir structure

Smolt Capture Pen

Upstream side of weir

Spring downstream weir

Fall upstream weir

