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Abstract21

Large-scale cancer genome studies suggest that tumors are driven by somatic copy number alterations22

(SCNAs) or single-nucleotide variants (SNVs). Due to the low-cost, the clinical use of genomics assays is23

biased towards targeted gene panels, which identify SNVs. There is a need for a comparably low-cost and24

simple assay for high-resolution SCNA profiling. Here we present our method, conliga, which infers SCNA25

profiles from a low-cost and simple assay.26
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27

Somatic copy number alterations (SCNAs) are common in cancer. On average, cancer samples see SCNAs in28

34% of the genome, with 17% of the genome amplified and 16% deleted [1, 2, 3]. Certain SCNAs, particularly29

amplifications of oncogenes and deletions of tumor suppressor genes, have been found to be major drivers in30

tumor development, associated with prognosis and response to therapy [1]. SCNA burden varies considerably31

between cancer types [3]. For example, oesophageal adenocarcinoma (OAC) has relatively high levels of SCNAs32

[4, 5, 6, 7], and generally develops from Barrett’s oesophagus. Patients with OAC tend to be diagnosed at a late33

stage, when spread has occurred to lymph nodes and distant organs. This makes treatment more difficult and34

leads to poor prognosis [8]. Although most patients with Barrett’s do not progress, early stage disease (high35

grade displasia or intramucosal adenocarcinoma) can be successfully treated, usually obviating the need for36

surgery. There is a critical need to develop technologies that can detect early disease and distinguish between37

patients at low versus high risk for progression. Since most mutations in OAC driver genes are already present in38

pre-malignent disease [9], but an increased SCNA load distinguishes OAC [10, 11, 12], low-cost SCNA profiling39

would be a valuable research and clinical tool.40

SCNAs have been identified using a number of methods, including comparative genomic hybridisation (CGH)41

[13], array-based CGH [14], single nucleotide polymorphism (SNP) arrays [15], and whole-genome sequencing42

(WGS) [16]. Recently, low-coverage (LC) WGS has gained popularity due to its reduced cost and strong43

performance [17]. However, while LC WGS reduces the cost of sequencing, standard WGS library preparation44

is required with its associated fixed expense and time needed to produce each sample. A technically simple,45

fast, easily automated, high-resolution and inexpensive alternative method for SCNA detection, with clinical46

potential, would be extremely valuable.47

Recent studies have shown the genome can be amplified at multiple (>10,000) genomic loci with the use of a48

single non-specific primer pair, using the FAST-SeqS method [18, 19]. With this approach, two polymerase chain49

reaction (PCR) rounds replace the complicated and expensive library preparation steps associated with WGS.50

The amplified regions are sufficiently short such that the assay can be performed on cell-free DNA as well as51

DNA extracted from tissue biopsies. The resulting amplicons can be sequenced, with samples multiplexed on the52

same sequencing lane. With this method, we maintain a similar sequencing depth to 30-50X high-coverage (HC)53

WGS while sequencing only specific loci. This is in contrast to LC WGS which samples the whole genome but54

at reduced sequencing depth (Supplementary Fig. 1). The cost involved in sample preparation and sequencing55

combined is approximately £14 per sample compared with approximately £52-72 for LC WGS, depending on56

the library preparation kit used (Supplementary Note 1). The sample preparation can be performed in less57

than an hour with minimal hands-on time, compared to approximately 3 hours or greater for LC WGS.58

Until now, the use of FAST-SeqS data has been limited to the detection of whole chromosome gains [18] and59

entire chromosome arm gains and losses [19, 20]. This means that chromosome segment (focal) alterations are60

not detected, or perhaps falsely considered as whole chromosome or chromosome arm alterations. Moreover, in61
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these methods SCNAs are not quantified and regions are simply classified as amplified, deleted or normal.62

Here we present a method (and associated tool: ‘conliga’) that uses a fully probabilistic approach to infer63

relative copy number (RCN) alterations at each locus from FAST-SeqS data. conliga provides a RCN profile64

per sample and therefore enables this low-cost sequencing approach to be used as a SCNA assay.65

Based on observations of raw data (Supplementary Note 2, Supplementary Fig. 1), we created a probabilistic66

model (Methods, Supplementary Note 3). The model takes account of the observed bias in loci counts, which67

predominantly results from unequal PCR efficiencies between loci. Since neighboring loci are likely to share the68

same copy number, we use a hidden Markov model (HMM) to model the spatial dependence between loci. This69

allows loci with high counts to share statistical strength with neighboring loci, enabling us to infer contiguous70

regions of copy number more accurately. Moreover, we use a Bayesian nonparametric approach (sticky HDP-71

HMM) [21] to address the issue of the unknown number of copy number levels present in a given sample a72

priori (Methods). We use Markov Chain Monte Carlo (MCMC) methods to infer the RCN of each locus, plus73

all other latent variables in the model (Methods, Supplementary Table 1, Supplementary Notes 4, 5 and 6).74

This enables us to provide the uncertainty of the RCN estimates, summarized by credible intervals, in conliga’s75

standard output.76

To test our method, we analysed 11 oesophageal adenocarcinoma tumors (Methods, Supplementary Tables77

2 and 3), which had been sequenced using HC WGS (>50X) and FAST-SeqS. In addition, we downsampled78

the WGS data of each sample to nine million reads to simulate typical LC WGS (∼ 0.1X coverage) samples79

(Methods). We compared the copy number calls derived from ASCAT [22] (applied to HC WGS data) with the80

RCN calls from QDNAseq [17] (LC WGS data) and conliga (FAST-SeqS data). conliga and QDNAseq achieved81

a median Pearson correlation coefficient with ASCAT of 0.95 and 0.98 respectively (Methods, Supplementary82

Table 4).83

In figure 1a-d we demonstrate that similar RCN profiles are obtained with the three methods for an example84

sample (OAC2) and that high-resolution SCNA information is maintained by sampling genomic loci using85

FAST-SeqS. Figure 1e and 1f show the performance of conliga and QDNAseq, both obtaining similar Pearson86

correlation coefficients with ASCAT’s RCN calls across all 11 OAC samples (conliga: 0.953, QDNAseq: 0.987)87

and residual distributions when compared to ASCAT (Methods). It should be noted that by downsampling88

reads from the same WGS sample, this analysis is potentially biased in favor of QDNAseq’s results.89

From the literature [23, 12] we selected a set of 36 genes that have been observed to be recurrently amplified90

or deleted in OAC (Supplementary Table 5, Methods). We determined the weighted mean of the RCN calls91

for these genes for each sample via each method (Methods, Supplementary Tables 6 and 7). While FAST-92

SeqS/conliga would not be the assay of choice if only interested in a small gene panel, in Figure 1g we see93

that there are only two instances from 396 comparisons (36 genes x 11 samples) where a substantially different94

result would be achieved. Naturally if an SCNA is so narrow as to fall between two FAST-SeqS loci then it will95

not be detected in this way, but the detection of many highly-localized events demonstrates how informative96

FAST-SeqS/conliga can be. Even within this panel of 36, it is notable that some genes harbour FAST-SeqS97
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Figure 1: Comparison of conliga method with ASCAT and QDNAseq. (a) Total copy number profile determined
by ASCAT from HC WGS data for sample OAC2, showing all copy number segments. (b) Relative copy number
profile determined by QDNAseq from LC WGS data for sample OAC2, showing all 15 Kbp bins. (c) Total copy
number profile determined by ASCAT from HC WGS data for sample OAC2, showing ASCAT’s copy number
calls at the intersection of ASCAT’s called regions and FAST-SeqS loci. (d) Relative copy number profile
determined by conliga from FAST-SeqS data for sample OAC2, at the intersection of ASCAT’s called regions
and FAST-SeqS loci. (e) Comparison of log2 relative copy number calls from 11 samples between conliga and
ASCAT (top) and QDNAseq and ASCAT (bottom). All RCN calls at the intersection of ASCAT’s called
regions, QDNAseq 15Kb bins and FAST-SeqS loci in all 11 OAC samples are shown as points. (f) Distribution
of differences between ASCAT RCN calls and conliga RCN estimates for 11 OAC samples (top) and ASCAT
RCN calls and QDNAseq RCN estimates for 11 OAC samples (bottom). (g) Comparison of performance at gene
level resolution between ASCAT and conliga (top) and ASCAT and QDNAseq (bottom). The values represent
the weighted mean of RCN calls at each gene for each of the 11 OAC samples (Methods).

loci (Supplementary Tables 8 and 9), providing evidence of intra gene SCNAs in some cases, such as the focal98

deletions observed in FHIT, PARK2, and MACROD2 (Supplementary Fig. 2). Focal deletions such as these99

may be functionally relevant, potentially rendering tumor suppressor genes inactive.100

The purity of tumor samples obtained by dissection can vary widely [24], as can samples obtained non-101

invasively, e.g ctDNA from plasma [25]. As tumor purity reduces, the copy number signal to noise ratio decreases.102

To determine the performance of conliga and QDNAseq under different purity conditions, we generated samples103
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with varying purity by mixing sequencing reads from normal and OAC samples (Methods). FAST-SeqS samples104

were generated with two million reads and LC WGS samples were generated with nine million reads.105

Figure 2: Comparing the performance of SCNA detection in low tumor purity samples and determining the
limit of detection. (a) left column: relative copy number calls by conliga at different dilutions of sample OAC3,
compared to ASCAT relative copy number profile (top left), discrete copy number states are colored with a
gradient (light green to purple), highlighting regions with differing SCNAs. right column: relative copy number
calls by QDNAseq at different dilutions of sample OAC3, compared to ASCAT relative copy number profile (top
right). (b) The number of copy number states detected by conliga in each of eight OAC samples at differing
purity levels. The limit of detection is determined by the lowest purity level in which more than one copy
number state is detected.

Figure 2a shows the performance of both methods for sample OAC3. At 30% purity, both conliga and106

QDNAseq recapitulate the copy number profile as determined by ASCAT. At 5%, other than the focal amplifi-107

cation on chromosome 12, QDNAseq fails to detect sub chromosomal SCNAs, whereas conliga shows evidence108

of chromosome arm and sub-chromosomal arm changes. At 2% purity, conliga is able to distinguish some of the109

more prominent chromosomal arm SCNAs. The focal amplification on chromosome 12 is identified by conliga110

at 0.75% and 0.5% purity and not detected by QDNAseq below 1%. At 0.75%, 0.5% and 0% purity, it is hard111

to distinguish whole chromosome SCNAs from noise generated by segmentation in the QDNAseq profiles. This112
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highlights the advantage of conliga’s ability to assign loci to discrete states, meaning we can easily distinguish113

when SCNAs are and are not different between loci. Despite using 4.5 fold fewer reads, conliga appears to be114

more sensitive than QDNAseq.115

In Figure 2b, we show that conliga is able to detect SCNAs at 3% purity in all samples (eight), five at 2%116

and one at 0.5%. The limit of detection is dependent on the amplitude and lengths of SCNAs present in the117

sample. Long chromosomal arm amplifications can be detected at 2-3% purity, while some focal amplifications118

(particularly those occurring at loci with a bias towards obtaining a high number of counts) can be detected at119

<1% purity (e.g. chr12 in OAC3, Figure 2a). The limit of detection also depends on the technical variability120

of the protocol and the total number of reads per sample. Increasing the total number of reads beyond two121

million and reducing technical variability would further improve the limit of detection.122

These data demonstrate the potential clinical utility of FAST-SeqS coupled with conliga. Ciriello et al.123

identified that either somatic single nucleotide variants (SNVs) or SCNAs [3] can drive oncogenesis. Currently,124

there is a bias towards screening for SNVs using targeted gene panels [26] meaning SCNA-driven cancers may125

not be detected. To this end, we analyzed samples with pre-malignant disease (Barrett’s oesophagus) and were126

able to detect clinically relevant copy number alterations, such as evidence for focal gains of PRKCI, ERBB2127

and GATA6 and deletions of regions containing CDKN2A, PTPRD, SMAD4 and TP53 (Supplementary Fig.128

2). This suggests that there is potential for FAST-SeqS to be used alongside existing low-cost gene panels to129

detect SCNAs, in addition to SNVs, to screen and surveil patients for the development of cancer.130

In addition to use as a detection tool, inexpensive production of FAST-SeqS data allows for large cohorts of131

patients to be studied to find relationships between SCNA profiles and response to therapies, for example. With132

this in mind, we looked at the average SCNA profiles across small cohorts of patients with OAC, Gastric cancer133

and Barrett’s oesophagus (Supplementary Fig. 2, Methods) which highlighted amplifications of known oncogenes134

such as EGFR, MYC, GATA4, and MDM2, some with known drug targets, and deletions of tumor suppressor135

genes, e.g. FHIT, TP53, SMAD4 and RUNX1. Other potential uses include low-cost screening of samples136

in large-scale cancer genomes studies, such as ICGC or TCGA projects, prior to further genomic analyses.137

Furthermore, due to the low-cost and low-input DNA required, several spatially or temporally related samples138

can be analyzed for the purposes of determining how SCNAs accumulate in normal tissues and contribute to139

tumor evolution, in a similar fashion to previous studies on somatic mutations in the eyelid epidermis [27].140

Areas for future study could include determining an acceptable number of reads which balances the cost and141

limit of detection, finding ways to minimise the technical variability, and altering the number of reads obtained142

at specific loci to increase statistical power in regions of interest.143

We have shown that FAST-SeqS data can be used as a viable, inexpensive, and simple alternative to LCWGS144

for the purpose of SCNA detection and quantification. conliga provides accurate and high-resolution SCNA145

profiles across the genome and at regions of interest such as oncogenes and tumor suppressors. conliga (applied146

to FAST-SeqS data with two million reads per sample) is particularly useful in detecting and discriminating147

SCNAs in low purity samples and our results suggest it to be more sensitive than QDNAseq (using LC WGS,148
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nine million reads) for this purpose. We believe that conliga makes FAST-SeqS data a clinically valuable149

diagnostic assay to detect and monitor patients for the development of cancer, as well as a useful research tool,150

enabling inexpensive and fast SCNA profiling of cancer samples.151

Methods152

conliga: statistical model153

Statistical model for sample counts154

We model the sample counts, in L selected loci, by assuming that the count at locus l in chromosome arm r in155

sample j is distributed:156

yr,l,j ∼ Binomial(nj , θr,l,j) (1)

Here, nj is the total number of sequencing reads aligned to the L loci in sample j, θr,l,j represents the probability157

of observing an aligned read at locus l in chromosome arm r in sample j. We model θr,l,j as follows:158

θr,l,j ∼ Beta(sj ĉr,l,jmr,l, sj(1− ĉr,l,jmr,l)) (2)

Here, sj is the inverse dispersion variable for sample j where sj > 0, mr,l represents the probability of an aligned159

sequencing read originating from locus l in chromosome arm r in a control sample, where
∑
r

∑Lr

l=1mr,l = 1160

and ĉr,l,j is the relative copy number at locus l in chromosome arm r in sample j. The number of loci in each161

chromosome arm is denoted as Lr and so the total number of loci, L =
∑
r Lr.162

We can interpretm as defining the bias in observing aligned read counts from the FAST-SeqS protocol. This163

bias can be explained by unequal PCR efficiencies between loci in addition to biases in aligning reads uniquely164

to FAST-SeqS loci, among other factors. Note that:165

E [θr,l,j ] = ĉr,l,jmr,l (3)

We can be interpret this equation intuitively; the relative copy number scales the probability of reads to166

align to a locus. For example, if the relative copy number of a locus is 2 we expect the proportion of reads at167

the locus to double. This fits with our observations shown in Supplementary Fig. 1.168

The inverse dispersion variable, sj , is sample specific and reflects our observations that the level of dispersion169

varies between samples. This variation in dispersion between samples might be due to varying levels of DNA170

degradation and/or varying quantities of starting material between samples, among other factors. sj relates to171

the variance and the mean of θr,l,j in the following way:172

Var (θr,l,j) =
1

sj + 1

(
E [θr,l,j ]− E [θr,l,j ]

2
)

(4)
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The expected count, yr,l,j , in chromosome arm r at locus l in sample j is:173

E [yr,l,j | θr,l,j ] = µ = nj ĉr,l,jmr,l (5)

The variance of yr,l,j can be written as a quadratic function of µ with the coefficients being a function of nj174

and sj :175

Var (yr,l,j | θr,l,j) =
(
1 +

nj − 1

sj + 1

)
µ−

(
1

nj
+
nj − 1

sj + 1

)
µ2 (6)

Note that in the limit sj →∞, a Binomial noise model is recovered.176

Probabilistic generative model of loci counts for control samples177

We assume that the loci within a control sample, k, have equal copy numbers (diploid). This means that the178

RCN for each locus is 1. By setting ĉr,l,k = 1, we model the generative process of counts from a control sample179

as follows:180

sk | ψ ∼ Gamma(ψshape, ψscale)

mr,l | φ ∼ Beta(φc,r,l, φd,r,l)

θr,l,k | sk,mr,l ∼ Beta(skmr,l, sk(1−mr,l))

xr,l,k | θr,l,k, nk ∼ Binomial(nk, θr,l,k)

(7)

Here, Gamma(ψshape, ψscale) represents the prior distribution over the sample specific inverse dispersion pa-181

rameter, sk, and Beta(φc,r,l, φd,r,l) defines the prior distribution over mr,l.182

Linking FAST-SeqS loci using a hidden Markov model183

We assume that chromosome arms are independent. By that we mean, the RCN of the first locus in arm q184

is independent of the RCN of the last locus in arm p from the same chromosome (and all other chromosome185

arms). As such, we model each chromosome arm as an independent Markov chain for each sample j. We denote186

(note that for simplicity we have dropped the sample index j):187

• zr,l as the hidden state (or copy number state) of the Markov chain at locus l in chromosome arm r188

• π0 as the initial distribution of the first locus (l = 1), in chromosome r189

• πu as the transition distribution for hidden state, u190

• ĉu as the relative copy number associated with hidden state, u.191

The first locus of a chromosome arm (l = 1) is distributed:192
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zr,1 ∼ π0 (8)

For all other loci (l > 1):193

zr,l | zr,l−1 ∼ π(zr,l−1) (9)

The count, yr,l, at locus l in chromosome arm r is conditionally independent of the hidden states and194

observations of other loci:195

θr,l | ĉ, zr,l,mr,l, s ∼ Beta(sĉzr,lmr,l, s(1− ĉzr,lmr,l))

yr,l | θr,l, n ∼ Binomial(n, θr,l)
(10)

The joint density for Lr loci in chromosome arm r is:196

p(zr,1:Lr
, yr,1:Lr

, θr,1:Lr
) = p(yr,1 | zr,1, θr,1)p(θr,1 | zr,1)p(zr,1)

Lr∏
l=2

p(yr,l | zr,l, θr,l)p(θr,l | zr,l)p(zr,l | zr,l−1)

= π0
zr,1p(yr,1 | zr,1, θr,1)p(θr,1 | zr,1)
Lr∏
l=2

πzr,l−1,zr,lp(yr,l | zr,l, θr,l)p(θr,l | zr,l)
(11)

where, zr,1:Lr denotes the sequence {zr,1, . . . , zr,Lr}, yr,1:Lr denotes {yr,1, . . . , yr,Lr}, and θr,1:Lr denotes {θr,1, . . . , θr,Lr}.197

The joint density for all L loci in the genome is given by:198

p(z,y,θ) =
∏
r

p(zr,1:Lr , yr,1:Lr , θr,1:Lr ) (12)

Probabilistic generative model of a sample’s relative copy number profile199

The number of copy number states present in a sample is unknown a priori. In samples that have equal copies200

of each locus, only one copy number state is present. Conversely, it is possible (although unlikely) that each201

locus has its own unique copy number, meaning that there could be up to L copy number states in a sample.202

Additionally, we expect neighboring loci to share the same copy number given their genomic distance from203

each other (Supplementary Fig. 1). To address these two features of the data, we used the sticky hierarchical204

Dirichlet process hidden Markov model (sticky HDP-HMM) [21] as a framework to model the generative process205

of a sample’s relative copy number profile. By doing so, we adequately model the spatial persistence of copy206

number states and allow for countably infinite numbers of states within a sample. The generative model is as207

follows:208
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β | γ ∼ GEM(γ)

π0 | α, β ∼ DP (α, β)

πu | α, κ, β ∼ DP
(
α+ κ,

αβ + κδu
α+ κ

)
ĉu | H,λ ∼ H(λ)

zr,1 | π0 ∼ π0

zr,l | {πu}∞u=1, zr,l−1 ∼ πzr,l−1
, for l > 1

s̃ | ω ∼ Gamma(ωshape, ωscale)

θ̃r,l | {ĉu}∞u=1, zr,l, m̂r,l, s̃ ∼ Beta(s̃ĉzr,lm̂r,l, s̃(1− ĉzr,lm̂r,l))

yr,l | θ̃r,l, ñ, ∼ Binomial(ñ, θ̃r,l)

(13)

Note that we use ñ, s̃, θ̃r,l to distinguish these variables from those in the probabilistic model of control counts209

(equation 7) and denote them as specific to the sample with copy number profile. Here, GEM denotes the210

stick-breaking construction of the Dirichlet Process as described in Fox et al. [21]. γ is a hyperparameter of211

the sticky HDP-HMM and represents our prior on the number of copy number states in the sample; the greater212

the value of γ, the greater number of copy number states we expect in the sample. Each row of the transition213

matrix, πu, is drawn from a Dirichlet Process and depends on β, α and κ. It can be shown that:214

E [πu,v | α, β, κ] =
αβv + κδu,v

α+ κ
(14)

where δu,v represents the discrete Kronecker delta function. If we define ρ = κ
α+κ (as in Fox et al. [21]) and by215

noting that α = (1− ρ)(α+ κ), we obtain:216

E [πu,v | β, ρ] = (1− ρ)βv + ρδu,v (15)

As such, we see that ρ defines how much weight is placed on self-transition within a copy number state.217

The vector, β, itself drawn from a Dirichlet Process, represents the global transition distribution and holds218

information about the proportion of loci expected in each copy number state.219

The variance of the transition probability from copy number state u to v is given by:220

Var(πu,v | α, β, κ) =
E [πu,v | α, β, κ] (1− E [πu,v | α, β, κ])

α+ κ+ 1
(16)

We see that α+ κ is inversely proportional to the variance of the state transition probabilities.221

H is the prior base distribution of the Dirichlet Process and represents a parametric distribution, which in222

this case is a Gamma distribution, with parameters λ. It can be viewed as our prior probability distribution on223

the relative copy number values of the hidden states.224
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Note that m̂r,l refers to the maximum a posteriori (MAP) value of mr,l and is such assumed to be a known225

quantity in equation 13. For simplicity, the hyperparameters (α, κ, γ, λ, ω and n) are shown as fixed quantities226

in the model. In practice, γ, λ, ω and n are treated as fixed, while the model is parameterized in terms of ρ and227

(α+κ), with a Beta prior placed on ρ and a Gamma prior placed on (α+κ) as in Fox et al. [21]. See the section228

on inference for further details of prior distributions used and Supplementary Note 3 for further discussion on229

the model.230

Inference231

Inference of loci count proportion bias (m)232

Given a set of K control samples, and their loci counts, xk, we used our model defined in equation 7 and233

Markov Chain Monte Carlo (MCMC) methods to infer the latent variables m and s (the vector of sample234

specific inverse dispersion parameters). A Metropolis-Hastings MCMC algorithm was used to obtain a sample235

of the posterior probability of mr,l for all r and l, and sk, for each sample k. Full details of the algorithms are236

provided in Supplementary Notes 4 and 5. Count data for samples analyzed in this study, processed by the237

pipeline described, are provided in Supplementary Table 10.238

For each sequencing experiment, a suitable set of controls samples were used (see Supplementary Table 11239

for the list of samples used in each experiment). As described in equation 7, control samples were assumed240

to have a relative copy number of one at each locus. In all experiments described in this paper, we used the241

following values for the hyperparameters:242

• ψshape = 1.5, ψscale = 106; where ψshape and ψscale define the shape and scale of the Gamma prior243

distribution on sk, respectively.244

• φc,r,l = 1 and φd,r,l = 1 for all r and l; i.e. we used a flat Beta(1, 1) prior for all mr,l245

In each sequencing experiment, 20,000 iterations of the MCMC were run and the first 5,000 iterations were246

discarded (burn-in). Maximum a posteriori (MAP) estimates ofm (denoted as m̂) were obtained by determining247

the mode of the sampled posterior densities for each locus using the KernSmooth R package [28]. Note that the248

MAP estimates are unlikely to sum to 1 exactly, and as such we enforced this by setting m̂r,l =
m̂r,l∑

r

∑Lr
l m̂r,l

.249

Inference of relative copy number profile250

Given m̂ and the loci counts (y) for a sample with unknown copy number profile, we used the generative model251

defined in equation 13 and MCMC methods (based on algorithm 3 in Fox et al. [21]) to infer the latent variables252

in our model. MCMC methods were used to obtain a sample of the posterior probability of the hidden state of253

each locus (zr,l for all r and l), the relative copy number of each hidden state (ĉu), the sample specific inverse254

dispersion (s̃), along with other latent variables in our generative model. Full details of the MCMC algorithms255

can be found in Supplementary Notes 4 and 6. In all experiments described in this paper, we used the following256

values for the hyperparameters:257
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• γ = 1258

• Gamma(2000, 10) prior distribution (defined by shape and scale) was placed on (α+ κ)259

• Beta(100000, 100) prior was placed on ρ260

• Gamma(3, 1) prior distribution (defined by shape and scale) was placed on the relative copy number value261

of the hidden states; the shape and scale parameters are defined by λ in equation 13262

• ωshape = 1.5, ωscale = 106; where ωshape and ωscale define the shape and scale of the Gamma prior263

distribution on s̃, respectively264

The output of the MCMC was summarized in two main ways, 1) by marginalizing out the copy number265

state information and computing the MAP estimate (using KernSmooth R package [28]) and credible interval of266

the relative copy number of each locus, 2) by making use of the copy number state assignments in the following267

way:268

1. we determined the MAP number of states observed in the MCMC chain (after burn-in). This was achieved269

by calculating the number of populated states in each iteration of the MCMC, and then choosing the most270

frequently observed number of populated states. Note that a state was considered populated in an iteration271

of the MCMC if at least one locus was assigned to it.272

2. we filtered the iterations of the MCMC (after burn-in), choosing only those iterations that had the number273

of populated states equal to the MAP number of states.274

3. we used the Stephens algorithm (algorithm 2 in the paper) [29] along with the Hungarian (Munkres)275

algorithm [30] to relabel the states, to resolve the label switching problem inherent in MCMC methods.276

4. we calculated the MAP estimate and credible intervals for the relative copy number values of each relabeled277

state.278

5. we assigned each locus to a relabeled state, choosing the relabeled state it was most frequently assigned279

to in the filtered iterations of the MCMC chain.280

For the results presented in Figure 2, summarization method 2 was used. For all other results presented281

in the paper, summarization method 1 was used. For the oesophageal cancer, gastric cancer and Barrett’s282

oesophagus samples, 50,000 iterations of the MCMC were run and the chain was thinned such that every 5th283

iteration of the MCMC was output to file. Additionally, the first 20,000 iterations of the MCMC were discarded284

(burn-in), to ensure the Markov chain had reached its equilibrium distribution. For the in silico diluted samples,285

presented in Figure 2, 30,000 iterations were run, with the chain thinned so that every 5th sample was output286

to file and the first 5,000 iterations of the MCMC were discarded.287
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Sample preparation and sequencing of samples288

Sample preparation and generation of FAST-SeqS data289

Sequencing libraries were prepared using two rounds of PCR, using a similar protocol to previously published290

methods [18, 19]. Each extracted DNA sample underwent a 50µl first round PCR reaction with 10µl 5x Phusion291

HF Buffer (ThermoFisher Scientific), 1µl 10mm dNTP (ThermoFisher Scientific), 5 µl of both the forward and292

reverse primers (0.5 µm) each (Sigma-Aldrich), 0.5 µl Phusion Hot Start II DNA Polymerase 2U/µl, 5-10 µl DNA293

template depending on the extracted concentration, and RNAse free water to make the total reaction volume.294

The cycling conditions for the L1PA7 primers were 98 ◦C for 120 s followed 2 cycles of 98 ◦C for 10 s, 57 ◦C for295

120 s, and 72 ◦C for 120 s. The second round was also carried out as a 50µl sample reaction using 20µl taken from296

the first round. The rest of the reaction constituents were the same as the first round reaction with the exception297

of primers (Supplementary Table 12), which contained a unique index for each sample. The cycling conditions298

for the second round reaction were 98 ◦C for 120 s followed by 13 cycles of 98 ◦C for 10 s, 65 ◦C for 15 s, and 72 ◦C299

for 15 s for all the primers. After the second round, samples underwent quantification using the 2200 TapeStation300

(Agilent), Agilent 2100 Bioanalyser (Agilent) and Kapa quantification (KapaBiosystems) prior to submission301

for sequencing. The samples were then pooled in equimolar concentrations and gel extracted according to302

manufacturer’s instructions (Qiaquick gel extraction kit, Qiagen). Finally the samples were submitted for303

sequencing on a MiSeq (Illumina) platform. All samples were run with 20% PhiX to increase complexity for304

sequencing. Sequencing was performed as 150bp single end. Samples were run with at least three normal305

controls prepared at the same time and sequenced on the same platform.306

Sample preparation and generation of high-coverage WGS data307

WGS library preparation and sequencing was performed as previously described by Secrier et al. [6].308

In silico generation of low-coverage WGS data309

For our purposes, LCWGS data was defined as nine million single-end 50 base pair reads per sample because this310

was the type of data analyzed in Scheinin et al. [17]. Samples are typically multiplexed together and sequenced311

on a single Illumina sequencing lane. After processing and alignment of the reads, we expect approximately312

0.1X coverage of the genome (as per analysis described in Scheinin et al.). We obtained LC WGS data by313

down-sampling reads from HC WGS BAM files in the following way:314

1. we selected a subset of the alignments, containing only reads sequenced on a single lane (chosen to be the315

lane from the first read in the BAM file), and trimmed the reads and Phred scores to the first 50 base316

pairs using a custom Bash script.317

2. The resulting alignments were filtered (using samtools [31] version 0.1.18), excluding those that were318

secondary alignments (-F 256) and including only those that were first in a pair (-f 64) and output to a319

new BAM file.320
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3. This BAM file was down-sampled to 9 million reads/alignments using the DownsampleSam command from321

Picard tools (http://broadinstitute.github.io/picard, version 2.9.1) using the "Chained" strategy.322

4. The resulting BAM file was converted to FASTQ by SamToFastq (Picard tools).323

5. The FASTQ file was aligned to GRCh38 (GenBank accession: GCA_000001405.15, no alt analysis set)324

using BWA-backtrack (bwa samse and bwa aln, version 0.7.15-r1140) [32], which is more suitable for reads325

below 70 base pairs in length.326

6. In the resulting BAM file, we removed PCR duplicates and removed alignments with mapping quality327

below 37 as per the analysis undertaken by Scheinin et al. [17] using samtools (version 0.1.18).328

We performed these steps for 11 oesophageal samples and their matched normal samples along with an329

additional four normal samples obtained from other patients (Supplementary Table 1). This resulted in greater330

than seven million primary alignments per sample.331

In silico generation of FAST-SeqS dilution data332

We performed an in silico dilution of FAST-SeqS data by mixing sequencing reads from control samples with333

reads from OAC samples. Since the number of reads in the matched controls were insufficient to create samples334

with two million reads, we created a pool of control reads (in silico) which were used to dilute the OAC samples.335

This was done by sub-sampling two million reads from 12 control samples (which were prepared and sequenced in336

the same batch as the OAC samples). The total number of reads from these 12 control samples was 14,405,596.337

To obtain a pool of 2 million reads, we used the ‘sample’ command from seqtk (urlhttps://github.com/lh3/seqtk,338

version: 1.2-r101) to sample a proportion (2/14.405596) of each control sample’s reads and merged these together339

into a single FASTQ file. The reads that were sub-sampled were removed from the control samples (using a340

custom python script) to avoid using the same reads to fit m.341

We mixed the pool of control reads with the OAC samples in varying proportions to achieve a desired diluted342

tumor purity. The OAC samples did not have a tumor purity of 100%, instead they were themselves a mixture343

of tumor and normal DNA. The purity of these samples were determined by ASCAT-NGS (version 2.1) [22].344

Based on ASCAT’s purity value, we calculated the number of reads required from the OAC sample to achieve345

a desired dilution and total number of reads. This was calculated as follows:346

required tumor reads = round
(
desired purity proportion · required total reads

ASCAT inferred purity proportion

)
(17)

Hence, the number of control reads required were:347

required control reads = required total reads− required tumor reads (18)

We produced in silico dilution FASTQ files in the following way:348
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1. we used the ‘sample’ command from seqtk to sample the required number of tumor reads from the OAC349

FAST-SeqS FASTQ file350

2. we used the ‘sample’ command from seqtk to sample the required number of control reads from the pooled351

control reads FASTQ file352

3. We merged the sampled tumor and control reads into a single FASTQ file353

We performed these steps for each OAC sample to create diluted samples with two million total reads and354

the following purity values: 0.3, 0.25, 0.2, 0.15, 0.1, 0.08, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.0075, 0.005, 0.0025355

and 0. Here purity is defined as the proportion of tumor reads in the sample. Of the 11 OAC samples, 8356

(OAC1-7 and 9, Supplementary Table 1) were of sufficient initial tumor purity to feasibly create all the desired357

dilution levels.358

In silico generation of LC WGS dilution data359

We produced in silico diluted LC WGS tumor samples by mixing reads from tumor and matched normal LC360

WGS BAM files (previously downsampled and filtered as described above). We first calculated the number361

of reads in the tumor BAM and normal BAM files using samtools (samtools view -F 256 -c [BAM file]).362

Next, we calculated the number of reads required using equations 17 and 18. Using the DownsampleSAM363

command (Picard tools) and the ‘HighAccuracy’ strategy, we sampled the corresponding desired proportion of364

reads from the tumor BAM file and normal BAM file. We used samtools to merge the resulting sampled tumor365

BAM file with the normal BAM file into a single file representing the diluted sample. We aimed to obtain seven366

million filtered primary alignments per diluted sample (as this is what we expect from nine million reads after367

alignment and filtering) and dilution levels which matched the diluted FAST-SeqS samples. This was performed368

for 8 OAC samples and their matched normals (OAC1-7 and 9).369

Processing of FAST-SeqS sequencing data to counts370

Each sequencing run of the Illumina MiSeq platform produced a BCL file which was converted to FASTQ format371

(using Illumina’s bcl2fastq tool). Sequencing reads that failed the Illumina chastity filter were removed. The372

FASTQ file was demultiplexed into separate FASTQ files corresponding to each sample using the demuxFQ tool373

(https://genomicsequencing.cruk.cam.ac.uk/glsstatic/lablink/downloads/DemultiplexingGuide.html)374

with the default settings. The sample barcodes are provided in Supplementary Table 12. Each sample’s FASTQ375

file was then processed through a custom pipeline which we describe below.376

Identifying forward primer position377

For each read in the FASTQ file, the position of the forward primer sequence was detected by searching for the378

sequence with the minimum hamming distance to the forward primer sequence using a sliding window. Reads379

with a minimum hamming distance greater than 5 were discarded.380
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Read trimming381

The portion of the reads before and including the forward primer sequence were trimmed. The ends of the382

reads were also trimmed such that the length of the reads used for downstream analyses were 100 base pairs383

minus the forward primer length. Any reads shorter than 100 base pairs minus the forward primer length after384

trimming were discarded.385

Quality control386

After trimming, reads were discarded if they contained at least one base with a Phred quality score less than387

20 and/or contained one or more ambiguous base calls (N).388

Obtaining unique sequences and counts per unique sequence389

To avoid aligning the same sequence multiple times, only unique read sequences were kept. For each unique390

read, the number of identical fragments were recorded.391

Alignment of unique sequences392

Unique raw read sequences were aligned with Bowtie 1.0.0 [33] (using the option: -r). Three mismatches were393

permitted (option: -v3) and reads aligning to multiple locations were discarded (option: -m1). The reads were394

aligned to GRCh38 (GenBank accession: GCA_000001405.15, no alt analysis set).395

Counts and alignments combined396

Each sample’s unique read alignments and their corresponding unique read counts were combined into a single397

file consisting of a matrix of counts. The rows corresponded to genomic positions (the union of genomic positions398

from the alignments in all samples) and columns corresponded to samples. The first three columns of the matrix399

corresponded to the chromosome, position and strand for the locus, respectively. The matrix of counts used in400

this analysis can be found in the conliga R package and in Supplementary Table 10.401

Selecting loci402

Rows of the count matrix corresponding to genomic loci within chromosomes X, Y and within unplaced or403

unresolved contigs were discarded. For each batch of samples, genomic loci obtaining a zero count in any one of404

a set of control samples were also discarded. Depending on the sequencing batch we analyzed and the controls405

chosen to filter loci (Supplementary Table 11), this resulted in approximately 10,000 - 12,000 genomic loci across406

chromosomes 1 to 22.407
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Analysis of copy number from FAST-SeqS data408

conliga (version 0.1.0) was used to analyze all FAST-SeqS samples in this study (Supplementary Table 1) using409

R (version 3.2.3) [34] and RcppAramdillo (version 0.6.500.4.0) [35]. Of the 15 OAC samples sequenced, four410

were excluded due to their obtaining fewer than 350,000 reads. Two control samples were excluded due to their411

inferred RCN profiles having two main hidden states incompatible with their supposed ‘normal’ status. The412

values for the priors used and MCMC settings are stated in the inference sections above. The samples used as413

a basis to filter loci and fit m̂ for each experiment are listed in Supplementary Table 9.414

Analysis of copy number from high coverage WGS data415

High coverage WGS samples were processed and aligned using BWA-MEM [36] (version 0.5.9) and total copy416

number (TCN) profiles and normal contamination estimates were provided by ASCAT-NGS (version 2.1) using417

a pipeline previously described by Secrier et al. [6]. The only exception to this was that the reads were aligned418

to GRCh38 (GenBank accession: GCA_000001405.15, no alt analysis set) rather than GRCh37.419

Analysis of copy number from low-coverage WGS data420

QDNAseq (version 1.6.1) was used to obtain relative copy number calls for all LC WGS data. The bin size421

used was 15Kb as per the analysis performed in Scheinin et al. [17] for 0.1X LC WGS. The bins were created422

using GRCh38 (BSgenome.Hsapiens.NCBI.GRCh38) and a mappability file (bigWig format) for 50-mers was423

created for GRCh38 using the GEM library (GEM-binaries-Linux-x86_64-core_i3-20130406-045632) https:424

//sourceforge.net/projects/gemlibrary/. 15 normal LC WGS samples (Supplementary Table 1), were425

used to run the applyFilters and iterateResiduals functions. 11 of these 15 samples correspond to the matched426

normals of the oesophageal samples (Supplementary Table 1). We did not run the functions normalizeBins and427

normalizeSegmentedBins which scale the read counts by the median value. This was not necessary and would428

make the comparison between ASCAT, QDNAseq and conliga results more difficult to interpret.429

Comparison of copy number between methods430

ASCAT outputs total copy number (TCN) in contiguous genomic regions, QDNAseq outputs relative copy

number (RCN) in 15 Kb bins across the genome and conliga outputs RCN values at specific FAST-SeqS loci.

To make a fair comparison between the tools, it was necessary to convert ASCAT’s TCN calls to RCN as follows:

RCNi =
(1− normal) · TCNi + normal · 2

mean TCN
(19)

Here, normal represents the estimated normal contamination value provided by ASCAT and i represents a

contiguous genomic region or a discrete locus or fragment. In the case of a contiguous region, the mean TCN
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(or ploidy) was calculated as follows:

mean TCN =

∑
i (TCNi · lengthi)∑

i lengthi
(20)

and in the case of discrete loci or fragments:

mean TCN =

∑
i TCNi
L

(21)

where L represents the total number of loci or fragments considered.431

In Figure 1e and f, we compared the RCN values at the intersection of genomic loci across ASCAT, QDNAseq432

and conliga. Since this intersection represented a subset of each method’s genomic loci, the RCN values were433

rescaled considering only this subset. QDNAseq and conliga RCN values were rescaled by the sample’s mean434

RCN of the considered loci. ASCAT’s RCN was calculated using equations 19 and 21.435

In figure 1g, we compared RCN values in genes of interest. Recurrently amplified and deleted genes were

obtained from Dulak et al. [23] and Ross-innes et al. [12]. Here, ASCAT’s RCN values were calculated using

equations 19 and 20 using all called regions for each sample. For each gene in each sample, the weighted mean

of the relative copy number (weighted by the length of the overlapping called region) was computed for ASCAT

and QDNAseq. This was calculated as follows:

RCNgene =

∑
iRCNi · li∑

i li
(22)

where li represents the length of the overlapping portion of the called region with the gene.436

For conliga, if loci occurred within the gene, the mean of the RCN values within the gene was used, otherwise437

the loci directly upstream and downstream, i.e. either side, of the gene were used and a mean value was taken.438

See Supplementary Table 4 for the full list of genes used in the analysis.439

Computing Pearson correlation440

For each sample, the Pearson correlation coefficient between ASCAT and conliga was calculated. We used441

ASCAT’s TCN and conliga RCN values at the intersection of genomic loci between ASCAT and conliga. The442

median value of the sample’s correlation coefficients was reported (all sample correlation coefficients can be443

found in Supplementary Table 3).444

For each sample, the Pearson correlation coefficient between ASCAT and QDNAseq was calculated. We445

used the intersection of QDNAseq bins with ASCAT copy number regions, using the length-weighted mean of446

ASCAT’s overlapping TCN values.447

When calculating the Pearson correlation for all calls across all samples, we used the re-scaled RCN value at448

the intersecting genomic loci between ASCAT, QDNAseq and conliga, using the rescaled RCN values described449

above for Figures 1e and f.450
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Code availability451

conliga source code is freely available under an open-source GPLv2 license at https://github.com/samabs/452

conliga and as Supplementary Software.453

Data availability454

The WGS and FAST-SeqS data can be found at the European Genome-phenome Archive (EGA) under accession455

EGAD00001004289. The copy number results obtained from ASCAT, QDNAseq and conliga can be found456

https://osf.io/bhx6f/?view_only=ed25e2fb521d46239e5274c032350f0b457
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Figure legends612

Figure 1613

Comparison of conliga method with ASCAT and QDNAseq. (a) Total copy number profile determined by614

ASCAT from HC WGS data for sample OAC2, showing all copy number segments. (b) Relative copy number615

profile determined by QDNAseq from LC WGS data for sample OAC2, showing all 15 Kbp bins. (c) Total616

copy number profile determined by ASCAT from HC WGS data for sample OAC2, showing ASCAT’s copy617

number calls at the intersection of ASCAT’s called regions and FAST-SeqS loci. (d) Relative copy number618

profile determined by conliga from FAST-SeqS data for sample OAC2, at the intersection of ASCAT’s called619

regions and FAST-SeqS loci. (e) Comparison of log2 relative copy number calls from 11 samples between conliga620

and ASCAT (top) and QDNAseq and ASCAT (bottom). All RCN calls at the intersection of ASCAT’s called621

regions, QDNAseq 15Kb bins and FAST-SeqS loci in all 11 OAC samples are shown as points. (f) Distribution622

of differences between ASCAT RCN calls and conliga RCN estimates for 11 OAC samples (top) and ASCAT623

RCN calls and QDNAseq RCN estimates for 11 OAC samples (bottom). (g) Comparison of performance at gene624

level resolution between ASCAT and conliga (top) and ASCAT and QDNAseq (bottom). The values represent625

the weighted mean of RCN calls at each gene for each of the 11 OAC samples (Methods).626

Figure 2627

Comparing the performance of SCNA detection in low tumor purity samples and determining the limit of628

detection. (a) left column: relative copy number calls by conliga at different dilutions of sample OAC3, compared629

to ASCAT relative copy number profile (top left), discrete copy number states are colored with a gradient (light630

green to purple), highlighting regions with differing SCNAs. right column: relative copy number calls by631

QDNAseq at different dilutions of sample OAC3, compared to ASCAT relative copy number profile (top right).632

(b) The number of copy number states detected by conliga in each of eight OAC samples at differing purity633

levels. The limit of detection is determined by the lowest purity level in which more than one copy number634

state is detected.635

Supplementary Figure 1636

Aspects of FAST-SeqS data. (a) a graphical representation of the different approaches to sequencing for the637

purposes of SCNA profiling; high-coverage WGS (top), low-coverage WGS (middle), FAST-SeqS (bottom). (b)638
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The proportion of reads obtained at each locus in chr1-22 for control sample (NORM1). (c) Histogram of the639

proportion of reads obtained at each locus across in chr1-22 for control sample NORM1. (d) log mean vs log640

variance for each locus in control samples. (e) A male control sample (NORM2) counts plotted against a female641

control sample (NORM1) counts, showing a relative doubling of count proportions in chrX for the female control642

sample vs male and absence of counts from chrY in the female sample. (f) Histogram of distances between loci643

with a mean distance of approximately 200Kbp between loci.644

Supplementary Figure 2645

Copy number profile summary of patient cohorts used in this study. (a) Mean relative copy number profile for646

11 oesophageal adenocarcinoma samples. (b) Mean relative copy number profile for 8 gastric adenocarcinoma647

samples. (c) Mean relative copy number profile for 16 Barrett’s oesophagus samples, with varying levels of648

dysplasia. (d)-(f) Examples of relative copy number profiles for various chromosomes from different samples for649

OAC, GAC and BO respectively. Black points represent the maximum a posteriori (MAP) relative copy number650

for each locus, the colored points represent the proportion of reads expected in a control sample (log), with651

red representing a high proportion and blue representing a low proportion, grey lines represent 90% credible652

intervals. (g) Zoomed-in regions of chromosomes 3, 6 and 20 showing intra-gene deletion of FHIT, PARK2 and653

MACROD2. conliga results (top) with comparison to ASCAT (bottom).654

Supplementary Figures655
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Supplementary Figure 1
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Supplementary Figure 2
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