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Abstract  1 

Although many molecular targets for cancer therapy have been discovered, they 2 

often show poor druggability, which is a major obstacle to develop targeted drugs. As 3 

an alternative route to drug discovery, we adopted an in silico drug repositioning (in 4 

silico DR) approach based on large-scale gene expression signatures, with the goal of 5 

identifying inhibitors of lung cancer metastasis. Our analysis of clinoco-genomic data 6 

identified GALNT14, an enzyme involved in O-linked N-acetyl galactosamine 7 

glycosylation, as a putative driver of lung cancer metastasis leading to poor survival. To 8 

overcome the poor druggability of GALNT14, we leveraged Connectivity Map 9 

approach, an in silico screening for drugs that are likely to revert the metastatic 10 

expression patterns. It leads to identification of bortezomib (BTZ) as a potent metastatic 11 

inhibitor, bypassing direct inhibition of poorly druggable target, GALNT14. The anti-12 

metastatic effect of BTZ was verified in vitro and in vivo. Notably, both BTZ treatment 13 

and GALNT14 knockdown attenuated TGFβ-mediated gene expression and suppressed 14 

TGFβ-dependent metastatic genes, suggesting that BTZ acts by modulating TGFβ 15 

signaling. Taken together, these results demonstrate that our in silico DR approach is a 16 

viable strategy to identify a candidate drug for undruggable targets, and to uncover its 17 

underlying mechanisms.  18 

 19 

Keywords: GALNT14, connectivity map, drug repositioning, bortezomib, TGFβ, 20 

metastasis, undruggable targets 21 
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Introduction   1 

In the context of personalized anti-cancer therapy based on targeting specific 2 

proteins with the goal of lowering cancer-related mortality (1), a great deal of effort has 3 

been devoted to identifying both molecular targets and accompanying drugs (2,3). 4 

However, the fraction of patients eligible for personalized anti-cancer therapy is very 5 

limited (4) due to the poor druggability of newly identified molecular targets, 6 

notwithstanding recent advances in strategies in drugging ‘undruggable’ proteins (5,6).  7 

An alternative approach to matching candidate drugs to poorly druggable 8 

cancer targets is in silico drug repositioning (in silico DR) (7,8). Due to the well-9 

characterized pharmacology and safety of approved drug libraries(9), this approach has 10 

the potential to reduce cost and attrition during the clinical phases of drug development. 11 

Several approaches to DR have been tested in the context of oncology (10) and a few of 12 

the resultant drugs, including celecoxib and thalidomide, have been approved by the 13 

FDA for repurposing as anti-cancer therapeutics (11). Along with recent advances in 14 

sequencing technologies, chemogenomics databases containing drug-induced gene 15 

expression profiles provide clues regarding potential treatments for personalized cancer 16 

targets, and can also suggest candidate drugs based on tailored gene signatures of 17 

cancers upon identification of molecular targets (12). The Connectivity Map (CMap), a 18 

collection of genome-wide expression profiles of cell lines treated with >20,000 19 

chemicals(13), has been used to identify candidate drugs for certain cancer types 20 

(14,15), (16). 21 

N-acetyl-galactosaminyltransferases (GalNAc-Ts or GALNTs) are key 22 

enzymes that initiate O-linked N-acetyl galactosamine (GalNAc) glycosylation. This 23 

process is an important step in the synthesis of Thomsen-nouvelle (Tn) antigens, which 24 
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are well-characterized tumor-associated molecules (17). In particular, GALNT14 has 1 

been examined in the context of apoptotic signaling (18,19); invasion and migration of 2 

breast (20,21), ovary (22), and lung (23) cancers; and multi-drug resistance of breast 3 

cancer cells (24). Moreover, GALNT14 expression is not only a prognostic marker in 4 

neuroblastoma (25) and lung cancer (23), but also a predictive marker for 5 

Apo2L/TRAIL-based cancer therapy (18), although a randomized phase II study based 6 

on the predictive marker of GALNT14 for dulanermin did not improve patient outcome 7 

(26).  8 

In this study, through transcriptome analysis of the TCGA dataset and in vitro 9 

and in vivo studies, we demonstrated that GALNT14 is strongly associated with lung 10 

cancer recurrence due to the high migration and invasion properties of tumor cells. 11 

Rather than attempting direct inhibition of the poorly druggable GALNT14 protein or 12 

downstream signaling, we leveraged large-scale drug-induced transcriptome data to 13 

identify candidate drug(s) likely to reverse GALNT14-dependent gene expression, i.e., 14 

drugs that led to transcriptomic changes similar to those induced by GALNT14 depletion. 15 

We successfully identified an anti-metastatic candidate drug that mimicked GALNT14 16 

depletion. The results demonstrate that this approach represents a viable strategy for 17 

discovering candidate drugs for many other undruggable targets. 18 

19 
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Materials and Methods 1 

Cell line establishment and Cell culture 2 

H460 cell line which was purchased from Korean cell line bank (KCLB) were 3 

maintained in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% 4 

fetal bovine serum (FBS), gentamicin (50 µg/ml) at 37°C in a humidified atmosphere of 5 

5% CO2 in the air. GALNT14 knockdown cell lines with shRNA were established as 6 

previously described (23). 7 

Reagents and antibodies 8 

The primary antibodies against cleavage caspase- 3 (#9664), cleavage caspase-9 (#9505) 9 

and pSmad2 (# 310S) were obtained from Cell Signaling Technology. Antibodies 10 

against β-Actin (sc-47778), PARP (sc-7150), p53(sc-126), p27 (sc-528), p21 (sc-397), 11 

CyclinD1(sc-718) and CyclinB1 (sc-245) were obtained from Santa Cruz 12 

Biotechnology Inc. and β-catenin (BD 610153) was purchased from BD Biosciences 13 

pharmigen. Bortezomib (S1013) and Carfilzomib (S2853) were purchased from 14 

selleckchem. 15 

RNA-sequencing and analysis 16 

Total RNA was isolated using the Trizol according to the manufacture instruction. For 17 

library construction, we used the TruSeq Stranded mRNA Library Prep Kit (Illumina, 18 

San Diego, CA). Briefly, the steps of strand-specific protocol are: first strand cDNA 19 

synthesis; second strand synthesized using dUTPs instead of dTTPs; end repair, A-20 

tailing, and adaptor ligation; PCR amplification. Then, each library was diluted to 8 21 

pM for 76 cycles of paired-read sequencing (2 X 75bp) on the Illumina NextSeq 500 per 22 

the manufacturer’s recommended protocol.  23 

TCGA data processing and analysis 24 
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TCGA lung adenocarcinoma (LUAD) cohort (n=576), containing mRNA gene 1 

expression and clinical data on 388 primary lung cancers, 128 lung cancers with 2 

recurrence, and 59 benign lung tissues were collected from the Broad GDAC Firehose 3 

(https://gdac.broadinstitute.org/). Total 494 patients with clinical information tracked 4 

for at least one month were used for survival analysis. For 20,531 genes, all patients 5 

were divided into high and low groups by the median expression of each gene and 6 

relapse-free survival analysis was performed according to the group difference. Hazard 7 

ratio and P value were calculated by Cox proportional hazards regression model and 8 

log-rank test respectively. With 58 patients who have gene expression profiles of 9 

normal benign tissues, differential expression in LUAD compared to matched normal 10 

samples were measured from the likelihood ratio test. RNA-seq profiles were 11 

normalized and processed using R package ‘limma’ and ‘DESeq2’ and survival analysis 12 

was conducted by R package ‘survival’.  13 

Metastasis and Tumorigenesis signatures  14 

From MSigDB manually curated gene sets (C2), we collected the 35 metastasis- and 15 

44 tumor-related gene sets that are annotated by ‘metastasis’ / ‘epithelial-mesenchymal 16 

transition’ and ‘cancer’/ ‘tumorigenesis’, respectively. We took only Up-regulated 17 

genes when both UP- or DOWN-regulated sets were available. Then, we selected 32 18 

and 23 genes as the metastatic and the tumorigenesis signature, respectively, by taking 19 

the consensus genes common to at least three or more gene sets. 20 

Anti-metastatic drug prediction using CMap dataset 21 

The updated CMap, or LINCS L1000(13), provides an extensive catalog of >1.2 million 22 

transcriptome signatures from 71 human cell lines in response to each of 20,413 small 23 

molecule treatments and are different from the original CMap based on the 24 
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microarray(27). This dataset contains multiple expression signatures even for the same 1 

drug and cell line depending on dose, sample time, and batch. Therefore, we developed 2 

our own DR method to handle such redundancy, which is distinct from the original 3 

CMap method based on rank-based Kolmogorov-Smirnov (KS) test. Differential gene 4 

expression matrix (level 5, replicate-collapsed z-score) and metadata were obtained 5 

from the Gene Expression Omnibus (acession id: GSE92742). Each column in the 6 

matrix represents an experiment consisting of chemical perturbation in a cell line, and 7 

each row represents a gene whose degree of differential expression was quantified in 8 

that experiment, respectively. After filtering out the experiments which consist of less 9 

than three replicates and low-quality (distil_cc_q75 < 0.2, and pct_self_rank_q25 > 5), 10 

the 100 most up- and down-regulated genes were selected as the expression signature of 11 

an experiment. Given a set of genes representing a specific phenotype, a series of gene 12 

set analysis toward gene signatures of all experiments was performed using Jaccard 13 

index. After calculating the similarities, multiple similarity scores of a compound are 14 

combined into a single score, drug-repositioning (DR) score. DR score is defined as the 15 

negative logarithm of the P-value of hypergeometric test that quantifies the degree of 16 

over-representation of experiments of a compound within the top 10% of similarity 17 

scores. 18 

GALNT14-TGFβ signature 19 

TGFβ downstream target genes (39 SMAD4 dependent genes and 65 SMAD4 20 

independent genes) were collected from the literature (28). Among the SMAD4 21 

dependent targets, a set of genes commonly down-regulated by both BTZ and shGAL 22 

(ATF3, ARNTL, COPA, NEDD9, LAMC2, RAB27B, and PCDH7) was defined as 23 

‘GALNT14–TGFβ signature’. To measure the average activity of the signature, KS 24 
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statistic was used to estimate the degree of up- or down-regulation of the seven genes in 1 

a sample’s gene expression profile. In TCGA LUAD cohort, the patients with activity in 2 

the top 10% (n=50) or lower 10% (n=50) were classified as ‘high’ or ‘low’ respectively. 3 

 4 

Statistical analysis 5 

The graphical data were presented as mean ± S.E.M. Statistical significance among the 6 

three groups and between groups was determined using one-way or two-way analysis of 7 

variance (ANOVA) following Turkey post-test and Student’s t-test respectively. 8 

Significance was assumed for p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). 9 

10 
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Results 1 

GALNT14 as a putative molecular target for lung cancer metastasis  2 

Identification of molecular targets in recurrent cancers is essential not only for 3 

predicting prognosis, but also for matching specific drug–target pairs if they are 4 

available. To identify potential molecular targets related to cancer recurrence, we 5 

assembled transcriptome data and clinical information from 516 lung cancer patients 6 

from the TCGA LUAD cohort (Fig. 1A). Concentrating on molecular targets relevant to 7 

recurrent lung cancer, we performed a series of relapse-free survival (RFS) analyses and 8 

differential expression analyses. Expression of seven genes (GALNT14, COL7A1, 9 

GPR115, C1QTNF6, KRT16, INHA, and TNFSF11) was significantly associated with 10 

cancer progression, recurrence (Fig. 1B), and overall survival (Fig. S1A), indicating that 11 

these genes are potentially valuable as predictors of poor prognosis. Notably, 12 

metastasis-related genes were significantly overrepresented in gene lists selected by 13 

both RFS (P = 2.3 × 10-6) and differential expression (P = 5.2 × 10-19) analysis, 14 

including two genes (e.g., TNFSF11 and INHA) among the seven aforementioned 15 

candidates. To further confirm the relevance of each gene to metastasis or tumorigenesis, 16 

we divided lung cancer patients into two groups (low or high) using the median 17 

expression of each gene as the cutoff. Both metastasis and tumor signatures were 18 

positively enriched in the high-expression groups of all seven genes (Fig. 1C), and the 19 

significant enrichment was observed for GALNT14 (Fig. 1D).  20 

GALNT14, which encodes a glycosyltransferase involved in O-glycosylation, 21 

has been implicated in both tumor malignancy (25) and metastasis (20,21,23). As 22 

expected, metastatic (Fig. 1E) and tumorigenic potentials (Fig. 1F) were markedly 23 

attenuated by loss of GALNT14, indicating that the gene is important for metastasis as 24 
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well as tumorigenesis. Further, metastatic lung cancer cells were more vulnerable to 1 

GALNT14 depletion than non-metastatic or other types of cancers in the Project 2 

Achilles dataset(29), a genome-scale RNAi screening data from for 501 cancer cell lines, 3 

including 126 cell lines originating from metastatic patients (Fig. 1G). Other candidate 4 

genes were less vulnerable in metastatic lung cancer (Fig. S1B). Consistent with this, 5 

GALNT14 expression shows a clearly negative correlation with both locoregional 6 

recurrence-free survival (LRFS) and distant metastasis-free survival (DMFS) (Fig. 1H) 7 

as well as overall survival (Fig. S1A) in the TCGA LUAD cohorts. In addition, normal 8 

lung expresses only a low level of GALNT14, and there is a large gap between normal 9 

and lung cancer tissue (Fig. S1C)(30). All these results suggested GALNT14 as a 10 

promising molecular target for lung cancer metastasis to improve patient survival. 11 

 12 

Computational repositioning of BTZ to reverse the GALNT14 expression signature  13 

Although GALNT14 may be a potential therapeutic target for metastatic lung cancer, 14 

GALNTs remain poorly druggable despite several attempts to find specific inhibitors 15 

(31,32). Notably in this regard, GALNT14-dependent metastatic potential is governed 16 

by induction of transcription factors (e.g. HOXB9 or SOX4) rather than by altered 17 

glycosylation (20,23). Therefore, rather than inhibiting GALNT14 directly, we leveraged 18 

the CMap dataset to virtually screen for drugs that mimic the effect of GALNT14 19 

depletion at the transcriptome level. To this end, we generated two gene signatures: (i) 20 

73 genes down-regulated in the GALNT14-low vs GALNT14-high group in the TCGA 21 

LUAD cohort, and (ii) 129 genes down-regulated by GALNT14 knockdown in the H460 22 

cell line. Next, we collected a comprehensive list of (iii) 3711 metastasis-related genes. 23 

Finally, we refined the gene signatures (i, ii) to 20, and 49 genes as GALNT14 24 
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signatures by taking common genes with the genes of (iii). Accordingly, our subsequent 1 

predictions would prioritize drugs that may be relevant to both GALNT14-dependence 2 

and metastasis, but irrelevant genes tend to be filtered out.  3 

Using the two GALNT14 signatures, we performed two independent predictions by 4 

CMap analyses (Fig. 2A). Candidate drugs were prioritized according to their DR 5 

scores (See Materials and Methods in detail). Two drugs, dexamethasone (DEX, an 6 

anti-inflammatory corticosteroid) and bortezomib (BTZ, a first-in-class proteasome 7 

inhibitor used to treat multiple myeloma), were among the top ten candidates in both 8 

predictions. We then validated expression levels of SOX4, AREG, and VCAN, which are 9 

strongly associated with metastasis and regulated by GALNT14 (20,23) (Figs. S2B and 10 

S2C). Among genes differentially expressed in response to either DEX or BTZ in the 11 

CMap dataset, SOX4 (but not AREG or VCAN) was commonly altered, indicating that 12 

SOX4 could serve as a validation marker (Fig. S2C). As predicted, we observed dose-13 

dependent suppression of SOX4 (but not VCAN) in H460 cells treated with either DEX 14 

or BTZ. Although BTZ suppressed SOX4 less effectively than DEX (EC50: 15 nM vs. 5 15 

nM, respectively) (Fig. S2D), BTZ treatment led to a significant reduction in the 16 

migration capacity of H460 cells, whereas DEX did not (Fig. 2C). The EC50 for 17 

proteasome inhibition was around 20 nM (Fig. 2D and S2E), a concentration at which 18 

BTZ clearly inhibited migration (Figs. 2E and S2F) and invasion (Fig. 2F) by lung 19 

cancer cells, while it did not affect GALNT14 expression (Fig. S2G), cell viability (Figs. 20 

2G and S2H) nor the cell proliferation (Figs. 2H and S2I). Of note, H358 with relatively 21 

lower GALNT14 expression than H1299 and H460 did not respond to BTZ treatment in 22 

migration (Fig. S2K) and invasion (Fig. S2L) unlike H1299, while proteasome 23 

inhibition by BTZ occurred (Fig. S2M), suggesting that anti-invasion/migration effect 24 
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of BTZ would be associated with GALNT14 expression.   1 

 2 

The effect of BTZ is independent of proteasome inhibition  3 

 Given that the anti-migration/invasion effect of BTZ occurred at a 4 

concentration that also inhibited proteasome activity (Figs. 2D and E), we sought to 5 

determine whether this effect was a result of proteasome inhibition per se. To 6 

investigate this issue, we first compared the chemical structure of three FDA-approved 7 

proteasome inhibitors, BTZ, carfilzomib (CFZ), and ixazomib (IXZ), all of which are 8 

approved for treatment of multiple myeloma (33). CFZ (but not IXZ) was structurally 9 

similar to BTZ as calculated by Tanimoto coefficient or Jaccard index of molecular 10 

fingerprints(34) (Fig. 3A). In contrast to BTZ, the concentration of CFZ that inhibited 11 

proteasome activity (Fig. S3A) and stabilized well-characterized proteasome targets β-12 

catenin, Cyclin D1, and p27 (Fig. 3B) failed to suppress migration (Fig. 3C) and 13 

invasion (Fig. 3D). Moreover, the boronic acid moiety responsible for the proteasome 14 

inhibition (35) was present in both BTZ and IXZ. However, like CFZ, treatment with 15 

IXZ could not inhibit migration (Fig. S3B). These data suggest that BTZ has an off-16 

target effect that is independent of proteasome inhibition.  17 

To confirm that the anti-migration/invasion effect of BTZ is not dependent on 18 

proteasome inhibition, we compared transcriptome profiles of H460 cells treated with 19 

BTZ, CFZ and depleted of GALNT14 (shGAL). Perturbation by BTZ and shGAL (but 20 

not CFZ) induced similar transcriptomic changes relative to the control (Fig. 3E). 21 

Moreover, the expression patterns of metastatic signature genes were even more similar 22 

between BTZ and shGAL, whereas CFZ had a minimal effect on only a few genes (Fig. 23 

3E, middle panel). By contrast, expression of proteasome-related genes was altered 24 
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significantly by both drugs, but only marginally by shGAL (Fig. 3E, right panel). Genes 1 

down-regulated by BTZ and shGAL overlapped significantly (101 common genes; P = 2 

5.3 × 10-54), suggesting that BTZ treatment partially mimics depletion of GALNT14 (Fig. 3 

3F). These results are consistent with the phenotypic outcomes, i.e., BTZ, but not CFZ, 4 

suppressed cell migration and invasion similarly to GALNT14 depletion.  5 

 6 

Attenuation of the TGFβ  gene response by BTZ treatment or GALNT14 7 

knockdown 8 

We hypothesized that a subset of the 101 genes down-regulated by both BTZ 9 

treatment and GALNT14 depletion could account for anti-migration/invasion effects of 10 

BTZ. To investigate the drug’s mode of action, we conducted pathway enrichment 11 

analysis of the 101 genes and investigated the clinical significance of each pathway (Fig. 12 

4A). Among the most enriched pathways was TGFβ signaling (hazard ratio [HR] = 1.2). 13 

BTZ treatment induced changes in expression of individual TGFβ signaling genes that 14 

were very similar to those induced by shGAL (Fig. S4A for BTZ and Fig. S4B for 15 

shGAL). Moreover, genes commonly down-regulated (e.g., INHBA, FST, and BMPR) 16 

among targets of TGFβ signaling were indeed suppressed (Fig. 4B). Suppression of the 17 

TGFβ-dependent gene signature, a common effect of BTZ treatment and GALN14 18 

depletion, was validated by reporter assays using the Smad-binding element (SBE), 19 

activin-response element (ARE), and BMP-response element (BRE) (Fig. 4C). 20 

Similarly, TGFβ reporter activity decreased after treatment with BTZ, but not CFZ (Fig. 21 

4D), while β-catenin and Cyclin D1 were stabilized by proteasome inhibition following 22 

treatment with either BTZ or CFZ (Fig. 4E). Concomitant with the reduction in Smad2 23 
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phosphorylation with (Fig. 4E) or without TGFβ stimulation (Fig. S4C), SMAD4 1 

nuclear translocation was inhibited significantly by BTZ treatment (Fig. 4F). 2 

Consistently, TGFβ dependent gene responses (determined by SBE or BRE) upon 3 

TGFβ stimulation, were significantly attenuated by BTZ treatment (Fig. S4D). As 4 

depletion of SMAD4 was sufficient to inhibit both migration and invasion (Figs. 4G and 5 

H), inhibition of SMAD2 phosphorylation (Figs. 4E and S4C) and subsequent delay of 6 

SMAD4 nuclear translocation (Fig. 4F) by BTZ would be a possible mode of action of 7 

BTZ. It is important to note that the TGFβ signaling pathway has been studied 8 

extensively as a tumor suppressor, a tumor promoter (36), and a promoter of metastasis 9 

(37). To determine whether the TGFβ signaling response is associated with GALNT14, 10 

we selected a set of TGFβ downstream targets (28) and examined their correlations with 11 

GALNT14 expression and patient prognosis (Fig. 4I). Notably, SMAD4-dependent 12 

targets PCDH7 and LAMC2, previously shown to induce metastasis (38,39) or 13 

tumorigenicity (40,41), were highly correlated with GALNT14 (Fig. 4I). Moreover, the 14 

SMAD4-dependent TGFβ targets was associated to RFS in the GALNT14-high group (P 15 

= 0.045, Fig. 4J), suggesting that some SMAD4-dependent targets responsible for 16 

cancer recurrence are strongly associated with GALNT14 expression. These results 17 

imply that BTZ treatment, like GALNT14 depletion, exerts its anti-metastatic effect by 18 

interfering with nuclear translocation of SMAD4 (Fig. 4F) and with the SMAD4-19 

dependent gene expression response (Fig. 4D). Finally, we defined a set of genes 20 

commonly down-regulated by both BTZ and shGAL among the SMAD4 dependent 21 

targets as ‘GALNT14–TGFβ signature’ (See Materials and Methods). The average 22 

activity of the GALNT14–TGFβ signature strongly discriminated patient RFS (P = 4.0 × 23 
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10-4, Fig. 4K), and GALNT14 expression was significantly higher in lung cancer 1 

patients with higher levels of the signature (P =0.025, Fig. 4L). Overall, these results 2 

suggest that suppressing TGFβ signaling and gene expression responses relevant to 3 

BTZ (similar to the response observed after GALNT14 depletion) makes a major 4 

contribution to reducing migration and invasion.  5 

 6 

In vivo validation of ant-metastatic effect of BTZ  7 

Given the anti-migration/invasion effect of BTZ in a lung cancer cell model (Fig. 2), we 8 

next tested the in vivo efficacy of BTZ against cancer metastasis in vivo. For this 9 

purpose, local metastasis was induced in mice by tail vein injection of H460 lung cancer 10 

cells, followed by treatment with or without BTZ or CFZ twice weekly for three weeks 11 

(Fig. 5A). The proteasome-inhibitory effect of BTZ (0.1mg/kg) with CFZ (0.5 mg/kg) 12 

was examined by measuring proteasome activity in blood (Fig. 5B). Under this 13 

concentration, the mice tolerated both BTZ and CFZ, exhibiting neither significant loss 14 

of body weight nor any other abnormalities (Fig. 5C). Consistent with the in vitro assay, 15 

the number of metastatic nodules in the lungs of BTZ-treated mice was significantly 16 

lower than that in CFZ- or vehicle-treated animals (Fig. 5D and S5A). Close 17 

examination of cancer tissue also revealed that inflammatory lesions, which provide 18 

favorable microenvironments for tumor formation (42), were present in both CFZ- and 19 

vehicle-treated mice (Fig. S5B). Taken together, the in vivo and in vitro data reveal that 20 

BTZ has a significant therapeutic advantage over CFZ in that it inhibits cancer 21 

metastasis without significant undesirable side effects.   22 

23 
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Discussion  1 

Although many molecular targets for tumorigenesis and metastasis have been 2 

identified, most remain undruggable. For example, the GALNTs, expression of which is 3 

strongly associated with various properties of cancer (20,21) (22-25), have yet to be 4 

drugged, although a few attempts have been made to develop inhibitors of GALNT-5 

dependent O-linked glycosylation (31,32). Thereby, instead of searching direct 6 

inhibitors of GALNT14, we adopted an in silico DR approach to reverse the GALNT14-7 

dependent metastatic expression signature with the goal of finding a candidate drug that 8 

could interfere with the GALNT14-dependent cancer phenotype. Notably, HOXB9 and 9 

SOX4, transcription factor genes regulated by GALNT14, are responsible for metastasis 10 

(23) and self-renewal (20), respectively, suggesting that downstream transcriptional 11 

modulation would be a promising strategy.  12 

Unlike similar studies in the past that used the CMap method to analyze differences 13 

in gene expression signatures between normal and cancerous tissue (14,43), we focused 14 

exclusively on genes (e.g., GALNT14) related to the pertinent phenotype (i.e., the 15 

metastatic gene signature) (Fig. 1) and identified BTZ as a drug candidate with novel 16 

anti-metastatic effects both in vitro (Fig. 2C–2H) and in vivo (Fig. 5). Importantly, we 17 

also demonstrated that the anti-metastatic effect of BTZ, in contrast to that of CFZ, was 18 

independent of proteasome inhibition (Fig. 3). Moreover, the metastatic gene signature 19 

of CFZ was also distinct from that of BTZ, whereas the proteasome gene signatures of 20 

the two drugs were relatively similar (Fig. 3). Recent studies examined the inhibitory 21 

effect of BTZ on TGFβ-dependent responses such as fibrosis (44) and survival of 22 

lymphoma (45), and the results support our conclusions. We also identified the 23 

GALNT14-TGFβ signature that serves as clear indicators of poor prognosis (Fig. 4). 24 
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Thus, attenuation of TGFβ signaling by BTZ, depletion of GALNT14, or inhibition of 1 

TGFβ signaling all decrease invasive properties in vitro (Fig. 4) and lung metastasis in 2 

vivo (Fig. 5), suggesting the drug’s mode of action. Accordingly, the GALNT14–TGFβ 3 

signature represents potentially useful prognostic marker for lung cancer patients, and 4 

could be used alongside previously reported marker [e.g., the TGFβ-response signature 5 

(TBRS) (46) and the MAPK pathway activity score (MPAS) (47)]. Of note, although 6 

BTZ had no undesirable side effects in our in vivo experiments, the risk of peripheral 7 

neuropathy in patients treated with BTZ (48) merits a further search for other candidate 8 

drugs with safer profiles that could also reverse the gene signature associated with 9 

GALNT14 or GALNT14-TGFβ activity. The continued search for improved candidates 10 

could be performed using recently reported in silico (or computational) DR tools 11 

(8,49,50). Notably in this regard, a recent in silico approach can predict candidate drugs 12 

capable of modulating the activities of oncogenic transcription factors, a class of 13 

proteins that has yet to be drugged (7). In the future, it would be interesting to apply this 14 

type of approach to modulate GALNT14-regulated transcription factor genes such as 15 

HOXB9 and SOX4, which mediate metastasis (23) and self-renewal (20), respectively.  16 

Besides predicting potential candidate drugs, our in silico DR approach enabled 17 

identification of several marker genes that turned out to be strongly associated with 18 

clinical outcomes such as RFS. This strategy, which integrated multiple independent 19 

expression signatures from cancer patients, genetic perturbation (e.g., knockdown or 20 

overexpression), and drug treatment (CMap), would be applicable generally to any other 21 

types of target. Thus, our results provide a strong “proof-of-concept” that our DR 22 

method is a viable strategy for accessing undruggable molecular targets, leading to 23 

identification of candidate drugs that target specific cellular processes such as cancer 24 
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metastasis. 1 
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Figure Legends 1 

Figure 1 GALNT14 as a putative molecular target for lung cancer metastasis  2 

A. Identification of therapeutic targets for both cancer progression and recurrence based 3 

on transcriptomic analysis of lung cancer patients. B. Selection of therapeutic target 4 

candidates that are differential expressed between tumor and normal tissue as well as 5 

significantly associated to RFS in the 516 patient dataset from TCGA LUAD. Red 6 

circles indicate metastasis-related genes annotated by MSigDB. C. Enrichment analysis 7 

of metastatic and tumor signatures between high- and low-expressed patient groups for 8 

each of the seven candidate genes. D. The normalized enrichment score (NES) was 9 

calculated by Gene Set Enrichment Analysis (GSEA) for the metastasis (left) and 10 

tumorigenesis signature (right) after all the genes were ranked by their expression fold 11 

change. E-F. 1 X 106 control H460 (shCont) and GALNT14 knockdown (shGal) cells 12 

were injected into lateral tail vein (E) or flanks (F) of nude mice. The representative 13 

H&E staining images of tumor-bearing lung (E) and tumors (F) were presented. G. 14 

Comparison of GALNT14 dependencies among metastatic and primary cell lines from 15 

lung and other types of cancer from the Project Achilles dataset. Only metastatic lung 16 

cells show a significant dependency on GALNT14. H. Comparison between the high- 17 

and low- expression group for GALNT14 in terms of locoregional recurrence-free 18 

survival (LRFS), and distant metastasis-free survival (DMFS) in LUAD patients. 19 

Figure 2 Computational repositioning of BTZ to reverse the GALNT14 expression 20 

signature  21 

A. CMAP analyses to prioritize anti-metastatic candidate drugs using the two 22 

independent GALNT14 signatures. Candidate drugs were prioritized according to the 23 

similarities between drug-induced down-DEGs and the two GALNT14 signatures. B. 24 
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DR score of top candidate drugs selected by the GALNT14 signatures from TCGA (x-1 

axis) and H460 (y-axis). The two drugs marked in red (dexamethasone and bortezomib) 2 

got high scores in both predictions. C. Cell migration rate after treatment of BTZ and 3 

DEX respectively was measured. Representative images (left) and quantification graph 4 

(right) were exhibited D. Proteasome activity with IC50 concentration in H460 cell line 5 

was measured after indicated dose of BTZ treatment E. IC50 value of BTZ on cell 6 

migration capacity was measured in H460 cell line (right). Recovery ratio was measured 7 

43 hours after BTZ treatment and representative image was shown (left). F. 8 

Representative image of cell, which is invaded through trans-well membrane was 9 

shown (left) and quantification of invaded area was presented (right). G. Flow 10 

cytometry plot (upper) of Annexin V and 7-AAD staining 24 hours after BTZ treatment 11 

(indicated concentration) and the quantification graph (lower) of cell death population 12 

were presented. H. Propidium iodide (PI) was stained to analyze the cell cycle profiles 13 

after BTZ treatment. Flow cytometry plot (left) and quantification graph of population 14 

in each cell cycle phase (right) were presented. 15 

Figure 3 The effect of BTZ is independent of proteasome inhibition  16 

A. Chemical structure of proteasome inhibitors (bortezomib, carfilzomib, and ixazomib) 17 

and their Tanimoto similarity heatmap. Red circle indicates the boronic acid structure. B. 18 

Immunoblotting for β-catenin, Cyclin D1 and p27 after treatment of BTZ (20 nM) and 19 

CFZ (20 nM) and α-tubulin for equal protein loading control C. Cell migration ratio 20 

were measured after 48 hours with 20nM of BTZ and CFZ treatment D. Area of cells, 21 

invaded through trans-well membrane was measured at 24 hour after treatment of BTZ 22 

and CFZ (20 nM) E. Sample clustering using t-SNE based on the expression of whole 23 

genes, metastasis-related genes and proteasome-related genes. Each sample was colored 24 
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according to its perturbation type. F. Venn diagram of differentially down-regulated 1 

genes by BTZ, CFZ and shGAL perturbation in the gene space of whole genes.  2 

Figure 4 Attenuation of the TGFβ  gene response by BTZ treatment or GALNT14 3 

knockdown 4 

A. Significantly enriched pathways using the 101 genes (hypergeometric test, P value < 5 

0.01 and FDR < 0.1) and the distribution of each of their RFS HR in TCGA LUAD 6 

cohort. The red circle represents the median of HR, and the bar across the circle 7 

represents the range of HR. B. mRNA expression of 10 common differentially 8 

expressed genes with loss of GALNT14 and BTZ treatment. C. The activity of 9 

TGFβ/Smad signaling in H460 shCont and H460 shGal was determined with SBE, ARE 10 

and BRE luciferase reporter systems. Luciferase activity was measured and its fold 11 

induction is shown as a graph. D. BRE luciferase activity was measured at 24 hours 12 

after BTZ and CFZ treatment. E. Protein level of Smad2 (pSmad2) and ERK2 (pERK2) 13 

phosphorylation were measured by immunoblotting 24 hours after BTZ and CFZ 14 

treatment. β-actin used as an equal protein loading control. G-H Wound healing assay 15 

(G) and Two-chamber invasion assay (H) were performed after TGFβ signaling 16 

suppression with siRNA targeting SMAD4 (siSMAD4). I-L. Analysis of TCGA LUAD 17 

cohort, I. The relationships between correlation score with GALNT14 expression (z-18 

transform of Spearman correlation, x-axis) and RFS HR (y-axis) of each gene in TGFβ 19 

target genes. The dependency of TGFβ target genes on Smad4 was labeled with two 20 

different colors (yellow: Smad4-dependent, blue: Smad4-independent). J. KM plot of 21 

RFS stratified by the combination of GALNT14 expression (low and high) and TGFβ 22 

target activity (low and high). TGFβ target activity was measured using SMAD4 23 

dependent genes (left) and independent genes (right) individually. Significant 24 
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differences between the patient groups were marked with the asterisk (*). K. KM plot of 1 

RFS stratified by the GALNT14-TGFβ signature. P values and HR were calculated with 2 

the log-rank test and Cox regression, respectively. L. Differences in GALNT14 3 

expression by GALNT14-TGFβ signature in TCGA LUAD cohort. P values were 4 

calculated with Student's t-test.  5 

Figure 5 In vivo validation of anti-metastatic effect of BTZ 6 

A. Schematic overview of in vivo experimental procedure B. Proteasome activity with 7 

whole blood collected 1 hour after BTZ (0.1 mg/kg) or CFZ (0.5 mg/kg) was shown in a 8 

bar graph. C. Body weight of each mouse, measured twice in a week was shown at 9 

indicative days. D. Representative lung image of each group was shown. White 10 

arrowheads indicate tumor nodule (top panels). Number of tumor nodules in the lung at 11 

each condition was shown in the table (bottom panel) E. H&E staining of lung from 12 

tumor-bearing mice after treatment of BTZ and CFZ 13 

14 
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