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Abstract 21 

Transcriptional regulatory networks (TRNs) are enriched for certain network motifs. This could 22 

either be the result of natural selection for particular hypothesized functions of those motifs, or 23 

it could be a byproduct of mutation (e.g. of the prevalence of gene duplication) and of less 24 

specific forms of selection. We have developed a powerful new method for distinguishing 25 

between adaptive vs. non-adaptive causes, by simulating TRN evolution under different 26 

conditions. We simulate mutations to transcription factor binding sites in enough mechanistic 27 

detail to capture the high prevalence of weak-affinity binding sites, which can complicate the 28 

scoring of motifs. Our simulation of gene expression is also highly mechanistic, capturing 29 

stochasticity and delays in gene expression that distort external signals and intrinsically generate 30 

noise. We use the model to study a well-known motif, the type 1 coherent feed-forward loop 31 

(C1-FFL), which is hypothesized to filter out short spurious signals. We found that functional C1-32 

FFLs evolve readily in TRNs under selection for this function, but not in a variety of negative 33 

controls. Interestingly, a new “diamond” motif also emerged as a short spurious signal filter. Like 34 

the C1-FFL, the diamond integrates information from a fast pathway and a slow pathway, but 35 

their speeds are based on gene expression dynamics rather than topology. When there is no 36 

external spurious signal to filter out, but only internally generated noise, only the diamond and 37 

not the C1-FFL evolves. 38 

 39 

Author Summary 40 

Frequently occurring motifs are thought to be fundamental building blocks of biological 41 

networks, conducting specific functions. However, we still lack definitive evidence that these 42 

motifs have evolved “adaptively” (to perform the particular function proposed for them), rather 43 
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than “non-adaptively” (as byproducts of some other function, or as an artifact of patterns of 44 

mutations). Here we develop a powerful null model that captures important non-adaptive 45 

factors that can shape the evolution of transcriptional regulatory networks, and use it to provide 46 

the missing piece of evidence of adaptive origin in the case of the most studied motif, a feed-47 

forward loop that is hypothesized to filter out short spurious signals. We also find evidence for 48 

an alternative solution to this problem, where the functionality of the feed-forward loop is 49 

encoded not in network topology, but in the dynamics of gene expression. Our model is suitable 50 

for studying whether other network features have evolved adaptively vs. non-adaptively.  51 
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Introduction 52 

Transcriptional regulatory networks (TRNs) are integral to development and physiology, and 53 

underlie all complex traits. An intriguing finding about TRNs is that certain “motifs” of 54 

interconnected transcription factors (TFs) are over-represented relative to random re-wirings 55 

that preserve the frequency distribution of connections [1, 2]. The significance of this finding 56 

remains open to debate. 57 

 58 

The canonical example is the feed-forward loop (FFL), in which TF A regulates a target C both 59 

directly, and indirectly via TF B, and no regulatory connections exist in the opposite direction [1-60 

3]. Each of the three regulatory interactions in a FFL can be either activating or repressing, so 61 

there are eight distinct kinds of FFLs [4; Fig 1]. Given the eight frequencies expected from the 62 

ratio of activators to repressors, two of these kinds of FFLs are significantly over-represented 63 

[4]. In this paper, we focus on one of these two over-represented types, namely the type 1 64 

coherent FFL (C1-FFL), in which all three links are activating rather than repressing (Fig 1, top 65 

left). C1-FFL motifs are an active part of systems biology research today, e.g. they are used to 66 

infer the function of specific regulatory pathways [5, 6]. 67 

 68 

The over-representation of FFLs in observed TRNs is normally explained in terms of selection 69 

favoring a function of FFLs. Specifically, the most common adaptive hypothesis for the over-70 

representation of C1-FFLs is that cells often benefit from ignoring short-lived signals and 71 

responding only to durable signals [3, 4, 7]. Evidence that C1-FFLs can perform this function 72 

comes from the behavior both of theoretical models [4] and of in vivo gene circuits [7]. A C1-FFL 73 

can achieve this function when its regulatory logic is that of an “AND” gate, i.e. both the direct 74 

path from A to C and the indirect path from A to B to C must be activated before the response is 75 
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triggered. In this case, the response will only be triggered if, by the time the signal trickles 76 

through the longer path, it is still active on the shorter path as well. This yields a response to 77 

long-lived signals but not short-lived signals. 78 

 79 

However, just because a behavior is observed, we cannot conclude that the behavior is a 80 

historical consequence of past selection favoring that behavior [8, 9]. The explanatory power of 81 

this adaptive hypothesis of filtering out short-lived and spurious signals needs to be compared 82 

to that of alternative, non-adaptive hypotheses [10]. The over-representation of C1-FFLs might 83 

be a byproduct of some other behavior that was the true target of selection [11]. Alternatively, 84 

it might be an intrinsic property of TRNs generated by mutational processes – gene duplication 85 

patterns have been found to enrich for FFLs in general [12], although not yet C1-FFLs in 86 

particular. Adaptationist claims about TRN organization have been accused of being just-so 87 

stories, with adaptive hypotheses still in need of testing against an appropriate null model of 88 

network evolution [13-23]. 89 

 90 

Here we develop such a computational null model of TRN evolution, and apply it to the case of 91 

C1-FFL over-representation. We simulate gene duplication and deletion, and sufficient realism in 92 

our model of cis-regulatory evolution to capture the non-adaptive effects of mutation in shaping 93 

TRNs. In particular, we consider “weak” TF binding sites (TFBSs) that can easily appear de novo 94 

by chance alone, and from there be selected to bind a TF more strongly. 95 

 96 

It is also important to capture the stochasticity of gene expression, which causes the number of 97 

mRNAs and hence proteins to fluctuate [24, 25]. This is because demand for spurious signal 98 

filtering and hence C1-FFL function may arise not just from external signals, but also from 99 
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internal fluctuations. Stochasticity in gene expression also shapes how external spurious signals 100 

are propagated. Stochasticity is a constraint on what TRNs can achieve, but can be adaptively 101 

co-opted in evolution [26]; either way, it might underlie the evolution of certain motifs. Most 102 

computational models of TRN evolution that consider gene expression as the major phenotype 103 

do not simulate stochasticity in gene expression (see [27-29] for three notable exceptions). The 104 

genotype to phenotype map we develop here does include intrinsic stochasticity in gene 105 

expression.  106 

 107 

Here we use this model to ask whether AND-gated C1-FFLs evolve as a response to selection for 108 

filtering out short and spurious external signals, compared to conditions that control for both 109 

mutational biases and for less specific forms of selection. We find that they evolve far more 110 

often under these specific selection conditions than under control conditions, providing long-111 

awaited support for the adaptive hypothesis. We also ask whether there are alternative motifs 112 

that evolve to solve the same selective challenge. We find that a “diamond” [30] is such a motif, 113 

filtering out short spurious signals by requiring them to arrive not through both a long and a 114 

short path, but through both a fast and a slow path of equal topological lengths. We also 115 

compare motifs that evolve to filter out external spurious signals to those that evolve in 116 

response to intrinsic stochastic noise in gene expression. We find that while both diamonds and 117 

C1-FFLs evolve in response to the former, only diamonds evolve in response to the latter. 118 
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 119 

 120 

Fig 1. Feed-forward loops come in eight subtypes. TF A and TF B can activate (indicated by 121 

arrows) or repress (indicated by bars) expression of the effector C as well as other TFs. Auto-122 

regulation is allowed, but not shown. Following Milo et al. [1], we exclude the case in which A 123 

and B regulate one another, rather than treating this case as two overlapping FFLs.  124 
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Models 125 

Overview of the model 126 

We simulate the dynamics of TRNs as the TFs activate and repress one another’s transcription. 127 

For each moment in developmental time (i.e. on the timescale of one cell responding to stimuli), 128 

we simulate the numbers of nuclear and cytoplasmic mRNAs in a cell, the protein 129 

concentrations, and the chromatin state of each transcription start site. Transitions between 130 

three possible chromatin states -- Repressed, Intermediate, and Active -- are a stochastic 131 

function of TF binding, and transcription initiation from the Active state is also stochastic. An 132 

overview of the model is shown in Fig 2. The pattern of TF binding affects chromatin, which 133 

affects transcription rates, eventually affecting the concentration of TFs and so completing 134 

regulatory feedback loops. The genotype is specified by a set of cis-regulatory sequences that 135 

contain TFBSs to which TFs may bind (which, as nucleotide sequences, are subject to realistic 136 

mutational parameters), by which consensus sequence each TF recognizes and with what 137 

affinity, and by 5 gene-specific parameters that control gene expression as a function of TF 138 

binding: mean duration of transcriptional bursts, mRNA degradation, protein production, and 139 

protein degradation rates, and gene length which affects delays in transcription and translation. 140 

An external signal is treated like another TF, and the concentration of an effector gene in 141 

response is a primary determinant of fitness, combined with a cost associated with gene 142 

expression (Fig 2). Mutants replace resident genotypes as a function of the difference in 143 

estimated fitness. Parameter values, taken as far as possible from Saccharomyces cerevisiae, are 144 

summarized in Table 1. Source code in C is available at https://github.com/MaselLab/network-145 

evolution-simulator. 146 

  147 
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Table 1. Major model parameters 148 

Parameter  Values[1] Bounds[2] References 
Length of cis-regulatory sequence 150 bp  [31] 
Length of TF recognition sequence 8 bp  [32] 
Length occupied by a TF on each side of recognition sequence 3 bp  [34] 
Dissociation constant between TF and perfect TFBS, Kd(0)  10U(-9,-6) M[3]  (0, 10-5)  [37, 38] 
Dissociation constant between TF and non-specific DNA, Kd(3) 10-5 M  [33] 
Base rate of transition from Repressed to Intermediate  0.15 min-1  [44] 
Maximum transition rate from Repressed to Intermediate  0.92 min-1  [40, 44] 
Base rate of transition from Intermediate to Repressed 0.67 min-1  [44] 

Maximum transition rate from Intermediate to Repressed  4.11 min-1  
Chosen to give same dynamic range and 

Repressed to Intermediate 
Base rate of transition from Intermediate to Active  0.025 min-1  [40] 
Maximum transition rate from Intermediate to Active  3.3 min-1  [40] 
Transition rate from Active to Intermediate, rAct_to_Int 10N(1.27, 0.226) min-1[4] [0.59, 64.7]  [40, 49, 50] 

Length of gene, L 
10N(2.568, 0.34) 

codons 
[50, 5000]  [79] 

Rate of transcription initiation, rmax_transc_init 6.75 min-1  [40] 
Speed of transcription elongation 600 codon/min  [51, 80, 81] 
Time for transcribing UTRs and for terminating transcription 1 min  [51, 80, 81] 
Rate of mRNA degradation, rmRNA_deg 10N(-1.49, 0.267) min-1 [7.5×10-4, 0.54]  [82] 
Speed of translation elongation 330 codon/min  [55] 
Translation initiation time 0.5 min  [55] 

Protein synthesis rate, rprotein_syn  

10N(0.322, 0.416) 

molecule mRNA-1 
min-1 

[4.5×10-3, 61.4]  [55] 

Rate of protein degradation, rprotein_deg 10N(-1.88, 0.561) min-1 [3.0×10-6, 0.69]  [83] 

Saturation concentration of effector protein, Ne_sat 
10,000 

molecules/cell 
 [58] 

Fitness cost of protein expression for a gene with L = 102.568, 
ctransl  

2×10-6 
(molecules/min)-1 

 [58, 59] 

Maximum number of effector gene copies 5   
Maximum number of TF gene copies, excluding the signal 19   

1 Parameters in bold can be altered by mutation, and the table shows the distributions from 
which their initial values are sampled. Parameter estimation is described either in the Methods 
or S1 Text section 2-5. 
2 Boundary values use the same unit as the parameter values. Parentheses mean the parameter 
cannot take the boundary values; brackets mean the opposite. We also use these bounds to 
constrain mutation (see S1 Text section 8).  
3 The uniform distribution is denoted as U(min, max).  
4 The normal distribution is denoted as N(mean, SD). 

 149 

 150 
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 151 

Fig 2. Overview of the model. As an example, we show a simple TRN that contains two genes. 152 

Top: major biological processes (arrows) simulated in the model. Bottom: fitness is primarily 153 

determined by the concentration of an effector protein (here shown as beneficial as in Eq. 2, but 154 

potentially deleterious in a different environment as in Eq. 3), with a secondary component 155 

coming from the cost of gene expression (proportional to the rate of protein production), 156 

combined to give an instantaneous fitness at each moment in developmental time. 157 

 158 

Transcription factor binding 159 

Transcription of each gene is controlled by TFBSs present within a 150-bp cis-regulatory region, 160 

corresponding to a typical yeast nucleosome-free region within a promoter [31]. The perfect 161 

TFBS for a typical yeast TF has information content equivalent to 13.8 bits [32]; this means that 162 
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in a simplified model of binding where only one of the four nucleotides is a good match at each 163 

site, ~7 bp are recognized as an optimal consensus binding site. Maerkl & Quake [33] reported 164 

that the TFBSs of two yeast TFs, Pho4p and Cbf1p, can have up to 2 mismatched sites within 165 

their 6 bp consensus binding sequence, while still binding the TF above background levels [33]. 166 

Our model therefore tracks TFBSs with up to 2 mismatches. This low information content 167 

implies a higher density of TFBSs within our cis-regulatory regions than our algorithm was able 168 

to handle, so we instead assigned each TF an 8-bp consensus sequence. Two TFs cannot 169 

simultaneously occupy overlapping stretches, which we assume extend beyond the recognition 170 

sequence to occupy a total of 14 bp [34]; this captures competitive binding. Hindrance between 171 

TFBSs is shown in Fig 3A; TFs are assumed to work in both orientations [35].  172 

 173 

Sites with m>3 mismatches are assumed to still bind at a background rate equal to m=3 174 

mismatches, with dissociation constant Kd(3) = 10-5 M [33] for all TFs. We assume that each of 175 

the last three bp makes an equal and independent additive contribution ΔGbp < 0 to the binding 176 

energy [36]: although not always true, this approximates average behavior well [33]. We ignore 177 

cooperativity in binding. Dissociation constants of eukaryotic TFs for perfect TFBSs can range 178 

from 10-5 M [37] to 10-11 M [38]. We initialize each TF with its own value of log10(Kd(0)) sampled 179 

from a uniform distribution between -6 and -9, with mutation capable of further expanding this 180 

range, subject to Kd(0) < 10-5 M. Substituting m=0 and m=3 into 181 

 182 

∆𝐺𝑚 = −𝑅𝑇𝑙𝑛𝐾𝑑(𝑚) = ∆𝐺0 −min⁡(𝑚, 3)∆𝐺𝑏𝑝, 183 

 184 

we can solve for ΔGbp and ∆𝐺0, and thus obtain Kd(1) and Kd(2).  185 

 186 
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Because TFs bind non-specifically to DNA at a high background rate, each nucleosome-free 187 

stretch of 14 bp can be considered to be a non-specific binding site (NSBS). A haploid S. 188 

cerevisiae genome is 12 Mb, 80% of which is wrapped in nucleosomes [39], yielding 189 

approximately 106 potential non-specific binding sites (NSBSs). In a yeast nucleus of volume 190 

3×10-15 liters, the NSBS concentration is of order 10-4 M. To find the concentration of free TF 191 

[TF] in the nucleus given a total TF concentration of CTF, we consider  192 

 193 

𝐾𝑑 =
[binding_site][TF]

[binding_site ∙ TF]
, 194 

 195 

in the context of NSBSs, substitute [TF∙NSBS] with CTF - [TF], and solve for 196 

 197 

[TF] =
𝐾𝑑(3)

𝐾𝑑(3)+[NSBS]
𝐶𝑇𝐹 =

10−5

10−5+10−4
𝐶𝑇𝐹. 198 

 199 

Thus, about 90% of total TFs are bound non-specifically, leaving about 10% free. The relatively 200 

small number of specific TFBSs is not enough to significantly perturb the proportion of free TFs, 201 

and so for the specific TFBSs with m<3 that are of interest in our model, we simply use Kd*(m) = 202 

10Kd(m) to account for the reduction in the amount of available TF due to non-specific binding. 203 

We also rescale Kd* from moles/liter to the more convenient number of molecules per cell by 204 

multiplying by 3×10-15 liter × 6.02×1023 molecules/mole = 1.8×109 molecules cell-1 M-1, for a 205 

total multiplication factor of 1.8×1010 molecule M-1. If there were only one binding site, it would 206 

be bound for a fraction of time  207 

 208 

𝑃 =
𝑁𝑖

𝐾𝑑
∗+𝑁𝑖

         (1) 209 
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 210 

where Ni is the per-cell number of molecules of TF i; note that we assume all TF molecules are 211 

located in the nucleus. 212 

 213 

The transition rates between chromatin states (see section below) are a function of the 214 

numbers of activators A and repressors R bound to a cis-regulatory region. Note that in our 215 

model, each TF is either always an activator, or always a repressor, independently of binding 216 

context. The joint probability distribution of A and R is derived in S1 Text section 1. 217 

 218 

 219 

Fig 3. The numbers of TFBSs, and any hindrance between them, determines the regulatory 220 

logic of effector expression. (A) TFs (yellow boxes) recognize 8 bp (red) sites while occupying 221 

and thus excluding other TFs from a 14 bp long space. The sequence on the top allows 222 

simultaneous binding but that on the bottom does not. (B) We use the pattern of TFBSs (red and 223 

yellow bars along black cis-regulatory sequences) to classify the regulatory logic of the effector 224 

gene. C1-FFLs are classified first by whether or not they are capable of simultaneously binding 225 

the signal and the TF (top vs bottom). Further classification is based on whether either the signal 226 

or the TF has multiple non-overlapping TFBSs, allowing it to activate the effector without help 227 

from the other (solid arrow). The three subtypes on the bottom (where the signal and TF cannot 228 
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bind simultaneously) are rarely seen, and omitted from further analysis; they are shown here for 229 

completeness. I1-FFL and I3-FFL stand for type 1 and type 3 incoherent feed-forward loops, 230 

respectively [7]. 231 

 232 

Transcriptional regulation 233 

Activation of the effector gene requires at least two TFBSs to be occupied by activators – not 234 

necessarily different activators. The requirement for two activators makes the effector gene 235 

capable of evolving an AND-gate via a configuration of TFBSs in which the only way to have two 236 

TFs bound is for them to be different TFs (Fig 3B). All other genes are AND-gate-incapable, 237 

meaning that their activation requires only one TFBS to be occupied by an activator.⁡𝑃𝐴 denotes 238 

the probability of having at least one activator bound for an AND-gate-incapable gene, or two 239 

for an AND-gate-capable gene. 𝑃𝑅 denotes the probability of having at least one repressor 240 

bound. 241 

 242 

Noise in yeast gene expression is well described by a two step process of transcriptional 243 

activation [40, 41], e.g. nucleosome disassembly followed by transcription machinery assembly. 244 

We denote the three possible states of the transcription start site as Repressed, Intermediate, 245 

and Active (Fig 2). Transitions between the states depend on the numbers of activator and 246 

repressor TFs bound (e.g. via recruitment of histone-modifying enzymes [42, 43]). We make 247 

conversion from Repressed to Intermediate range, as a function of 𝑃𝐴, from the background rate 248 

0.15 min-1 of histone acetylation [44; presumed to be followed by nucleosome disassembly], to 249 

the rate of nucleosome disassembly 0.92 min-1 for the constitutively active PHO5 promoter [40]: 250 

 251 

𝑟𝑅𝑒𝑝_𝑡𝑜_𝐼𝑛𝑡 = 0.92𝑃𝐴 + 0.15(1 − 𝑃𝐴). 252 
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 253 

We make conversion from Intermediate to Repressed a function of 𝑃𝑅, ranging from a 254 

background histone de-acetylation rate of 0.67 min-1 [44], up to 4.11 min-1, with that maximum 255 

chosen so as to keep a similar maximum:basal rate ratio as that of rRep_to_Int: 256 

 257 

𝑟𝐼𝑛𝑡_𝑡𝑜_𝑅𝑒𝑝 = 4.11𝑃𝑅 + 0.67(1 − 𝑃𝑅). 258 

 259 

We assume that repressors disrupt the assembly of transcription machinery [45] to such a 260 

degree that conversion from Intermediate to Active does not occur if even a single repressor is 261 

bound. In the absence of repressors, activators facilitate the assembly of transcription 262 

machinery [46]. Brown et al. [40] reported that the rate of transcription machinery assembly is 263 

3.3 min-1 for a constitutively active PHO5 promoter, and 0.025 min-1 when the Pho4 activator of 264 

the PHO5 promoter is knocked out. We use this range to set 265 

 266 

𝑟𝐼𝑛𝑡_𝑡𝑜_𝐴𝑐𝑡 = 3.3𝑃𝐴_𝑛𝑜_𝑅 + 0.025𝑃𝑛𝑜𝑡𝐴_𝑛𝑜_𝑅 267 

 268 

where PA_no_R is the probability of having no repressors and either one (for an AND-gate-269 

incapable gene) or two (for an AND-gate-capable gene) activators bound, and 𝑃𝑛𝑜𝑡𝐴_𝑛𝑜_𝑅 is the 270 

probability of having no TFs bound (for AND-gate-incapable genes) or having no repressors and 271 

not more than one activator bound (for AND-gate-capable genes). 272 

 273 

The promoter sequence not only determines which specific TFBSs are present, but also 274 

influences non-specific components of the transcriptional machinery [47, 48]. We capture this 275 

via gene-specific but TF-binding-independent rates rAct_to_Int with which the machinery 276 
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disassembles and a burst of transcription ends. In other words, we let TF binding regulate the 277 

frequency of “bursts” of transcription, while other properties of the cis-regulatory region 278 

regulate their duration. E.g., yeast transcription factor Pho4 regulates the frequency but not 279 

duration of bursts of PHO5 expression, by regulating the rates of nucleosome removal and of 280 

transition to but not from a transcriptionally active state [40]. We estimate the distribution of 281 

rAct_to_Int from the observed rates of mRNA production of 255 yeast genes [49] that are likely to 282 

have similarly low nucleosome occupancy [50] and thus are constitutively open to expression 283 

(see S1 Text section 2 for details and also for the bounds of rAct_to_Int). For modeling simplicity, we 284 

assume that the core promoter sequence responsible for the value of rAct_to_Int is distinct from 285 

the 150-bp sequences in which our TFBSs are found. 286 

 287 

mRNA and protein dynamics 288 

Once in the Active state, a gene initiates new transcripts stochastically at rate rmax_transc_init = 6.75 289 

mRNA/min [40]. There is a delay before transcription is completed, of duration 1 + L / 600 290 

minutes, where L is the length of the ORF in codons (see S1 Text section 3).  291 

 292 

We model a second delay between the completion of a transcript and the production of the first 293 

protein from it. The delay comes from a combination of translation initiation and elongation; it 294 

ends when the mRNA is fully loaded with ribosomes all the way through to the stop codon and 295 

the first protein is produced. We ignore the time required for mRNA splicing; introns are rare in 296 

yeast [51]. mRNA transportation from nucleus to cytosol, which is likely diffusion-limited [52, 297 

53], is fast even in mammalian cells [54] let alone much smaller yeast cells, and the time it takes 298 

is also ignored. The median time in yeast for initiating translation is 0.5 minute [Table 1 in 55], 299 

and the genomic average peptide elongation rate is 330 codon/min [55]. After an mRNA is 300 
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produced, we therefore wait for 0.5 + L / 330 minutes, and then model protein production as 301 

continuous at a gene-specific rate rprotein_syn (see S1 Text section 4 for details of rprotein_syn).  302 

 303 

Protein transport into the nucleus is rapid [56] and is approximated as instantaneous and 304 

complete, so that the newly produced protein molecules immediately increase the probability of 305 

TF binding. Each gene has its own mRNA and protein decay rates, initialized from distributions 306 

taken from data (see S1 Text section 5). 307 

 308 

All the rates regarding transcription and translation are listed in Table 1, including distributions 309 

estimated from data, and hard bounds imposed to prevent unrealistic values arising during 310 

evolution. 311 

 312 

Developmental simulation 313 

Our algorithm is part-stochastic, part-deterministic. We use a Gillespie algorithm [57] to 314 

simulate stochastic transitions between Repressed, Intermediate, and Active chromatin states, 315 

and to simulate transcription initiation and mRNA decay events. Fixed (i.e. deterministic) delay 316 

times are simulated between transcription initiation and completion, and between transcript 317 

completion and the production of the first protein. Protein production and degradation are 318 

described deterministically with ODEs, and updated frequently in order to recalculate TF 319 

concentrations and hence chromatin transition rates. We initialize developmental simulations 320 

with no mRNA or protein (except for the signal), and all genes in the Repressed state. Details of 321 

our simulation algorithm are given in the S1 Text section 6. 322 

  323 

Selection conditions  324 
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Filtering out short spurious signals is a special case of signal recognition more generally. In 325 

environment 1, expressing the effector is beneficial, and in environment 2 it is deleterious. We 326 

select for TRNs that take information from the signal and correctly decide whether to express 327 

the effector. In our control condition, the signal is “on” at a constant level when the effector is 328 

beneficial in environment 1, and off in environment 2. Fitness is a weighted average across 329 

these two environments. In our test condition (Fig 4), the signal is constantly on in environment 330 

1 and briefly on (for the first 10 minutes) in environment 2 – selection is to ignore this short 331 

spurious signal. The signal is treated as though it were an activating TF whose concentration is 332 

controlled externally, with an “off” concentration of zero and an “on” concentration of 1,000 333 

molecules per cell, which is the typical per-cell number of a yeast TF [58].  334 

 335 

We make fitness quantitative in terms of a “benefit” 𝐵(𝑡) as a function of the amount of 336 

effector protein Ne(t) at developmental time t. Our motivation is the scenario in which the 337 

effector protein directs resources from metabolic program I to II. When program II produces 338 

benefits,  339 

 340 

𝐵(𝑡) = {
𝑏𝑚𝑎𝑥

𝑁𝑒(𝑡)

𝑁𝑒_𝑠𝑎𝑡
, 𝑁𝑒(𝑡) < 𝑁𝑒_𝑠𝑎𝑡

𝑏𝑚𝑎𝑥, 𝑁𝑒(𝑡) ≥ 𝑁𝑒_𝑠𝑎𝑡
,      (2)  341 

 342 

where bmax is the maximum benefit if all resources were redirected to program II, and Ne_sat is 343 

the minimum of amount of effector protein to achieve this. Similarly, when program I is 344 

beneficial,  345 

 346 
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𝐵(𝑡) = {
𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑎𝑥

𝑁𝑒(𝑡)

𝑁𝑒𝑠𝑎𝑡

, 𝑁𝑒(𝑡) < 𝑁𝑒𝑠𝑎𝑡

0, 𝑁𝑒(𝑡) ≥ 𝑁𝑒𝑠𝑎𝑡

.      (3) 347 

 348 

We set Ne_sat to 10,000 molecules, which is about the average molecule number of a 349 

metabolism-associated protein per cell in yeast [58]. Without loss of generality given that fitness 350 

is relative, we set bmax to 1.  351 

 352 

A second contribution to fitness comes from the cost of gene expression C(t) (Fig 2, bottom 353 

center). We make this cost proportional to the total protein production rate. We estimate a 354 

fitness cost of gene expression of 2×10-6 per protein molecule translated per minute, based on 355 

the cost of expressing a non-toxic protein in yeast [59; see S1 Text section 7 for details].  356 

 357 

We simulate gene expression for 90 minutes of developmental time (Fig 4), and calculate 358 

“cellular fitness” in a given environment as the average instantaneous fitness (B(t)-C(t)) over 359 

these 90 minutes. We consider environment 2 to be twice as common as environment 1 (a 360 

“signal” should be for an uncommon event rather than the default), and take the appropriate 361 

weighted average. 362 

 363 

 364 
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 365 

Fig 4. Selection for filtering out short spurious signals. The selection condition contains two 366 

environments. Each environment is a 90 min simulation of gene expression given signal input 367 

and the fitness effect of the effector. The signal is shown in black. Red illustrates favorable 368 

behavior of the effector in each of the environments, and, in comparison, blue shows a poor 369 

solution. See S1 Fig for examples of the evolved phenotypes. 370 

 371 

Evolutionary simulation 372 

We simulate a novel version of origin-fixation (weak-mutation-strong-selection) evolutionary 373 

dynamics, i.e. the population contains only one resident genotype at any time, and mutant 374 

genotypes are either rejected or chosen to be the next resident. Estimators 𝐹̂ of genotype 375 

fitness are averaged over 200 developmental replicates per environment in the case of the 376 

mutant, plus an additional 800 should it be chosen to be the next resident. The mutant replaces 377 

the resident if 378 

 379 

𝐹̂𝑚𝑢𝑡𝑎𝑛𝑡 − 𝐹̂𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡

|𝐹̂𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡|
≥ 10−8. 380 

 381 
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This differs from Kimura’s [60] equation for fixation probability, but captures the same flavor; 382 

due to stochasticity in 𝐹̂, fixation probability is a monotonic function of the true difference in 383 

fitness. Note that it is possible, especially at the beginning of an evolutionary simulation, for 384 

relative fitness to be paradoxically negative. In this rare case, for simplicity, we use the absolute 385 

value of 𝐹̂ on the denominator. 386 

 387 

If 2000 successive mutants are all rejected, the simulation is terminated; upon inspection, we 388 

found that these resident genotypes had evolved to not express the effector in either 389 

environment. We refer to each change in resident genotype as an evolutionary step. We stop 390 

the simulation after 50,000 evolutionary steps; at this time, most replicate simulations seem to 391 

have reached a fitness plateau (S2 Fig); we use all replicates except those terminated early. To 392 

reduce the frequency of early termination in the case where the signal was not allowed to 393 

directly regulate the effector, we used a burn-in phase selecting on a more accessible 394 

intermediate phenotype (see S1 Text section 9). In this case, burn-in occurred for 1000 395 

evolutionary steps, followed by the usual 50,000 evolutionary steps with selection for the 396 

phenotype of interest (S2 Fig). 397 

 398 

Genotype Initialization 399 

We initialize genotypes with 3 activator genes, 3 repressor genes, and 1 effector gene. Cis-400 

regulatory sequences and consensus binding sequences contain As, Cs, Gs, and Ts sampled with 401 

equal probability. Rate constants associated with the expression of each gene, are sampled from 402 

the distributions described above and summarized in Table 1.  403 

 404 

Mutation 405 
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A genotype is subjected to 5 broad classes of mutation, at rates summarized in Table 2 and 406 

justified in S1 Text section 8. First are single nucleotide substitutions in the cis-regulatory 407 

sequence; the resident nucleotide mutates into one of the other three types of nucleotides with 408 

equal probability. Second are single nucleotide changes to the consensus binding sequence of a 409 

TF, with the resident nucleotide mutated into one of the other three types at equal probability. 410 

Both of these can affect the number and strength of TFBSs. 411 

 412 

Table 2. Mutation rates and effect sizes 413 

Mutation Relative rate  Effect of mutation[1] 

Single nucleotide substitution 5.25×10-8 per gene  

Gene deletion 1.5×10-7 per gene[2]  

Gene duplication 1.5×10-7 per gene[2]  

Mutation to consensus sequence of a TF 3.5×10-9 per gene  
Mutation to TF identity (activator vs. repressor) 3.5×10-9 per gene  

Mutation to Kd(0) 3.5×10-9 per gene k = 0.5, µ = -5[2], σ = 0.776 

Mutation to L  1.2×10-11 per codon   

Mutation to rprotein_syn   9.5×10-12 per codon k = 0.5, µ = 0.021[2], σ = 0.760 

Mutation to rprotein_deg
 9.5×10-12 per codon k = 0.5, µ = -1.88, σ = 0.739 

Mutation to rAct_to_Int
 9.5×10-12 per codon  k = 0.5, µ = 1.57[2], σ = 0.773 

Mutation to rmRNA_deg 9.5×10-12 per codon  k = 0.5, µ = -1.19, σ = 0.396 

Mutation to these quantitative rates takes the form log10𝑥′ = log10𝑥 + Normal(𝑘(𝜇 −414 
log10𝑥), 𝜎), where x is the original value of a rate and x’ is the value after mutation. See S1 Text 415 
section 8 for details.  416 
2 The value of this parameter is different during burn-in. See S1 Text section 8 for details. 417 
Third are gene duplications or deletions. Because computational cost scales steeply (and non-418 
linearly) with network size, we do not allow effector genes to duplicate once there are 5 copies, 419 
nor TF genes to duplicate once the total number of TF gene copies is 19. We also do not allow 420 
the signal, the last effector gene, nor the last TF gene to be deleted.  421 
 422 

Fourth are mutations to gene-specific expression parameters. Most of these (L, rAct_to_Int, 423 

rprotein_syn, rmRNA_deg, and rprotein_deg) apply to both TFs and effector genes, while mutations to the 424 

gene-specific values of Kd(0) apply only to TFs. Each mutation to L increases or decreases it by 1 425 

codon, with equal probability unless L is at the upper or lower bound. Effect sizes of mutations 426 

to the other five parameters are modeled in such a way that mutation would maintain log-427 
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normal stationary distributions for these values, in the absence of selection or arbitrary bounds 428 

(see S1 Text section 8 for details). Upper and lower bounds (S1 Text section 8) are used to 429 

ensure that selection never drives these parameters to unrealistic values.  430 

 431 

Fifth is conversion of a TF from being an activator to being a repressor, and vice versa. The signal 432 

is always an activator, and does not evolve. 433 

 434 

Importantly, this scheme allows for divergence following gene duplication. When duplicates 435 

differ due only to mutations of class 4, i.e. protein function is unchanged, we refer to them as 436 

“copies” of the same gene, encoding “protein variants”. Mutations in classes 2 and 5 can create 437 

a new protein. 438 

 439 

 440 

Results 441 

Functional AND-gated C1-FFLs evolve readily under selection for filtering out a short 442 

spurious signal  443 

We begin by simulating the easiest case we can devise to allow the evolution of C1-FFLs for their 444 

purported function of filtering out short spurious signals. The signal is allowed to act directly on 445 

the AND-gate-capable effector, so all that needs to evolve is a single activating TF between the 446 

two, as well as AND-logic for the effector. We score motifs at the end of a set number of 447 

generations (see Methods). Evolved C1-FFLs are scored and classified into subtypes based on 448 

the presence of non-overlapping TFBSs (Fig 3B). The important subtype comparison for our 449 

purposes being the AND-gated C1-FFL vs. the next three non-AND-gated C1-FFL types combined 450 

(OR-gated, signal-controlled, and slow-TF-controlled); the remaining three logic subtypes are 451 
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vanishingly rare. The adaptive hypothesis predicts the evolution of the subtype with AND-452 

regulatory logic, which requires both the effector to be stimulated both by the signal and by the 453 

slow TF. While all replicates show large increases in fitness, a multimodal distribution of final 454 

fitness states is observed, indicating whether or not the replicate was successful at evolving the 455 

phenotype of interest rather than becoming stuck at an alternative locally optimal phenotype 456 

(Fig 5A). AND-gated C1-FFLs frequently evolve in the high fitness outcomes, but not the low 457 

fitness outcomes (Fig 5B). 458 

 459 

We also see C1-FFLs that, contrary to expectations, are not AND-gated; while found primarily in 460 

the low fitness replicates, some are also in the high fitness genotypes (Fig 5B). However, this is 461 

based on scoring motifs and their logic gates on the basis of all TFBSs, even those with two 462 

mismatches and hence low binding affinity. Unless these weak TFBSs are deleterious, they will 463 

appear quite often by chance alone. A random 8-bp sequence has probability (8
2
) × 0.256 ×464 

0.752 = 0.0038 of being a two-mismatch binding site for a given TF. In our model, a TF has the 465 

potential to recognize 137 different sites in a 150-bp cis-regulatory sequence (taking into 466 

account steric hindrance at the edges), each with 2 orientations. Thus, by chance alone a given 467 

TF will have 0.0038 × 137 × 2 ≈ 1 two-mismatch binding sites in a given cis-regulatory 468 

sequence (ignoring palindromes for simplicity), compared to only ~0.1 one-mismatch TFBSs. 469 

Excluding two-mismatch TFBSs when scoring motifs significantly reduces the non-AND-gated C1-470 

FFLs, while only modestly reducing the observed frequency of adaptively evolved AND-gated C1-471 

FFLs in the high fitness mode (Fig 5C). 472 

 473 
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 474 

Fig 5. AND-gated C1-FFLs are associated with a successful response to selection for filtering 475 

out short spurious signals. (A) Distribution of fitness outcomes across replicate simulations, 476 

calculated as the average fitness over the last 10,000 steps of the evolutionary simulation. We 477 

divide genotypes into a low-fitness group (blue) and a high-fitness group (red) using as a 478 

threshold an observed gap in the distribution. (B) High fitness outcomes are characterized by 479 

the presence of an AND-gated C1-FFL. “Any logic” counts all seven subtypes shown in Fig 3B. 480 

Because one TRN can contain multiple C1-FFLs of different subtypes, “Any logic” will generally 481 

be less than the sum of the occurrences of all seven subtypes. See S1 Text section 10 for details 482 

on the calculation of the y-axis. (C) The over-representation of AND-gated C1-FFLs becomes 483 

even more pronounced relative to alternative logic-gating when weak (two-mismatch) TFBSs are 484 

excluded while scoring motifs. Data are shown as mean±SE of the occurrence over replicate 485 

evolution simulations. n = 23 for high-fitness group, and n = 24 for low-fitness group. 486 
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 487 

To confirm the functionality of these AND-gated C1-FFLs, we mutated the evolved genotype in 488 

two different ways (Fig 6A) to remove the AND regulatory logic. As expected, this lowers fitness 489 

in the presence of the short spurious signal but increases fitness in the presence of constant 490 

signal, with a net reduction in fitness (Fig 6B). This is consistent with AND-gated C1-FFLs 491 

representing a tradeoff, by which a more rapid response to a true signal is sacrificed in favor of 492 

the greater reliability of filtering out short spurious signals. 493 

 494 

 495 

Fig 6. Destroying the AND-logic of a C1-FFL removes its ability to filter out short spurious 496 

signals. (A) For each of the n = 23 replicates in the high fitness group in Fig 5, we perturbed the 497 

AND-logic in two ways, by adding one binding site of either the signal or the slow TF to the cis-498 

regulatory sequence of the effector gene, done for the subset of evolutionary steps for that 499 

replicate with AND-gated C1-FFLs and lacking other potentially confounding motifs (see S1 Text 500 

section 11 for details). (B) Destroying the AND-logic slightly increases the ability to respond to 501 

the signal, but leads to a larger loss of fitness when short spurious signals are responded to. 502 

Data are shown as mean±SE over replicate evolutionary simulations. 503 

 504 
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To test the extent to which C1-FFLs can evolve non-adaptively, we simulated evolution under 505 

three negative control conditions: 1) neutrality, i.e. all mutations are accepted to become the 506 

new resident genotype; 2) no spurious signal, i.e. the effector should be expressed under a 507 

constant “ON” signal and not under a constant “OFF” signal; 3) harmless spurious signal, i.e. the 508 

effector should be expressed under a constant “ON” environment whereas effector expression 509 

in the “OFF” environment with short spurious signals is neither punished nor rewarded beyond 510 

the cost of unnecessary gene expression. AND-gated C1-FFLs evolve much less often under all 511 

three negative control conditions (Fig 7). Non-AND-gated C1-FFLs do evolve under the negative 512 

control conditions (Fig 7A), but disappear when weak TFBSs are excluded during motif scoring 513 

(Fig 7B).  514 

 515 

 516 
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Fig 7. Selection for filtering out short spurious signals is the primary cause of C1-FFLs. TRNs are 517 

evolved under different selection conditions, and we score the probability that at least one C1-518 

FFL is present (S1 Text section 10). Weak (two-mismatch) TFBSs are included (A) or excluded (B) 519 

during motif scoring. Data are shown as mean±SE over evolutionary replicates. C1-FFL 520 

occurrence is similar for high-fitness and low-fitness outcomes in control selective conditions (S3 521 

Fig), and so all evolutionary outcomes were combined. n = 30 for “Neutral”, n = 34 for “No 522 

spurious signal”, n = 30 for ”Harmless spurious signal”. “Spurious signal filter required (high 523 

fitness subset)” uses the same data as in Fig 5.  524 

 525 

Diamond motifs are an alternative adaptation in more complex networks 526 

Sometimes the source signal will not be able to directly regulate an effector, and must instead 527 

operate via a longer regulatory pathway involving intermediate TFs [61]. In this case, even if the 528 

signal itself takes the idealized form shown in Fig 4, its shape after propagation may become 529 

distorted by the intrinsic processes of transcription. Motifs are under selection to handle this 530 

distortion.  531 

 532 

To enforce indirect regulation, we ran simulations in which the signal was not allowed to bind to 533 

the cis-regulatory sequence of effector genes. The fitness distribution of the evolutionary 534 

replicates has only one mode (S4 Fig), so we compared the highest fitness, lowest fitness, and 535 

median fitness replicates. In agreement with results when direct regulation is allowed, 536 

genotypes of low and medium fitness contain few AND-gated C1-FFLs, while high fitness 537 

genotypes contain many (Fig 8A, left). 538 

 539 
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 540 

Fig 8. Both AND-gated C1-FFLs and AND-gated diamonds (A) are associated with high fitness in 541 

complex networks under selection to filter out short spurious signals. Out of 115 simulations 542 

(S4 Fig), we took the 30 with the highest fitness (H), the 30 with the lowest fitness (L), and 30 of 543 

around median fitness (M). AND-gated motifs are scored while including weak TFBSs, near-AND-544 
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gated motifs are those scored only when these are excluded. It is possible for the same 545 

genotype to contain one of each, resulting in overlap between the red AND-gated columns and 546 

the dotted near-AND-gated columns. Weak TFBSs upstream, i.e. not in the effector, are shown 547 

both included (B) and excluded (C). See S1 Text section 10 for y-axis calculation details. Error 548 

bars show mean±SE over replicate evolutionary simulations. 549 

 550 

While visually examining the network context of these C1-FFLs, we discovered that many were 551 

embedded within AND-gated “diamonds” to form “FFL-in-diamonds” (Fig 8A right). This led us 552 

to discover that AND-gated diamonds also occurred frequently without AND-gated C1-FFLs to 553 

form “isolated diamonds” (Fig 8A middle). Note that it is in theory possible, but in practice 554 

uncommon, for diamonds to be part of more complex conjugates. Systematically scoring the 555 

AND-gated isolated diamond motif confirmed its high occurrence (Fig 8B, middle).  556 

 557 

An AND-gated C1-FFL integrates information from a short/fast regulatory pathway with 558 

information from a long/slow pathway, in order to filter out short spurious signals. A diamond 559 

achieves the same end of integrating fast and slow transmitted information via differences in 560 

the gene expression dynamics of the two regulatory pathways, rather than via topological length 561 

(Fig 9).  562 

 563 

Note that a simple transcriptional cascade, signal -> TF -> effector, has also been found 564 

experimentally to filter out short spurious signals, e.g. when the intermediate TF is rapidly 565 

degraded, dampening the effect of a brief signal [62]. Two such transcriptional cascades 566 

involving different intermediate TFs form a diamond, so the utility of a single cascade is a 567 

potential explanation for the high prevalence of double-cascade diamonds. However, in this 568 
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case we would have no reason to expect marked differences in expression dynamics between 569 

the two TFs, as illustrated in Fig 9. We will also see below that AND-gates evolve between the 570 

two cascades. 571 

 572 

 573 

Fig 9. The two intermediate TFs in an AND-gated “diamond” motif have different expression 574 

dynamics and propagate the signal at different speeds. The expression of the two TFs in one 575 

representative AND-gated isolated diamond from a high-fitness genotype in Fig 8B is shown. 576 

Each TFs is a different protein, and each is encoded by 3 gene copies, shown separately in 577 

colors, with the total in thick black. The expression of one TF plateaus faster than that of the 578 

other; this is characteristic of the AND-gated diamond motif, and leads to the same functionality 579 

as the AND-gated C1-FFL. The two TFs are indistinguishable topologically, but can be easily and 580 
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reliably assigned identities as “fast” and “slow” by using the fact that the fast TF degrades faster 581 

(has higher rprotein_deg). We use the geometric mean rprotein_deg over gene copies of a TF in order to 582 

differentiate the two TFs for analysis in Fig 9 and elsewhere.  583 

 584 

Weak TFBSs make motif scoring more difficult 585 

Results depend on whether we include weak TFBSs when scoring motifs. Weak TFBSs can either 586 

be in the effector’s cis-regulatory region, affecting how the regulatory logic is scored, or 587 

upstream, affecting only the presence or absence of motifs. When a motif is scored as AND-588 

gated only when two-mismatch TFBSs in the effector are excluded, we call it a “near-AND-589 

gated” motif. Recall from Fig 3B that effector expression requires two TFs to be bound, with 590 

only one TFBS of each type creating an AND-gate. When a second, two-mismatch TFBS of the 591 

same type is present, we have a near-AND-gate. TFs may bind so rarely to this weak affinity TFBS 592 

that its presence changes little, making the regulatory logic still effectively AND-gated. A near-593 

AND-gated motif may therefore evolve for the same adaptive reasons as an AND-gated one. Fig 594 

8B and C shows that both AND-gated and near-AND-gated motifs are enriched in the high fitness 595 

genotypes. 596 

 597 

When we exclude upstream weak TFBSs while scoring motifs, FFL-in-diamonds are no longer 598 

found, while the occurrence of isolated C1-FFLs and diamonds increases (Fig 8C). This makes 599 

sense, because adding one weak TFBS, which can easily happen by chance alone, can convert an 600 

isolated diamond or C1-FFL into a FFL-in-diamond (added between intermediate TFs, or from 601 

signal to slow TF, respectively).  602 

 603 
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AND-gated isolated C1-FFLs appear mainly in the highest fitness outcomes, while AND-gated 604 

isolated diamonds appear in all fitness groups (Fig 8C), suggesting that diamonds are easier to 605 

evolve. 18 out of 30 high-fitness evolutionary replicates are scored as having a putatively 606 

adaptive AND-gated or near-AND-gated motif in at least 50% of their evolutionary steps when 607 

upstream weak TFBSs are ignored (close to addition of bars in Fig 8C, because these two AND-608 

gated motifs rarely coexist in a high-fitness genotype). The remaining 12 have more complex 609 

arrangements of weak TFBSs that mimic a single strong one. 610 

 611 

Just as for the AND-gated C1-FFLs evolved under direct regulation and analyzed in Fig 6, 612 

perturbation analysis supports an adaptive function for AND-gated C1-FFLs and diamonds 613 

evolved under indirect regulation (Fig 10A.i, 10B.i). Breaking the AND-gate logic of these motifs 614 

by adding a (strong) TFBS to the effector cis-regulatory region reduces the fitness under the 615 

spurious signal but increases it under the constant “ON” beneficial signal, resulting in a net 616 

decrease in the overall fitness.  617 

 618 

If we add a two-mismatch TFBS instead, this converts an AND-gated motif to a near-AND-gated 619 

motif. This lowers fitness only when the extra link is from the slow TF to the effector, and not 620 

when the extra link is from the fast TF to the effector (Fig 10B.ii, 10C.ii). Indeed, these extra 621 

links are tolerated during evolution too: if we take the 7 high-fitness replicates that contain a 622 

near-AND-gated C1-FFL in at least 5% of the evolutionary steps, in all 7 cases this motif is near-623 

AND-gated rather than AND-gated because of an extra weak TFBS for the fast TF, while this is 624 

never due to a weak TFBS for the slow TF in C1-FFLs. Similarly, out of the 20 high-fitness 625 

replicates that contain a near-AND-gated diamond, 11 cases are primarily because of an extra 626 

weak TFBS of the fast TF, 9 cases (all of them OR-gated) are because of weak TFBSs for both TFs, 627 
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and no cases are primarily due to an extra TFBS for the slow TF. By chance alone, fast and slow 628 

TF should be equally likely to contribute the weak TFBS that makes a motif near-AND-gated 629 

rather than AND-gated. This non-random occurrence of weak TFBSs creating near-AND-gates 630 

illustrates how even weak TFBSs can be shaped by selection against some (but not all) motif-631 

breaking links. 632 
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Fig 10. Perturbation analysis shows that AND-gated C1-FFLs (A) and diamonds (B) filter out 633 

short spurious signals. We add a strong TFBS (i) or a two-mismatch TFBS (ii) or (iii); the latter 634 

creates near-AND-gated motifs. Allowing the effector to respond to the slow TF alone slightly 635 

increases the ability to respond to the signal, but leads to a larger loss of fitness when effector 636 

expression is undesirable. Allowing the effector to respond to the fast TF alone does so only 637 

when the conversion uses a strong TFBS not a two-mismatch TFBS. (A) We perform the 638 

perturbation on 5 of the 11 high-fitness replicates from Fig 8B that evolved an AND-gated C1-639 

FFL. (B) (i) and (ii) are based on 4 of the 26 high-fitness replicates from selection to filter out 640 

short spurious external signals (Fig 8B), (iii) is based on 18 of the 31 replicates from selection for 641 

signal recognition in the absence of an external spurious signal (Fig 11B). The 26 and 31 642 

replicates were the ones with AND-gated diamond. Replicate exclusion was based on the co-643 

occurrence of other motifs with the potential to confound results (see S1 Text section 11 for 644 

details). Data are shown as mean±SE of the averaged fitness over replicate evolutionary 645 

simulations.  646 

 647 

AND-gated isolated diamonds also evolve in the absence of external spurious signals 648 

We simulated evolution under the same three control conditions as before, this time without 649 

allowing the signal to directly regulate the effector. In the “no spurious signal” and “harmless 650 

spurious signal” control conditions, motif frequencies are similar between low and high fitness 651 

genotypes (S5 Fig, S6 Fig), and so our analysis includes all evolutionary replicates. When weak 652 

(two-mismatch) TFBSs are excluded, AND-gated isolated C1-FFLs are seen only after selection 653 

for filtering out a spurious signal, and not under other selection conditions (Fig 11A). However, 654 

AND-gated isolated diamonds also evolve in the absence of spurious signals, indeed at even 655 

higher frequency (Fig 11B). Results including weak TFBSs are similar (S7 Fig).  656 
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Perturbing the AND-gate logic in these isolated diamonds reduces fitness via effects in the 657 

environment where expressing the effector is deleterious (Fig 10B.iii). Even in the absence of 658 

external short spurious signals, the stochastic expression of intermediate TFs might effectively 659 

create short spurious signals when the external signal is set to “OFF”. It seems that AND-gated 660 

diamonds evolve to mitigate this risk, but that AND-gated C1-FFLs do not. The duration of 661 

internally generated spurious signals has an exponential distribution, which means that the 662 

optimal filter would be one that does not delay gene expression [63]. The two TFs in an AND-663 

gated diamond can be activated simultaneously, but they must be activated sequentially in an 664 

AND-gated C1-FFL; the shorter delays possible with AND-gated diamonds might explain why 665 

only diamonds and not FFLs evolve to filter out intrinsic noise in gene expression.  666 

 667 

 668 

Fig 11. Selection for filtering out a short spurious signal is the primary way to evolve AND-669 

gated isolated C1-FFLs (A), but AND-gated isolated diamonds also evolve in the absence of 670 

spurious signals (B). The selection conditions are the same as in Fig 7, but we do not allow the 671 

signal to directly regulate the effector. When scoring motifs, we exclude all two-mismatch 672 

TFBSs; more comprehensive results are shown in S7 Fig. See S1 Text section 10 for the 673 

calculation of y-axis. Data are shown as mean±SE over evolutionary replicates. n = 30 for 674 
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“Neutral”, n = 50 for “No spurious signal”, and n = 60 for “Harmless spurious signal”. We reused 675 

data from Fig 8 for “Spurious signal filter required (high fitness)”, n = 30. 676 

 677 

 678 

Discussion 679 

There has never been sufficient evidence to satisfy evolutionary biologists that motifs in TRNs 680 

represent adaptations for particular functions. Critiques by evolutionary biologists to this effect 681 

[13-23] have been neglected, rather than answered, until now. While C1-FFLs can be conserved 682 

across different species [64-67], this does not imply that specific “just-so” stories about their 683 

function are correct. In this work, we study the evolution of AND-gated C1-FFLs, which are 684 

hypothesized to be adaptations for filtering out short spurious signal [3]. Using a novel and more 685 

mechanistic computational model to simulate TRN evolution, we found that AND-gated C1-FFLs 686 

evolve readily under selection for filtering out a short spurious signal, and not under control 687 

conditions. Our results support the adaptive hypothesis about C1-FFLs. 688 

 689 

Previous studies have also attempted to evolve adaptive motifs in a computational TRN, 690 

successfully under selection for circadian rhythm and for multiple steady states [68], and 691 

unsuccessfully under selection to produce a sine wave in response to a periodic pulse [23]. Our 692 

successful simulation might offer some methodological lessons, especially a focus on high-693 

fitness evolutionary replicates, which was done by us and by Burda et al. [68] but not by Knabe 694 

et al. [23]. Knabe et al. [23] suggested that including a cost for gene expression may suppress 695 

unnecessary links and promote motifs. However, we found AND-gated C1-FFLs still evolve in the 696 

high-fitness genotypes under selection for filtering out a spurious signal, even when there is no 697 

cost of gene expression (S8 Fig).  698 
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 699 

AND-gated C1-FFLs express an effector after a noise-filtering delay when the signal is turned on, 700 

but shut down expression immediately when the signal is turned off, giving rise to a “sign-701 

sensitive delay” [3, 7]. Rapidly switching off has been hypothesized to be part of their selective 702 

advantage, above and beyond the function of filtering out short spurious signals [63]. We 703 

selected only for filtering out a short spurious signal, and not for fast turn-off, and found that 704 

this was sufficient for the adaptive evolution of AND-gated C1-FFLs. 705 

 706 

Most previous research on C1-FFLs has used an idealized implementation (e.g. a square wave) of 707 

what a short spurious signal entails [4, 63, 69]. In real networks, noise arises intrinsically in a 708 

greater diversity of forms, which our model does more to capture. Even when a “clean” form of 709 

noise enters a TRN, it subsequently gets distorted with the addition of intrinsic noise [70]. 710 

Intrinsic noise is ubiquitous and dealing with it is an omnipresent challenge for selection. 711 

Indeed, we see adaptive diamonds evolve to suppress intrinsic noise, even when we select in 712 

the complete absence of extrinsic spurious signals. 713 

 714 

Our model, while complex for a model and hence capable of capturing intrinsic noise, is 715 

inevitably less complex than the biological reality. However, we hope to have captured key 716 

phenomena, albeit in simplified form. E.g., a key phenomenon is that TFBSs are not simply 717 

present vs. absent but can be strong or weak, i.e. the TRN is not just a directed graph, but its 718 

connections vary in strength. Our model, like that of Burda et al. [68] in the context of circadian 719 

rhythms, captures this fact by basing TF binding affinity on the number of mismatch deviations 720 

from a consensus TFBS sequence. While in reality, the strength of TF binding is determined by 721 

additional factors, such as broader nucleic context and cooperative behavior between TFs 722 
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(reviewed in Inukai et al. [71]), these complications are unlikely to change the basic dynamics of 723 

frequent appearance of weak TFBSs and enhanced mutational accessibility of strong TFBSs from 724 

weak ones. Similarly, AND-gating can be quantitative rather than qualitative [72], a 725 

phenomenon that weak TFBSs in our model provide a simplified version of. Note that our 726 

model, while powerful in some ways, is computationally limited to small TRNs. 727 

Core links in adaptive motifs involve strong not weak TFBSs. However, weak (two-mismatch) 728 

TFBSs can create additional links that prevent an adaptive motif from being scored as such. 729 

Some potential additional links are neutral while others are deleterious; the observed links are 730 

thus shaped by this selective filter, without being adaptive. Note that there have been 731 

experimental reports that even weak TFBSs can be functionally important [73, 74]; these might, 732 

however, better correspond to 1-mismatch TFBSs in our model than two-mismatch TFBSs. 733 

Ramos et al. [74] and Crocker et al. [73] identified their “weak” TFBSs in comparison to the 734 

strongest possible TFBS, not in comparison to the weakest still showing affinity above baseline. 735 

 736 

A striking and unexpected finding of our study was that AND-gated diamonds evolved as an 737 

alternative motif for filtering out short spurious external signals, and that these, unlike FFLs, 738 

were also effective at filtering out intrinsic noise. Diamonds are not overrepresented in the TRNs 739 

of bacteria [2] or yeast [75], but are overrepresented in signaling networks (in which post-740 

translational modification plays a larger role) [76], and in neuron networks [1]. In our model, we 741 

treated the external signal as though it were a transcription factor, simply as a matter of 742 

modeling convenience. In reality, signals external to a TRN are by definition not TFs (although 743 

they might be modifiers of TFs). This means that our indirect regulation case, in which the signal 744 

is not allowed to directly turn on the effector, is the most appropriate one to analyze if our 745 

interest is in TRN motifs that mediate contact between the two. Note that if we were to score 746 
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the signal as not itself a TF, we would observe adaptive C1-FFLs but not diamonds in this case, in 747 

agreement with the TRN data. However, this TRN data might miss functional diamond motifs 748 

that spanned levels of regulatory organization, i.e. that included both transcriptional and other 749 

forms of regulation. The greatest chance of finding diamonds within TRNs alone come from 750 

complex and multi-layered developmental cascades, rather than bacterial or yeast [77]. Multiple 751 

interwoven diamonds are hypothesized to be embedded with multi-layer perceptrons that are 752 

adaptations for complex computation in signaling networks [30]. 753 

 754 

The function of a motif relies ultimately on its dynamic behavior, with topology merely a means 755 

to that end. The C1-FFL motif is based on two pathways between signal and effector, one much 756 

faster than the other, which is achieved by making them different lengths. This same function 757 

was achieved non-topologically in our adaptively evolved diamond motifs. Multiple motifs have 758 

previously been found capable of generating the same steady state expression pattern [21]; 759 

here we find multiple motifs for a much more complex function. 760 

 761 

It is difficult to distinguish adaptations from “spandrels” [8]. Standard procedure is to look for 762 

motifs that are more frequent than expected from some randomized version of a TRN [2, 78]. 763 

For this method to work, this randomization must control for all confounding factors that are 764 

non-adaptive with respect to the function in question, from patterns of mutation to a general 765 

tendency to hierarchy – a near-impossible task. Our approach to a null model is not to 766 

randomize, but to evolve with and without selection for the specific function of interest. This 767 

meets the standard of evolutionary biology for inferring the adaptive nature of a motif [13-23]. 768 

 769 

 770 
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Supporting information 989 

S1 Fig. Examples of evolved phenotypes under selection for filtering out a short spurious 990 

signal. The figure shows the average expression of the effector protein over 200 replicate 991 

developmental simulations in each of the two environments. A high-fitness phenotype and a 992 

low-fitness phenotype, as defined in Fig 5, are shown for comparison. The signal is allowed to 993 

directly regulate the effector in these simulations. 994 

 995 

S2 Fig. Representative fitness trajectories under selection to filter out short spurious signals. 996 

(A) The signal is allowed to directly regulate the effector genes. (B) The signal cannot directly 997 

regulate the effector genes. Note the average is weighted, with environment 2 being considered 998 

twice as common as environment 1. 999 

 1000 

S3 Fig. Genotypes evolved under control selective conditions: (A) “harmless spurious signal”, 1001 

and (B) “no spurious signal”. There is no clear evidence of a multimodal distribution of fitness 1002 

outcomes among replicates (left), and C1-FFLs occur equally in the 10 genotypes of the highest 1003 

fitness vs. the 10 genotypes of the lowest fitness (right), and so the entire distribution (left) was 1004 

used to produce Fig 7. Data are shown as mean±SE over evolutionary replicates. 1005 

 1006 

S4 Fig. Fitness distrbution of 115 evolutionary replicates under selection for filtering out short 1007 

spurious signals, when the signal cannot directly regulate the effector. The fitness of a 1008 

replicate is the average genotype fitness over the last 10,000 evolutionary steps. Colors indicate 1009 

replicates analyzed elsewhere. 1010 

 1011 
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S5 Fig. Evolution when responding to a spurious signal is harmless, when the signal is not 1012 

allowed to directly regulate the effector. (A) Fitness distribution of 60 replicate simulations. 1013 

The occurrence of both (B) FFL-in-diamonds and (C) isolated diamonds were similar in the 10 1014 

genotypes with the highest fitness vs. in 10 genotypes with the lowest fitness. Weak (two-1015 

mismatch) TFBSs are included when scoring motifs. Data are shown as mean±SE over replicates. 1016 

Isolated C1-FFLs rarely evolve under this condition, therefore their occurrence is not plotted. 1017 

 1018 

S6 Fig. Evolution when there is no spurious signal, when the signal is not allowed to directly 1019 

regulate the effector. (A) Fitness distribution of 50 replicate simulations. The occurrence of both 1020 

(B) FFL-in-diamonds and (C) isolated diamonds were similar in the 10 genotypes with the highest 1021 

fitness vs. in the 10 genotypes with the lowest fitness. Weak (two-mismatch) TFBSs are included 1022 

when scoring motifs. Data are shown as mean±SE over replicates. Isolated C1-FFLs rarely evolve 1023 

under this condition, therefore their occurrence is not plotted. 1024 

 1025 

S7 Fig. Selection for filtering out a short spurious signal is the primary way to evolve AND-1026 

gated C1-FFLs (A), but AND-gated isolated diamonds also evolve in the absence of spurious 1027 

signals (B). The signal is not allowed to directly regulate the effector, and the right hand sides of 1028 

(A) and (B) are identical to Fig 11. When scoring motifs, we either include (left) or exclude (right) 1029 

all two-mismatch TFBSs in the cis-regulatory sequences of intermediate TF genes and effector 1030 

genes. See S1 Text section 10 for the calculation of y-axis. Data are shown as mean±SE over 1031 

evolutionary replicates. 1032 

 1033 

S8 Fig. After removing the cost of gene expression, AND-gated C1-FFLs are still associated with 1034 

a successful response to selection for filtering out a short spurious signal. The signal can 1035 
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directly regulate the effector genes. (A) Distribution of fitness outcomes across 46 replicate 1036 

simulations. (B) 10 out of 13 replicates with the highest fitness [the 13 replicates are in red in 1037 

(A)] still evolve AND-gated C1-FFLs. Replicates with the 4th, 6th, and 8th highest fitness evolve the 1038 

motif shown in (C) rather than AND-gated C1-FFLs. The “high-fitness” group therefore replace 1039 

the three replicates with replicates with the 11th to 13th highest fitness. Bars are mean±SE of the 1040 

occurrence ove replicate evolutionary simulations. 5 replicates [blue in (A)] with the lowest 1041 

fitness do not contain AND-gated C1-FFLs or the motif in (C). (C) AND-gated C1-FFLs with a long 1042 

arm. Note that both S and B need to be present to induce the expression of E, therefore this 1043 

motif can also act as spurious signal filter. 1044 

 1045 

S1 Text. Additional details of the model and algorithms 1046 
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