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Abstract

Darwinian evolution consists of the gradual transformation of heritable traits due to natural selection and

the input of random variation by mutation. Here, we use a quantitative genetics approach to investigate

the coevolution of multiple quantitative traits under selection, mutation, and limited dispersal. We track

the dynamics of trait means and variance-covariances between traits that experience frequency-dependent

selection. Assuming a multivariate-normal trait distribution, we recover classical dynamics of quantitative

genetics, as well as stability and evolutionary branching conditions of invasion analyses, except that due to

limited dispersal, selection depends on indirect fitness effects and relatedness. In particular, correlational se-

lection that associates different traits within-individuals depends on the fitness effects of such associations

between-individuals. We find that these kin selection effects can be as relevant as pleiotropy for the evolution

of correlation between traits. We illustrate this with an example of the coevolution of two social traits whose

association within-individuals is costly but synergistically beneficial between-individuals. As dispersal be-

comes limited and relatedness increases, associations between-traits between-individuals become increas-

ingly targeted by correlational selection. Consequently, the trait distribution goes from being bimodal with a

negative correlation under panmixia to unimodal with a positive correlation under limited dispersal.

Keywords. Island model, G-matrix evolution, evolutionary branching, division of labour, social evolution

1 Introduction

Understanding how heritable quantitative traits are molded by natural selection and mutation has been a long-

standing goal of evolutionary biology. This research endeavour has led to an abundant theoretical literature

that seeks to understand the roles of ecology and genetics in the gradual transformation of quantitative phe-

notypes. Notwithstanding this abundance, models of gradual evolution usually follow one of two approaches,

depending on whether the focus is put on ecological or genetic processes.

One approach consists in investigating the invasion success of a rare phenotypic mutant (i.e., an evolution-

ary invasion analysis, e.g. Michod, 1979, Eshel and Feldman, 1984, Parker and Smith, 1990, Eshel et al., 1997;

also referred to as “Adaptive Dynamics”, e.g., Dercole and Rinaldi, 2008, for a textbook treatment) and places

emphasis on ecology (or on how organisms interact with one another via effects on resources and the envi-

ronment). In most practical applications, this emphasis comes at the expense of genetics realism. In particu-

lar, trait dynamics inferred from invasion analyses most often assume that mutations have weak quantitative

effects and are so rare (relative to the strength of selection) that at most two alleles can segregate in the pop-

ulation. In this case, a sensitivity analysis of the invasion fitness of a rare mutant in a resident monomorphic
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population that is at its ecological equilibrium (e.g., Michod, 1979, Eshel and Motro, 1981, Eshel and Feldman,

1984, Taylor, 1989, Parker and Smith, 1990, Charlesworth, 1994) can be used to understand gradual trait evo-

lution and the ecological transformations due to this evolution (Metz et al., 1996, Geritz et al., 1998, Rousset,

2004, Dercole and Rinaldi, 2008, Metz, 2011). Evolutionary invasion analysis is therefore particularly well-

suited to investigate the evolution of traits under ecological feedbacks and the frequency-dependent selection

that emerges due to such feedbacks (e.g., Kisdi and Geritz, 2009, Lion, 2018, and references therein). This

approach has revealed that in the presence of trade-offs, gradual evolution under ecological feedbacks often

leads to the emergence of polymorphism. Here, the population evolves under directional selection to express

a trait value such that any rare mutant has an advantage over the common resident (Eshel and Motro, 1981,

Eshel, 1983, Taylor, 1989, Christiansen, 1991, Abrams et al., 1993b). As a result, the population subsequently

splits into two lineages of distinct phenotypes, or morphs, in a process referred to as evolutionary branching

(Geritz et al., 1998; see Rueffler et al., 2006, Kisdi and Geritz, 2009, for reviews).

By contrast to invasion analysis, evolutionary quantitative genetics models of gradual evolution tend to be

more preoccupied with the genetic basis of traits (Roff, 1997, Lynch and Walsh, 1998). Importantly, quanti-

tative genetics models envisage that substantial heritable phenotypic variation segregates in the population.

The continuum-of-alleles model, in particular, posits that quantitative traits are determined by a continuum

of possible alleles produced by mutation (e.g., Kimura, 1965b, Latter, 1970, Fleming, 1979, Bürger, 1986). A

quantitative genetics approach aims to investigate the roles of selection and mutation in the gradual evolution

of a phenotypic distribution of arbitrary complexity. Due to the complication of dealing with multiple pheno-

typic variants, however, analytical explorations of quantitative genetics models usually come at the expense

of generality. Notably, the vast majority of quantitative genetics models of traits under frequency-dependent

selection, which either is implicit or emerges from ecological interactions, focuses on the evolution of mean

phenotypic values in the population, assuming that heritable phenotypic variation is constant (i.e., additive

genetic variances and covariances are fixed, e.g., Lande, 1976, 1981, Iwasa et al., 1991, Gomulkiewicz and Kirk-

patrick, 1992, Abrams et al., 1993a, Iwasa and Pomiankowski, 1995, Day and Taylor, 1996, Tazzyman and Iwasa,

2009, Nuismer et al., 2010, Connallon, 2015).

But phenotypic variance should be especially sensitive to frequency-dependent selection. This is because

such selection either favors or disfavors rare variants that differ from the most common, and thus either in-

creases or decreases trait variance (Slatkin, 1980, Taper and Chase, 1985, Taylor and Day, 1997, Day and Proulx,

2004, Sasaki and Dieckmann, 2011, Wakano and Iwasa, 2013, Wakano and Lehmann, 2014, Débarre et al., 2014,

Débarre and Otto, 2016). In fact, recent quantitative genetics models investigating populations of individu-

als experiencing frequency-dependent interactions have revealed links between the dynamics of phenotypic

variance and evolutionary branching (Sasaki and Dieckmann, 2011, Wakano and Iwasa, 2013, Wakano and

Lehmann, 2014, Débarre et al., 2014, Débarre and Otto, 2016), thereby extending the links between the dy-

namics of the phenotypic mean in quantitative genetics models and directional selection in invasion analysis

models (Charlesworth, 1990, Iwasa et al., 1991, Taper and Case, 1992, Abrams et al., 1993a; for reviews: Abrams,

2001, Lion, 2018). Specifically, evolutionary branching occurs in a quantitative genetics model when the phe-

notypic variance is predicted to grow without bound while the phenotypic mean is held constant, under the

assumption that the phenotypic distribution is normal (this assumption allows to only have to consider the

dynamics of the mean and variance of the phenotypic distribution, Wakano and Iwasa, 2013, Wakano and

Lehmann, 2014, Débarre et al., 2014, Débarre and Otto, 2016). As evolutionary branching occurs, the vari-

ance may in fact converge to a bounded value (see Fig. 2e-f of Débarre and Otto, 2016), but these dynamics

cannot be captured by models that assume that the phenotypic distribution is normal and thus unimodal (in-

stead of a bi- or multi-modal distribution; see Sasaki and Dieckmann, 2011 and Appendix D of Débarre and

Otto, 2016 for a relaxation of the unimodal assumption). In spite of this limitation, quantitative genetics ap-

proaches have been useful to investigate relevant factors for frequency-dependent selection and evolutionary

branching, such as genetic drift (with fixed, Wakano and Iwasa, 2013, or fluctuating, Débarre and Otto, 2016,

population size) or the interaction between multiple traits (Débarre et al., 2014).

One factor that is particularly relevant for frequency-dependent interactions is limited dispersal. This is be-

cause limited dispersal creates genetic structure, whereby individuals that interact and compete with one an-

other are more likely to share identical alleles at loci determining social or competitive traits than individuals
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randomly sampled from the population, resulting in kin selection on traits (Hamilton, 1964, Michod, 1982,

Frank, 1998, Rousset, 2004). Using an invasion analysis, a number of models have investigated the conditions

that lead to disruptive selection (usually followed by evolutionary branching) due to frequency-dependent

interactions among individuals under limited dispersal (Day, 2001, Ajar, 2003, Rousset, 2004, Mullon et al.,

2016, Parvinen et al., 2018; see also Svardal et al., 2015 for evolutionary branching due to spatial and temporal

heterogeneities in selection but without kin selection). Using a quantitative genetics approach, Wakano and

Lehmann (2014) (WL14 hereafter) found branching conditions equivalent to those obtained from invasion

analysis by studying the dynamics of the variance of a trait under limited dispersal. The analysis of frequency-

dependent and disruptive selection under limited dispersal has helped reveal further connections between in-

vasion analysis and fundamental branches of evolutionary theory. In particular, Ajar (2003), WL14 and Mullon

et al. (2016) expressed disruptive selection coefficients in terms of relatedness coefficients, which are quanti-

ties central to population genetics, kin selection and social evolution theory (i.e., the evolution of traits that

influence the fitness of their actor and recipient, such as helping or harming, e.g., Hamilton, 1964, Frank, 1998,

Rousset, 2004, Wenseleers, 2010; see also Kisdi, 2016 for a kin selection perspective on evolutionary branching

of dispersal).

In this paper, we incorporate two additional factors that have previously been omitted in the gradual evolution

of quantitative traits when selection is frequency-dependent and dispersal is limited. First, we consider the

joint evolution of multiple traits (whereas WL14 focuses on a single trait). This enables us to investigate how

phenotypic covariances among traits within individuals are molded by frequency-dependent selection and

pleiotropic mutations (i.e., when traits share a common genetic basis so that mutations have correlated effects

across traits). Second, we model the coupled dynamics of the phenotypic means and (co)variances (whereas

WL14 looks at the dynamics of the variance only once selection on means is negligible). This allows for a more

complete picture of the dynamics of the phenotypic distribution. By expressing these dynamics in terms of

relatedness coefficients, we further connect kin selection theory with the evolutionary quantitative genetics of

multiple traits (Lande, 1979, Lande and Arnold, 1983, Phillips and Arnold, 1989, Brodie et al., 1995; in particular

with the evolution of the G-matrix of additive genetic variance-covariance, Steppan et al., 2002, Arnold et al.,

2008)

The rest of this paper is organized as follows. We describe the life-cycle and population structure under con-

sideration in section 2. Our first result, presented in section 3.1, is an equation for the one-generational change

of a multi-variate phenotypic distribution under limited dispersal, mutation, and selection. Next, in section

3.2, we present a closed dynamical system for the mean vector and variance-covariance matrix of the phe-

notypic distribution, under the assumption that the distribution in the whole population is normal. Further,

we express this dynamical system in terms of effects on individual fitness and relatedness in section 3.3, and

highlight some equilibrium properties of our dynamical system in section 3.4. In section 3.5, we apply our

framework to study the coevolution of two traits that have socially synergistic effects between individuals. Fi-

nally, we discuss the implications of our results for understanding patterns of intra-specific variation, with

special reference to social and competitive traits.

2 Model

We consider a population of haploid individuals, divided among an infinite number of groups, each of fixed

size N (the total population size is therefore constant). Each individual bears a multidimensional phenotype

that consists of n genetically determined quantitative traits. The discrete-time life cycle of this population is

as follows. (1) Groups may go extinct (in which case all N adult individuals in a group die before reproduction)

and do so independently of one another. (2) Adults reproduce clonally (producing offspring in sufficient num-

ber for the size of each group in the population to be N by the end of the life cycle) then either survive or die,

which frees up breeding spots. (3) The phenotype of each individual independently mutates with probability

ν, causing a random quantitative deviation in trait values. (4) Each offspring either remains in its natal group,

or disperses to another randomly chosen group (i.e., we consider the island model of dispersal, Wright, 1931,
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Rousset, 2004). (5) Offspring compete locally in each group to fill open breeding spots, if any.

This life-cycle allows for one, several, or all adults to die per life-cycle iteration (including through whole group

extinction before reproduction). Generations can thus overlap but the expression of traits is assumed to be

independent of age (e.g., the fertility or mortality of an individual is independent from its age and that of any

other individual it interacts with). Dispersal can occur before or after density-dependent competition (as long

as the number of adults in each groups remains constant), and in groups, so that more than one offspring

from the same natal patch can establish in a non-natal patch. This life cycle is equivalent to that considered in

Mullon et al. 2016, except that here, we allow for the constant input of mutations in the population (step 3 of

the life cycle).

3 Results

3.1 Dynamics of the phenotypic distribution

In order to track phenotypic evolution in the population, we denote by pt(z) the phenotypic density distribu-

tion in the population at a demographic time point t , where z = (z1, z2, . . . , zn) ∈ R
n is a vector collecting the

variable za for each trait a = 1, . . . ,n. To capture group structure, we introduce the density distribution φt of

phenotypic groups states in the population at time t (i.e., φt(z1,z2, . . . ,zN) is the probability density distribu-

tion of groups in which individuals arbitrarily labelled 1 to N have phenotypes z1,z2, . . . ,zN , respectively, see

Appendix eq. A-3 for more details).

In Appendix A, we show that the recurrence equation for the phenotypic distribution in the population from

demographic time step t to t +1 (one iteration of the life cycle) can be expressed as

pt+1(z) = (1−ν)W(z,φt)pt(z)+ν∫
Rn

v(z′,z)W(z′,φt)pt(z′)dz′. (1)

The first summand represents changes in the distribution due to reproduction and survival of individuals that

have not mutated (with probability 1−ν), and the second summand, changes due to those that have (with

probability ν; and where v(z′,z) denotes the probability density function for the event that an individual mu-

tates from z′ to z given that a mutation has occurred). The quantity W(z,φt) in eq. (1) is a measure of fit-

ness of phenotype z, which depends on the way phenotypes are distributed across groups (i.e., on φt ). When

W(z,φt) > 1, the frequency of z in the population increases due to selection, and conversely decreases when

W(z,φt) < 1.

To gain insights into the fitness measure W(z,φt), note that recurrence eq. (1) has the same form as the

classical recurrence of the phenotypic distribution in well-mixed populations under the continuum-of-alleles

model (e.g., Kimura, 1965b, eqs. 1-2; Fleming, 1979, eq. 2.4; Bürger, 1986, eq. 1; Taylor and Day, 1997, eq. 1;

Champagnat et al., 2006, eq. 4.1). In a well-mixed population of constant size, the fitness of phenotype z is

equal to the individual fitness of a focal individual with phenotype z; namely, its expected number of suc-

cessful offspring produced over one iteration of the life-cycle (including self through survival). Because indi-

viduals interact at random in a well-mixed population, such individual fitness function only depends on the

population wide phenotypic distribution, pt(z) (i.e., the phenotype of any group neighbor to a focal individ-

ual, captured by φt , is in fact independently and identically distributed according to pt(z)). The fitness of an

individual with phenotype z in a population with trait distribution pt(z) can thus be written as w(z, pt(z)),

and W(z,φt) = w(z, pt(z)) in eq. (1) (to distinguish between fitness at the phenotype and individual level, we

generically denote the former by an upper case W and the latter by a lower case w).

Defining individual fitness in terms of expected number of successful offspring is standard in social evolution

theory (e.g., Hamilton, 1964, Rousset, 2004), and takes its roots in population dynamics: when w(z, pt(z)) > 1,

the number of individuals with phenotype z increases and conversely decreases when w(z, pt(z)) < 1 (e.g.,

eq. 2.2 of Nagylaki 1992). As such, it is sometimes referred to as “absolute” fitness. Many quantitative ge-
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netics models, by contrast, employ the notion of “relative” fitness to track changes in phenotypic frequen-

cies. This can stem from two non-mutually exclusive modelling choices: (1) one in fact considers the effect of

the phenotype on a vital rate, f (z, pt(z)) (such as fecundity or offspring survival), that influences the num-

ber of offspring that enter competition before regulation, which requires normalisation by mean vital rate,

W(z,φt) = w(z, pt(z)) = f (z, pt(z))/[∫ f (z, pt(z))pt(z)dz]; (2) the population size fluctuates, in which case

it is necessary to normalise by mean fitness, W(z,φt) = w(z, pt(z))/[∫ w(z, pt(z))pt(z)dz]. In our model,

because group size and therefore population size is constant, W(z,φt) in eq. (1) can be viewed as an absolute

measure of fitness.

In contrast to a well-mixed population, the fitness of an individual w in a dispersal-limited group-structured

population depends on the way phenotypes are distributed across groups (so on φt ), and specifically on the

collection of phenotypes carried by the individuals that belong to its own group. The fitness of an individual

with phenotype z in a population with group distribution given by φt can thus be written as wµ(z,φt), where

µ is the collection of phenotypes carried by individuals in the focal group (formally, µ is a counting measure

in our analysis – see Appendix A.1.2 – but for the purpose of the main text, it can simply be thought of as the

phenotypic composition of the focal group). In terms of this individual fitness function, we find that the fitness

at the level of the phenotype that is relevant for phenotypic dynamics, W(z,φt) in eq. (1), is

W(z,φt) =∫ wµ(z,φt)q(µ∣z,φt)dµ, (2)

where the integral runs through every possible group state, µ, and q(µ∣z,φt) is the probability density function

for the event that an individual randomly picked from the collection of all carriers of the z phenotype in the

population at time t resides in a group in state µ (see eq. A-17 in Appendix A for derivation). According to

eq. (2), W(z,φt) is the average expected number of successful offspring of an individual with phenotype z,

where the average is taken over all group states µ in which an individual with phenotype z can reside at time t .

An alternative interpretation for W(z,φt) can be reached by noting that because there is an infinite number

of possible alleles, all individuals with the same phenotype z belong to the same genetic lineage (as the same

allele cannot appear twice via mutation). The function q(µ∣z,φt) in eq. (2) then corresponds to the probability

that an individual sampled from this lineage at time t resides in a group in state µ. As such, W(z,φt) can be

interpreted as the average direct fitness of an individual randomly sampled from the lineage of individuals

carrying phenotype z at time t . If on average individuals from the z-lineage produce more than one successful

offspring at time t , this lineage will be larger at time t +1 and in a population of constant size, the frequency

of individuals with phenotype z will increase. The fitness measure W(z,φt) can thus be seen as the multi-

allelic version of the concept of a mutant’s lineage fitness used previously in invasion analyses (which turns

out to be equal to the mutant’s growth rate when the mutant is rare in an otherwise monomorphic population,

Mullon et al., 2016, Lehmann et al., 2016; see also Wild, 2011 for similar branching processes approach to

social evolution in group-structured populations). We will therefore refer to W(z,φt) as the lineage fitness (or

average direct fitness) of phenotype z, keeping in mind that unlike in invasion analyses, W(z,φt) here applies

for any frequency of z (rare or common) and for any population composition (monomorphic or polymorphic).

3.2 Tracking the dynamics of the phenotypic distribution

The dynamical equation for the phenotypic distribution eq. (1) has no straightforward solution, even when

the population is well-mixed (Kimura, 1965b, Fleming, 1979, Lande, 1979, Bürger, 1986). Under limited dis-

persal, this problem is further complicated by the necessity of simultaneously tracking the dynamics of group

composition φt . To proceed further in our analysis and track the dynamics of the phenotypic distribution, we

therefore make additional assumptions.
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3.2.1 Weak selection, weak mutation, normal closure and quasi-equilibrium of local genetic associations

We first assume that selection is weak, in the sense that the phenotypic variance in the population is small (al-

lowing for second-order approximation of lineage fitness, see Appendix B.1.1 for details, and Iwasa et al., 1991

for a similar approach for quantitative genetics of traits under frequency-dependent selection in well-mixed

populations). This enables us to express lineage fitness in terms of time-dependent local genetic associations

among individuals of the same group (i.e., relatedness coefficients), which capture relevant moments of the

distribution of group composition φt , and therefore avoids us having to keep track of the full distribution (see

eq. B-1-B-4). Next, we assume that mutations are rare, so that we can ignore the joint effects of selection and

mutation on the phenotypic distribution over one time period (see Appendix B.1.2).

Following previous authors (e.g., see Taylor and Day, 1997, Wakano and Iwasa, 2013, Débarre et al., 2014,

Wakano and Lehmann, 2014, Débarre and Otto, 2016, for social traits), we further assume that the processes

of selection and mutation are such that pt(z) is approximately multivariate normal (allowing for moment

closure, see Appendix B.2.1). The assumption of normality is a strong one but it is noteworthy that it does

not require that the realized distribution of phenotypes within a focal group at any given demographic time

period is normal. In addition, the assumption of normality has been shown to give accurate predictions for

the change of mean and variance, which is our main goal, even when selection generates significant devi-

ations from normality (in well-mixed populations, Turelli and Barton, 1994). Under the assumption of nor-

mality, the distribution pt(z) is characterised by its mean vector z̄t = (z̄1,t , z̄2,t , . . . , z̄n,t), whose a-entry is the

average value of trait a in the population at time period t , z̄a,t = ∫Rn za pt(z)dz; and its variance-covariance

matrix Gt whose (a,b)-entry is the (co)variance among traits a and b in the population at time period t ,

σab,t = ∫Rn(za − z̄a,t)(zb − z̄b,t)pt(z)dz. The dynamics of pt(z) can therefore be tracked through the dynamics

of its mean vector z̄t and variance-covariance matrix Gt .

But due to limited dispersal, the dynamics of z̄t and Gt still depend on time-dependent local genetic associa-

tions among individuals of the same group. To close evolutionary dynamics on z̄t and Gt and avoid tracking the

dynamics of these genetic associations, we assume that selection is weak relative to dispersal so that genetic

associations reach their steady state before significant changes have occurred in the phenotypic distribution,

pt(z) (see section B.2.2 for details). This “quasi-equilibrium” assumption, which is frequently used in popula-

tion genetic theory (e.g., Kimura, 1965a, Nagylaki, 1993, Kirkpatrick et al., 2002, Roze and Rousset, 2005, 2008),

finally allows us to characterize the dynamics of pt(z) entirely by the coupled dynamics of its mean vector z̄t

and variance-covariance matrix Gt .

3.2.2 Dynamics of phenotypic mean vector and variance-covariance matrix

Under the above assumptions, we show in Appendix B that the coupled changes of the mean trait vector and

variance-covariance matrix over one demographic time period are respectively given by

∆z̄t =Gt s(z̄t) (3a)

∆Gt = M +Gt (H(z̄t)− s(z̄t)s(z̄t)
T)Gt , (3b)

where s(z̄t) = (s1(z̄t), . . . , sn(z̄t))
T (.T denotes the transpose of a vector or matrix) is a n × 1 is vector of di-

rectional selection coefficients (or selection gradients), i.e., sa(z̄t) is the first-order, marginal, effect of an (in-

finitesimal) change in trait a away from the population mean z̄t on lineage fitness (sa(z̄t) = ∂W(z,φt)/∂za).

The n×n matrix M collects the effects of mutation; its (a,b)-entry,

(M)ab = ν∫
Rn

∫

Rn

(za − z′a)(zb − z′b)v(z′,z)dz′dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σm

ab

, (4)

is the product of the mutation probability, ν, with the (co)variance, σm
ab , in mutational effects on traits a and

b conditional on the appearance of a mutation (which captures the pleiotropic effects of mutations on a and

b: when σm
ab > 0, mutations tend to change a and b in a similar way; and when σm

ab < 0, in opposite ways).
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The n ×n Hessian matrix H(z̄t) collects the second-order effects of traits on lineage fitness; its (a,b)-entry

H(z̄t)ab = hab(z̄t) is the marginal effect of joint changes in traits a and b away from the population mean z̄t on

lineage fitness (hab(z̄t) = ∂
2W(z,φt)/(∂za∂zb)). Finally, the notation s(z̄t)s(z̄t)

T denotes the outer product

between two column vectors, so that s(z̄t)s(z̄t)
T is n×n matrix with (a,b)-entry sa(z̄t)sb(z̄t).

3.2.3 Directional, disruptive, and correlational selection coefficients

Dynamical equations (3) have the same form as in well-mixed populations (e.g., eqs. 1-2 of Phillips and Arnold,

1989, see also eq. 7 of Lande, 1979 and eqs. 6 and 15 of Lande and Arnold, 1983). In such models, the effects

of selection depend on the marginal effects of traits on individual rather than lineage fitness. Nevertheless,

the parallels between eq. (3) and previous works allow us to use the same vocabulary and interpretations on

the evolution of phenotypic means and (co)variances (Brodie et al., 1995). First, the evolution of the mean

of each trait (eq. 3a) depends on the vector of directional selection (or the selection gradient), s(z̄t), which

points in the direction favored by selection in multivariate phenotypic space (Lande, 1979). The effect of di-

rectional selection on the mean of each trait, however, is constrained by the genetic variation available and

these constraints are captured by Gt in eq. (3a) (Lande, 1979).

Second, the evolution of the variance-covariance matrix Gt (eq. 3b) depends on the effects of mutations (M), of

directional selection (s(z̄t)s(z̄t)
T), and of quadratic selection given by the matrix H(z̄t) (Lande, 1979, Lande

and Arnold, 1983, Phillips and Arnold, 1989). This matrix H(z̄t) captures two relevant features of selection.

First, the sign of its diagonal entry (a, a) indicates whether selection favors a decrease (when haa(z̄t) < 0)

or an increase (when haa(z̄t) > 0) in the variance of trait a when this trait evolves in isolation of other traits

(Phillips and Arnold, 1989), hence haa(z̄t) is referred to as the coefficient of disruptive selection on trait a.

Second, the off-diagonal entry (a,b) tells us whether selection favors a positive (when hab(z̄t) > 0) or negative

(when hab(z̄t) < 0) covariance or correlation among traits a and b. The off-diagonal entry hab(z̄t) is therefore

referred to as the coefficient of correlational selection among traits a and b (Lande and Arnold, 1983, Phillips

and Arnold, 1989).

3.3 Selection in terms of individual fitness effects and relatedness coefficients

So far, the effects of limited dispersal on evolutionary dynamics (eqs. 1 and 3) have been hidden behind the no-

tion of lineage fitness, W(z,φt). To highlight more tangibly how selection depends on limited dispersal, we ex-

press the selection coefficients (s(z̄t) and H(z̄t)) in terms of the effects of traits on individual fitness and relat-

edness. For this, let us first rewrite the individual fitness of a focal individual, that we label as individual "i ", as a

function w(zi ,z−i , z̄t) of three arguments: (1) the phenotype of the focal individual, zi = (zi ,1, zi ,2, . . . , zi ,n); (2)

the collection of phenotypes of its N −1 neighbors z−i = (z1, . . .zi−1,zi+1, . . . ,zN) (where z j = (z j ,1, z j ,2, . . . , z j ,n)

is the phenotype of a neighbor indexed j ); and (3) the average phenotype in the population z̄t (see eq. 15 for an

example of such a fitness function). This individual fitness function is equal to the fitness function wµ(z,φt)

that appears in eq. (2),

w(zi ,z−i , z̄t) = wµ(z,φt), (5)

when focal phenotype is zi = z, the state of the focal group is µ = {zi}∪ z−i = (z1, . . . ,zN), and groups other

than the focal one are considered to be monomorphic for the population average z̄t (i.e., we consider that

all individuals in other groups express z̄t so that the distribution φt is delta peaked on z̄t ; we can do this

because the phenotypic distribution is assumed to be centered around z̄t with small variance and individuals

from different groups interact at random in the island model; see Iwasa et al., 1991 for a similar approach in

panmictic populations).

We further introduce two neutral relatedness coefficients that will be relevant for selection: let r ○2 (z̄t) and

r ○3 (z̄t) respectively be the probabilities that, in the absence of selection and when the population phenotypic

average is z̄t , one and two neighbors of a focal individual carry a phenotype that is identical-by-descent to that

of the focal (i.e., the set of individuals under consideration have a common ancestor). Alternatively, r ○2 (z̄t)
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and r ○3 (z̄t) can be interpreted as the probabilities that, in the absence of selection and when the population

phenotypic average is z̄t , two and three individuals sampled in the same group carry identical-by-descent

phenotypes. This interpretation is in line with the definition of relatedness in the infinite island model (see

e.g., Rousset, 2004, Taylor et al., 2007, for further considerations on relatedness in the finite island model).

3.3.1 Directional selection

We find that the selection gradient on a trait a can be expressed as

sa(z̄t) =
∂w(zi ,z−i , z̄t)

∂zi ,a
∣

zi=z̄t
z−i=z̄t

+(N −1)r ○2 (z̄t)
∂w(zi ,z−i , z̄t)

∂z j ,a
∣

zi=z̄t
z−i=z̄t

, (6)

where z−i = z̄t means that the derivative is evaluated when all neighbors express the mean phenotype z̄t (z j = z̄t

for all j ≠ i ). The first derivative in eq. (6) captures the direct effect of trait a: the effect of a change in trait a

in a focal individual on its own fitness. In a well-mixed population, this is all that matters for directional selec-

tion (i.e., sa(z̄t) = ∂w(zi ,z−i , z̄t)/∂zi ,a when the population size is constant, Phillips and Arnold, 1989 1). The

second derivative, which is weighted by pairwise relatedness r ○2 (z̄t), is the indirect effect of trait a: the effect

focal fitness of a change in trait a in a neighbor of the focal (we arbitrarily chose this neighbor to be individual

j ≠ i ). The selection gradient on trait a, eq. (6), is therefore the inclusive fitness effect of trait a (Hamilton,

1964, Rousset, 2004). Hence, in the absence of covariance among traits, the change in mean trait value is pro-

portional to this trait’s inclusive fitness effect (substituting eq. 6 into 3a with the off-diagonal elements of Gt all

zeros). This finding is in line with much previous modeling work on the quantitative genetics of spatially- or

family-structured populations (for e.g., Cheverud, 1985, Queller, 1992a,b, Frank, 1998, McGlothlin et al., 2014,

Wakano and Lehmann, 2014).

3.3.2 Correlational and disruptive selection

We find that the correlational selection coefficient on two traits a and b (or the disruptive selection coefficient

when a = b) can be expressed as the sum of two terms,

hab(z̄t) = hw,ab(z̄t)+hr,ab(z̄t), (7a)

where the first term,

hw,ab(z̄t) =
∂2w(zi ,z−i , z̄t)

∂zi ,a∂zi ,b
∣

zi=z̄t
z−i=z̄t

+(N −1)r ○2 (z̄t)
∂2w(zi ,z−i , z̄t)

∂z j ,a∂z j ,b
∣

zi=z̄t
z−i=z̄t

+(N −1)r ○2 (z̄t)

⎛
⎜
⎜
⎝

∂2w(zi ,z−i , z̄t)

∂zi ,a∂z j ,b
∣

zi=z̄t
z−i=z̄t

+
∂2w(zi ,z−i , z̄t)

∂zi ,b∂z j ,a
∣

zi=z̄t
z−i=z̄t

⎞
⎟
⎟
⎠

+(N −1)(N −2)r ○3 (z̄t)
∂2w(zi ,z−i , z̄t)

∂z j ,a∂zk,b
∣

zi=z̄t
z−i=z̄t

,

(7b)

depends on the effects of joint changes in traits a and b within- (first line of eq. 7b) and between-individuals

(second and third line of eq. 7b) on focal fitness. The first derivative on the first line of eq. (7b) is the effect of

a joint change in traits a and b in a focal individual on its own fitness, which can be viewed as the direct syn-

ergistic effects of traits a and b (Figure 1a). In a well-mixed population, there are no other effects participating

to correlational selection (i.e., hab(z̄t) = ∂
2w(zi ,z−i , z̄t)/(∂zi ,a∂zi ,b), Phillips and Arnold, 1989).

But when dispersal is limited (so that r ○2 (z̄t) > 0 and r ○3 (z̄t) > 0), three indirect synergistic effects become

1When the size of the population fluctuates, sa(z̄t ) = ∂ log w(zi , z−i , z̄t )/∂zi ,a , due to normalization of focal fitness with respect to
mean fitness (see section 3.1; and eq. A6 of Iwasa et al., 1991 for how this holds when selection is frequency-dependent). If the size of the
population fluctuates but selection is frequency-independent, then the selection gradient can be expressed as the derivative of the log of
mean fitness in the population with respect to the trait under scrutiny (e.g., eq. 7b of Lande, 1979)
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relevant for correlational selection. These are the effect of a change in: (i) both traits in one neighbor of the

focal (second derivative on the first line weighted by the neutral probability that the focal and this neighbor

are identical-by-descent, r ○2 (z̄t), Figure 1b); (ii) in one trait in the focal and in the other in a neighbor (the

two derivatives of the second line weighted by r ○2 (z̄t), Figure 1c); and (iii) in one trait in a neighbor and in the

other in another neighbor indexed as k (last derivative weighted by the neutral probability that the focal and

these two neighbors are identical-by-descent, r ○3 (z̄t), Figure 1d). Collectively, these terms capture the effects of

non-random (due to limited dispersal) frequency-dependent interactions among individuals on correlational

selection, revealing that under limited dispersal, selection favors the association of traits when these have

positive effects between individuals.

a. 

i

a b

b. 

a

b ij

𝑟"°(𝒛&)

c. 

d. 

e. 
a

𝑟"(𝒛)

bj i

Indirect synergy

Direct synergy

Synergy via relatedness

i

𝑟"°(𝒛&)

b

j

a

b

ij

𝑟(°(𝒛&)

k

a

e.g., different 
strategies for group 
hunting allowing for 

larger prey catch

e.g., cooperation and 
punishment; production 

and absorption of 
siderophores

e.g., altruism and 
dispersal

e.g., trade-offs

e.g., grooming and 
application of antibiotic   

Figure 1: Within- and between-individual
fitness effects relevant for correlational se-
lection and examples of traits likely to be
influenced by such effects. As revealed by

eq. (7), there are five types of fitness effects

due to perturbations in two traits a and b

that are relevant for correlational selection

when dispersal is limited: a. effect of a joint

changes in a and b within the focal individ-

ual (first term of eq. 7b); b. effect of joint

changes in a and b within neighbors of the

focal (second term of eq. 7b, weighted by

neutral pairwise relatedness, r ○2 (z̄t)); c. ef-

fect of joint changes in a and b between

the focal (here b) and its neighbors (here, a;

second line of eq. 7b, weighted by r ○2 (z̄t));

d. effect of joint changes in a and b between

neighbors of the focal (third line of eq. 7b,

weighted by neutral three-way relatedness,

r ○3 (z̄t)); e. the effect of the indirect effect of

one trait (here b) multiplied to the effect of

the other (here a) on pairwise relatedness,

which reflects the tendency of relatives to

receive the effects of b (eq. 7c).

The second term of eq. (7a), hr,ab(z̄t), captures another type of synergistic effect relevant for correlational

selection in group-structured populations. This term can be expressed as

hr,ab(z̄t) = (N −1)
∂w(zi ,z−i , z̄t)

∂z j ,a
∣

zi=z̄t
z−i=z̄t

×
∂r2(z)

∂zb
∣

z=z̄t

+(N −1)
∂w(zi ,z−i , z̄t)

∂z j ,b
∣

zi=z̄t
z−i=z̄t

×
∂r2(z)

∂za
∣

z=z̄t

, (7c)

where ∂r2(z)/∂za is the effect of trait a on the probability that a neighbor of a focal individual with phenotype

z carries a phenotype that is identical-by-descent to that of the focal (and ∂r2(z)/∂zb the effect of trait b). We

refer to this as the effect of traits on relatedness. So eq. (7c) reveals that correlational selection depends on

the product between the indirect effect of one trait (∂w(zi ,z−i , z̄t)/∂z j ,a and ∂w(zi ,z−i , z̄t)/∂z j ,b), with the ef-

fect of the other trait on relatedness. Such synergy via relatedness (Figure 1e) reflects that in group structured
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populations, selection will favor an association among two traits when such an association results in indi-

rect fitness benefits (e.g., trait a is cooperative, ∂w(zi ,z−i , z̄t)/∂z j ,a > 0) being preferentially directed towards

relatives (e.g., trait b is the tendency to stay in natal group, ∂r2(z)/∂zb > 0).

Group-structure and limited dispersal may thus lead to significant changes to the way selection molds phe-

notypic correlations, especially when traits have synergistic effects that are either indirect (Figure 1b-d) or via

relatedness (Figure 1e). This will be illustrated later when we study the coevolution of two social traits in sec-

tion 3.5. Before doing so, let us remark that when a single traits evolves (n = 1) and the selection gradient on

this trait is zero (sa(z̄t) = 0), the change in phenotypic variance that we obtain (eq. 7 substituted into eq. 3b)

reduces to previously derived expressions from quantitative genetics in the island model (eqs. 26 and 31 of

Wakano and Lehmann, 2014). Further, eqs. (6)-(7) are consistent with evolutionary invasion analyses, i.e.,

with the first- and second-order effects of selection on the growth rate (or invasion fitness) of a rare mutant

that arises in a monomorphic group-structured population and that differs from the resident in a single (eqs. 8

& 9 of Ajar, 2003) or multiple (eqs. 12 & 13 of Mullon et al., 2016) traits. We discuss further the correspondence

between quantitative genetics, invasion analyses, and adaptive dynamics models in the next section, in which

we study the equilibrium properties of the phenotypic distribution.

3.4 Equilibrium properties of the phenotypic distribution

Eq. (3) with eqs. (6)-(7) is a closed dynamical system that allows to track the evolution of the mean trait value

and of the (co)variance between traits. In this section, we first investigate key features of the equilibrium of

these phenotypic dynamics, and then discuss their connections with notions of evolutionary stability that

come from invasion analyses and adaptive dynamics.

3.4.1 Equilibrium mean trait values

We denote the mean trait vector and variance-covariance matrix of the equilibrium phenotypic distribution

by z̄∗ and G∗, respectively. Such equilibrium simultaneously satisfies ∆z̄t = 0 and ∆Gt = 0 (where 0 is used to

denote a n vector and n ×n matrix whose entries are all zero, respectively). Rather than solving both systems

of equations simultaneously, we can use the fact that in eq. (3a), the matrix G is a positive-definite matrix

with real-entries (since it is a variance-covariance matrix). From standard linear algebra theory (Hines, 1980,

Leimar, 2005, 2009), it then follows that the equilibrium for the phenotypic means must satisfy

s(z̄∗) = 0, (8)

i.e., all selection gradients (eq. 6) vanish at z̄∗, independently of the G matrix. An alternative argument to

ignore the G matrix when determining the equilibrium trait vector z̄∗ can be made from our assumption that

(co)variances are small (weak selection). As a consequence, the dynamics of the G matrix are slower than those

of the mean vector z̄t (see eq. B-20 in Appendix B.2). Trait means should therefore reach their equilibrium

before the variance-covariance G matrix stabilizes.

We can further ask whether a population with a mean vector that is close to an equilibrium z̄∗ will eventually

converge to it as a result of selection and mutation. From the fact that G is positive-definite, it can be shown

(see Leimar, 2009, for e.g.) that a necessary condition for a population to converge to z̄∗ for all possible G
matrices is that the Jacobian matrix J(z̄∗) of the selection gradients with (a,b) entry

J(z̄∗)ab =
∂sa(z̄)

∂zb
∣
z̄=z̄∗

(9)

is negative-definite at z̄∗, which means that the symmetric real part of J(z̄∗), (J(z̄∗)+ J(z̄∗)T)/2 has only

negative eigenvalues. This type of equilibrium is referred to as (strongly) convergence stable (Leimar, 2005,

2009).
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3.4.2 Equilibrium variance-covariance matrix

The dynamics of the variance-covariance matrix can then be studied at a convergence stable equilibrium z̄∗

for mean trait values (eq. 8). In this case, the equilibrium G∗ for the variance-covariance matrix solves

M +G∗H(z̄∗)G∗
= 0. (10)

Eq. (10) has an admissible solution (i.e., such that G∗ is positive-definite) if, and only if, the Hessian matrix,

H(z̄∗), is negative-definite (Bhatia, 2015). This corresponds to the case under which selection is stabilizing at

z̄∗. In fact, if H(z̄∗) is negative-definite, then the population will remain unimodally distributed around the

mean vector z̄∗ and exhibit a variance-covariance matrix,

G∗
= M [M−1

(−H(z̄∗))
−1

]
1/2

, (11)

where the operation X1/2 denotes the square root of X such that all the eigenvalues of X1/2 are positive (Bhatia,

2015; see also eq. 21c of Lande, 1980).

3.4.3 Connections with notions of stability from invasion analyses

Using a quantitative genetics approach, we have derived the conditions under which the multivariate phe-

notypic distribution of a dispersal limited population converges and remains at an equilibrium (eqs. 8-11).

Here, we highlight the connections between these conditions and notions of evolutionary stability that have

emerged from invasion analyses and adaptive dynamics under limited dispersal.

Singular strategy. First, the selection gradient eq. (6) substituted into condition (8) is equivalent to the def-

inition of evolutionarily singular strategies/phenotypes under limited dispersal (i.e., phenotypes which when

expressed by the whole population, the gradient of invasion fitness is zero, e.g., Rousset, 2004; see also Geritz

et al., 1998, for general definition).

Convergence stability. Second, the condition for a mean trait vector to be an attractor of directional selec-

tion (condition 9 with eq. 6) is equivalent to the condition for a multi-trait phenotype to be convergence stable

in invasion analysis (Mullon et al., 2016; see also Brown and Taylor, 2010, for a graphical approach to the co-

evolution of two traits in a genetically structured population; and Leimar, 2009, Geritz et al., 2016, for general

considerations on multi-trait in invasion analysis). It is noteworthy that in spite of this equivalence, the phe-

notypic dynamics envisaged by a quantitative genetics model (given by eq. 3a, see also eq. 7 of Lande, 1979,

or eq. 1 of Phillips and Arnold, 1989) differ from the dynamics inferred from invasion analysis (which are cap-

tured by the so-called “canonical equation”, eq. 1 of Dieckmann and Law, 1996, or eq. 3 of Leimar, 2009). In a

quantitative genetics model, the mean trait vector changes as a result of selection acting on a standing genetic

variation, which is large enough to be captured by a statistical distribution (Gt in eq. 3a). Under the “canonical

equation”, traits evolve under a trait substitution sequence, whereby a selected mutant fixes before another

mutant arises, so that the population "jumps" from one monomorphic state to another and in principle can-

not sustain polymorphism (see Fig. 1c, upper right panel of Champagnat et al., 2006, for a useful depiction of a

trait substitution sequence; see Van Cleve, 2015, for a review of trait substitution sequences with kin selection

effects).

Uninvadability. Third, the condition that H(z̄∗) with eq. (7) is negative-definite for the population to re-

main unimodally distributed around z̄∗ is consistent with the condition derived from invasion analyses for z̄∗

to be locally uninvadable (i.e., that any rare mutant that arises in a population for monomorphic for z̄∗ and

that causes a slight deviation from z̄∗ eventually vanishes, Mullon et al., 2016; see also Ajar, 2003 for a single

evolving trait in dispersal limited population; and Leimar, 2009, Geritz et al., 2016, for general considerations

on multi-trait analyses).
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Evolutionary branching. Invasion analyses have revealed that a phenotype that is convergence stable is not

necessarily uninvadable (Eshel and Motro, 1981, Eshel, 1983, Taylor, 1989, Christiansen, 1991, Abrams et al.,

1993b). In fact, when a singular phenotype is convergence stable but invadable, disruptive selection can lead

to evolutionary branching, whereby two lineages stably coexist in polymorphism (Metz et al., 1996, Geritz et al.,

1998). When multiple traits are evolving, a sufficient condition for the initiation of evolutionary branching is

that the Jacobian is negative-definite and the Hessian matrix is positive-definite at the singular phenotype z̄∗

(note that this does not ensure that the resulting polymorphism is stable, Geritz et al., 2016, for further consid-

erations). In the context of quantitative genetics, this means that the mean trait vector is held at z̄∗ (as J(z̄∗) is

negative-definite) while the dynamics of the variance-covariance matrix (eq. 3b) diverges to infinity (as H(z̄∗)
is positive-definite). In other words, at the onset of evolutionary branching, directional selection maintains

the population mean vector at z̄∗ all the while disruptive selection favors extreme phenotypes, leading to the

explosion of the variance-covariance matrix (in line with previous quantitative genetics approaches to study

evolutionary branching, Wakano and Iwasa, 2013, Débarre et al., 2014, Wakano and Lehmann, 2014, Débarre

and Otto, 2016).

3.4.4 The molding of phenotypic correlations by selection and mutation

Invasion analyses can be used to infer on the phenotypic correlations or associations generated by disruptive

selection (by studying the eigenvector associated with the greatest eigenvalue of H(z̄∗), which gives the axis

in phenotypic space along which selection is disruptive and along which the population becomes dimorphic,

Mullon et al., 2016, Geritz et al., 2016). This approach, however, only incorporates the effect of selection and is

limited to studying phenotypic correlations at the onset of evolutionary branching (inferring on the long term

outcome of evolutionary branching requires studying invasion in dimorphic populations, which is typically

much more involved mathematically, e.g., Geritz et al., 1998, Sasaki and Dieckmann, 2011). A quantitative

genetics approach such as ours here allows two further considerations on phenotypic correlations (e.g., Lande,

1980, Jones et al., 2007). First, it allows to incorporate the influence of pleiotropy (through the distribution of

mutational input, captured by the variance-covariance matrix M in eq. 3b). Second, eq. (11) allows to study

equilibrium phenotypic correlations as a balance between mutation and stabilizing selection (and not only

disruptive selection). We investigate this balance in more detail in the next section.

3.5 Application to the coevolution of two synergistic social traits

We now apply the quantitative genetics approach elaborated above to study the coevolution of two social traits

under limited dispersal. Our main goal is to illustrate the potential significance of indirect synergistic effects

for the molding of phenotypic correlations when dispersal is limited (Figure 1b-d).

3.5.1 Two public goods model

We model the coevolution of two nonnegative quantitative traits, labelled 1 and 2, that each capture partici-

pation to a different public good. For examples, in group living mammals, one trait could be the time/energy

invested into foraging for the group’s offspring, and the other, investment into defending the group by stand-

ing sentry against predators (e.g., Carter et al., 2014); in microorganisms, each trait could be the production of

a specific amino-acid that is released into the external environment from which it can then be absorbed and

used by group members (e.g., Özkaya et al., 2017).

Benefits and costs. We assume that both public goods are shared equally among group members, and that

individuals receive extra benefits from obtaining both goods together. The benefits, B(zi ,z−i ), received by

a focal individual (with traits zi in a group composed of z−i ) can then be written in terms of the group trait
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averages (z̃1 =∑
N
j=1 z j ,1/N and z̃2 =∑

N
j=1 z j ,2/N ) as

B(zi ,z−i ) = b(z̃1+ z̃2)+bM z̃1 z̃2, (12)

where the parameter b > 0 tunes the independent benefit of each public good produced (assumed to be the

same for both goods for simplicity); and parameter bM > 0, the multiplicative benefits of receiving both goods

together. Conversely, participation to both public goods simultaneously is assumed to be extra costly, for

instance because the different goods call upon different biological functions that are costly to co-maintain, so

that the cost C(zi ) paid by a focal individual (with traits zi ) can be written as

C(zi ) =
c

2
(z2

i ,1+ z2
i ,2)+ cMzi ,1zi ,2, (13)

where the parameter c > 0 tunes the independent cost of each trait, and parameter cM > 0, the multiplicative

costs of the traits. The fecundity of a focal individual, f (zi ,z−i ), is then the difference between the benefits

received and the costs paid,

f (zi ,z−i ) = 1+B(zi ,z−i )−C(zi ), (14)

where 1 is the baseline fecundity when no one in the group participates to either public good (zi ,1 = zi ,2 = 0 for

all i ).

These benefits (eq. 12) and costs (eq. 13) entail that it is best for a focal individual to express a negative within-

individual association between traits (if expressed at all), and simultaneously be in a group in which traits

are positively associated between-individuals. Such a configuration is possible when the population is well-

mixed (so that there are no genetic correlations – or no relatedness – among individuals of the same group),

but difficult when individuals of the same group are related due to limited dispersal. As relatedness increases,

associations within- and between-individuals become aligned due to the co-inheritance of linked traits (in

fact, the covariance between-traits between-individuals is equal to the product of pairwise relatedness with

total covariance in the absence of selection; i.e., the between-individuals covariance of traits a and b is equal to

r ○2 (z̄t)σab,t , see eq. C-25 in Appendix C). We therefore expect limited dispersal to be relevant to the coevolution

of the two traits of our model and to the way selection associates these traits within individuals.

Fitness. Before proceeding to the analysis, let us give the individual fitness function of a focal individual

w(zi ,z−i , z̄t). For this model, we assume that there is no group extinction, that offspring disperse indepen-

dently from one another before local density regulation, and that all adults die after reproduction (so that the

population follows a Wright-Fisher life cycle). In this case, individual fitness is,

w(zi ,z−i , z̄t) =
(1−m) f (zi ,z−i )

(1−m)∑
N
i=1 f (zi ,z−i )/N +m f (z̄t , z̄t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wP(zi ,z−i ,z̄t)

+
m f (zi ,z−i )

f (z̄t , z̄t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

wD(zi ,z−i ,z̄t)

, (15)

where 0 < m ≤ 1 is the dispersal probability. Individual fitness is the addition of two terms: (1) the expected

number of offspring of the focal that successfully establish in their natal group, wP(zi ,z−i , z̄t), which is the ratio

of the number of philopatric offspring of the focal to the total number of offspring that enter the competition

in the focal group; and (2) the expected number of offspring of the focal that successfully settle in other groups,

wD(zi ,z−i , z̄t), which is the ratio of offspring the focal sends in a non-focal group to the expected number of

offspring in such a group (fitness function of the form eq. 15 is standard under limited dispersal, e.g., Rousset,

2004, Ohtsuki, 2010).

Relatedness. The final pieces of information that are necessary to apply our framework are the neutral relat-

edness coefficients, r ○2 (z̄t) and r ○3 (z̄t), and the effect of each trait on pairwise relatedness (∂r2(z)/∂za). These

expressions, which have been derived elsewhere for the Wright-Fisher life-cycle considered here (e.g., Rousset,

2004, Ajar, 2003, Ohtsuki, 2010, Wakano and Lehmann, 2014), are given in Appendix B.2.2 (eqs. B-21-B-22).
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3.5.2 Analysis

We now proceed to analyze the evolution of both social traits using the approach established in section 3.2.

We first focus on the equilibrium properties of the phenotypic distribution.

Convergence of mean trait values. Substituting eq. (15) and pairwise relatedness coefficient (eq. B-21) into

eq. (6), we obtain that the selection gradient vector is

s(z̄t) = [1− r ○2 (z̄t)](
b/N − cz̄1,t + z̄2,t(−cM+bM/N)

b/N − cz̄2,t + z̄1,t(−cM+bM/N)
)+O(ε2

), (16)

where ε is a small parameter capturing the magnitude of the effect of the public good on fecundity (i.e., ε is the

largest of the parameters b, bM, c, cM). Solving eq. (16) for zero then yields the unique singular strategy

z̄∗ = (z̄∗1 , z̄∗2 ) = (
b/N

c + cM−bM/N
,

b/N

c + cM−bM/N
), (17)

which unsurprisingly decreases with costs c and cM, and increases with “direct” benefits b/N and bM/N (as an

individual recoups a share 1/N of its participation to each public good). Note that this singular strategy does

not depend on dispersal (or relatedness). This is due our assumptions that group size is fixed and that gener-

ations are non-overlapping (in which case indirect fitness benefits of interacting with relatives are “cancelled”

by the fitness costs of kin competition, e.g., Taylor, 1992, Rousset, 2004).
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Figure 2: Directional selection on
synergistic social traits. Qualitative

dynamics of population means due to

selection when equilibrium eq. (17)

is: a. an attractor (with b/N = 3,

bM/N = 1.5); b. a repeller (with b/N =

5.8, bM/N = 0.1). Solid lines show

when the selection gradient eq. (16)

on each trait vanishes (black for trait

1, s1(z̄1, z̄2) = 0; grey for trait 2,

s2(z̄1, z̄2) = 0; other parameters: c = 1,

cM = 2).

To establish whether the phenotypic distribution will converge to have mean z̄∗, we substitute eq. (16) into the

symmetric part of the Jacobian matrix eq. (9), which we evaluate at the equilibrium eq. (17). It is straightfor-

ward to show that the two eigenvalues of the resulting matrix are given by

[1− r ○2 (z̄t)]{−c − cM+bM/N ,−c + cM−bM/N}+O(ε2
). (18)

Both are negative provided

−1 <
−cM+bM/N

c
< 1, (19)

i.e., when the difference between the multiplicative costs, cM, and direct multiplicative benefits, bM/N , is small

compared to the independent cost, c. In that case, the population will evolve to have mean given by eq. (17)

and produce an equal amount of each public good (Figure 2a). Otherwise, the population will evolve to express

a single trait and thus produce a single public good (depending on initial conditions, Figure 2b). Eqs. (17) and

(19) reveal that limited dispersal does not influence the evolution of the mean of the phenotypic distribution.

But what about the shape of the distribution around this mean?

Stabilisation of the distribution around the mean. Assuming eq. (19) holds true, whether or not the popula-

tion distribution stabilises around the equilibrium trait values (eq. 17) depends on the Hessian matrix, H(z̄∗).
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Let us start with analysing the diagonal elements of H(z̄∗), which reveal whether selection on each trait is in-

dependently stabilizing or disruptive. Substituting eq. (15) and relatedness coefficients (Appendix B.2.2) into

eq. (7) for traits 1 and 2 (i.e., a = b = 1 and a = b = 2), and evaluating it at equilibrium eq. (17), we obtain that

the diagonal entries of H(z̄∗) are

h11(z̄∗) = h22(z̄∗) =−[1− r ○2 (z̄t)]c +O(ε2
). (20)

Since 0 ≤ r ○2 (z̄t) < 1, the diagonal entries of H(z̄∗) are always negative, which means that selection on each

trait is stabilizing when they evolve independently from one another.

Whether selection is stabilizing when both traits co-evolve also depends on the correlational coefficient of

selection, h12(z̄∗). In particular, stabilizing selection requires that: (1) h11(z̄∗) < 0 and h22(z̄∗) < 0; and (2)

h12(z̄∗)2 < h11(z̄∗)h22(z̄∗), i.e., that the correlational selection coefficient is weak relative to the strength of

stabilizing selection on both independent traits; this is because a 2× 2 symmetric matrix Hessian matrix is

negative-definite if and only if its diagonal entries are both negative and the off-diagonal satisfies condition

(2) (e.g., Horn and Johnson, 2012). Condition (2) can equivalently be written as

−1 < ρ∗s =
h12(z̄∗)

√
h11(z̄∗)h22(z̄∗)

< 1, (21)

where ρ∗s is the strength of correlational selection, relative to the strength of stabilizing selection on each in-

dependent trait at z̄∗. If eq. (21) does not hold, then selection is disruptive due to correlational selection.

The correlational coefficient of selection is derived by first substituting eq. (15) into eq. (7) with a = 1 and b = 2,

and second, evaluating the result at equilibrium eq. (17). This yields

h12(z̄∗) = [1− r ○2 (z̄t)][−cM+(1/N +α(N −1)/N)bM/N]+O(ε2
), (22)

where

α =
(1−m)2(3N −2−(N −2)m)

3N −2+(N −1)(N −2)(1−(1−m)3)
(23)

decreases as dispersal and group size increases (i.e., α decreases as relatedness coefficients decrease, see Fig-

ure 3a). Eq. (22) reveals that as α (and relatedness) increases, the within-individual association favored by

selection goes from negative to positive (Figure 3b-c). This is because as relatedness increases, indirect syner-

gistic effects become increasingly targeted by correlational selection (Figure 1b-d).

Substituting eqs. (20) and (22) into eq. (21), we find that selection is stabilizing around z̄∗ when

−1 < ρ∗s =
−cM+(1/N +α(N −1)/N)bM/N

c
< 1, (24)

which reveals that high relatedness, or largeα, favors stabilizing selection (Figure 3b-c, dark grey and black re-

gions), and conversely, low relatedness, or small α, favors disruptive selection and thus polymorphism (when

eq. 19 holds but eq. 24 does not, Figure 3b-c, light grey region). This finding is in line with a recent computa-

tional eco-evolutionary model which found that when species can evolve cross-feeding interactions, mutual-

istic coexistence is compromised by spatial structure and limited dispersal (Oliveira et al., 2014). This is also

in line with previous results on the evolution of single traits that have found that evolutionary branching is

inhibited by limited dispersal (e.g., Day, 2001, Ajar, 2003, Wakano and Lehmann, 2014, Parvinen et al., 2017).

In such models and ours, limited dispersal inhibits evolutionary branching because it creates genetic correla-

tions among competing individuals, so that a mutant cannot be as different to common types as in well-mixed

population. As a result, frequency-dependent disruptive selection is weaker under limited dispersal.

Effect of selection on phenotypic correlation. Putting our stability analyses together (especially eqs. 17, 19,

22, and 24) and validating them using individual-based simulations (see Appendix D for details), we find that

there are three possible outcomes for the phenotypic distribution once it has converged to be unimodal around

the equilibrium eq. (17) due to selection: (1) when relatedness is low, correlational selection is negative and

strong enough to make selection disruptive, leading to the stable coexistence of individuals specialized in pro-
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Figure 3: Correlational selection on synergistic social traits. a. Weight α, eq. (23), to multiplicative

benefits in the coefficient of correlational selection (see eq. 22). b. Relative correlational selection, ρ∗s
(eq. 24), as a function of dispersal m, with critical levels of dispersal for which: ρ∗s < −1 (light grey);

−1 < ρ∗s < 0 (dark grey); and 0 < ρ∗s < 1 (black, with N = 10, b/N = 0.03, bM/N = 1.8, c = 0.8, cM = 1). c.
Parameter combinations (with N = 10, c = 1) for which correlational selection at the equilibrium eq. (17)

is: (1) strongly negative (and causes selection to be disruptive, ρ∗s < −1 & eq. 24 does not hold, light grey

regions); (2) negative (and selection is stabilizing, −1 < ρ∗s < 0 & eq. 24 holds, dark grey regions); and (3)

positive (and selection is stabilizing, 0 < ρ∗s < 1 & eq. 24 holds, black regions). White regions correspond

to parameter combinations under which the equilibrium is not evolutionary convergent (i.e., eq. 19 does

not hold).

ducing a single public good (Figure 4a). In this instance, evolutionary dynamics follow so-called “Black queen”

dynamics (Morris et al., 2012, Morris, 2015, with special reference to microorganisms): individuals first evolve

to produce the same amount of leaky product that is shared among individuals, but the costly maintenance

of both traits leads to specialization in a single product and the evolution of cross-feeding among types (see

Rueffler et al., 2012, Vásárhelyi et al., 2015, for similar models on the evolution of specialization in well-mixed

populations). (2) Over a critical level of relatedness, selection becomes stabilizing but correlational selection

remains negative, which prevents evolutionary branching and thus specialization, but still results in a nega-

tive association among traits within individuals (Figure 4b). (3) Over another threshold of relatedness, correla-

tional selection becomes positive, so that the traits become positively associated within individuals (Figure 4c).

Hence, even though limited dispersal and relatedness have no bearing on the mean of the phenotypic distribu-

tion in our model (eqs. 17 and 19), indirect synergistic effects entail that relatedness has a significant influence

on the shape of this distribution (which goes from being bimodal with a negative correlation under panmixia

to unimodal with a positive correlation under limited dispersal, Figure 4).

Effect of pleiotropy on phenotypic correlation. So far, our analysis has focused on the effects of selection

on the stability of jointly evolving traits (an analysis that could have equally been performed using invasion
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Figure 4: The effect of relatedness and indirect synergy on the phenotypic distribution. Equilibrium

phenotypic density distribution, pt(z), of a simulated population, initially monomorphic for both traits

at equilibrium (2,2) (population composed of 1000 groups of size N = 10; sampled every 500 generations

for 20’000 generations after 30’000 generations of evolution; other parameters: bM/N = 1., ν = 0.01, σm
11 =

σm
22 = 0.02, σm

12 = 0; see Appendix D for details on simulations). a. Strong negative association with social

polymorphism (with b/N = 0.2, c = 0.1, cM = 1). b. Negative association (correlation = -0.67, p < 10−10;

with b/N = 2.2, c = 1, cM = 1.1). c. Positive association (correlation = 0.45, p < 10−10; with b/N = 0.1, c = 1,

cM = .05)

analysis; see Mullon et al., 2016, for such an approach to the joint evolution of multiple traits under limited

dispersal). But selection is not the only relevant process for the way phenotypic distributions are shaped. As

highlighted by the present quantitative genetic approach, the equilibrium variance-covariance matrix of the

phenotypic distributions also depends on the patterns of mutation (captured by matrix M in eq. 11). In par-

ticular, pleiotropy is expected to influence the correlations among traits within individuals at an evolutionary

equilibrium.

In order to investigate the joint effects of pleiotropy and correlational selection, let us assume that the variance

of mutational effect on both traits is the same (σm
11 = σ

m
22 = σm), in which case the variance-covariance matrix

of mutation effects can be written as

M = νσm (
1 ρm

ρm 1
) , (25)

where ρm = σm
12/σm is the correlation of the effect of mutations on traits 1 and 2. The parameter −1 < ρm < 1

thus captures the degree of pleiotropy between both traits (when it is zero, both traits change independently

due to mutation, when it is positive, they tend to change in similar ways, and when it is negative, in opposite

ways).

Substituting eqs. (20), (22) and (25) into eq. (11), we find that the correlation ρ∗12 among traits 1 and 2 at equi-

librium is

−1 < ρ∗12 =
σ∗12√
σ∗11σ

∗
22

=
ρm+ρ∗s

1+ρmρ∗s +
√

(1−ρ2
m)(1−ρ∗s

2)
< 1, (26)

where ρ∗s is given in eq. (21). This shows that at equilibrium, the sign of the correlation among between two

traits reflects the balance, ρm +ρ∗s , between the degree of pleiotropy, ρm, and the relative strength of correla-

tional selection ρ∗s (see Figure 5a; note that eq. 26 can be directly deduced from eq. 11 whenever the variance of

mutational effect on both traits is the same, σm
11 =σ

m
22, and the coefficients of disruptive selection on indepen-

dent traits are equal, h11(z̄∗) = h22(z̄∗), see eq. 8 of Jones et al., 2007). Since limited dispersal and relatedness

has a significant influence on relative correlational selection ρ∗s (eq. 21), it can affect the correlation ρ∗12 among

traits in the population as much as pleiotropy, ρm.

We additionally checked that our model captured pleiotropy correctly by comparing the phenotypic correla-
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tion among the two traits at equilibrium predicted by our model (eq. 26) and that observed in simulations

for different levels of pleiotropy. We found that model predictions and observations from simulations also

matched well in the presence of pleiotropy (Figure 5b).
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Figure 5: The effect of pleiotropy on phenotypic correlation. a. Contours of predicted phenotypic

correlation among traits 1 and 2 at mutation-selection balance, ρ∗12, according to pleiotropy, ρm, and the

relative strength of correlational selection, ρ∗s (from eq. 26). b. Predicted phenotypic correlation among

traits 1 and 2 (dashed grey curve, from eq. 26), and corresponding observations from individual based

simulations of a population initially monomorphic for (2,2) divided among 1000 groups of size N = 10

(black dots, averaged correlation over 20’000 generations after 30’000 generations of evolution, error bars

indicate standard deviation; other parameters: m = 0.05, b/N = 0.2, bM/N = 1, c = 1, cM = 0.1, ν = 0.01,

σm
11 =σ

m
22 = 0.02; see Appendix D for details).

Dynamics of the distribution. We further tested the accuracy of our dynamical model by comparing

individual-based simulations with numerical recursions of eqs. (3). We found that simulated populations tend

to have lower phenotypic variance than eqs. (3) would predict (Figure 6). This is probably due to global genetic

drift, which our model ignores and which depletes phenotypic variance (as in well-mixed populations, e.g.,

Wakano and Iwasa, 2013, Débarre and Otto, 2016), and/or the presence of phenotypic skew, which is ignored

under our assumption that the phenotypic distribution in the population is normal, but which can influence

the dynamics of phenotypic variance (Appendix B, eq. B-18). Nonetheless, we observed overall a good qualita-

tive fit between the predicted and observed dynamics of the phenotypic distribution (Figure 6). This suggests

that the assumption of normality yields accurate predictions for the change of mean and variance when dis-

persal is limited (like in well-mixed populations, Turelli and Barton, 1994).

4 Discussion

In this paper, we have modeled the evolution of the distribution of genetically-determined quantitative traits

under limited dispersal, frequency-dependent selection and pleiotropic mutation. By doing so, we have gen-

eralized two classical quantitative genetics results to include limited dispersal: first for the general recurrence

eq. (1) of the phenotypic distribution under the continuum of alleles model (Kimura, 1965b, Fleming, 1979,

Lande, 1979, Bürger, 1986); and second for the closed dynamical system eq. (3) of the vector of means and

matrix of variance-covariance when the distribution is normal (Lande, 1979, Lande and Arnold, 1983, Phillips

and Arnold, 1989). In both cases, genetic structure due to limited dispersal leads to the replacement of individ-

ual fitness in classical quantitative genetics equations by lineage fitness. This is the fitness of a typical carrier

of a given phenotype (randomly sampled from the lineage of all members carrying that phenotype), i.e., the

average direct fitness of a phenotype, which depends on the phenotypes expressed in the whole population

and how they are distributed among groups (eq. 2).
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Figure 6: Observed and predicted evolution of the phenotypic distribution, pt(z). The observed (full

lines, from individual based simulations) and predicted (dashed lines, from eq. 3) evolution of the traits’

means (a. trait 1 in orange and 2 in blue), variances (b. trait 1 in orange and 2 in blue) and covariance (b.

green) for 64 replicates (10 randomly chosen replicates in lighter shade, average over all 64 replicates in

darker shade, initial population monomorphic with z1 = 3 and z2 = 1, distributed over 1000 groups of size

N = 10, other parameters: m = 0.4, b/N = 14.8, bM/N = 0.1, c = 5, cM = 2.5, ν = 0.1,σm
11 =σ

m
22 = 0.02,σm

12 = 0;

see Appendix D for details). c. Snapshot of the population (2’500 individuals randomly sampled across

64 replicates shown by grey points) and variance-covariance ellipses given by the (right) eigenvectors of

the G matrix (observed across all 64 replicates in full lines and predicted in dashed), at generations: 1’000

(top panel); 2’000 (middle panel); and 10’000 (bottom panel).

From lineage fitness, we were able to reinforce existing links between concepts of evolutionary stability and

evolutionary quantitative genetics: (1) the vector of means evolves to convergence stable phenotypic values

(eqs. 8-9; see Charlesworth, 1990, Iwasa et al., 1991, Taper and Case, 1992, Abrams et al., 1993a, Abrams, 2001,

Lion, 2018, for well-mixed populations, and Cheverud, 1985, Queller, 1992a,b, Frank, 1998, McGlothlin et al.,

2014, Lehmann and Rousset, 2014, for limited dispersal); and (2) the distribution remains unimodal around

such values when they are locally uninvadable or may become bimodal when they are invadable (eq. 10; see

Sasaki and Dieckmann, 2011, Wakano and Iwasa, 2013, Débarre et al., 2014, Débarre and Otto, 2016, for well-

mixed populations, and Lehmann and Rousset, 2014, Wakano and Lehmann, 2014, for the dynamics of the

variance of a single trait around a singular strategy under limited dispersal). Specifically, we have shown

that in a dispersal-limited population with infinitely many types, the selection gradient, which determines

the change in mean trait values (eq. 3a), and the Hessian matrix, which shapes the variance-covariance ma-

trix (eq. 3b), are respectively equal to the selection gradient vector and Hessian matrix computed from the

invasion fitness of a rare mutant in an otherwise monomorphic population (i.e., eqs. 6-7 are equal to eqs. 12-

13 of Mullon et al., 2016. Since the correspondence between the selection gradients of the two approaches

is well-established for dispersal-limited populations (Lehmann and Rousset, 2014, for review), it may be felt

that the correspondence between the Hessian matrix obtained from the evolutionary invasion analysis and

that determining the change in the variance-covariance matrix is intuitive and must hold. Demonstrating this,

however, required surprisingly lengthy calculations (see Appendix) showing that it is actually not obvious that

when many alleles segregate in a dispersal-limited population and traits are far away from a convergence sta-
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ble point, selection on phenotypic (co)variances only depends on simple pairwise and three-way probabilities

of identity-by-descent. Having established these relationships, we expect them to hold under more general

demographic settings (e.g., with local demographic fluctuations) and hope that simpler arguments than our

present ones can be found to prove it.

The extension of evolutionary invasion analyses to a quantitative genetics model allows to specify the phe-

notypic distribution at a mutation-selection balance (eq. 11). In particular, it allows to study the effects of

selection and mutation on the phenotypic associations that emerge among traits at equilibrium (eq. 26). Our

analyses of such associations suggest that kin selection due to limited dispersal can mold phenotypic asso-

ciations as much as pleiotropic mutations (eq. 26 and Fig. 5). By expressing correlational selection on traits

in terms of their direct and indirect fitness effects, we gained insights into the influence of kin selection on

phenotypic associations (eq. 7). Motivated by our explicit formula for the variance-covariance matrix (eq. 11)

and our example (section 3.5), we complement here the discussion found in Mullon et al. (2016) (based on an

invasion analysis) on the implications of kin selection for the evolution of within-individual phenotypic asso-

ciations. As indicated by the decomposition of correlational selection eq. (7a), there are two ways kin selection

influences such associations.

The first is through the fitness effects that traits have when co-expressed among relatives, so when traits have

indirect synergistic effects (eq. 7b, Figure 1b-d). Under limited dispersal, selection favors an association among

two traits within individuals, when such an association between individuals has indirect fitness benefits. Due

to such kin selection effects, different levels of dispersal can lead to significantly different evolutionary out-

comes for phenotypic associations, as highlighted by our example on the coevolution of two traits whose as-

sociation within-individual is costly but beneficial between-individuals due to social synergy. In this example,

populations with little genetic structure evolved a division of social labor, with individuals specialized in only

one trait coexisting with one another (Figure 4a), but populations with strong genetic structure evolved no

such specialization, with traits in fact becoming positively associated within individuals (Figure 4c). In line

with our results, populations of E. coli that experience frequent mixing (so show little genetic structure) readily

evolve cross feeding interactions in poor environments, so that different strains specialize in the production

of a specific amino acid (D’Souza and Kost, 2016). By contrast, in meerkat social groups (which typically show

high levels of relatedness), individuals tend to participate to all social activities, with participation to different

tasks such as babysitting and pup feeding positively associated within individuals (Clutton-Brock et al., 2003).

Such patterns can be explained by our results if participation to different tasks in these systems is genetically

determined, at least partially.

It is also worthy of note that in our example, relatedness has a substantial influence on the shape of the phe-

notypic distribution but none on the mean of this distribution (Figure 4, eqs. 17 and 18). Hence, the effects

of genetic structure on phenotypic evolution that we report would have gone unnoticed from the study of the

dynamics of the mean only (which is the focus of the vast majority of study of quantitative genetics in family-

structured populations, e.g., Cheverud, 1985, Queller, 1992a,b, Frank, 1998, McGlothlin et al., 2014), or from

the analysis of the selection gradient vector only (as done in the majority of evolutionary analyses to synergis-

tic social traits, e.g., Gandon, 1999, Perrin and Mazalov, 2000, Reuter and Keller, 2001, Lehmann and Perrin,

2002, Rousset and Gandon, 2002, Gardner and West, 2004, Leturque and Rousset, 2004, Hochberg et al., 2008,

Brown and Taylor, 2010, Kuijper and Johnstone, 2017). Overall, our example highlights that when traits have

indirect synergistic effects between individuals (Figure 1b-d), relatedness is important for the way natural se-

lection molds phenotypic associations within individuals. This consideration should be especially relevant to

the evolution of specialization and the emergence of division of labor.

A relevant pair of traits likely to be influenced by such kin selection effects is costly helping and punishment,

which have synergistic indirect benefits when expressed by different individuals (e.g., Raihani et al., 2012, and

references therein). According to our results, kin selection should favor a positive association among helping

and punishment, which interestingly, has been observed in humans (Fehr and Gächter, 2000). Another pair

of traits whose evolution is likely to be influenced by their joint expression in different individuals is the pro-

duction and exploitation of a public good, such as the secretion and use of siderophores by microorganisms

(West et al., 2006). Under limited diffusion of siderophores and limited bacterial dispersal (Nadell et al., 2009,
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Kümmerli et al., 2014, Ross-Gillespie et al., 2015), we expect kin selection effects to be ecologically relevant

for how secretion and use of siderophores are associated, and more generally for patterns of multi-trait social

variation within microbial communities (Cordero and Polz, 2014, van Gestel et al., 2015, Özkaya et al., 2017,

Schiessl et al., 2019, Rodríguez Amor and Dal Bello, 2019).

The second way kin selection influences phenotypic associations is via the combination of the indirect effect of

one trait with the effect of the other on the tendency to interact with relatives (“synergy via relatedness”, eq. 7c,

Figure 1e). Specifically, selection favors an association among two traits when it results in fitness benefits

being preferentially directed towards relatives or fitness costs towards non-relatives. For example, if trait a

has positive indirect fitness effects (e.g., altruistic helping) and trait b decreases the tendency to interact with

relatives (e.g., dispersal), then selection favors a negative correlation between traits a and b (e.g., Koella, 2000,

Purcell et al., 2012, Mullon et al., 2018). We refer readers interested in this effect to Mullon et al. (2016), in which

it is discussed at greater length, in particular in the context of dispersal syndromes (Edelaar and Bolnick, 2012,

Ronce and Clobert, 2012).

More generally, our evolutionary perspective on phenotypic associations may be useful to empiricists who in-

vestigate correlational selection among traits in experimental or natural populations (e.g., Blows and Brooks,

2003, Blows, 2007, for reviews, and ch. 30 of Walsh and Lynch, 2018). Based on Lande and Arnold (1983) pa-

per, the typical starting point of such studies is to perform a quadratic regression of individual fitness on the

multiple traits expressed by this individual (for e.g., eq. 30.11 of Walsh and Lynch, 2018). The linear regression

coefficients are collected in a vector usually denoted β with entry βa interpreted as directional selection on

trait a, and the quadratic coefficients in a matrix γ with entry γab interpreted as correlational selection on

traits a and b (in our notation, βa = ∂w(zi ,z−i , z̄t)/∂zi ,a and γab = ∂
2w(zi ,z−i , z̄t)/(∂zi ,a∂zi ,b)). This corre-

spondence between selection on traits and regression coefficients on individual fitness, however, is only valid

in well-mixed populations. Indeed, as our analysis has shown, β and γ are respectively equal to the selection

gradient s(z̄t) and Hessian matrix H(z̄t), only when all relatedness coefficients are zero (eq. 6 and 7).

For populations that are genetically structured, empirical estimates of selection on multiple traits require to:

first regress individual fitness on the traits of the focal individual and on those of its social partners; and sec-

ond, weigh these indirect fitness effects by relatedness coefficients (according to eqs. 6 and 7). Estimates of

pairwise relatedness can be obtained from FST statistics at neutral sites such as microsatellite loci (i.e., the

genetic covariance among pairs of interacting individuals relative to the average genetic covariance in the

population, Charlesworth and Charlesworth, 2010, chapter 7.1). Similarly, three-way relatedness coefficients

can be estimated from comparisons between the genetic skew at neutral sites among triplets of interacting

individuals and the average genetic skew in the population. While the importance of indirect fitness effects

and relatedness has long been emphasized for the directional selection gradient (so considering only linear

regression coefficients, β, e.g., Cheverud, 1985, Queller, 1992a,b, Frank, 1998, McGlothlin et al., 2014, see also

ch. 5 of Walsh and Lynch, 2018), our analysis has further quantified the relationship between correlational se-

lection and quadratic regression coefficients (γ, eq. 7, Figure 1b-d), which is necessary to understand patterns

of phenotypic variation within populations.

In practice, it is likely to be challenging to obtain reliable estimates of all the quadratic regression coefficients

necessary to quantify the strength and direction of correlational selection (eq. 7). But our results can never-

theless be of use when designing experimental assays or interpreting collected data. For instance, our results

show that for traits that underlie social or competitive behaviors, such as mating, aggression or cooperation,

there is little reason to believe that a quadratic regression of an individual’s fitness on its own traits provides a

full picture of correlational selection. A corollary to this is that when there is mismatch between phenotypic

correlations among two traits observed in a population on one hand, and the quadratic regression coefficient

on individual fitness from experimental assays on the other (e.g., Bell and Sih, 2007, Adriaenssens and Johns-

son, 2012, Han and Brooks, 2013, Akçay et al., 2015), this may indicate the presence of indirect synergistic fit-

ness effects among traits and genetic structure in the population (rather than genetic constraints as typically

inferred). One first accessible step towards testing this hypothesis would be to estimate genetic relatedness

among interacting individuals. A high relatedness would suggest that phenotypic correlations are influenced

by indirect synergistic fitness effects, which could then be estimated though quadratic fitness regressions of
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fitness on partners’ traits.

Our results further provide insight into the effects of limited dispersal on how selection influences the G matrix

of additive genetic variances-covariances (Steppan et al., 2002, Arnold et al., 2008). Previous theoretical works

have studied how linkage disequilibrium, pleiotropy and epistasis influence G under selection (Lande, 1980,

1984, Turelli, 1985, Turelli and Barton, 1990, Revell, 2007, Jones et al., 2014), but the effects of limited dispersal

on G have either been assessed in the absence of selection (Lande, 1992), or when selection is frequency-

independent (Jones et al., 2004, Guillaume and Whitlock, 2007, Guillaume, 2011, Björklund and Gustafsson,

2015). Here, we have shown that kin selection effects due to limited dispersal are relevant for the way selection

favors phenotypic associations (i.e., for correlational selection, eq. 7), which in the long run can lead to genetic

correlations through genetic integration (Sinervo and Svensson, 2002, Roff and Fairbairn, 2012). Of course, our

model ignores many relevant features for quantitative genetics: environmental effects, genetic dominance, ge-

netic linkage or sexual reproduction for examples. In particular, by assuming that individuals are haploid and

reproduce clonally, our model does not allow to distinguish between different possible genetic architectures

such as one pleiotropic locus that determines all evolving traits versus one independent locus for each trait.

In the latter case, correlations among traits in dispersal-limited sexuals would depend on epistatic effects be-

tween loci within individuals and genetic linkage between loci (like in well mixed populations, Lande, 1984),

as well as epistatic effects between loci located in different individuals, weighted by the genetic associations

between these loci within groups (which would depend on dispersal, inbreeding and linkage; see Roze and

Rousset, 2008 for how to compute such associations). Incorporating these features into our framework is likely

to make the analysis of selection more complicated, but it would allow to study the genetic basis of variation,

such as how genetic architecture and its evolution influence trait associations (e.g., Saltz et al., 2017).

One other significant limitation to our present approach is that it assumes that the phenotypic distribution

is normal. This assumption is likely to be violated under frequency-dependent selection, which can lead to

skewed and complicated distributions. In particular, the normal assumption precludes investigating what

happens to the phenotypic distribution once evolutionary branching has occurred (like adaptive dynamics

models based on the invasion analyses of monomorphic populations). To relax this assumption would entail

tracking the dynamics of higher moments of the phenotypic distribution. One possible way to retain some

mathematical tractability would be to use the oligomorphic approximation proposed by Sasaki and Dieck-

mann (2011). This approximation decomposes a multimodal trait distribution into a sum of unimodal dis-

tributions, each corresponding to a morph. Applying Sasaki and Dieckmann (2011)’s approach, which was

developed for a large and well-mixed population, to a dispersal limited one, would be an interesting avenue of

future research, as well as including class-structure (e.g., age- or sex-structure).

To conclude, we have derived a quantitative genetics model to study the gradual evolution of multiple traits

that experience frequency-dependent selection and pleiotropic mutations when dispersal is limited. This

model has revealed that limited dispersal opens previously unattended pathways for correlational selection,

through the synergistic effects of traits: (1) between interacting individuals (Figure 1b-d), due to non-random

frequency-dependent interactions; and (2) via relatedness (Figure 1e), owing to preferential interactions with

relatives. This suggests that limited dispersal can profoundly influence how associations between social traits

emerge in response to mutation and selection. Given the ubiquity of genetic structure in natural populations

(e.g., Bohonak, 1999, Charlesworth and Charlesworth, 2010, p. 310), our results can help understand a wide

range of patterns of intra-specific variation in competitive or social traits (such as behavioral syndromes, Dall

et al., 2004, Dingemanse et al., 2012; social niche specialization, Bergmüller and Taborsky, 2007, Montiglio

et al., 2013; or social division of labour, Boehm, 2002, Wright et al., 2014), which are increasingly thought to be

ecologically significant (Bolnick et al., 2011, Wolf and Weissing, 2012, Sih et al., 2012, Canestrelli et al., 2016,

Chaturvedi et al., 2017, Estrela et al., 2019). More broadly, by connecting different branches of theoretical evo-

lutionary biology, from invasion analysis to adaptive dynamics to quantitative genetics, the present framework

further bolsters the notion that whatever modeling approach is taken, natural selection cannot be divorced

from kin selection when dispersal is limited (Hamilton, 1964, Frank, 1998, Rousset, 2004, van Baalen M, 2013,

Lehmann et al., 2016).
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A Phenotypic distribution dynamics

In this appendix, we derive eq. (1) of the main text.

A.1 Process construction

We first lay the foundations of our analysis by describing how phenotypic evolution in our model population

(see section 2) is represented mathematically.

A.1.1 Markov chain

The phenotypic state, or state for short, of a group at given time point is given by the set of phenotypic values of

all individuals residing in that group, {z1, . . . ,zN} (where zi = {zi ,1, ..., zi ,n} ∈ R
n is the phenotype of individual

indexed i ∈ {1, . . . , N}). The state of each group in the population changes stochastically from one time period

to the next (i.e., after one iteration of the life cycle) due to selection, mutation and dispersal. We assume

that these changes can be modeled as a discrete time Markov chain on a continuous state space (as traits are

continuous; see Meyn and Tweedie, 2009, for general state spaces). Because groups affect one another through

dispersal, the transition kernel of a group depends on the state of all the other groups. But since there is an

infinite number of groups and there is no isolation-by-distance (i.e., all groups are equally connected to one

another through dispersal), the infinite set of interacting Markov chains (one for each group) can be described

as a single Markov chain (for a focal group), whose kernel is a function of the expected value of the process

(see Chesson, 1981, 1984, for ecological models). In other words, we can focus on the stochastic dynamics of a

focal group and ignore the stochasticity stemming from groups other than the focal one.

A.1.2 Markov chain in terms of counting measures

Note that to describe the state of a focal group, the order of elements in {z1, . . . ,zN} does not matter (because

there is no class structure in our population, we do not care which specific individual carries a given pheno-

type within a group). What matters is how many individuals carry which phenotypes. We can thus represent

the state of the focal group by a function, a counting measure, that counts the number of individuals with phe-

notypes that belong to an arbitrary set. Specifically, the counting measure, denoted µ, takes a subset E ⊆ Rn

and sends it to a non-negative integer by counting the number of individuals within the focal group with phe-

notypes that belong to E according to the following definition

µ(E) =
N

∑
i=1

δzi (E), (A-1)

where δ is the dirac measure,

δzi (E) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if zi ∈ E ;

0, otherwise,
(A-2)

(p. 51 of Harris, 1963, p. 3 of Daley and Vere-Jones, 2003; see also pp. 228-229 of Bürger and Bomze, 1996 for

further formal considerations on using counting measures to describe a population under the continuum-

of-alleles model). Applied to a single phenotypic value z = {z1, ..., zn} ∈ R
n , where za is the value of trait a,

µ(z) returns the number of individuals with phenotype z, and applied to the whole set of possible phenotypic

values, it returns group size, µ(Rn) = N .

Under definition eq. (A-1), each possible state that a group can assume is uniquely determined by a specific

counting measure, i.e., for each unordered set of N vectors inRn , there exists a unique counting measure (p. 52

of Harris, 1963 and p. 7 of Daley and Vere-Jones, 2003). We can therefore study the dynamics of the state of the
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focal group by studying the dynamics of its equivalent counting measure (Daley and Vere-Jones, 2003, p. 13-

15). So, if St denotes the (random) counting measure of a focal group at time period t , we can study the Markov

chain {St} on the space of all finite counting measures, which we write as S . This type of construction has so

far primarily been used to study phenotypic evolution in populations that are well-mixed and when time is

continuous (e.g., Bürger and Bomze, 1996, Oechssler and Riedel, 2001, Champagnat et al., 2006, Champagnat

and Lambert, 2007; but see Morale et al., 2005, Simon, 2008, for populations in explicit space).

A.1.3 State dynamics

To describe the stochastic dynamics of the state of a focal group, we let

φt(T ) = Pr[St ∈ T ] , (A-3)

denote the probability that a focal group is in a state that belongs to a subset T ⊆S at time period t (equivalent

to eq. 3.3 of Harris, 1963, p. 55). Since there is an infinite number of groups, φt(T ) also gives the distribution

of group states in the whole population. The dynamics φt(T ) are governed by the Markov kernel transition

function,

P(T ∣µ,φt) = Pr[St+1 ∈ T ∣St =µ,φt ] , (A-4)

which is the probability that a group will be in a state that belongs to a subset T ⊆ S at time period t + 1,

given that it was in state µ at time period t and that the population distribution of states is φt (this is a non-

homogeneous Markov chain, eq. 6.1 of Harris, 1963, p. 60).

State dynamics, or the probability that the focal group is in a state that belongs to T ⊆ S at time period t +1,

can then be written as

φt+1(T ) =∫

S

∫

T

P(µ′∣µ,φt)φt(µ)dµ′dµ, (A-5)

i.e., the sum of weighted probabilities of going from all states µ ∈S to states µ′ ∈ T . Because one iteration of the

life cycle (from t to t +1) encompasses many events, like selection, mutation, and dispersal, the transition ker-

nel for our model is difficult to characterize (studies like Champagnat et al., 2006, are capable of constructing

explicit transition kernels by considering time steps small enough so that only one event can occur per step).

To model the evolutionary process in a more practical way, we will focus on the dynamics of the distribution of

phenotypes across the entire population rather than on the dynamics of the distribution of group statesφt(T ).

A.2 Recurrence for the phenotypic distribution

The distribution of phenotypes across the entire population at time t is given by the density function

pt(z) =∫
S

µ(z)

N
φt(µ)dµ, (A-6)

where µ(z)/N is the frequency of individuals with phenotype z within a group in state µ (recall that all groups

have the same size N ). Using eq. (A-5), the phenotypic distribution at time period t +1 can be written as

pt+1(z) =∫
S

µ(z)

N
φt+1(µ)dµ =

1

N ∫
S

∫

S

µ′(z)P(µ′∣µ,φt)φt(µ)dµ′dµ =
1

N ∫
S

λµ(z,φt)φt(µ)dµ, (A-7)

where

λµ(z,φt) =∫

S

µ′(z)P(µ′∣µ,φt)dµ′ (A-8)

is the expected number of individuals with phenotype z residing in a focal group at time t +1, given that this

focal group was in state µ at time t (and the population state distribution was φt ). We can decompose this

expected number as

λµ(z,φt) =λ
P
µ(z,φt)+λ

I
µ(z,φt), (A-9)
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where λP
µ(z,φt) is the expected number of philopatric individuals (i.e., surviving adults or offspring that have

remained in their natal group) and λI
µ(z,φt) is the expected number of immigrant offspring (i.e., coming from

other groups) with phenotype z. We aim to express these expected numbers in terms of the fitness of individ-

uals at time t .

A.2.1 Individual fitness

The number, λP
µ(z,φt), of philopatric individuals with phenotype z can be expressed in terms of fitness com-

ponents of individuals at time t as

λP
µ(z,φt) =∫

Rn

µ(z′)wP
µ(z′,φt)u(z′,z)dz′, (A-10)

where wP
µ(z′,φt) is philopatric fitness: it is the expected number of offspring produced by a single individual

(including itself if it survives) bearing z′ a time t (given that it resides in a state µ group); and u(z′,z) is the

p.d.f. for the event that the offspring produced by an individual with phenotype z′ has phenotype z. Note that

we assume that surviving adults and offspring mutate alike. While this is relevant to unicellular organisms,

an application specific to multicellular organisms would require distinguishing between two components of

philopatric fitness: adult survival and offspring production. This would only complicate eq. (1) but would not

affect our other results presented in the main text (eq. 3 onwards) as we later assume that mutations are rare,

so that the chances of mutating during an individual’s lifetime would be unlikely (Appendix B.1.2).

Likewise, we can write the expected number of immigrant offspring as

λI
µ(z,φt) =∫

Rn

∫

S

µ′(z′)wD
µ,µ′(z′,φt)u(z′,z)φt(µ

′
)dµ′dz′, (A-11)

where wD
µ,µ′(z′,φt) is the expected number of successful emigrant offspring of a single individual with pheno-

type z′, given that it resides in a group in state µ′ ∈S , and that the colonized group (i.e., the group the offspring

lands in) was in state µ at time t .

Substituting eqs. (A-10) and (A-11) into eq. (A-9), which is in turn substituted into eq. (A-7), the phenotypic

distribution at t +1 reads as

pt+1(z) =
1

N ∫
S

∫

Rn

⎛

⎝
µ(z′)wP

µ(z′,φt)+∫

S

µ′(z′)wD
µ,µ′(z′,φt)φt(µ

′
)dµ′

⎞

⎠
u(z′,z)dz′φt(µ)dµ. (A-12)

By exchanging integral variables µ and µ′ in the second summand within brackets, we obtain

pt+1(z) =
1

N ∫
S

∫

Rn

µ(z′)(wP
µ(z′,φt)+wD

µ (z′,φt))u(z′,z)dz′φt(µ)dµ, (A-13)

where

wD
µ (z′,φt) =∫

S

wD
µ′,µ(z′,φt)φt(µ

′
)dµ′ (A-14)

is the expected number of successful dispersing offspring produced by an individual with phenotype z′, given

that this individual resides in a group in state µ at time t .

Individual fitness is then defined as

wµ(z′,φt) = wP
µ(z′,φt)+wD

µ (z′,φt), (A-15)

which gives the expected number of successful offspring produced by an individual with phenotype z′, given

that this individual resides in a group in state µ at time t (and the population state distribution was φt ). In

terms of this individual fitness function, the phenotypic distribution at time t +1 (eq. A-13) reads as

pt+1(z) =
1

N ∫
S

∫

Rn

µ(z′)wµ(z′,φt)u(z′,z)dz′φt(µ)dµ. (A-16)
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A.2.2 Lineage fitness

To go from eq. (A-16) to eq. (1) of the main text, let us define

W(z′,φt) =∫

S

wµ(z′,φt)q(µ∣z′,φt)dµ, (A-17)

where

q(µ∣z′,φt) =
µ(z′)

N

φt(µ)

pt(z′)
(A-18)

is the p.d.f. for the event that an individual resides in a group in state µ at time t given that this individual bears

phenotype z′. In other words, q(µ∣z′,φt) gives the probability that an individual, randomly sampled at time t

from the collection of individuals with phenotype z′ in the population (the “z′-lineage”), resides in a group in

a state µ. As such, W(z′,φt) (eq. A-17) is the expected fitness of a member of the z′-lineage at time t (where

expectation is taken over all possible groups this member can belong to) and a multi-allelic version of lineage

fitness (Mullon et al., 2016, Lehmann et al., 2016).

Substituting eq. (A-17) into eq. (A-16), we obtain that the individual phenotypic density distribution is

pt+1(z) =∫
Rn

W(z′,φt)u(z′,z)pt(z′)dz′, (A-19)

which combines the forces of mutation and selection on phenotypic change. To start disentangling these, note

that when the probability of a mutation is independent from parental phenotype, the p.d.f. for the event that

the offspring of an individual with phenotype z′ has phenotype z can be expressed as

u(z′,z) = (1−ν)δ(z′−z)+νv(z′,z), (A-20)

where ν is the probability that an offspring has a mutant phenotype (i.e., 1−u(z,z) = ν for all z), δ(z′−z) is the

Dirac delta function, and v(z′,z) is the conditional probability of mutating from z′ to z given that a mutation

has occurred. So the first term of eq. (A-20) captures the event of no mutation, in which case the offspring

has the same phenotype than its parent, and the second term captures the event of a mutation. Substituting

eq. (A-20) into eq. (A-19), we finally obtain eq. (1) in the main text, as required.

B The dynamics of trait means and variance-covariance

Here, we derive eqs. (3)-(7) of the main text, which govern the closed dynamics of trait means and variance-

covariance. As mentioned in the main text, this derivation hinges upon several assumptions that we detail

below.

B.1 Weak selection and mutation

B.1.1 Weak selection

We first assume that the phenotypic distribution, pt(z), is peaked around the population mean z̄t =

∫Rn zpt(z)dz (i.e., the phenotypic variance is small). We can thus approximate lineage fitness, W(z,φt), as

a second-order Taylor expansion around z̄t . We do so in Appendix C, in which we show that lineage fitness can

be written as

W(z,φt) =W(z̄t ,φt)+
n

∑
a=1

ξt(za)sa,t(z̄t)+
1

2

n

∑
a=1

n

∑
b=1

ξt(za)ξt(zb)hab,t(z̄t)+O(ξ3
t ), (B-1)

where

W(z̄t ,φt) = 1−
1

2

n

∑
a=1

n

∑
b=1

σab,t hab,t(z̄t)+O(ξ3
t ) (B-2)
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is the lineage fitness of the average phenotype z̄t ; ξt(za) = za − z̄a,t denotes the difference between a value

za and the average trait value a; σab,t = ∫Rn ξt(za)ξt(zb)pt(z)dz is the (co)variance among traits a and b

in the population; sa,t(z̄t) is the first-order effect of change in trait a away from z̄t on lineage fitness (i.e.,

sa,t(z̄t) = ∂W(z,φt)/∂za ∣z=z̄t ); hab,t(z̄t) is the second-order effect of a joint change in traits a and b away

from z̄t on lineage fitness (i.e., hab,t(z̄t) = ∂
2W(z,φt)/∂za∂zb ∣z=z̄t ); and ξt is the maximum deviation between

individual trait value in the population and the population mean trait value at time t . We detail the first- and

second-order effects below.

The first-order effect is given by

sa,t(z̄t) =
∂w(zi ,z−i , z̄t)

∂zi ,a
∣

zi=z̄t
z−i=z̄t

+(N −1)r ○2,t(z̄t)
∂w(zi ,z−i , z̄t)

∂z j ,a
∣

zi=z̄t
z−i=z̄t

, (B-3)

where individual fitness, w(zi ,z−i , z̄t), is written as in the main text eq. (5) and r ○2,t(z̄t) is a neutral time-

dependent coefficient of pairwise relatedness (i.e., the probability that two individuals sampled at random

within a group at time t are identical-by-descent in the absence of selection, see section C.1.2 in Appendix C

for more details).

The second-order effect is given by

hab,t(z̄t) = hw,ab,t(z̄t)+hr,ab,t(z̄t), (B-4a)

with

hw,ab,t(z̄t) =
∂2w(zi ,z−i , z̄t)

∂zi ,a∂zi ,b
∣

zi=z̄t
z−i=z̄t

+ r ○2,t(z̄t)(N −1)
∂2w(zi ,z−i , z̄t)

∂z j ,a∂z j ,b
∣

zi=z̄t
z−i=z̄t

+ r ○2,t(z̄t)(N −1)
⎛
⎜
⎜
⎝

∂2w(zi ,z−i , z̄t)

∂zi ,a∂z j ,b
∣

zi=z̄t
z−i=z̄t

+
∂2w(zi ,z−i , z̄t)

∂zi ,b∂z j ,a
∣

zi=z̄t
z−i=z̄t

⎞
⎟
⎟
⎠

+ r ○3,t(z̄t)(N −1)(N −2)
∂2w(zi ,z−i , z̄t)

∂z j ,a∂zk,b
∣

zi=z̄t
z−i=z̄t

,

(B-4b)

and

hr,ab,t(z̄t) = (N −1)
∂w(zi ,z−i , z̄t)

∂z j ,b
∣

zi=z̄t
z−i=z̄t

×
∂r2,t(z)

∂za
∣

z=z̄t

+(N −1)
∂w(zi ,z−i , z̄t)

∂z j ,a
∣

zi=z̄t
z−i=z̄t

×
∂r2,t(z)

∂zb
∣

z=z̄t

, (B-4c)

where r ○3,t(z̄t) is the neutral time-dependent three-way relatedness (i.e., the probability that three individuals

sampled at random within a group at time t are identical-by-descent in the absence of selection, see eq. C-44

for details); and ∂r2,t(z)/∂za is the marginal effect of a change in trait a on time-dependent pairwise related-

ness (i.e., the effect of trait a on the probability that a neighbor of a focal individual with phenotype z carries a

phenotype that is identical-by-descent to that of the focal at time t , see section C.1.2 in Appendix C for more

details).

The first (eq. B-3) and second (eq. B-4) order effects are the same as the selection gradient (eq. 6) and correla-

tional selection (eq. 7) of the main text, respectively, with the exception that relatedness coefficients (r ○2,t(z̄t),

r ○3,t(z̄t), ∂r2,t(z)/∂za) are time-dependent in eqs. (B-3) and (B-4) and independent in eqs. (6) and (7). We will

specify in section B.2.2 below how we can get rid of this time dependence, but first, we need to make a further

assumption.

B.1.2 Weak mutation

Our next assumption is that mutations are rare, with the probability of mutating, ν, of the orderO(ξ2
t ). Under

this assumption, note that νW(z,φt) = ν+O(ξ3
t ) (from eqs. B-1-B-2). We can therefore rewrite eq. (1) of the
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main text as

pt+1(z) =W(z,φt)pt(z)+ν
⎛

⎝
∫

Rn

pt(z′)v(z′,z)dz′−pt(z)
⎞

⎠
+O(ξ3

t ), (B-5)

where the first term captures the effects of selection only, and the next term, the effects of mutation only.

Eq. (B-5) takes the same functional form as classical recurrence for the phenotypic distribution in well-mixed

populations when selection and mutation are weak (under the continuum-of-alleles model, e.g., eq. 1 of

Bürger, 1986; for fluctuating population size, see eq. 4.9 of Champagnat et al., 2006), but with lineage, W(z,φt),

instead of individual fitness. Next, we use eq. (B-5) to derive recurrence equations for the changes in mean trait

values and the phenotypic variance-covariance matrix over one time period.

B.1.3 Dynamics of the mean trait values

By definition, the change in the mean of trait a over one time period is

∆z̄a,t = z̄a,t+1− z̄a,t =∫

Rn

ξt(za)pt+1(z)dz. (B-6)

Substituting eq. (B-5) into eq. (B-6), we obtain

∆z̄a,t =∫

Rn

ξt(za)W(z,φt)pt(z)dz+ν
⎛

⎝
∫

Rn

∫

Rn

ξt(za)pt(z′)v(z′,z)dz′dz
⎞

⎠
+O(ξ4

t ), (B-7)

But since the effects of mutation are assumed to be unbiased, we have

∫

Rn

∫

Rn

ξt(za)pt(z′)v(z′,z)dz′dz = 0. (B-8)

Eq. (B-7) then reduces to

∆z̄a,t = z̄a,t+1− z̄a,t =∫

Rn

ξt(za)W(z,φt)pt(z)dz+O(ξ4
t ), (B-9)

which corresponds to the first term of the Price equation: the change in average trait value in a population is

equal to the covariance between trait and fitness (Price, 1970; see eq. 3 of Frank, 1997).

Substituting eq. (B-1) into eq. (B-9), we obtain that the change in the mean of trait a is,

∆z̄a,t =
n

∑
b=1

σab,t sb,t(z̄t)+
1

2

n

∑
b=1

n

∑
c=1

κabc,t hbc,t(z̄t)+O(ξ4
t ), (B-10)

which depends on the skew,

κabc,t =∫

Rn

ξt(za)ξt(zb)ξt(zc)pt(z)dz, (B-11)

in the population at time period t (in line with e.g., eq. 8a of Wakano and Iwasa, 2013 and eq. A20 b of Débarre

and Otto, 2016 in well-mixed populations; eq. 17 of Wakano and Lehmann, 2014 for the island model).

B.1.4 Dynamics of the phenotypic variance-covariance

By definition, the change in the (co)variance (within individuals) between two traits a and b over one time

period is

∆σab,t =σab,t+1−σab,t =∫

Rn

(za − z̄a,t+1)(zb − z̄b,t+1)pt+1(z)dz−σab,t

=∫

Rn

(ξt(za)ξt(zb)−σab,t)pt+1(z)dz−∆z̄a,t∆z̄b,t .
(B-12)
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Substituting eq. (B-5) into the above, we obtain

∆σab,t =∫

Rn

(ξt(za)ξt(zb)−σab,t)W(z,φt)pt(z)dz

+ν
⎛

⎝
∫

Rn

∫

Rn

ξt(za)ξt(zb)pt(z′)v(z′,z)dz′dz−σab,t
⎞

⎠
−∆z̄a,t∆z̄b,t +O(ξ5

t ).

(B-13)

The bracketed term in the second line of eq. (B-13), which captures the effects of mutations, can be simplified

by first writing out the product of deviations in terms of parental phenotype as

ξt(za)ξt(zb) = ξt(z′a)ξt(z′b)+(za − z′a)(zb − z′b)+ξt(za)(zb − z′b)+ξt(zb)(za − z′a), (B-14)

and second, by noting that since mutations are assumed to be unbiased, the covariance between parental

phenotype and mutation effect is zero:

∫

Rn

(ξt(za)(zb − z′b)+ξt(zb)(za − z′a))v(z′,z)dz = 0. (B-15)

Using eqs. (B-14)-(B-15), the effect of mutations in eq. (B-13) can then be written as

∫

Rn

∫

Rn

ξt(za)ξt(zb)pt(z′)v(z′,z)dz′dz =∫
Rn

∫

Rn

(ξt(z′a)ξt(z′b)+(za − z′a)(zb − z′b))pt(z′)v(z′,z)dz′dz

=σab,t +σ
m
ab ,

(B-16)

where we have defined, σm
ab = ∫Rn ∫Rn(za−z′a)(zb−z′b)v(z′,z)dz′dz ∼O(ξ2

t ), as the (co)variance in mutational

effects on traits a and b. Substituting eq. (B-16) into eq. (B-13), we obtain that the change in the (co)variance

between two traits a and b over one time period is

∆σab,t = νσ
m
ab +∫

Rn

(ξt(za)ξt(zb)−σab,t)W(z,φt)pt(z)dz−∆z̄a,t∆z̄b,t +O(ξ5
t )

= νσm
ab +∫

Rn

ξt(za)ξt(zb)(W(z,φt)−1)pt(z)dz−∆z̄a,t∆z̄b,t +O(ξ5
t ),

(B-17)

where to go from the first to the second line, we have used the fact that mean lineage fitness is one:

∫Rn W(z,φt)pt(z)dz = 1 (since the population size is constant).

Substituting eq. (B-1), and the change in mean, eq. (B-10), into eq. (B-17), we obtain after some re-

arrangements that the one-generational change in phenotypic (co)variance between traits a and b is

∆σab,t = νσ
m
ab +(W(z̄,φt)−1)σab,t +

n

∑
c=1

κabc,t sc,t(z̄t)

+
1

2

n

∑
c=1

n

∑
d=1

σabcd ,t hcd ,t(z̄t)−
n

∑
c=1

n

∑
d=1

σac,tσbd ,t sc,t(z̄t)sd ,t(z̄t)+O(ξ5
t ),

(B-18)

which depends on the fourth central moment of the phenotypic distribution,

σabcd ,t =∫

Rn

ξt(za)ξt(zb)ξt(zc)ξt(zd)pt(z)dz (B-19)

(in line with e.g., eq. 8b of Wakano and Iwasa, 2013 and eq. A24 b of Débarre and Otto, 2016 in well-mixed

populations; eqs. B1-B8 of Wakano and Lehmann, 2014 for the island model with a single trait).

B.2 Closure assumptions

Finally, we close the dynamical system for the means and (co)variances (given by eqs. B-10 & B-18). We achieve

this closure in two steps.

Appendix - 8

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 25, 2019. ; https://doi.org/10.1101/393538doi: bioRxiv preprint 

https://doi.org/10.1101/393538
http://creativecommons.org/licenses/by-nd/4.0/


B.2.1 Normal closure

First, we assume that the phenotypic distribution, pt(z), is normal. Under this assumption, the skew in the

phenotypic distribution is zero, κabc,t = 0, and the fourth central moments can be expressed in terms of the

(co)variances,σabcd ,t =σab,tσcd ,t +σac,tσbd ,t +σad ,tσbc,t . Substituting these relationships into eqs (B-10) and

(B-18), we obtain that the one-generational changes in means and covariances are respectively given by

∆z̄a,t =
n

∑
b=1

σab,t sb,t(z̄t)+O(ξ4
t )

∆σab,t = νσ
m
ab −

n

∑
c=1

n

∑
d=1

σac,tσbd ,t sc,t(z̄t)sd ,t(z̄t)+
1

2

n

∑
c=1

n

∑
d=1

(σac,tσbd ,t +σad ,tσbc,t)hcd ,t(z̄t)+O(ξ5
t ).

(B-20)

Since we make no assumption about the order of the fitness effects of traits (i.e., sa,t(z̄t) and hab,t(z̄t) can

be of order O(1)), the magnitude of a one-generational change in mean trait z̄a,t and (co)variance σab,t are

respectively of orderO(ξ2
t ) andO(ξ4

t ). In vector and matrix form, eq. (B-20) corresponds to eq. (3) of the main

text, except that in eq. (B-20), the selection coefficients depend on time t (due to time-dependent relatedness

coefficients, r ○2,t(z̄t), r ○3,t(z̄t), and ∂r2,t(z)/∂za). We get rid off of this dependency and finally achieve closure

in the next section.

B.2.2 Quasi-equilibrium

Our second step to close the dynamical system eq. (B-20) is to assume that dispersal is strong enough (relative

to selection) so that genetic associations between individuals within groups reach their steady-state values be-

fore any significant changes has occurred in the phenotypic distribution, pt(z), at the population level. This

quasi-equilibrium assumption, which is frequently used in population genetic and social evolution theory

(e.g., Kimura, 1965a, Nagylaki, 1993, Kirkpatrick et al., 2002, Roze and Rousset, 2005, 2008) is in line with our as-

sumption that selection is weak. It entails that we can evaluate r ○2,t(z̄t), r ○3,t(z̄t), and ∂r2,t(z)/∂za in eqs. (B-3)-

(B-4) at their quasi-equilibrium, i.e., we take the limits limτ→∞ r ○2,τ(z̄t) = r ○2 (z̄t), limτ→∞ r ○3,τ(z̄t) = r ○3 (z̄t), and

limτ→∞∂r2,τ(z)/∂za ∣z=z̄t = ∂r2(z)/∂za ∣z=z̄t , while holding pt(z) constant (we thus denote by r ○2 (z̄t),r ○3 (z̄t),

and ∂r2(z)/∂za ∣z=z̄t , the steady-state values of neutral pairwise relatedness, neutral three-way relatedness,

and the first-order perturbation of pairwise relatedness, respectively). Substituting these steady-states into

the selection coefficients eqs. (B-3)-(B-4) (now independent of time so written as sa(z̄t) and hab(z̄t)), which

are in turn substituted into eq. (B-20), we finally obtain the closed dynamical eqs. (3) of the main text.

Computing relatedness coefficients. Computing relatedness coefficients under neutrality (i.e., r ○2 (z̄t),

r ○3 (z̄t)) is standard in population genetics (e.g., Karlin, 1968, Rousset, 2004). When generations are non-

overlapping (i.e., a Wright-Fisher life cycle), for example, the relevant relatedness coefficients for our approach

are given by

r ○2 (z̄t) =
(1−m)2

N −(N −1)(1−m)2

r ○3 (z̄t) =
(1−m)3(1+3(N −1)r ○2 (z̄t))

N 2−(N −1)(N −2)(1−m)3
,

(B-21)

(e.g., eqs. 12a & 12b of Ohtsuki, 2010; see also Table 1 of Mullon et al., 2016 for the Moran model). Calculating

the first-order effect of selection on pairwise relatedness, ∂r2(z)/∂za , however, is more complicated. Under

the quasi-equilibrium assumption, a perturbation of genetic associations between individuals will depend on

first-order perturbations of individual fitness and neutral relatedness coefficients (see Roze and Rousset, 2008

for a general treatment, in particular their eq. 67). So far, the first-order effect of selection on pairwise related-

ness, ∂r2(z)/∂za , has been explicitly derived for two standard life-cycles, the semelparous Wright-Fisher life-

cycle (in which all adults die after reproduction; see eq. 18 of Ajar, 2003 and eq. 28 of Wakano and Lehmann,

2014) and the iteroparous birth-death Moran life-cycle (in which a single adult dies after reproduction in each
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group; see eq. 14 of Mullon et al., 2016). In both cases, the effect of selection on relatedness can be written as

∂r2(z)

∂za
∣

z=z̄t

= κ
r ○2 (z̄t)

1−m
[[1+(N −1)r ○2 (z̄t)]

∂wP(zi ,z−i , z̄t)

∂zi ,a
∣

zi=z̄t
z−i=z̄t

+ [2r ○2 (z̄t)+(N −2)r ○3 (z̄t)](N −1)
∂wP(zi ,z−i , z̄t)

∂z j ,a
∣

zi=z̄t
z−i=z̄t

],

(B-22)

where wP(zi ,z−i , z̄t) is the expected number of offspring of a focal individual (with phenotype zi , with neigh-

bours z−i , and individuals in other groups with phenotype z̄t ) that successfully establish in their natal group;

and κ = 2 for the Wright-fisher and κ = 1 for the Moran life cycle (watch out for an unfortunate typo in eq. 15 of

Mullon et al., 2018, which has “κ = N ” under the Moran life cycle).

C Second-order approximation of lineage fitness

Here, we derive the second-order Taylor expansion of lineage fitness, W(z,φt), around the population mean

phenotype z̄t (i.e., we derive eqs. B-1 – B-4 of Appendix B). Let us first recall the definition of lineage fitness,

W(z,φt) =∫

S

wµ(z,φt)q(µ∣z,φt)dµ, (C-1)

where wµ(z,φt) is the fitness of an individual with phenotype z in a group in state µ. Our approach is to

develop a second-order Taylor expansion of the individual fitness function wµ(z,φt), which we then plug back

into eq. (C-1) to average it over group composition, q(µ∣z,φt), and thus obtain lineage fitness.

Our starting point is to rewrite individual fitness as

wµ(z,φt) = w(z,nµ(z),e(φt)), (C-2)

i.e., as a function that depends explicitly on all relevant phenotypes in the population: (1) z ∈ Rn , the pheno-

type of the focal individual (the individual whose fitness is under scrutiny); (2) nµ(z) ∈ R(N−1)×n , the set of

phenotypes of the N −1 neighbors of the focal individual; and (3) e(φt) ∈R
N×n , the set of N phenotypes from

a representative (or average) group other than the one the focal resides in (which depends on the population

state φt ).

From these dependencies, the Taylor expansion of individual fitness, w(z,nµ(z),e(φt)), around z̄t has the

generic form,

w(z,nµ(z),e(φt)) = 1+
n

∑
a=1
∑

ẑa∈Z

ξt(ẑa)
∂w

∂ẑa

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
βa,t

+
1

2

n

∑
a=1

n

∑
b=1
∑

ẑa∈Z

∑
ẑb∈Z

ξt(ẑa)ξt(ẑb)
∂2w

∂ẑa∂ẑb

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
βab,t

+O(ξ3
t ), (C-3)

where 1 is individual fitness in a monomorphic population (i.e., when all individuals have phenotype z̄t );

ξt(ẑa) = ẑa − z̄a,t denotes the difference between a value ẑa and the average trait value a (and ξt in O(ξ3
t ) is

the maximum deviation between individual trait value in the population and the population mean trait value

at time t ); and the set Z = {z}∪nµ(z)∪e(φt) collects the phenotypes of the focal, its neighbors, and those in

other groups (so that it has 2N elements). The term βa,t in eq. (C-3) collects the marginal effects of a change

in trait a on focal fitness: it sums the marginal effects of changing trait a (∂w/∂ẑa , where here and hereafter

all derivatives are evaluated when all individuals have mean phenotype z̄t ) across all individuals that belong

to Z . Similarly, βab,t collects the interaction effects of changes in traits a and b on focal fitness (summing the

interaction effects of changes in traits a and b within, and between, all individuals that are inZ).

We will develop these marginal (βa,t in section C.1) and interaction (βab,t in section C.2) effects on individual

fitness, and then average them over the group distribution an individual can reside in, q(µ∣z,φt), to obtain
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lineage fitness (eq. C-1). But first, note that lineage fitness in a monomorphic population is,

W(z,φt) =∫

S

1×q(µ∣z,φt)dµ+O(ξt) = 1+O(ξt), (C-4)

i.e., also one.

C.1 Marginal effects

We first develop the marginal effects, βa,t , of varying trait a on individual fitness. To distinguish the effects of

varying the trait in different individuals, we will use the symbols

zn = {zn,a , ..., zn,n} ∈ nµ(z), zm = {zm,a , ..., zm,n} ∈ nµ(z), (C-5)

to denote the phenotypes of two distinct individuals from the focal group (and distinct from the focal individ-

ual), and

znn = {znn,a , ..., znn,n} ∈ e(φt), zmm = {zmm,a , ..., zmm,n} ∈ e(φt), (C-6)

to denote the phenotypes of two distinct individuals from a group different to the focal.

With these notations, βa,t can be decomposed into

βa,t = ξt(za)
∂w

∂za
+ ∑

zn∈nµ(z)

ξt(zn,a)
∂w

∂zn,a
+ ∑

znn∈e(φt)

ξt(znn,a)
∂w

∂znn,a
, (C-7)

where the first, second and third summands capture the marginal effect of varying the trait in: the focal; its

neighbors; and individual in other groups, respectively. Because the fitness function w(z,nµ(z),e(φt)) is in-

variant to permutations of elements within the sets nµ(z) and e(φt) (i.e., it does not matter to individual

fitness which precise neighbor or individual from another group expresses which phenotype), the derivatives

in eq. (C-7) can be taken out of their sums,

βa,t = ξt(za)
∂w

∂za
+
⎛

⎝
∑

zn∈nµ(z)

ξt(zn,a)
⎞

⎠

∂w

∂zn,a
+
⎛

⎝
∑

znn∈e(φt)

ξt(znn,a)
⎞

⎠

∂w

∂znn,a
. (C-8)

In order to make the sums in eq. (C-8) more convenient for averaging over q(µ∣z,φt), we seek to express them

in terms of the counting measure µ(z) that counts the number of individuals with phenotype z in a group in

state µ (see eq. A-2 in Appendix A). This is easily achieved for the last sum in eq. (C-8), which turns out to be

zero:

∑
znn∈e(φt)

ξt(znn,a) =∫

Rn

∫

S

ξt(znn,a)µ(znn)φt(µ)dµdznn = N ∫
Rn

ξt(znn,a)pt(znn)dznn = 0 (C-9)

(this reflects that since there is an infinite number of groups, the average deviation from the mean in groups

other than the focal is zero).

For the first sum between parenthesis in eq. (C-8), we define the conditional counting measure,

µn,z(zn) = δ(zn−z)(µ(z)−1)+(1−δ(zn−z)))µ(zn), (C-10)

where δ(.) is the Dirac-Delta function, so that µn,z(zn) counts the number of neighbors of the focal that have

phenotype zn, given that the focal individual has phenotype z. With eq. (C-10), we can write the first sum of

eq. (C-8) as

∑
zn∈nµ(z)

ξt(zn,a) = ξt(za)(µ(z)−1)+ ∑
zn∈nµ(z)

zn≠z

ξt(zn,a)µ(zn) =∫

Rn

ξt(zn,a)µn,z(zn)dzn. (C-11)

Substituting eqs. (C-9) & (C-11) into eq. (C-8) then gives

βa,t = ξt(za)
∂w

∂za
+
⎛

⎝
∫

Rn

ξt(zn,a)
µn,z(zn)

N −1
dzn

⎞

⎠
(N −1)

∂w

∂zn,a
. (C-12)
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C.1.1 Average marginal effects

We proceed to average the marginal effects of a change in one trait, βa,t , over the group distribution an in-

dividual can reside in, q(µ∣z,φt), which is necessary to obtain lineage fitness (eq. C-1). From eq. (C-12), this

average can be written as,

∫

S

βa,t q(µ∣z,φt)dµ = ξt(za)
∂w

∂za
+(∫

Rn

ξt(zn,a)q2(zn∣z,φt)dzn)(N −1)
∂w

∂zn,a
, (C-13)

where we have defined

q2(zn∣z,φt) =∫

S

µn,z(zn)

N −1
q(µ∣zn,φt)dµ (C-14)

as the p.d.f. for the event of sampling an individual with phenotype zn within a group, given that within this

group a focal individual with phenotype z has already been sampled (and removed).

C.1.2 Pairwise relatedness

The p.d.f. q2(zn∣z,φt) can be connected to the notion of pairwise relatedness by noting that two neighbors with

the same phenotype may have a common ancestor who resided in the same group, which in the infinite island

model is equivalent to the event that these individuals are identical-by-descent (IBD, e.g., Rousset, 2002). To

make this connection explicit, we decompose q2(zn∣z,φt) as,

q2(zn∣z,φt) = r2,t(z)δ(zn−z)+kt(z,zn)pt(zn), (C-15)

where r2,t(z) is the conditional p.d.f for the event that, given a focal individual has phenotype z at time t ,

a randomly sampled individual among its neighbors is IBD to this focal (this p.d.f. depends on the whole

phenotypic distribution, φt , which is captured by the time index in r2,t(z)). We refer to r2,t(z) as pairwise

relatedness. The two summands in eq. (C-15) respectively capture two complementary events: the sampled

neighbor is either (1) IBD with the focal (and thus must have the same phenotype as the focal, zn = z); or (2)

not IBD with the focal and has phenotype zn (which may or may not be equal to z). We have written the p.d.f.

for this latter event as kt(z,zn)pt(zn), where pt(zn) is the marginal probability of sampling an individual with

phenotype zn from the global population. The function kt(z,zn) can therefore be viewed as the multiplicative

effect of having already sampled an individual with phenotype z in the group on this marginal probability.

In our endeavour to obtain an expression for lineage fitness up to the order ξ2
t , we seek to express q2(zn∣z,φt)

to the order of ξt (as it multiplies ξt(zn,a), which is of order ξt , in eq. C-13). We thus Taylor expand both r2,t(z)
and kt(z,zn) in eq. (C-15) to the first-order around z̄t , and obtain

q2(zn∣z,φt) =(r ○2,t(z̄t)+
n

∑
a=1

∂r2,t(z)

∂za
ξt(za))δ(zn−z)

+(kt(z̄t , z̄t)+
n

∑
a=1

∂kt(z,zn)

∂za
ξt(za)+

n

∑
a=1

∂kt(z,zn)

∂zn,a
ξt(zn,a)) pt(zn)+O(ξ2

t ),

(C-16)

where r ○2,t(z̄t) is the probability that two randomly sampled individuals within a group at time t are IBD under

neutrality (i.e., when the population is monomorphic for z̄t ).

Next, we use the fact that from the definition of q2(zn∣z,φt) (eq. C-14), q2(zn∣z,φt)pt(z) is the (unconditional)

p.d.f. for the event of sampling one individual with phenotype z and another with zn without replacement

Appendix - 12

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 25, 2019. ; https://doi.org/10.1101/393538doi: bioRxiv preprint 

https://doi.org/10.1101/393538
http://creativecommons.org/licenses/by-nd/4.0/


from a group. Thus, three identities must hold:

∫

Rn

q2(zn∣z,φt)pt(z)dzn = pt(z) (C-17)

∫

Rn

q2(zn∣z,φt)pt(z)dz = pt(zn), (C-18)

∫

Rn

∫

Rn

q2(zn∣z,φt)pt(z)dzndz = 1, (C-19)

which can be used to express kt(z,zn) in terms of r2,t(z). In fact, substituting eq. (C-16) into eq. (C-19), we

obtain

r ○2,t(z̄t)+kt(z̄t , z̄t) = 1⇒ kt(z̄t , z̄t) = 1− r ○2,t(z̄t). (C-20)

Substituting eq. (C-20) into eq. (C-16), which is in turn substituted into eq. (C-17) yields,

pt(z)+
n

∑
a=1

∂r2,t(z)

∂za
ξt(za)pt(z)+

n

∑
a=1

∂kt(z,zn)

∂za
ξt(za)pt(z) = pt(z)

⇒
n

∑
a=1

(
∂r2,t(z)

∂za
+
∂kt(z,zn)

∂za
)ξt(za)pt(z) = 0.

(C-21)

As the above equality holds for all possible ξt(za) and for all a = 1, . . . ,n, we must have

∂kt(z,zn)

∂za
=−

∂r2,t(z)

∂za
. (C-22)

Substituting eq. (C-20) into eq. (C-16), which is in turn substituted into (C-18) and using a similar argument,

we obtain that,
∂kt(z,zn)

∂zn,a
=−

∂r2,t(z)

∂za
. (C-23)

Plugging eqs. (C-20), (C-22) and (C-23) into eq. (C-16) then gives us

q2(zn∣z,φt) = q○2(zn∣z,φt)+(
n

∑
a=1

ξt(za)
∂r2,t(z)

∂za
)δ(zn−z)−(

n

∑
a=1

(ξt(za)+ξt(zn,a))
∂r2,t(z)

∂za
)pt(zn)+O(ξ2

t ),

(C-24a)

where

q○2(zn∣z,φt) = r ○2,t(z̄t)δ(zn−z)+(1− r ○2,t(z̄t))pt(zn), (C-24b)

is the neutral (conditional) p.d.f. for the event of sampling an individual with phenotype zn within the neigh-

borhood of an individual with phenotype z.

Regression definition of relatedness. It is noteworthy that the definition of pairwise relatedness as the prob-

ability of IBD between two randomly sampled individuals within a group that we use, aligns with the “regres-

sion definition of relatedness” (e.g., Grafen, 1985, eq. 2.13 of Frank, 1998). Under this latter definition, relat-

edness is the regression of neighbor phenotype on focal phenotype: it is the ratio of phenotypic covariance

among neighbors,

ϕab,t =∫

Rn

∫

Rn

ξt(za)ξt(zn,b)q2(zn∣z,φt)pt(z)dzndz, (C-25)

to the covariance within individuals,σab,t = ∫Rn ξt(za)ξt(zb)pt(z)dz. Substituting eq. (C-24) into eq. (C-25) to

compute this ratio, we obtain

ϕab,t

σab,t
= r ○2,t(z̄t)+

n

∑
c=1

κabc,t

σab,t

∂r2,t(z)

∂zc
+O(ξ2

t ) (C-26)

where κabc,t = ∫Rn ξt(za)ξt(zb)ξt(zc)pt(z)dz is the skew between traits a, b and c within individuals. Our

eq. (C-26) is thus in line with the result that in the infinite island model and under neutrality, relatedness as

a regression coefficient is equal to the probability of identity-by-descent (i.e., ϕab,t/σab,t = r ○2,t(z̄t)+O(ξt),

Rousset, 2002; for equivalent expressions to eq. C-26, see for e.g. eq. 7 of Queller, 1992a; eq. 2.13 of Frank, 1998;

eq. 11 of Wakano and Lehmann, 2014).
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Average marginal effects. We can now return to our calculation of the average marginal effects of a change

in one trait (eq. C-13). Substituting eq. (C-24) into eq. (C-13), we in fact obtain

∫

S

βa,t q(µ∣z,φt)dµ = ξt(za)(
∂w

∂za
+(N −1)r ○2,t(z̄t)

∂w

∂zn,a
)

+
n

∑
b=1

(ξt(za)ξt(zb)−σab,t)
∂r2,t(z)

∂zb
(N −1)

∂w

∂zn,a
+O(ξ3

t ),

(C-27)

for the average marginal effect of trait a.

C.2 Interaction effects

We now tackle the interaction effects on focal fitness,βab,t (eq. C-3), which we will then average over q(µ∣z,φt).

Using notation eqs. (C-5)-(C-6), we first decompose βab,t as

βab,t =β
same
ab,t +β

neigh
ab,t +βcross isle

ab,t , (C-28)

where

βsame
ab,t = ξt(za)ξt(zb)

∂2w

∂za∂zb
+ ∑

zn∈nµ(z)

ξt(zn,a)ξt(zn,b)
∂2w

∂zn,a∂zn,b
+ ∑

znn∈e(φt)

ξt(znn,a)ξt(znn,b)
∂2w

∂znn,a∂znn,b
,

(C-29)

collects the interaction effects of traits a and b within individuals,

β
neigh
ab,t = ∑

zn∈nµ(z)

ξt(za)ξt(zn,b)
∂2w

∂za∂zn,b
+ ∑

zn∈nµ(z)

ξt(zb)ξt(zn,a)
∂2w

∂zb∂zn,a

+ ∑∑
zn,zm∈nµ(z)

ξt(zn,a)ξt(zm,b)
∂2w

∂zn,a∂zm,b
+ ∑∑

znn,znm∈e(φt)

ξt(znn,a)ξt(znm,b)
∂2w

∂znn,a∂znm,b
,

(C-30)

collects the interaction effects between neighbors, and

βcross isle
ab,t = ∑

znn∈e(φt)

ξt(za)ξt(znn,b)
∂2w

∂za∂znn,b
+ ∑

znn∈e(φt)

ξt(zb)ξt(znn,a)
∂2w

∂zb∂znn,a

+ ∑∑
zn∈nµ(z)

znn∈e(φt)

ξt(zn,a)ξt(znn,b)
∂2w

∂zn,a∂znn,b
+ ∑∑

zn∈nµ(z)
znn∈e(φt)

ξt(zn,b)ξt(znn,a)
∂2w

∂zn,b∂znn,a
,

(C-31)

the interaction effects between individuals between groups. We proceed to specify each of these in terms of

counting measures and average them over q(µ∣z,φt) sequentially.

C.2.1 Interaction effects within individuals

We start with interaction effects within individuals, βsame
ab,t . Using eq. (C-10), eq. (C-29) can be expressed as

βsame
ab,t = ξt(za)ξt(zb)

∂2w

∂za∂zb
+
⎛

⎝
∫

Rn

ξt(zn,a)ξt(zn,b)µn,z(zn)dzn
⎞

⎠

∂2w

∂zn,a∂zn,b

+
⎛

⎝
∫

Rn

∫

S

ξt(znn,a)ξt(znn,b)µ(znn)φt(µ)dznndµ
⎞

⎠

∂2w

∂znn,a∂znn,b
,

(C-32)

where the first summand consists of the interaction effect within the focal individual, the second within neigh-

bors of the focal, and the third within individuals from other groups than the focal. To simplify these, we use

the fact that because the population size remains constant, we have

∂2w

∂za∂zb
+(N −1)

∂2w

∂zn,a∂zn,b
+N

∂2w

∂znn,a∂znn,b
= 0 (C-33)
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(see eq. B.13 of Wakano and Lehmann, 2014); and that the third term of eq. (C-32) can be expressed as

∫

Rn

∫

S

ξt(znn,a)ξt(znn,b)µ(znn)φt(µ)dµdznn = N ∫
Rn

ξt(znn,a)ξt(znn,b)pt(znn,a)dznn = Nσab,t . (C-34)

Substituting eqs. (C-33) and (C-34) into eq. (C-32), we find that the interaction effects of a and b within indi-

viduals can be written as

βsame
ab,t = (ξt(za)ξt(zb)−σab,t)

∂2w

∂za∂zb
+
⎛

⎝
∫

Rn

ξt(zn,a)ξt(zn,b)
µn,z(zn)

N −1
dzn−σab,t

⎞

⎠
(N −1)

∂2w

∂zn,a∂zn,b
. (C-35)

Averaging these interaction effects within individuals over q(µ∣z,φt) then gives

∫

S

βsame
ab,t q(µ∣z,φt)dµ = (ξt(za)ξt(zb)−σab,t)(

∂2w

∂za∂zb
+(N −1)r ○2,t(z̄t)

∂2w

∂zn,a∂zn,b
)+O(ξ3

t ), (C-36)

where we used definition eq. (C-14) and eq. (C-24).

C.2.2 Interaction effects between neighbors

Let us now turn to interaction effects between neighbors, βneigh
ab,t (eq. C-30). It is composed of four summands:

the first two capture the interaction effects between the focal and its neighbors; the third, between two neigh-

bors of the focal; and the fourth, between two neighbors from another group than the focal. We consider these

separately below.

Interaction effects between the focal and its neighbors. The first summand of βneigh
ab,t (eq. C-30) corresponds

to the interaction effect between trait a in the focal and trait b in its neighbors. Using eq. (C-10), it can be

expressed as

∑
zn∈nµ(z)

ξt(za)ξt(zn,b)
∂2w

∂za∂zn,b
=
⎛

⎝
∫

Rn

ξt(za)ξt(zn,b)µn,z(zn)dzn
⎞

⎠

∂2w

∂za∂zn,b
. (C-37)

Averaging eq. (C-37) over q(µ∣z,φt) then reads as

∫

Rn

ξt(za)ξt(zn,b)q2(zn∣z,φt)dzn(N −1)
∂2w

∂za∂zn,b
= ξt(za)ξt(zb)r ○2,t(z̄t)(N −1)

∂2w

∂za∂zn,b
+O(ξ3

t ), (C-38)

where we used eq. (C-24). Similarly, averaging the second summand of βneigh
ab,t (eq. C-30), which corresponds to

the interaction effect between trait b in the focal and trait a in its neighbors, yields

∫

S

[ ∑
zn∈nµ(z)

ξt(zb)ξt(zn,a)
∂2w

∂zb∂zn,a
]q(µ∣z,φt)dµ = ξt(za)ξt(zb)r ○2,t(z̄t)(N −1)

∂2w

∂zb∂zn,a
+O(ξ3

t ). (C-39)

Interaction effects between neighbors of the focal. The third summand of βneigh
ab,t (eq. C-30) collects the in-

teraction effects between neighbors of the focal. To express these in terms of the counting measure µ(z) and

average them over q(µ∣z,φt), we introduce one further conditional counting measure,

µn,z(zn,zm) = δ(zn−z)δ(zm−zn)(µ(z)−1)(µ(z)−2)

+δ(zn−z)(1−δ(zm−z))(µ(z)−1)µ(zm)+δ(zm−z)(1−δ(zn−z))(µ(z)−1)µ(zn)

+δ(zm−zn)(1−δ(zn−z))µ(zn)(µ(zn)−1)

+(1−δ(zn−z))(1−δ(zm−z))(1−δ(zn−zm))µ(zn)µ(zm)

(C-40)

which counts the number of unordered pairs of neighbors that have phenotypes zn and zm, given that the

focal individual has phenotype z. Integrated over Rn , the first line of eq. (C-40) counts the number of pairs of

neighbors that have focal phenotype z; the second line, the number of pairs of neighbors in which only one has

the focal phenotype z; the third line, the number of pairs in which both neighbors have the same phenotype
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that is different to the the focal; and the fourth line, the number of pairs in which neighbors have phenotypes

that are different to one another, and to the focal.

Using eq. (C-40), we can then re-write the third summand of βneigh
ab,t as

∑∑
zn,zm∈nµ(z)

ξt(zn,a)ξt(zm,b)
∂2w

∂zn,a∂zm,b
=
⎛

⎝
∫

Rn

∫

Rn

µn,z(zn,zm)dzndzm
⎞

⎠

∂2w

∂zn,a∂zm,b
, (C-41)

which averaged over q(µ∣z,φt) reads as

[∫

Rn

∫

Rn

ξt(zn,a)ξt(zm,b)q3(zn,zm∣z,φt)dzndzm](N −1)(N −2)
∂2w

∂zn,a∂zm,b
, (C-42)

where

q3(zn,zm∣z,φt) =∫

S

µn,z(zn,zm)

(N −1)(N −2)
q(µ∣z,φt)dµ (C-43)

is the conditional p.d.f. for the event of sampling two individuals without replacement, one with phenotype

zn and another with phenotype zm in a group, given that a focal individual with phenotype z has already been

sampled in that group at time t . This p.d.f. can be connected to notions of relatedness as individuals that have

the same phenotype may be IBD. In fact, using a coalescence argument, we can rewrite q3(zn,zm∣z,φt) as

q3(zn,zm∣z,φt) = δ(zn−z)δ(zm−z)r ○3,t(z̄t)

+δ(zn−z)(r ○2,t(z̄t)− r ○3,t(z̄t))pt(zm)+δ(zm−z)(r ○2,t(z̄t)− r ○3,t(z̄t))pt(zn)

+δ(zn−zm)(r ○2,t(z̄t)− r ○3,t(z̄t))pt(zn)

+(1−3r ○2,t(z̄t)+2r ○3,t(z̄t))pt(zn)pt(zm)+O(ξt),

(C-44)

where r ○3,t(z̄t) is the probability of sampling three individuals without replacement from a group are IBD in

the absence of selection at time t (i.e., three-way relatedness). Each summand of eq. (C-44) capture a different

possible relationship among the sampled (zn and zm) and focal (z) phenotype. The first line of eq. (C-44) cap-

tures the event of sampling two individuals that are both IBD with the focal (and thus with the same phenotype

as the focal, z = zn = zm); the next line, the event of sampling only one individual IBD with the focal (and thus

with the same phenotype: the two summands respectively capture the cases z = zn and z = zm); the third line,

the event of sampling two individuals that are IBD together (and thus with phenotypes zn = zm) but not with

the focal; and the last line, the event of sampling two individuals that are not IBD with one another or with the

focal.

Substituting eq. (C-44) into eq. (C-42) then gives us

[ξt(za)ξt(zb)r ○3,t(z̄t)+σab,t(r ○2,t(z̄t)− r ○3,t(z̄t))](N −1)(N −2)
∂2w

∂zn,a∂zm,b
+O(ξ3

t ) (C-45)

for the average interaction effects between neighbors of the focal.

Interaction effects between neighbors from other groups. The fourth and final summand of βneigh
ab,t (eq. C-

30), which collects the interaction effects between neighbors from other groups, can be expressed using

eq. (C-10) as

∑∑
znn,znm∈e(φt)

ξt(znn,a)ξt(znm,b)
∂2w

∂znn,a∂znm,b

= N(N −1)(∫
S

∫

Rn

∫

Rn

ξt(znn,a)ξt(znm,b)
µn,znn(znm)µ(znn)

N(N −1)
φt(µ)dznmdznndµ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ϕab,t

∂2w

∂znn,a∂znm,b
,

(C-46)
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where ϕab,t is the covariance among traits a and b between individuals within groups (see eq. C-25). We can

then use eq. (C-26) to specify this covariance and obtain,

∑∑
znn,znm∈e(φt)

ξt(znn,a)ξt(znm,b)
∂2w

∂znn,a∂znm,b
= N(N −1)r ○2,t(z̄t)σab,t

∂2w

∂znn,a∂znm,b
+O(ξ3

t ). (C-47)

Since this expression does not depend on group compositionµ, it will be invariant to averaging over q(µ∣z,φt).

Average interaction effects between neighbors. Hence, the average interaction effects between neighbors

(∫S β
neigh
ab,t q(µ∣z,φt)dµ), which is given by the sum of eqs. (C-38), (C-39), (C-45) and (C-47), reads as

∫
S
β

neigh
ab,t q(µ∣z,φt)dµ = ξt(za)ξt(zb)r ○2,t(z̄t)(N −1)(

∂2w

∂za∂zn,b
+

∂2w

∂zb∂zn,a
)

+[ξt(za)ξt(zb)r ○3,t(z̄t)+σab,t(r ○2,t(z̄t)− r ○3,t(z̄t))](N −1)(N −2)
∂2w

∂zn,a∂zm,b

+N(N −1)r ○2,t(z̄t)σab,t
∂2w

∂znn,a∂znm,b
+O(ξ3

t ).

(C-48)

This can be further simplified by using the fact than since the total population size is constant, the following

holds,

(N −1)
∂2w

∂za∂zn,b
+(N −1)

∂2w

∂zb∂zn,a
+(N −1)(N −2)

∂2w

∂zn,a∂zm,b
+N(N −1)

∂2w

∂znn,a∂znm,b
= 0. (C-49)

(see eq. B.14 of Wakano and Lehmann, 2014). Substituting for ∂2w/(∂znn,a∂znm,b) using eq. (C-49) into

eq. (C-48) finally gives

∫

S

β
neigh
ab,t q(µ∣z,φt)dµ = (ξt(za)ξt(zb)−σab,t)(N −1)

×(r ○2,t(z̄t)(
∂2w

∂za∂zn,b
+

∂2w

∂zb∂zn,a
)+(N −2)r ○3,t(z̄t)

∂2w

∂zn,a∂zm,b
)+O(ξ3

t ).

(C-50)

C.2.3 Interaction effects between individuals between groups

The final relevant interaction effect, βcross isle
ab,t (eq. C-31), is the interaction between individuals that belong to

different groups. However, it is straightforward to show that these effects vanish in the infinite island model

of dispersal. For example, consider the first summand of eq. (C-31), which measures the effect of a change in

trait a of the focal and a trait b in an individual from a group other than the focal:

∑
znn∈e(φt)

ξt(za)ξt(znn,b)
∂2w

∂za∂znn,b
= (∫

Rn

∫

S

ξt(za)ξt(znn,b)µ(znn)φt(µ)dµdznn)
∂2w

∂za∂znn,b

= (Nξt(za)∫

Rn

ξt(znn,b)pt(znn)dznn)
∂2w

∂za∂znn,b
= 0×

∂2w

∂za∂znn,b
.

(C-51)

Similar arguments show that all the other summands of βcross isle
ab,t are also zero.

C.3 Putting it all together

Summing eqs. (C-4), (C-27), (C-36), (C-50), we finally obtain the second order expansion of lineage fitness,

W(z,φt) = 1−
1

2

n

∑
a=1

n

∑
b=1

σab,t hab,t(z̄t)+
n

∑
a=1

ξt(za)sa,t(z̄t)+
1

2

n

∑
a=1

n

∑
b=1

ξt(za)ξt(zb)hab,t(z̄t)+O(ξ3
t ), (C-52a)

where

sa,t(z̄t) =
∂w

∂za
+(N −1)r ○2,t(z̄t)

∂w

∂zn,a
, (C-52b)
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and

hab,t(z̄t) = hw,ab,t(z̄t)+hr,ab,t(z̄t), (C-52c)

with

hw,ab,t(z̄t) =
∂2w

∂za∂zb
+(N −1)[r ○2,t(z̄t)(

∂2w

∂zn,a∂zn,b
+

∂2w

∂za∂zn,b
+

∂2w

∂zb∂zn,a
)+(N −2)r ○3,t(z̄t)

∂2w

∂zn,a∂zm,b
] ,

hr,ab,t(z̄t) =
∂r2,t(z)

∂za
(N −1)

∂w

∂zn,b
+
∂r2,t(z)

∂zb
(N −1)

∂w

∂zn,a
.

(C-52d)

Eq. (C-52) is equivalent to eq. B-1 – B-4 of Appendix B, in which we write the derivatives of individual fitness

w(z,nµ(z),e(φt)) with respect to za , zn,a , and znn,a , in terms of the derivatives of the individual fitness func-

tion w(zi ,z−i , z̄t) (eq. 5 of main text) with respect to zi ,a , z j ,a , and zk,a , respectively; and add evaluation signs

to all derivatives at the population mean z̄t .

D Individual-based simulations

We performed individual based simulations for a population composed of Nd groups, each populated by N

individuals, using Mathematica 11.0.1.0 (Wolfram Research, 2016). Starting with a monomorphic population,

we track the evolution of the multidimensional phenotypic distribution under the constant influx of muta-

tions. Each individual i ∈ {1, . . . , NdN} is characterized by two traits (zi ,1, zi ,2). At the beginning of a genera-

tion, we calculate the fecundity fi of each individual according to its traits and those of its neighbors (using

eq. 14). Then, we form the next generation of adults by sampling N individuals in each group with replace-

ment according to parental fecundity, but to capture limited dispersal, the fecundity of each individual from

the parental generation is weighted according to whether or not they belong to the group on which the breed-

ing spot is filled: if an individual belongs to the same group in which a breeding spot is filled, its weighted

fecundity is fi (1−m), where m is the dispersal probability; if it belongs to another group, its weighted fecun-

dity is fi m/(Nd−1) (as a disperser is equally likely to reach any other group, it lands with probability 1/(Nd−1)

in a focal group). Once an individual is chosen to fill the breeding spot, it mutates with probability ν, in which

case we add to parental values a perturbation that is sampled from a multivariate normal distribution with

mean (0,0) and variance-covariance matrix (
σm

11 σ
m
12

σm
12 σ

m
22
). The resulting phenotypic values are truncated to re-

main between 0 and 4. We repeat the procedure for a fixed number of generations (see Figures for parameter

values).

Appendix - 18

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 25, 2019. ; https://doi.org/10.1101/393538doi: bioRxiv preprint 

https://doi.org/10.1101/393538
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Model
	Results
	Dynamics of the phenotypic distribution
	Tracking the dynamics of the phenotypic distribution
	Weak selection, weak mutation, normal closure and quasi-equilibrium of local genetic associations
	Dynamics of phenotypic mean vector and variance-covariance matrix
	Directional, disruptive, and correlational selection coefficients
	Selection in terms of individual fitness effects and relatedness coefficients
	Directional selection
	Correlational and disruptive selection

	Equilibrium properties of the phenotypic distribution
	Equilibrium mean trait values
	Equilibrium variance-covariance matrix
	Connections with notions of stability from invasion analyses
	The molding of phenotypic correlations by selection and mutation

	Application to the coevolution of two synergistic social traits
	Two public goods model
	Analysis


	Discussion

	Phenotypic distribution dynamics
	Process construction
	Markov chain
	Markov chain in terms of counting measures
	State dynamics

	Recurrence for the phenotypic distribution
	Individual fitness
	Lineage fitness


	The dynamics of trait means and variance-covariance
	Weak selection and mutation
	Weak selection
	Weak mutation
	Dynamics of the mean trait values
	Dynamics of the phenotypic variance-covariance

	Closure assumptions
	Normal closure
	Quasi-equilibrium


	Second-order approximation of lineage fitness
	Marginal effects
	Average marginal effects
	Pairwise relatedness

	Interaction effects
	Interaction effects within individuals
	Interaction effects between neighbors
	Interaction effects between individuals between groups
	Putting it all together
	Individual-based simulations







