
 

 

 

1 Introduction  

Single cell genomics is an umbrella term for genotyping of individual 

cells from a heterogeneous population. The deconvolution of mixed 

populations allows detection of genetic diversity within a population of 

cells. Applications cover many disciplines from sequencing the complete 

genomes of microorganisms that are challenging to culture in the labora-

tory to de novo mutation detection in tumour cells (Huang et al., 2015). 

Detecting genomic changes in single cells is a sensitive procedure, 

complicated by the often rare, unique and precious nature of the starting 

material, such as during genetic testing of human embryos for diagnostic 

purposes.  

Unlike sequencing of bulk DNA, single cell sequencing requires a 

whole genome amplification (WGA) step to generate sufficient material 

for genotyping by next-generation sequencing (NGS) or single-

nucleotide polymorphism (SNP) array (Gawad et al., 2016). A typical 

human cell contains 8-16 pg nuclear DNA that must be amplified to meet 

the input requirements for PCR-free sequencing (1 µg) or SNP array 

analysis (400 ng). The efficacy of genotyping from a single cell is criti-

cally dependent on the WGA method. Genome coverage, replication 

fidelity and the level of technical noise, such as systematic or stochastic 

amplification bias, are the main features considered when choosing the 

WGA method. However, all WGA methods deteriorate the signal from 

single cells. The signal deterioration potentially carries two risks: (a) 

sub-optimally amplified signal can lead to a complete loss of information 

about a particular locus, and (b) uneven signal amplification of two 

alleles at a heterozygous locus can result in an erroneous homozygous 

genotype call. The latter is called allele drop out (ADO) and affects up to 

30% of SNPs from a single cell (Blanshard et al., 2018).  

After WGA, the amplified DNA can either be sequenced or analysed 

by SNP arrays. There are several tools for genotype calling from WGA 

amplified DNA after sequencing (Zafar et al., 2016; Bohrson et al., 2017, 

bioRxiv; Lodato et al., 2015; Bae et al., 2018). In theory, sequencing can 

detect genomic changes from single base mutations to whole chromo-

some imbalances (Huang et al., 2015; Gawad et al., 2016). However, the 

sequencing depth required for applications such as detection of rare 

variants in a population of cells is limited by the number of cells that can 

be assessed, making sequencing impractical. In contrast, although SNP 

arrays are limited by assessing only a sample of the genome, the tech-

nology allows the analysis of a wide range of genetic variants with good 

coverage in a fast and cost-efficient manner. SNP arrays have been 

successfully applied to WGA DNA for discovery of new mutations, 

especially larger deletions that can cause loss of heterozygosity in can-

cers (Wong et al., 2004, Leung et al., 2002). They are also used in link-

age analysis to screen preimplantation embryos for the presence or 

absence of monogenetic variants that underlie serious genetic disorders. 

This is referred to as preimplantation genetic diagnosis or preimplanta-

tion genetic testing for monogenic disorder, PGT-M. This makes it 

critical that genome coverage is high and that the SNPs are typed with 
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high precision (Handyside et al. 2010; Natesan et al., 2014 ; Zamani et 

al., 2015). SNP arrays have also been used to infer the parental origin of 

chromosome imbalances in human preimplantation embryos as well as 

recombination and segregation patterns in meiosis after WGA (McCoy et 

al., 2015; Ottolini et al., 2015). The unique genomic arrangement of 

SNPs that occur naturally as haplotype blocks, or can be induced exper-

imentally, also allow lineage tracing in a variety of organisms, including 

by SNP array analysis (Woodworth et al., 2017; Ottolini et al., 2017).  

There is a plethora of tools and algorithms currently available for gen-

otyping bulk DNA from SNP arrays (Ritchie et al., 2011; Li et al., 2012). 

These algorithms are optimized for SNPs on the array and perform very 

well in terms of both call rates and sensitivity. However, an algorithm 

that is specifically designed for single cell variant calling using SNP 

arrays is currently missing. This is important because it is unclear how 

well the genotyping platforms deal with the biases introduced by whole-

genome amplification of DNA from single cells. One solution is to 

include only SNP calls that are similar in properties to those from bulk 

DNA. This, however, causes a substantive loss of data (Zamani et al., 

2015). It is also unclear how accurate genotyping is after the whole-

genome amplification. 

Genotyping from SNP arrays relies on the detection of emission inten-

sities (X and Y). Thus, when both X and Y are above a certain threshold, 

the genotype is inferred as heterozygous (AB). In contrast, when only X 

or Y is detected above a certain threshold, a homozygous genotype is 

assigned (AA or BB).  Current genotyping algorithms are based on two 

distinct approaches. Model-based algorithms do not require a training 

data set and assume that every SNP can be modeled from a linear com-

bination of multivariate components (Teo et al., 2007, Giannoulatou et 

al., 2008). Reference-based algorithms perform genotyping based on a 

comprehensive database of reference variants. Parameters of these 

algorithms are inferred from a training dataset (e.g. the HapMap popula-

tion, International HapMap Consortium, 2005) and are used for normali-

zation of the raw data (Ritchie et al., 2009) or provide a confidence 

measure of the genotype (Kermani, 2008). The training of the parameters 

can be performed via supervised machine learning methods, in particular 

neural networks (Kermani, 2008). 

Here, we present a comprehensive database of 104 single cell samples 

from two different cell lines that we SNP-typed and compared with their 

reference genotype. This allowed us to divide the data in two classes: (a) 

high quality single cell calls and (b) misclassified single cell calls caused 

by deteriorated signal. We used both classes to develop a two-layered 

algorithm that combines a supervised machine learning method with a 

model-based algorithm. We refer to this as SureTypeSC, which is able to 

identify the noise in the single cell data coming from erroneous whole 

genome amplification and then assign a probability score of a SNP being 

correctly genotyped. 

2 Materials and Methods 

2.1 Cell lines and molecular methods 

We generated genotypes from whole genome amplified DNA (from 

single cells) or genomic DNA from bulk extraction using the Infinium 

Karyomapping Assay Kit (Illumina Inc., California, US). We obtained 

EBV-lymphoblastoid cell lines GM07228 and GM12878 from the 

NIGMS Human Genetic Cell Repository at the Coriell Institute for 

Medical Research, New Jersey, USA, and cultured these according to the 

supplier’s recommendation. All of the molecular methods and genotyp-

ing using GenCall for obtaining the SNP genotypes are provided in the 

Supplemental Methods.  

2.2 MA transformation 

The MA transformation is an application of the Bland-Altman trans-

formation (Bland and Altman, 1999) that has been used extensively in 

the analyses of gene expression data when intensity values for two 

channels are compared using microarrays (red and green, referred to as X 

and Y, respectively). 

Formally, we apply a linear-log transformation for every SNP, i, carry-

ing a tuple of intensities (�� , ��) by calculating the values mi and ai, as 

follows: 

�� = log�(��) − log�(��) 
�� =

1
2 [log�(��) + log�(��)] 

 

The M-feature has powerful discriminative ability to separate the three 

genotype clusters and is able to reduce variability between experiments 

and SNPs (Carvalho et al., 2007). The A-feature is a good general indi-

cator of the signal quality (Ritchie et al., 2011). 

2.3 Bioinformatics workflow for the machine learning 

algorithm 

We developed a bioinformatics workflow with a supervised machine 

learning core that filters out the noise from the single cell data. The 

reference training intensities as well as validation intensities are first 

extracted from the intensity data (*.idat) files and subsequently geno-

typed using the GenCall algorithm implemented in GenomeStudio. The 

training data are then exported from GenomeStudio, transformed using 

the MA transformation and fitted to a two-layered machine learning 

model. The results are subsequently tested on a cross-validated data as 

well as on a set of independent single cell samples.. The details of the 

workflow are shown in Fig. S1. 

2.4 Training and validation datasets 

We created a reference genotype for both single cell lines (GM07228 

and GM12878) using parental information and multiple technical repli-

cates from bulk DNA (Supplemental Methods). We subsequently com-

pared our single cell datasets to the reference genotype. More specifical-

ly, for every candidate single cell call for SNP i and sample s we as-

signed a label: ��,� ∈ {����, �����}, depending on the match or mis-

match with the corresponding reference genotype call. The training 

dataset is then a triplet (��,�, ��,� , ��,�	), where (��,� , ��,� ) are input fea-

tures and ��,�	  is the output feature. Note that we omit sample index s in 

further explanation, as we do not distinguish between the origins of 

SNPs in the training data set.  We included all autosomal single cell calls 

with GenCall score above 0.01 (QC001) totaling 14,403,139 SNPs for 

training (GM07228) and 11,737,508 SNPs for validation (GM12878). 

Lowering the GenCall score threshold for accepting a SNP allowed as to 

include potentially poorly amplified SNPs and to capture the full error 

pattern. Table 1 and Table S2 give a detailed overview of the datasets 

used.  

2.5 Supervised training using Random Forest 

Random Forest is an ensemble supervised training method that is built 

from the collection (forest) of classification (decision) trees (Breiman, 
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2001). Each tree is trained on a different random subset of data and 

different subsets of input features. Although the training data only con-

tain two input features (  and !), the preliminary analysis (Fig. 1B) 

suggests that the function that separates the erroneous clusters (red areas) 

from the correct calls (blue areas) is non-linear. Random Forest (RF) has 

the ability to fit different trees to different parts of the input space and 

therefore approximate a non-linear separating function resulting in 

increased classification accuracy. The class of miscalls (� = �����) is 

usually a minority class and we therefore applied downsampling on the 

class of correct calls to tackle the class imbalance. We used the imple-

mentation of Random Forest from the scikit package (Pedregosa et al., 

2011) for fitting the training data. We adjusted the following parameters 

of the algorithm: 

• the number of trees was increased from 10 to 30; according to 

Oshiro et al., 2012, a theoretical upper limit is 128 trees and further 

increase in number of trees does not contribute to higher accuracy. 

However our data suggest that forests with more than 30 trees con-

tribute minimally to the accuracy of the model but increase the size 

of the model substantially (data not shown); 

• the number of features to consider when looking for the best split 

was set to two. 

The prediction was evaluated in two ways - by stratified 10-fold cross- 

validation and with an independent single cell dataset. We used metrics 

that are commonly used in classifier evaluation as well as metrics that 

are specific for the single cell environment (Supplemental Methods) 

2.6 Cluster correction using Gaussian Discriminant 

Analysis 

The second stage of the algorithm is a Gaussian Discriminant Analy-

sis (GDA) that formalizes the genotype clusters obtained from the RF 

step and potentially improves the precision and recall. 

Let " = {�#|% = 1…', �# ∈ ℝ ×ℝ ×* × +,	}	 denote a set of N vali-

dation SNPs that were classified by the trained Random Forest, where 

*	 = 	 {AA,AB,BB}, +, = 	 {T, F}. Therefore, �# =	 (�# , �# , 1# , �2,)	is a 

quadruplet of the logarithmic difference, logarithmic average, genotype 

predicted by GenCall (QC 0.01) and class prediction by RF at the j-th 

SNP. We assume that both the positive (T) and negative (F) classes, 

which are represented by pairs 3� = (��, ��), come from mixtures of 

multivariate normal distributions. Based on this, we define the following 

system of Gaussian discriminants:   
 

45~7��89���:(;) (1) 

<=�>? = ;@>(1 − ;)AB@> (2) 

<=3#C�> = �? = 	<=3#CΘE? =FGH,IJ=3#	CKH,I, LH,I?
M

INA
 (3) 

<=3#C�> = �? = 	<=3#CΘO? =FGP,IJ=3#	CKP,I, LP,I?
M

INA
 (4) 

 

Where: 

• ; denotes probability  Q(�> = �|3#)	 
• J is multivariate normal density function with parameters LI (with 

mean RI and covariance matrix  ΣT) 

• KI  is an indicator variable that denotes the genotype class, 

where	KI ∈ *× +,  

• GI  is  the  mixture  component weight  representing  the probability  

that  a  random tuple =�# 	, �#? was generated by component k.  

The complete set of parameters for the presented Gaussian discrimi-

nants is given as  Θ+,∈{H,P} = U	G+,,A, …G+,,M, L+,,A…	L+,,MV 
 

The log-likelihood function ℱ for classes from +, is defined as follows:  

 

ln ℱ(Θ) =Fln <(3#|ΘY5)
Z

#NA
 (5) 

 

We use an Expectation Maximization algorithm (Dempster et al., 1977) 

to estimate the parameters Θ[, of the positive and negative class that 

maximize their log-likelihood function (Eq. 5). The EM algorithm is 

divided into an Expectation-Step (E-Step) and a Maximization-Step (M-

Step). These are run in iterations separately for the positive and negative 

classes until convergence is reached. The detailed description of the 

algorithm is provided in Supplemental Methods. 

After the parameters of both classes have been estimated by the EM 

algorithm, they are subjected to a second run. Here, the class member-

ship 45 is hidden from the algorithm and every SNP is evaluated for both 

Gaussian discriminants using the following formula: 

 

(scoreE, �`9��P) = [ln<=3#CΘH5?, ln <=3#CΘP5?]	 (6) 

 

The final classification (membership to a positive or a negative class) is 

determined by higher value from the pair (scoreE, �`9��P).   

2.7 Scoring function 

The key role of a genotyping algorithm is to report the likelihood of a 

certain genotype in form of a score or a posterior probability. Besides 

GenCall having its own scoring scheme, we used the following equations 

to estimate the probability of a certain SNP being correctly genotyped: 

 

1. Random Forest: the score of a genotype of  the ith SNP is 

given as a proportion of the trees in the forest that voted 

for a particular genotype being correct: 

 

 �`9��aP = Q�(�� = �|3�)  (7) 

 

2. The scoring strategy of SureTypeSC is inferred from its 

second layer (GDA) as the class-conditional posterior 

probability of a genotype falling into positive class T: 

 

�`9��aPBbcd =
��efghi	×		Q(�)

∑ ��efghk	×		Q(l)m∈{H,P}
 

(8) 

 

3 Results 

3.1 Generation of 28.7 million high confidence SNPs 

from single cells 
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Table 1. Summary of genotype calls from single cellsa 

 Minimal QCb GenCallc  

Cell line
d + - NC + - NC 

 M SD M SD M SD M SD M SD M SD 

GM 

07228 
0.39 0.02 0.05 0.01 0.05 0.01 0.36 0.02 0.04 0.01 0.1 0.01 

GM 

12878 
0.4 0.02 0.06 0.02 0.04 0.01 0.37 0.03 0.04 0.01 0.09 0.02 

Total 0.8 0.11 0.09 0.73 0.08 0.19 

Total 

counts 
28.7 million SNPs, 104 cells 

a 
values are proportions; 

b 
GenCall cutoff 0.01; 

; c 
GenCall cutoff  0.15; 

d 
+: concordant with 

reference genotype; -: disconcordant with reference genotype; NC: no calls; M: mean; SD: 

standard deviation 

 

We typed nearly 28.7 million SNPs from 104 cells from two individu-

als (GM12878 and GM07228, Table 1 and Table S2) using the Hu-

manKaryoMap-12 array (Illumina Inc., California, USA). To amplify the 

DNA from the single cells, we used multiple displacement amplification 

(MDA), a commonly used first-generation WGA method that relies on 

Phi (Φ) 29 polymerase. Its 3’→5’ activity allows proofreading and 

therefore improves the fidelity of amplification. This allows high preci-

sion genotyping with a mutation rate of 10−7 − 10−9. Furthermore, the 

ability to displace secondary DNA structures, such as hairpin loops that 

would cause other polymerases to stall or dissociate from the template 

DNA, allows the amplification of long DNA fragments (2-10 kb) 

(Blanshard et al., 2018; Dean et al., 2002). 

3.2 Noise characterization of genotypes from single 

cells 

To characterize the noise associated with genotyping from whole-

genome amplified DNA from single cells, we compared the 28.7 million 

SNP genotypes from the two single cell datasets to their reference geno-

types obtained from bulk, genomic DNA. To this end, we created high 

confidence reference genotypes from bulk DNA using nine independent 

bulk DNA samples hybridized against the HumanKaryomap-12 array 

and inferred genotypes using either the full parental information 

(GM07228, Supplemental Methods) or multiple technical replicates of 

bulk DNA and sequence data (GM12878, Supplemental Methods and 

Eberle et al., 2017). This allowed us to identify 264,269 SNPs for 

GM07228 and 270,681 for GM12878 (95.8% and 97.9 % of autosomal 

SNPs, respectively) on the HumanKaryomap-12 array that called cor-

rectly in every replicate from bulk DNA. From these, we generated high 

confidence reference genotypes. 

Using the standard QC cutoff from GenCall (0.15), 73% SNPs (20.9 

million)  from the two single cell datasets called correctly, whereas 8% 

SNPs (2.36 million) were not concordant with the reference genotype 

(Table 1, Table S2). 19% SNPs gave `no calls` (5.05 million; Table 1, 

Table S2), having failed to fall within the genotype clusters defined by 

bulk, DNA genotypes (Fig. 1A). The true positive rate was higher when 

we used a minimal QC (0.01) compared to the standard QC of GenCall 

(39%, SD=0.02% and 36%, SD=0.02%, respectively, for cell line 

GM07228 and 40%, SD=0.02% to 37%, SD=0.03% for GM12878, 

Table 1). These differences in true positive rates are statistically signifi-

cant (p<0.0001, Fig. S2). In total for both datasets, the GenCall algo-

rithm rejects about 7% of correctly genotyped SNPs from WGA DNA 

and increases precision by 2% (Table S2). We also listed call rates and 

error rates of individual cells and chromosomes from GM12878 and 

GM07228 (Table S3).  

We displayed the pattern of the noise from the genotyping of SNPs 

from WGA DNA from single cells by first transforming the fluorescence 

intensities (X and Y) of each SNP into the logarithmic difference   and 

logarithmic average !  (MA plot; Fig. 1B, C, D). At this stage of the 

workflow (“Building training dataset”, Fig. S1) we were able to observe 

the error pattern in the single cell data and display it in the form of 

contour plots (Fig. 1B). Three clusters of miscalls (false positives) 

became apparent in the single cell data. Two clusters were from allele 

drop out (ADO), where AB genotypes were incorrectly genotyped as AA 

or BB. A smaller cluster of allele drop in (ADI) also appeared. The ADI 

cluster was clearly separated from the true AB genotypes. Most of the 

errors, however, occur in the transition area between AB to AA or AB to 

BB (ADO) but nevertheless suggest good separability of the correct calls 

from miscalls, since the centers of the clusters are non-overlapping (Fig. 

1B). 

3.3 Design and implementation of the SureTypeSC   

algorithm 

The characterization of the patterns of noise in a comprehensive da-

taset allowed us to employ a supervised machine learning method to 

classify and separate high quality genotypes from miscalls in the WGA 

DNA from single cells (Fig. S1). We combined a non-parametric (Ran-

dom Forest) and parametric method (Gaussian Discriminant Analysis) 

and developed a scoring strategy that assigns probabilities that a specific 

SNP from a single cell dataset has been correctly genotyped (Methods, 

Fig. 1. Signal-noise detection in whole-genome amplified DNA from single cells. (A) 

The GenCall algorithm in GenomeStudio classifies genotyping calls based on the 

normalized intensities of the X and Y channels (A and B allele, respectively). The 

genotyping space for homozygous AA calls is shown in red, heterozygous genotypes 

fall within the purple area and homozygous BB genotypes are in blue. The centroid of 

each genotyping space is shown as a circle. The genotyping space is specific to each 

SNP and based on bulk DNA. Cyan points: genotypes from bulk DNA, green points: 

correct genotypes from single cell, grey points: genotyping calls from single cells 

below the QC threshold of GenCall; red points: misclassified genotype from single 

cells. (B)  Contour MA plot of all SNPs from  one single-cell sample from GM07228; 

AA, BB and AB clusters are labeled accordingly. The probability density function was 

estimated using bivariate normal kernel from MASS library in R with default parame-

ters. Each ring connects values with similar density levels and shades of blue/red show 

the likelihood of correct/incorrect genotype in that area  (C) MA plot of 10,000 

randomly selected SNPs from 10 single cell samples from GM07228. (D) Cluster 

labeling of randomly selected SNPs from (C) using SureTypeSC. 
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Eq. 7 and 8). Using a Random Forest prevents over-fitting of the data 

and provides good estimates of the positive and negative classes for the 

Gaussian discriminant analysis (Methods). We implemented the RF-

GDA and the testing procedures in Python using the scikit library 

(Pedregoza et al., 2014) and pandas (McKinney, 2010). An example of a 

division of the feature space consisting of   and ! by the RF-GDA 

algorithm is shown in Fig. 1D. Collectively, we refer the single layers 

(that can be implemented on their own) and the combined layers (RF-

GDA) as SureTypeSC. The output from SureTypeSC is compatible with 

GenomeStudio and allows the user to import the results of the analysis 

back to GenomeStudio for further investigation. 

3.4  Cross-validation of SureTypeSC 

To assess whether our algorithm captures noise from the WGA and to 

exclude the possibility of overtraining, we first ran stratified 10-fold 

cross-validation on the single cell dataset from cell line GM07228. The 

dataset is imbalanced and mistyped SNPs are the minority class. We 

therefore used stratification to ensure that every fold contains both 

correctly genotyped and mistyped SNPs. In every iteration, we trained 

the algorithm on nine folds (27,445-27,772 SNPs) and used the 10th fold 

for testing. To tackle the imbalance problem, we always balanced the 

training fold by downsampling the correctly genotyped SNPs. We evalu-

ated the performance of every testing fold with the single layers individ-

ually (RF or GDA) as well as with a combination of them (RF-GDA). 

We scored the genotypes of all algorithms using the GenCall score or 

equations 7 or 8 (Methods). Consistent with random sampling of the 

SNPs, the mean performances of all algorithms have narrow confidence 

intervals (at 95%), which suggests that the algorithms are invariant to 

SNP selection (Table S4). Pairwise comparison of the algorithms using 

paired t-test shows that both, GDA and RF-GDA outperform GenCall in 

precision at similar recall (mean difference 4%, p < 0.0001, Table S5). 

Note that the RF outperforms GenCall in precision as well (mean differ-

ence 4.7%, p < 0.0001, Table S5), but has a lower performance in other 

metrics (Table S4). RF-GDA is more accurate than GenCall (mean 

difference 3.5%, p < 0.0001) and has a higher f1-score (mean difference 

2%, p < 0.0001, Table S5). 

3.5  Validation of SureTypeSC on an independent 

dataset 

We next addressed how well our algorithms and GenCall performed 

on an independent dataset. To this end, we used the SNP genotypes 

obtained from 58 single cells after WGA from cell line GM07228 for 

training and the SNP genotypes obtained from WGA DNA from 46 

single cells from a different cell line, GM12878 (Table 1, Table S2), for 

testing (‘tester set’). The genotyping data from the tester set were ob-

tained at an independent time, with different batches of WGA reactions 

and genotyping arrays. This avoids systematic errors introduced by the 

chemistry used to obtain the genotypes. The training and validation 

scenarios are summarized in Fig. S3. 

We first evaluated the performance of GenCall and SureTypeSC (RF, 

GDA and the RF-GDA) separately for heterozygous and homozygous 

regions using ROC and Precision-Recall curves (Fig. 2, Fig. S4). These 

metrics gave us visual insight into overall performance of the classifiers, 

invariant to the score cutoffs used. For the heterozygous calls, the RF-

GDA outperforms all tested algorithms, which is also quantified by the 

ROC-AUC score (Table 2). Whereas GenCall achieves a 74% ROC-

AUC score on average, this is increased to 86%, 87% and 92% for RF, 

GDA and RF-GDA, respectively (p < 0.0001, Table S6). For the homo-

zygous regions, the RF outperforms GenCall at all points of the ROC 

and Precision-Recall curves, which is supported by the increase in the 

ROC-AUC score from an average of 67% (GenCall) to 81% for the RF 

(Table 2). This is further increased with the GDA or RF-GDA (both 

83%). Interestingly, at a precision of 93%, the RF curve crosses that of 

the GDA and RF-GDA and recalls more true positive homozygous calls 

(Fig. S4A). This suggests that the RF alone might be a good option if 

higher recall is required at the costs of lower precision, which is never-

theless higher than GenCall in the homozygous regions. GenCall crosses 

the Precision-Recall curve of the RF-GDA at a precision around 88% 

and recalls more true positives (Fig. S4A). This is, however, very close 

to a recall of 100%, which also means accepting all calls without any 

significant filtration.  

Next, we were interested in how our methods perform compared to 

GenCall with standard settings (QC 0.15). Standard GenCall recalls 68% 

of the true positive heterozygous genotypes with a precision of 97%. The 

RF-GDA has 84% recall, achieves 99% precision on average, and thus 

outperforms the standard GenCall in both precision and recall. At similar 

precision, the RF and GDA on their own recall fewer true positive 

heterozygous genotypes (Table 2). As expected, high precision and recall 

is reflected in a high harmonic mean of precision and recall (f1-score) for 

the RF-GDA (Table 2) and a high rate of correctly classified SNPs 

(accuracy, Table 2). GenCall recalls 96% of the true positive homozy-

gous genotypes on average at precision 89%.  At similar recall, the RF 

alone increases precision by 2.5% (p < 0.0001; Table S6). GDA and RF-

GDA further improve precision, but at the cost of recall. Both methods 

achieve an average precision of 92% at 90% recall for the homozygous 

calls (Table 2). Recalling fewer true positives at higher precision causes 

a drop in the f1-score for GDA and RF-GDA. This is because recall 

declines much quicker than the precision increases (Fig. S4A). The effect 

of lower recall from the GDA and RF-GDA is also mirrored in the lower 

accuracy. As GDA and RF-GDA have higher precision, they are also 

more likely to reject correct SNPs, thereby decreasing the number of true 

positives.  

The two-layered architecture, RF-GDA, generally outperforms its con-

stituent single layers (RF or GDA alone). Combining the RF and GDA 

together is particularly advantageous in the heterozygous regions, where 

the RF-GDA performs better in all metrics (Fig. S5). This is due to 

sensitivity of the EM algorithm to outliers, which are effectively reduced 

in the RF step (Supplemental Material, Section 1.8).  For the homozy-

gous calls, the RF-GDA performs better than single RF and GDA in 

precision (mean difference 1.7% and 0.2% for RF and GDA, respective-

ly, p < 0.0001, Table S6).  

Fig. 2. SureTypeSC improves the performance for single cell genotyping. ROC curve 

for homozygous (A) and heterozygous SNPs (B) on GM12878. The points of the curves 

were created by applying different cutoffs of the classification scores. Data below a 

certain cutoff were classified as negative, otherwise positive.The bands along the curves 

represent 95% confidence intervals from the 46 single cells. 
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However, the single GDA has better ROC-AUC score, which is 0.2% 

higher in the GDA than in RF-GDA (p < 0.001, Table S6). The ROC 

curve in Fig. 2A and Precision-Recall curve in Fig. S4A confirm that the 

difference is minor, since the RF-GDA and GDA largely overlap. Col-

lectively, the benefits of the two layered RF-GDA compared to its single 

layers is the maximized precision and recall for the heterozygous calls. 

There is a further benefit in the maximized precision in the homozygous 

calls at the relatively modest loss of true positive calls. 

3.6 Genotyping confidence in the single-cell 

environment. 

Our observations suggest that SureTypeSC can effectively improve 

precision of both homozygous and heterozygous SNPs (on average, 99% 

for heterozygous calls and 92% for homozygous calls, Table 2). Preci-

sion can be further improved at the cost of recall, particularly for homo-

zygous SNPs, as Fig. S4 suggests. We therefore adjusted both Sure-

TypeSC and GenCall for high precision, recalling ~47% of the true 

positive SNPs. To compare their performance, we developed a simple 

statistical toolkit that shows a detailed view of confidence in AA, BB or 

AB calls using a transition matrix of posterior probabilities (Table S9). 

The posterior probabilities show the probability that a certain genotype 

from the single cell application is genotyped correctly compared to the 

reference genotype. Table S9 shows that compared to GenCall, Sure-

TypeSC achieves major improvements of 8% and 7% confidence of AA 

and BB, respectively, and an improvement of 0.3% in confidence of an 

AB genotype.   

3.7 Allele-drop out and allele-drop in rates are reduced 

using SureTypeSC 

Incorrect genotype calls arise predominantly from imbalances in the 

allele frequencies generated during the chemical reaction when the 

whole genome is amplified. The deviation from a 1:1 allele ratio of 

heterozygous SNPs can lead to allele drop out (ADO). Analogously, 

mistyping of a homozygous SNP results in allele drop in (ADI). We 

calculated the ADO and ADI rates for GenCall and SureTypeSC at high 

precision using the transition matrices from Table S9 (Table 3; perfor-

mances of single layers RF and GDA are shown in Table S10). At a call 

rate of 42% for GenCall and 39% for SureTypeSC, GenCall is able to 

decrease ADI 7 times and SureTypeSC 12.5 times compared to minimal 

filtering (GenCall QC 0.01). The ADO rate is decreased 1.5 times by 

GenCall and 5.6 times by SureTypeSC (Table 3). Although SureTypeSC 

outperforms GenCall and minimizes the error incidence, the loss of data 

is inevitable (call rate 39%, Table 3). 

 

Table 3. Allele drop-in and allele drop-out 

 Min. QCa GenCall
b
 RF-GDA

c
 

ADI 0.05 ± 0.01 0.007 ± 0.003 0.004 ± 0.0005 

ADO 0.14 ±.009 0.096 ± 0.01 0.025 ± 0.004 

Call rate 0.92 ± 0.003 0.42 ± 0.01 0.39 ± 0.01 

a
GenCall QC threshold 0.01; 

b
GenCall QC threshold 0.87; 

c 
RF-GDA 

score threshold 0.75. Proportions and confidence intervals at 95%. are 

shown. 

3.8  Proof-of-concept of biological inference 

To provide proof-of-concept that SureTypeSC would improve biologi-

cal insight when used for high precision (RF-GDA), we assessed copy 

number variants (CNVs) in human oocytes (Fig. S7; Ottolini et al., 

2015). The loss of a chromosome or chromosome segment results in one 

cell with only A and B calls (no heterozygous SNPs). The loss, however, 

is obscured by ADI when using the standard GenCall algorithm (Fig. 

S7). SureTypeSC removes the ADIs (erroneous AB), increasing the 

certainty of the inference (loss of hetSNPs).  

We were interested in whether we could use SureTypeSC with high 

precision to reveal biological variability within the tested cell line 

GM12878. We assumed that all variants in the cell line that do not match 

the reference genome (`erroneous variants`) are allele drop outs or allele 

drop ins (Fig. S8A). We were curious whether some of these variants, 

however, could be real and therefore used to detect heterogeneity within 

a cell population. We chose SureTypeSC as this documented the best 

overall performance in terms of precision (Table 2, Table 3, Table S9, 

Table S10) and compared it to GenCall. We performed hierarchical 

clustering (Supplemental Methods) on raw data with minimal filtering 

(QC 0.01), data processed by GenCall (GenCall QC 0.87), and RF-GDA 

at high precision (Table 3). The hierarchical clustering reveals there are 

potentially four subpopulations of cells in GM12878 cell line that are 

invariant to the type of filtration used (Fig. S8B, C, D). The bootstrap 

analysis (Supplemental Methods), however, reveals that only the RF-

GDA consistently gives four stable subpopulations (Jaccard mean boot-

strap value for a cluster > 0.75, Hennig 2007). The unstable clusters 

present in the trees from the minimal filter (QC 0.01) and ‘high preci-

sion’ genotyping using GenCall suggest non-reproducible noise being 

Table 2. Performance of the genotyping algorithms on independent dataset 12878a 

           Alg. 
Metrics GenCall b   RF   GDA 

  
RF-GDA g 

  het homo   het c homod   hete homof   het homo 

accuracy 0.68 ± 0.01 0.86 ± 0.012 
 

0.71 ± 0.013 0.88 ± 0.008 
 

0.63 ± 0.009 0.85 ± 0.01 
 

0.84 ± 0.014 0.85 ± 0.01 

f1-score 0.8 ± 0.01 0.92 ± 0.007 
 

0.82 ± 0.012 0.93 ± 0.005 
 

0.76 ± 0.011 0.91 ± 0.007 
 

0.91 ± 0.011 0.91 ± 0.007 

precision 0.97 ± 0.01 0.89 ± 0.009 
 

0.99 ± 0.001 0.91 ± 0.008 
 

0.99 ± 0.001 0.92 ± 0.008 
 

0.99 ± 0.001 0.92 ± 0.008 

recall 0.68 ± 0.01 0.96 ± 0.005 
 

0.7 ± 0.017 0.96 ± 0.001 
 

0.61 ± 0.013 0.9 ± 0.005 
 

0.84 ± 0.017 0.9 ± 0.006 

ROC-

AUC 

score 

0.74 ± 0.01 0.67 ± 0.015 
 

0.86 ± 0.004 0.81 ± 0.012 
 

0.87 ± 0.005 0.83 ± 0.013 
 

0.92 ± 0.004 0.83 ± 0.012 

a
 values are mean proportions over 46 cells +/- confidence interval at 95%; 

 b
 GenCall score threshold 0.15; 

 c 
Random Forest score threshold 0.6 and 

d
 0.15 ; 

 e 
Gaussian Discriminant 

Analysis score threshold 0.8 and 
f
 0.5 ; 

 g 
RF-GDA score threshold 0.15 
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transferred to the bootstrapped replicates that is removed by Sure-

TypeSC.  

Discussion  

Whereas there are specialised tools for single cell genotyping from  

next-generation sequencing data (Zafar et al., 2016; Bohrson et al., 2017, 

bioRxiv; Lodato et al., 2015; Bae et al., 2018), no such algorithms exist 

for genotyping data from SNP arrays. Instead, genotyping WGA DNA 

has relied on increasing the threshold of the genotyping algorithms, 

which causes a substantial data loss (Zamani et al., 2015).   

In this study, we have typed nearly 30 million SNPs from 104 single 

cells from two independent cell lines and developed an algorithm to 

distinguish signal from noise in whole-genome amplified DNA. Sure-

TypeSC consists of two layers – a Random Forest (RF) and a Gaussian 

Discriminant Analysis (GDA) that work singly or in a cascade. The 

cascade approach is particularly beneficial for heterozygous SNPs, as it 

improves both precision and recall compared to the single layers and 

GenCall. We observed an increase in recall from 68% in GenCall at 

standard QC (0.15) to 84% in SureTypeSC. Resolving most of the 

heterozygous SNPs makes SureTypeSC highly relevant and applicable 

when heterozygosities are needed, such as tag SNPs during linkage 

analysis of transmission of monogenic diseases and aneuploidy detection 

(Handyside et al., 2010; Natesan et al.,2014; Zamani et al.,2015). At the 

same time, SureTypeSC improves precision for both homozygous and 

heterozygous SNPs by 3% and 2%, respectively (Table 2, Table S8).  

Having high precision makes it feasible to explore rare events across 

populations of cells. This includes assessing clonal expansion in tumour 

evolution, linage tracing, or detecting rare de novo mutations such as 

large genomic rearrangements in single cells that are averaged out and 

lost in bulk analyses (Cooper et al., 2015; Lu et al., 2012; Chen et al., 

2017; Wong et al., 2004, Leung et al., 2002). High precision is also 

needed to obtain high resolution at haplotype breakpoints, which is 

particularly important in diagnostics (Handyside et al., 2010; Natesan et 

al., 2014; Zamani et al., 2015). Our proof-of-concepts show that Sure-

TypeSC is likely to improve diagnostics as well as biological inferences. 

As running the single layers of SureTypeSC could be potentially bene-

ficial, such as high recall in homozygous regions at lower precision by 

the RF alone, SureTypeSC always operates in both modes (cascade and 

single layers), simultaneously, and scores the genotypes with RF, GDA, 

as well as RF-GDA. 

Analysing a large number of single cells allows the decomposition of 

heterogeneous populations. Understanding how single cells in a popula-

tion contribute towards a ‘mosaic’, mixed SNP call is particularly im-

portant as use of SNP arrays increases in cytogenetics. Furthermore, 

having a robust algorithm of genotyping from WGA DNA from single 

cells improves the certainty of genotype calling when only few cells are 

available. This is important in both basic biomedical research as well as 

clinical settings such as in preimplantation genetic testing. We show that 

SureTypeSC can be used for both (Fig. S7, Fig. S8). 

We have implemented SureTypeSC in two modes in terms of perfor-

mance. Using the standard mode where precision and recall are balanced, 

SureTypeSC was able to successfully identify a chromosomal loss in the 

single cell oocyte data, where GenCall failed to reject SNP calls from the 

chromosomal region (Section 3.8; Fig. S8). Using a high precision mode, 

SureTypeSC, but not GenCall, was able to stably detect four subpopula-

tions in the reference GM12878 cell line. Thus, SureTypeSC most likely 

revealed true heterogeneity within the single cell population. This allows 

the use of SNP arrays in the single cell environment to explore fine 

differences between closely related cells. This was previously not possi-

ble due to the low resolution of the SNP array in combination with the 

noise coming from WGA.  

Although genotyping from SNP arrays cover only a fraction of the 

genome compared to next-generation sequencing, the cost of de novo 

genome assembly is prohibitive even for bulk, genomic DNA when 

assessing a large number of cells or samples. The sequencing depth, or 

coverage, needed in one recent reference genome assembly for the 

detection of de novo mutations was nearly 50× (Besenbacher et al., 

2015). For single-cell applications, the coverage to accurately identify 

new mutations from the noise and bias introduced by the whole-genome 

amplification step is in excess of this (Behjati et al., 2014). Thus, Sure-

TypeSC allows a cost-effective approach to improve genotype accuracy 

using SNP arrays. 
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