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Abstract 16 

High- (HNA) and low-nucleic acid (LNA) bacteria are two separated flow cytometry (FCM) 17 

groups that are ubiquitous across aquatic systems. HNA cell density often correlates strongly 18 

with heterotrophic production. However, the taxonomic composition of bacterial taxa within 19 

HNA and LNA groups remains mostly unresolved. Here, we associated freshwater bacterial taxa 20 

with HNA and LNA groups by integrating FCM and 16S rRNA gene sequencing using a 21 

machine learning-based variable selection approach. There was a strong association between 22 

bacterial heterotrophic production and HNA cell abundances (R2 = 0.65), but not with more 23 

abundant LNA cells, suggesting that the smaller pool of HNA bacteria may play a 24 

disproportionately large role in the freshwater carbon flux. Variables selected by the models 25 

were able to predict HNA and LNA cell abundances at all taxonomic levels, with highest 26 

accuracy at the OTU level. There was high system specificity as the selected OTUs were mostly 27 

unique to each lake ecosystem and some OTUs were selected for both groups or were rare. Our 28 

approach allows for the association of OTUs with FCM functional groups and thus the 29 

identification of putative indicators of heterotrophic activity in aquatic systems, an approach that 30 

can be generalized to other ecosystems and functioning of interest.   31 
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Introduction 32 

A key goal in the field of microbial ecology is to understand the relationship between microbial 33 

diversity and ecosystem functioning. However, it is challenging to associate bacterial taxa to 34 

specific ecosystem processes. Marker gene surveys have shown that natural bacterial 35 

communities are extremely diverse, however, the presence of a taxon does not imply their 36 

activity. Taxa present in these surveys may have low metabolic potential, be dormant, or have 37 

recently died [1, 2]. Therefore, new methodologies which integrate different data types are 38 

needed to associate bacterial taxa with ecosystem functions in order to ultimately model and 39 

predict them [3]. 40 

  41 

One such advance is the use of flow cytometry (FCM), which has been used extensively to study 42 

aquatic microbial communities [4–6]. This single-cell technology partitions individual microbial 43 

cells into phenotypic groups based on their observable optical characteristics. Most commonly, 44 

cells are stained with a nucleic acid stain (e.g. SYBR Green I) and upon analysis assigned to 45 

either a low nucleic acid (LNA) or a high nucleic acid (HNA) group [7–10]. HNA cells differ 46 

from LNA cells in both a considerable increase in fluorescence due to cellular nucleic acid 47 

content and scatter intensity due to cell morphology. The HNA group is thought to correspond to  48 

the ‘active’ fraction, whereas the LNA population has been considered as the ‘dormant’ or 49 

‘inactive’ group of a microbial community [4, 11–13]. This is based on positive linear 50 

relationships between HNA abundance and (a) bacterial heterotrophic production (BP) [8, 12–51 

15], (b) bacterial activity measured using the dye 5-cyano-2,3-ditolyl tetrazolium chloride [16, 52 

17], and (c) phytoplankton abundance [18]. Additionally, growth rates are higher for HNA than 53 
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LNA cells [11, 14, 19] and HNA cells accrue cell damage significantly faster than the LNA cells 54 

under temperature [20] and chemical oxidant stress [21].  55 

 56 

One main research question that still remains is whether HNA and LNA groups are composed of 57 

unique taxa or if they are different physiological states of the same taxa. Bouvier et al. [9] 58 

proposed four possible scenarios: (1) bacteria start their life cycle in the HNA group and move to 59 

the LNA group upon death or inactivity; (2) cells in the HNA group originate from LNA cells 60 

undergoing cell division; (3) HNA and LNA consist of different non-overlapping taxa; (4) 61 

bacteria switch between groups from time to time in addition to having part of the community 62 

that is unique to each fraction. The view that HNA cells are more active is in line with scenario 1 63 

and 2. On the other hand, several studies have found distinct groups with little taxonomic overlap 64 

and proposed scenario 3 [22, 23] or 3 and 4 [24]. In this case, HNA and LNA groups have been 65 

associated with different life strategies in bacterioplankton communities, such as large cell size 66 

(HNA) versus small cell size (LNA) [13, 23], genome size [15] and ploidy [22]. By combining 67 

FCM with taxonomic identification of bacterial communities, one can associate individual taxa 68 

with population dynamics and functioning.   69 

 70 

In this study, we developed a novel approach to associate the dynamics of individual taxa with 71 

those of the LNA and HNA groups in freshwater lakes by using a machine learning variable 72 

selection strategy. We applied two variable selection methods, the Randomized Lasso [25] and 73 

the Boruta algorithm [26] to associate individual taxa with HNA and LNA cell abundances. This 74 

approach allowed us to associate specific taxa to FCM functional groups, and via the observed 75 

HNA-productivity relationship, to functioning. In addition, this approach enabled us to test the 76 
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influence of rare taxa on these two groups as recent research has found that rare taxa may have a 77 

strong impact on community structure and functioning [27, 28]. To validate the RL-based 78 

association with the HNA and/or LNA group, we correlated taxon abundances with specific 79 

regions in the FCM fingerprint without prior knowledge of the HNA/LNA group. Furthermore, 80 

we tested for phylogenetic conservation of HNA and LNA functional groups and for the 81 

association between the selected taxa and productivity. The combination of FCM and 16S rRNA 82 

gene sequencing allows for the inference and assessment of the taxonomic structure of HNA and 83 

LNA groups, therefore advancing our ability to link bacterial taxa to their functionality in nature. 84 

This knowledge will help identify the taxa that drive carbon fluxes in freshwater ecosystems, 85 

which are disproportionately large relative to the global freshwater surface area [29].  86 

Results 87 

In this study, we developed a machine learning variable selection strategy to integrate FCM and 88 

16S rRNA gene sequencing with the aim of inferring the bacterial drivers of functional groups in 89 

freshwater lake systems. We studied a set of oligo- to eutrophic small inland lakes, a short 90 

residence time mesotrophic freshwater estuary lake (Muskegon Lake), and a large oligotrophic 91 

Great Lake (Lake Michigan), all located in Michigan, USA. We showed that abundance variation 92 

of these FCM functional groups is predicted by a small subset of all taxa that are present in the 93 

environment. Selected taxa were mostly FCM groups and lake system specific, and across 94 

systems, association with HNA or LNA was not phylogenetically conserved. The relationship 95 

between selected taxa and productivity measurements was assessed for one of the lake systems 96 

(Muskegon Lake), thereby showing that HNA cells (and their putative bacterial taxa) likely turn 97 

over faster and disproportionately contribute to the freshwater carbon flux. 98 

 99 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392852doi: bioRxiv preprint 

https://doi.org/10.1101/392852
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

6 

Study lakes are dominated by LNA cells 100 

The inland lakes (6.3 x 106 cells/mL) and Muskegon Lake (6.0 x 106 cell/mL) had significantly 101 

higher total cell abundances than Lake Michigan (1.7 x 106 cell/mL; p = 2.7 x 10-14). Across all 102 

lakes, the mean proportion of HNA cell counts (HNAcc) to total cell counts was much lower 103 

(29-33%) compared to the mean proportion of LNA cell counts (LNAcc; 67-71%). Through 104 

ordinary least squares regression, there was a strong correlation between HNAcc and LNAcc 105 

across all data (R2 = 0.45, P = 2 x 10-24; Figure 1A), however, only Lake Michigan (R2 = 0.59, P 106 

= 5 x 10-11) and Muskegon Lake (R2 = 0.44, P= 2 x 10-9) had significant correlations when the 107 

three ecosystems were considered separately.  108 

 109 

HNA cell counts and heterotrophic bacterial production are strongly correlated 110 

For mesotrophic Muskegon Lake, there was a strong correlation between total bacterial 111 

heterotrophic production and HNAcc (R2 = 0.65, p = 1e-05; Figure 1B), no correlation between 112 

BP and LNAcc (R2 = 0.005, p = 0.31; Figure 1C), and a weak correlation between heterotrophic 113 

production and total cell counts (R2 = 0.18, p = 0.03; Figure 1D). There was a positive (HNA) 114 

and negative (LNA) correlation between the fraction of HNA or LNA to total cells and 115 

productivity, however, the relationship was weak and not significant (R2 = 0.14, p = 0.057). 116 

 117 

Association of OTUs to functional groups by Randomized Lasso regression 118 

The relevance of specific OTUs for predicting freshwater FCM functional group abundance was 119 

assessed using the Randomized Lasso (RL) approach, which assigns a score between 0 120 

(unimportant) to 1 (highly important) to each taxon in function of the target variable: HNAcc or 121 

LNAcc. This score can be interpreted as the probability that an OTU will be included in the 122 
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Lasso model to predict HNA or LNA cell abundances. Variations of HNAcc and LNAcc were 123 

modelled in function of relative changes of OTUs. To address the negative correlation bias 124 

intrinsic to compositional data, compositions were first transformed using a centered log-ratio 125 

(CLR) transformation.  126 

 127 

The RL score was used to implement a recursive variable elimination scheme. Specifically, we 128 

iteratively removed the lowest-ranked OTUs based on the RL score (i.e. OTUs were ranked 129 

according to the score from high to low) and the Lasso was fitted to the data to predict HNAcc 130 

and LNAcc based on the corresponding subset of OTUs. The performance was expressed in 131 

terms of the , the  between predicted and true values of HNAcc and LNAcc of samples 132 

that were held-out using a leave-one-group-out cross-validation scheme, in which samples were 133 

grouped according to year and location of measurement. If  equals 1, predictions were equal 134 

to the true values, a value of 0 is equivalent to random guessing.  135 

 136 

There was taxonomic dependency for both HNAcc and LNAcc across lake systems (Figure 2). 137 

 increased when lower-ranked OTUs were removed (moving from right to left on Figure 2), 138 

which was gradual for the inland lakes (Figure 2A)  and Muskegon Lake (Figure 2C) but was 139 

abrupt for Lake Michigan (Figure 2B). The number of taxa that resulted in the highest  140 

contained less than a quarter of the total amount of taxa that were present (see solid (HNA) and 141 

dotted (LNA) lines in Figure 2), being 10.2% HNA and 15.3% LNA for the inland lakes, 4.0% 142 

HNA and 3.0% LNA for Lake Michigan, and 25.0% for both HNA and LNA in Muskegon Lake. 143 

This behavior was consistent for each lake system and FCM population. The Lake Michigan 144 

results differed the most from other lake systems, having the lowest , a sharp increase in  145 
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instead of gradual, and a considerably lower minimal amount of OTUs (13 for HNAcc, 10 for 146 

LNAcc). No relationship could be established between rankings of variable selection methods 147 

and the relative abundance of individual OTUs (Figure S1). Multiple taxa with low average 148 

abundance were included in the minimal set of predictive variables, whereas few highly 149 

abundant OTUs were included. HNAcc and LNAcc could be predicted with equivalent 150 

performance to relative HNA and LNA proportions, yet the increase between initial and optimal 151 

performance was bigger (Figure S2). The final predictive performance was lower when 152 

compositional data was not transformed using the CLR-transformation (Figure S3).  153 

 154 

Identification on different taxonomic levels: OTUs outperform all other taxonomic levels 155 

To assess whether HNA and LNA groups were taxonomically conserved, compositional data 156 

was analyzed on all possible taxonomic levels for Muskegon Lake (Figure 3), using the same 157 

strategy as outlined in previous paragraph. The resulting  values were considerably higher 158 

than zero on all taxonomic levels, meaning that at all levels individual taxonomic changes can be 159 

related to changes in HNAcc and LNAcc. Even though the OTU level resulted in the best 160 

prediction of HNAcc and LNAcc (Figure 3), each individual OTU has a lower RL score 161 

compared to other taxonomic levels, which on average became lower as the taxonomic level 162 

decreased (Figure S4). The fraction of variables (taxa) that could be removed to reach the 163 

maximum  decreased as the taxonomic level became less resolved.  164 

 165 

Validation of  OTU selection results with the Boruta algorithm 166 

The OTU results were validated with an additional variable selection strategy, called the Boruta 167 

algorithm. This approach allowed the further generalization of the findings presented above. In 168 
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addition, it connects with Random Forest results from other studies, which have been described 169 

recently in microbiome studies of other systems (see [30] and [31]). The Boruta algorithm 170 

selects relevant variables based on statistical hypothesis testing between the variable importance 171 

of an original variable and the importance of the most important permuted variable (see 172 

materials and methods), as retrieved from multiple Random Forest models. Selected variables 173 

are ranked as ‘1’, tentative variables as ‘2’, and all other variables get lower ranks, depending on 174 

the stage in which they were eliminated. The Boruta algorithm was applied for all three lake 175 

systems at the OTU-level, selected OTUs are visualized in Figure S5. The fraction of selected 176 

OTUs was always smaller than 1% across lake systems and functional groups (Figure S6). The 177 

top scored OTU according to the RL was also selected according to the Boruta algorithm for 178 

HNAcc for all lake systems; for LNAcc both methods only agreed for Lake Michigan (Table 1). 179 

OTU060 (Proteobacteria;Sphingomonadales;alfIV_unclassified) was the only OTU selected in 180 

function of LNAcc across all lake systems, whereas no OTUs were selected across lake systems 181 

for HNAcc. As Random Forest regressions are the base method of the Boruta algorithm, we 182 

compared the predictive power of Boruta selected OTUs to those of all OTUs using Random 183 

Forest regression. For all lake systems and functional group performance increased when only 184 

selected OTUs were included in the model (Table S1).  Lasso predictions, in which OTUs were 185 

selected according to the RL, were better as opposed to Random Forest predictions in which 186 

OTUs were selected according to the Boruta algorithm (Figure S7). The fraction of selected 187 

OTUs according to the Boruta algorithm was lower than the optimal amount of OTUs according 188 

to the RL.  189 

 190 
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In this way, a number of findings could be generalized independent of a specific method: 1) 191 

Selected OTUs were mostly lake systems specific, 2) a small fraction of OTUs was needed to 192 

predict changes in community composition, 3) selected OTUs are often rare and do not show a 193 

relationship with abundance and 4) top RL-ranked HNA OTUs were also selected according to 194 

the Boruta algorithm, suggesting to inspect more closely the phylogeny of these taxa.  195 

 196 

HNA- and LNA-associated OTUs differed across lake systems  197 

Selected OTUs were mostly assigned to either the HNA or LNA groups and there was limited 198 

correspondence across lake systems between the selected OTUs (Figure 4). In Muskegon Lake, 199 

OTU173 (Bacteroidetes;Flavobacteriales;bacII-A) was selected as the major HNA-associated 200 

taxon while OTU29 (Bacteroidetes;Cytophagales;bacIII-B) had the highest RL score for LNA 201 

OTUs. In Lake Michigan, OTU25 (Bacteroidetes;Cytophagales;bacIII-A), was selected as the 202 

major HNA-associated  taxon while OTU168 (Alphaproteobacteria:Rhizobiales:alfVII) was 203 

selected as a major LNA-associated  taxon. For the inland lakes, OTU369 204 

(Alphaproteobacterial;Rhodospirillales;alfVIII) was the major HNA-associated  OTU while the 205 

OTU555 (Deltaproteobacteria;Bdellovibrionaceae;OM27) was the major LNA-associated  taxon. 206 

Many more OTUs were selected in Muskegon Lake (197 OTUs; compared to 134 OTUs from 207 

the  Inland Lakes and 21 OTUs from Lake Michigan) and these OTUs were often associated  208 

with both HNA and LNA groups.  209 

 210 

RL scores were correlated for HNAcc and LNA within each lake system (Inland r = 0.25, P < 211 

0.001; Michigan r = 0.59, P < 0.001, Muskegon r = 0.59, P < 0.001).  Only OTUs that were 212 

present in all three freshwater environments were considered to calculate correlations between 213 
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lake systems (190 in total, Figure S8). RL scores were lake ecosystem specific, with only a 214 

significant similarity between the Inland lakes and Muskegon lake using the RL for HNAcc (r = 215 

0.21, P = 0.0042). Note that the correlation within a lake system therefore differs from 216 

previously reported values (as not all OTUs were considered), yet differences were small and 217 

results were comparable. The Boruta algorithm selected mostly OTUs which were unique both 218 

for the lake system and functional population (Figure S5).  219 

 220 

Selected HNA and LNA OTUs do not have a phylogenetic signal 221 

While many of the 258 OTUs selected by the RL were one of a few members of their phylum 222 

(e.g. Firmicutes; Epsilonproteobacteria; OTU717 in Lentisphaerae; OTU267 in Omnitrophica; 223 

etc), the Bacteroidetes (60 OTUs), Betaproteobacteria (36 OTUs), Alphaproteobacteria (22 224 

OTUs), and Verrucomicrobia (21 OTUs) were a total of 54% of the selected OTUs (Figure 5). 225 

Of these top four phyla, the majority of their membership were within the LNA group (41-52% 226 

of selected OTUs), with the minority of OTUs within the HNA group (14-30% of selected 227 

OTUs), and a quarter to a third of the OTUs were selected as members of both the LNA and 228 

HNA groups (23-36% of selected OTUs).  229 

 230 

To evaluate how much phylogenetic history explains whether a selected taxon was associated 231 

with the HNA and/or LNA group(s), we calculated the phylogenetic signal, which is a measure 232 

of the dependence among species’ trait values on their phylogenetic history [32]. If the 233 

phylogenetic signal is very strong, taxa belonging to similar phylogenetic groups (e.g. a Phylum) 234 

will share the same trait (i.e. association with HNAcc or LNAcc). Alternatively, if the 235 

phylogenetic signal is weak, taxa within a similar phylogenetic group will have different traits. 236 
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For the most part, Pagel’s lambda was used [33] to test for phylogenetic signal where lambda 237 

varies between 0 and 1. A lambda value of 1 indicates complete phylogenetic patterning whereas 238 

a lambda of 0 indicates no phylogenetic patterning and leads to a tree collapsing into a single 239 

polytomy. There was no phylogenetic signal with FCM functional group used as a discrete 240 

character (i.e. HNA, LNA, or Both). As a continuous character using the RL scores for HNA 241 

(Figure S9), there was also no phylogenetic signal (lambda = 0.16; P = 1). There was a 242 

significant LNA signal (p = 0.003), however, the lambda value was 0.66, suggesting weak 243 

phylogenetic structuring in the LNA group. However, this significant result in the LNA was not 244 

replicated with other measures of phylogenetic signal (Blomberg’s K (HNA: p = 0.63; LNA: p = 245 

0.54), and Moran’s I (HNA: p = 0.88; LNA: p = 0.12)) indicating that there is likely no 246 

phylogenetic signal in the taxa that drive the dynamics in either the HNA or the LNA group.  247 

 248 

Flow cytometry fingerprints confirm associated taxa and reveal complex relationships between 249 

taxonomy and flow cytometric fingerprints 250 

To confirm the association of the final selected OTUs with the HNA and LNA groups, we 251 

calculated the correlation between the density of individual regions (i.e. “bins”) in the flow 252 

cytometry data with the relative abundances of the OTUs. The Kendall rank correlation 253 

coefficient between OTU abundances and counts in the flow cytometry fingerprint was 254 

calculated for each of the top HNA OTUs selected by the RL within each of the three systems. 255 

The correlation coefficient was visualized for each bin in the flow cytometry fingerprint (Figure 256 

6). As these values denote correlations, they do not indicate actual presence. OTU25 correlated 257 

with almost the entire HNA region, whereas OTU173 was limited to the lower part of the HNA 258 

region. In contrast, OTU369 was positively correlated to both the LNA and HNA regions of the 259 
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cytometric fingerprint, highlighting results from Figure 4 where OTU369 was selected in 260 

function of both HNA and an LNA. The threshold that was used to define HNAcc and LNAcc 261 

lies very close to the actual corresponding regions.  262 

 263 

Proteobacteria and rare taxa correlate with productivity measurements 264 

The Kendall rank correlation coefficient was calculated between CLR-transformed abundances 265 

of individual OTUs and productivity measurements. OTU481 was significantly correlated after 266 

correction for multiple hypothesis testing using the Benjamini-Hochberg procedure (P < 0.001, 267 

P_adj = 0.016). This OTU had however a low RL score (0.022) and was not selected according 268 

to the Boruta algorithm. Of the top 10 OTUs according to the RL, three still had significant P-269 

values (OTU614: P = 0.0064; OTU412, P = 0.044; OTU487, P = 0.014). Some OTUs that had a 270 

high RL score also had a positive response to productivity measurements (Figure S10). At the 271 

phylum level, only Proteobacteria were significantly correlated to productivity measurements 272 

after Benjamini-Hochberg correction (P < 0.001, P_adj = 0.010).  273 

Discussion 274 

Our study introduces a novel computational workflow to investigate relationships between 275 

microbial diversity and ecosystem functioning. Specifically, we aimed to study the ecology of 276 

flow cytometric functional groups (i.e. HNA and LNA) by associating their dynamics with those 277 

of bacterial taxa (i.e. OTUs). We simultaneously collected flow cytometry and 16S rRNA gene 278 

sequencing data from three types of freshwater lake systems in the Great Lakes region, and 279 

bacterial heterotrophic productivity from one lake ecosystem, and used a machine learning based 280 

variable selection strategy, known as the Randomized Lasso, to associate one with another. Our 281 

results showed that (1) there was a strong correlation between bacterial heterotrophic 282 
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productivity and HNA cell abundances, (2) HNA and LNA cell abundances were best predicted 283 

by a small subset of OTUs that were unique to each lake type, (3) some OTUs were included in 284 

the best model for both HNA and LNA abundance, (4) there was no phylogenetic conservation 285 

of HNA and LNA group association and (5) freshwater FCM fingerprints display more complex 286 

patterns related to OTUs and productivity than compared to the traditional dichotomy of HNA 287 

and LNA. While HNA and LNA groups are universal across aquatic ecosystems, our data 288 

suggest that some bacterial taxa contribute to both HNA and LNA groups and that the taxa 289 

driving HNA and LNA abundance are unique to each lake system.  290 

 291 

Although high-nucleic acid cell counts (HNAcc) and low-nucleic acid cell counts (LNAcc) were 292 

correlated with each other, only the association between bacterial heterotrophic production (BP) 293 

and HNAcc was strong and significant. This correlation between BP and HNA is higher than 294 

previously reported values, though previous reports have focused on the proportion of HNA 295 

rather than absolute cell abundances with the majority of data collected from marine systems. 296 

For example, Bouvier et al. [9] found a correlation between the fraction of HNA cells and BP 297 

within a large dataset of 640 samples across various freshwater to marine samples (r  = 0.49), 298 

whereas a study off the coast of the Antarctic Peninsula found a moderate correlation (R2  = 0.36; 299 

[15]). Another study in the Bay of Biscay also found this association (R2 = 0.16; [13]), however, 300 

the authors attributed this difference to be related to cell size and not due to the activity of HNA. 301 

Notably, these studies were predominantly testing the association of marine HNA and the reason 302 

for the stronger correlation in our study may be due to the nature of the freshwater samples. As 303 

such, future studies in freshwater environments should test this hypothesis, which is especially 304 

important for understanding the broader influence that HNA bacteria may have in the context of 305 
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the disproportionately large role that freshwater systems play as hotspots in the global carbon 306 

cycle [29]. Finally, as our correlations with proportional HNA abundance also indicated less 307 

strong correlations than with absolute HNAcc, we suggest absolute HNAcc should be used to 308 

best predict heterotrophic bacterial production with FCM data.  309 

    310 

The use of machine learning methods, such as the Lasso and Random Forest, are becoming more 311 

common in microbiome literature as these approaches are able to deal with multi-dimensional 312 

data and test the predictive power of a combined set of variables ([34–36]. Although the Lasso 313 

already uses an intrinsic variable selection strategy, it has been noted that the Lasso method is 314 

not suited for compositional data because the regression coefficients have an unclear 315 

interpretation, and single variables may be selected when correlated to other variables [37]. 316 

When performing variable selection with Random Forests, traditional variable importance 317 

measures such as the mean decrease in accuracy can be biased towards correlated variables [38]. 318 

Our approach included algorithms which extended on these traditional machine learning 319 

algorithms, i.e. the Randomized Lasso or Boruta algorithm [25, 26]. These methods make use of 320 

resampling and randomization which allow to either assign a probability of selection (RL) or 321 

statistically decide which OTU to select (Boruta). Both the RL and Boruta algorithm have been 322 

applied to microbiome studies before. Examples for RL include the selection of genera in the gut 323 

microbiome relation to BMI [34] or the selection of OTUs from the oral microbiome in function 324 

of salivary pH and lysozyme activity [39]. The Boruta algorithm has been applied to select 325 

relevant genera, for example in the gut microbiome in relation to multiple sclerosis [31] or in 326 

function of different diets during pregnancy of primates [30]. Moreover, the Boruta algorithm 327 

has been recently proposed as one of the top-performing variable selection methods that make 328 
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use of Random Forests [40]. The ability of our approach to identify unique sets of OTUs 329 

predictive of HNAcc and LNAcc despite the correlation between HNAcc and LNAcc (Figure 330 

1A) illustrates the power of the machine learning based-variable selection methods. However, 331 

there is still room for improvement when attempting to integrate these different types of data. For 332 

example, 16S rRNA gene sequencing still faces the hurdles of DNA extraction [41] and 16S 333 

copy number bias [42]. Moreover, detection limits are different for FCM (expressed in the 334 

number of cells) and 16S rRNA gene sequencing (expressed in the number of gene counts or 335 

relative abundance), which create data that may be different in resolution. Future work may 336 

focus on developing ways around these shortcomings to further improve the integration of FCM 337 

with 16S rRNA gene sequencing.  338 

 339 

In our study, only a minority of OTUs was needed to predict specific flow cytometric group 340 

abundances. While each OTU individually had low predictive power, the selected group of 341 

OTUs was generally a strong predictor of HNAcc and LNAcc. In addition, the selected OTUs 342 

were often rare and thus no relationship could be established between the RL score and the 343 

abundance of an OTU (Figure S3). These results are in line with recent findings of Herren & 344 

McMahon [28], who reported that a minority of low abundance taxa explained temporal 345 

compositional changes of microbial communities. The selection of different sets of HNA and 346 

LNA OTUs across the three freshwater systems indicates that different taxa underlie the 347 

universally observed HNA and LNA functional groups across aquatic systems. This is in line 348 

with strong species sorting in lake systems [43, 44], shaping community composition through 349 

diverging environmental conditions between the lake systems presented here [45]. This high 350 

system specificity also explains the low RL scores for individual OTUs, as the spatial dynamics 351 
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of an OTU diverged strongly across systems. (For example, an OTU that has an RL score of 0.5 352 

implies that on average it will only be chosen one out of two times in a Lasso model). 353 

 354 

Based on the high correlation of BP with HNAcc and low correlation with BP and LNAcc, the 355 

high proportion of LNA cells across all lake systems might indicate that the majority of cells in 356 

the bacterial community are dormant or have very low activity. This agreest with previous 357 

research showing that up to 40% [46] or even 64-95% [47] of cells in freshwater systems to be 358 

inactive or dormant. In fact, up to 60-80% of the OTUs in freshwater lakes have been reported to 359 

be dormant [48]. Based on variable environmental conditions sampled across our dataset, some 360 

of the taxa that are predominantly dormant in one sample may contribute to activity in another 361 

sample. If this differing contribution to activity also covaries with a taxon’s abundance, these 362 

taxa may be considered to be ‘conditionally rare taxa’ [49] and previously 1-2% of freshwater 363 

lake OTUs have been reported to be conditionally rare [27]. It has also been shown that marine 364 

heterotrophic bacteria can survive for at least 8 months (maximum tested length) in a starved 365 

state [50]. These factors may explain why some OTUs were included in both the HNAcc and 366 

LNAcc models and is in line with scenario 1 from Bouvier et al [9] (i.e. the transitioning of cells 367 

from active growth to death or inactivity). Alternatively, the same OTU may occur in both HNA 368 

and LNA groups due to phenotypic plasticity. Phenotypic plasticity has been shown for bacterial 369 

morphology and size, for example during predation and carbon starvation [51]. The fact that 370 

HNA and LNA groups have been suggested to correspond to cells of differing size, with HNA 371 

harboring larger cell sizes [10, 23], is in line with this hypothesis. Finally, the OTU level 372 

grouping of bacterial taxa can disguise genomic and phenotypic heterogeneity [52–55], which 373 

may be an explanation for inconsistent associations between OTUs and FCM functional groups.   374 
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 375 

While all taxonomic levels resulted in a model with predictive power, the best model was at the 376 

most resolved taxonomy (i.e. OTU) indicating that it is unlikely that OTUs within the HNA and 377 

LNA groups are phylogenetically conserved. Indeed, when analyzing the data at an OTU level, 378 

very little phylogenetic conservation was found between selected OTUs for HNA and LNA 379 

groups. This is in contrast to a recent study that found a clear signal at the phylum level [23]. 380 

Proctor et al. [23] showed separate bacterial clusters between HNA and LNA groups across 381 

different aquatic systems. However, this was not the case for lake water samples. It is notable 382 

that Proctor et al. [23] separated HNA and LNA cells based on cell size (where HNA cells were 383 

>0.4 um and LNA cells were 0.2-0.4 um, based on 50-90% removal of HNA cells after filtering), 384 

while our study separated these FCM functional groups on the basis of fluorescence intensity 385 

alone. Moreover, our study assessed associations between OTUs and population dynamics, while 386 

Proctor et al. [23] assessed actual presence.  387 

 388 

The Boruta algorithm and RL scores agreed on the top-ranked HNA OTU for all lake systems, 389 

which motivates further investigation of the ecology of these OTUs. While little information on 390 

the identities of HNA and LNA freshwater lake bacterial taxa exists, several studies identified 391 

Bacteroidetes among the most prominent HNA taxa and is in line with our findings. Vila-Costa 392 

et al. [24] found that the HNA group was dominated by Bacteroidetes in summer samples from 393 

the Mediterranean Sea, Read et al. [17] showed that HNA abundances correlated with 394 

Bacteroidetes, and Schattenhofer et al. [22] reported that the Bacteroidetes accounted for the 395 

majority of HNA cells in the North Atlantic Ocean. In Muskegon Lake, OTU173 was the 396 

dominant HNA taxon and is a member of the Order Flavobacteriales (bacII-A). The bacII group 397 
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is a very abundant freshwater bacterial group and has been associated with senescence and 398 

decline of an intense algal bloom [56]. BacII-A has also made up ~10% of the total microbial 399 

community during cyanobacterial blooms, reaching its maximum density immediately following 400 

the bloom [57]. In Lake Michigan, OTU25, a member of the Bacteroidetes Order Cytophagales 401 

known as bacIII-A, was the top HNA OTU. However, much less is known about this specific 402 

group of Bacteroidetes. Though, the bacII-A/bacIII-A group has been strongly associated with 403 

more heterotrophically productive headwater sites (compared to higher order streams) from the 404 

River Thames, showing a negative correlation in rivers with dendritic distance from the 405 

headwaters, indicating that these taxa may contribute more to productivity [17]. In the inland 406 

lakes, OTU369 was the major HNA taxon and is associated with the Alphaproteobacteria Order 407 

Rhodospirillales (alfVIII), which to our knowledge is a group with very little information 408 

available in the literature. In contrast to our findings of Bacteroidetes and Alphaproteobacterial 409 

HNA selected OTUs, Tada & Suzuki [58] found that the major HNA taxon from an oceanic algal 410 

culture was from the Betaproteobacteria whereas LNA OTUs were within the Actinobacteria 411 

phylum. 412 

 413 

Conclusions 414 

Our results indicate that there are taxonomic differences between HNA and LNA groups in 415 

freshwater lake systems, though these are lake system specific. This result may be due to taxa 416 

switching between these groups, potentially due to genomic or phenotypic plasticity. The 417 

difference between selected taxa is larger between lake systems as opposed to differences 418 

between HNA and LNA groups, which were not conserved phylogenetically. Thus, our results 419 

correspond most with research presented by Vila-Costa et al. [24], in which a taxonomic division 420 
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was found between HNA and LNA groups, yet this was not rigid and followed seasonal trends. 421 

Overall, our results motivate scenario 4 proposed by Bouvier et al. [9], where HNA and LNA 422 

exhibit a different taxonomy, but this taxonomy changes over time and space and may overlap. 423 

With this study, we show that different types of microbial ecological data can be integrated with 424 

machine learning to learn about the composition and functioning of bacterial populations in 425 

aquatic systems. Future studies on HNA and LNA bacterial groups should use genome-resolved 426 

metagenomics, metatranscriptomics, or single-cell genomics to decipher whether the traits that 427 

underpin the association of a taxon with a FCM group are related to genomic or phenotypic 428 

plasticity.  429 

 430 

Materials and Methods 431 

Data collection and DNA extraction, sequencing and processing  432 

In this study, we used a total of 173 samples collected from three types of lake systems described 433 

previously [45], including: (1) 49 samples from Lake Michigan (2013 & 2015), (2) 62 samples 434 

from Muskegon Lake (2013-2015; one of Lake Michigan’s estuaries), and (3) 62 samples from 435 

twelve inland lakes in Southeastern Michigan (2014-2015). For more details on sampling, please 436 

see Figure 1 and  the Field Sampling, DNA extraction, and DNA sequencing and processing 437 

sections within Chiang et al. [45]. In all cases, water for microbial biomass samples were 438 

collected and poured through a 210 μm and 20 μm bleach sterilized nitex mesh and sequential in-439 

line filtration was performed using 47 mm polycarbonate in-line filter holders (Pall Corporation, 440 

Ann Arbor, MI, USA) and an E/S portable peristaltic pump with an easy-load L/S pump head 441 

(Masterflex®, Cole Parmer Instrument Company, Vernon Hills, IL, USA) to filter first through a 442 

3 μm isopore polycarbonate (TSTP, 47 mm diameter, Millipore, Billerica, MA, USA) and 443 
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second through a 0.22 μm Express Plus polyethersulfone membrane filters (47 mm diameter, 444 

Millipore, MA, USA). The current study only utilized the 3 - 0.22 μm fraction for analyses.  445 

 446 

DNA extractions and sequencing were performed as described in Chiang et al. [45]. Fastq files 447 

were submitted to NCBI sequence read archive under BioProject accession number 448 

PRJNA412984 and PRJNA414423. We analyzed the sequence data using MOTHUR V.1.38.0 449 

(seed = 777; [59] based on the MiSeq standard operating procedure and put together at the 450 

following link: https://github.com/rprops/Mothur_oligo_batch. A combination of the Silva 451 

Database (release 123; [60]) and the freshwater TaxAss 16S rRNA database and pipeline [61] 452 

was used for classification of operational taxonomic units (OTUs).  453 

 454 

For the taxonomic analysis, each of the three lake datasets were analyzed separately and treated 455 

with an OTU abundance threshold cutoff of at least 5 sequences in 10% of the samples in the 456 

dataset (similar strategy to [62]). For comparison of taxonomic abundances across samples, each 457 

of the three datasets were then rarefied to an even sequencing depth, which was 4,491 sequences 458 

for Muskegon Lake samples, 5,724 sequences for the Lake Michigan samples, and 9,037 459 

sequences for the inland lake samples. Next, the relative abundance at the OTU level was 460 

calculated using the transform_sample_counts() function in the phyloseq R package [63] by 461 

taking the count value and dividing it by the sequencing depth of the sample. For all other 462 

taxonomic levels, the taxonomy was merged at certain taxonomic ranks using the tax_glom() 463 

function in phyloseq [63] and the relative abundance was re-calculated.  464 

 465 

Heterotrophic bacterial production measurements 466 
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Muskegon Lake samples from 2014 and 2015 were processed for heterotrophic bacterial 467 

production using the [3H] leucine incorporation into bacterial protein in the dark method [64, 65]. 468 

At the end of the incubation with [3H]-leucine, cold trichloroacetic acid-extracted samples were 469 

filtered onto 0.2 µm filters that represented the leucine incorporation by the bacterial community.  470 

Measured leucine incorporation during the incubation was converted to bacterial carbon 471 

production rate using a standard theoretical conversion factor of 2.3 kg C per mole of leucine 472 

[65].  473 

 474 

Flow cytometry, measuring HNA and LNA 475 

In the field, a total of 1 mL of 20 μm filtered lake water were fixed with 5 μL of glutaraldehyde 476 

(20% vol/vol stock), incubated for 10 minutes on the bench (covered with aluminum foil to 477 

protect from light degradation), and then flash frozen in liquid nitrogen to later be stored in -478 

80°C freezer until later processing with a flow cytometer. Flow cytometry procedures followed 479 

the protocol laid out in Props et al. [66], which also uses the samples presented in the current 480 

study. Samples were stained with SYBR Green I and measured in triplicate. The lowest number 481 

of cells collected after denoising was 2342. HNA and LNA groups were selected using the fixed 482 

gates introduced in Prest et al. [67] and plotted in Figure S11.  Cell counts were determined per 483 

HNA and LNA group and averaged over the three replicates (giving rise to HNAcc and LNAcc).  484 

 485 

Data analysis 486 

Processed data and analysis code for the following analyses can be found on the GitHub page for 487 

this project at https://deneflab.github.io/HNA_LNA_productivity/. 488 

 489 
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HNA-LNA and HNA-Productivity Statistics and Regressions 490 

We tested the difference in absolute number of cells within HNA and LNA functional groups 491 

across running analysis of variance with a post-hoc Tukey HSD test (aov() and TukeyHSD(); 492 

stats R package; [68]). In addition, we tested the association of HNA and LNA to each other and 493 

with productivity by running ordinary least squares regression with the lm() (stats R package; 494 

[68]).  495 

 496 

Ranking correlation  497 

Ranking correlation between variables was calculated using the Kendall rank correlation 498 

coefficient, using the kendalltau() function in Scipy (v1.0.0) or cor() in R (v3.2). The ‘tau-b’ 499 

implementation was used, which is able to deal with ties. Values range from -1 (strong 500 

disagreement) to 1 (strong agreement). The same statistic was used to assess the similarity 501 

between rankings of variable selection methods.  502 

 503 

Centered-log ratio transform  504 

First, following guidelines from Paliy & Shanker, Gloor et al. and Quinn et al.[69–71], relative 505 

abundances of OTUs were transformed using a centered log-ratio (CLR) transformation before 506 

variable selection was applied. This means that the relative abundance 𝑥𝑖of a taxa was 507 

transformed according to the geometric mean of that sample, in which there are  taxa present:  508 

.   509 

Zero values were replaced by . This was done using the scikit-bio package 510 

(www.scikit-bio.org, v0.4.1).  511 
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 512 

Lasso & stability selection 513 

Scores were assigned to taxa based on an extension of the Lasso estimator, which is called 514 

stability selection [25]. In the case of 𝑛samples, the Lasso estimator fits the following regression 515 

model:  516 

  ,   517 

in which  denotes the abundance table,  the target to predict, which either is HNA cell 518 

abundances (HNAcc) or LNA cell abundances (LNAcc), and  is a regularization parameter 519 

which controls the complexity of the model and prevents overfitting. The Lasso performs an 520 

intrinsic form of variable selection, as the weights of certain variables will be put to zero.  521 

 522 

Stability selection, when applied to the Lasso, is in essence an extension of the Lasso regression. 523 

It implements two types of randomizations to assign a score to the variables, and is therefore also 524 

called the Randomized Lasso (RL). The resulting RL score can be seen as the probability that a 525 

certain variable will be included in a Lasso regression model (i.e., its weight will be non-zero 526 

when fitted). When performing stability selection, the Lasso is fitted to  different subsamples of 527 

the data of fraction , denoted as  and corresponding . A second randomization is added by 528 

introducing a weakness parameter . In each model, the penalty  changes to a randomly chosen 529 

value in the set , which means that a higher penalty will be assigned to a random subset 530 

of the total amount of variables. The Randomized Lasso therefore becomes:  531 

  ,   532 
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where  is a random variable which is either  or 1. Next, the Randomized Lasso score (RL 533 

score) is determined  by counting the number of times the weight of a variable was non-zero for 534 

each of the  models and divided by . Meinshausen and Bühlmann show that, under stringent 535 

conditions, the number of falsely selected variables is controlled for the Randomized Lasso when 536 

the RL score is higher than 0.5.  If  is varied, one can determine the stability path, which is the 537 

relationship between  and  for every variable. For our implementation, ,  and 538 

the highest score was selected in the stability path for which  ranged from  until , 539 

logarithmically divided in 100 intervals. The RandomizedLasso() function from the scikit-learn 540 

machine learning library was used [72], v0.19.1).  541 

 542 

Random Forests & Boruta 543 

The Boruta algorithm is a wrapper algorithm that makes use of Random Forests as a base 544 

classification or regression method in order to select all relevant variables in function of a 545 

response variable [26]. Similar to stability selection, the method uses an additional form of 546 

randomness in order to perform variable selection. Random Forests are fitted to the data multiple 547 

times. To remove the correlation to the response variable, each variable gets per iteration a so-548 

called shadow variable, which is a permuted copy of the original variable. Next, the Random 549 

Forest algorithm is run with the extended set of variables, after which variable importances are 550 

calculated for both original and shadow variables. The shadow variable that has the highest 551 

importance score is used as reference, and every variable with significantly lower importance, as 552 

determined by a Bonferroni corrected t-test, is removed. Likewise, variables containing an 553 

importance score that is significantly higher are included in the final list of selected variables. 554 

This procedure can be repeated until all original variables are either discarded or included in the 555 
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final set; variables that remain get the label ‘tentative’ (i.e., after all repetitions it is still not 556 

possible to either select or discard a certain variable). We used the boruta_py package to 557 

implement the Boruta algorithm (https://github.com/scikit-learn-contrib/boruta_py). Random 558 

Forests were implemented using RandomForestRegressor() function from scikit-learn [72], 559 

v0.19.1). Random Forests were run with 200 trees, the number of variables considered at every 560 

split of a decision tree was  and the minimal number of samples per leaf was set to five. The 561 

latter were based on default values for Random Forests in a regression setting [73]. The Boruta 562 

algorithm was run for 300 iterations, variables were selected or discarded at  after 563 

performing Bonferroni correction.   564 

 565 

Recursive variable elimination  566 

Scores of the Randomized Lasso were evaluated using a recursive variable elimination strategy 567 

[74]. Variables were ranked according to the RL score. Next, the lowest-ranked variables were 568 

eliminated from the dataset, after which the Lasso was applied to predict HNAcc and LNAcc 569 

respectively. This process was repeated until only the highest-scored taxa remained. In this way, 570 

performance of the Randomized Lasso was assessed from a minimal-optimal evaluation 571 

perspective [75]. In other words, the lowest amount of variables that resulted in the highest 572 

predictive performance was determined.  573 

 574 

Performance evaluation 575 

In order to account for the spatiotemporal structure of the data, a blocked cross-validation 576 

scheme was implemented [76]. Samples were grouped according the site and year that they were 577 

collected. This results in 5, 10 and 16 distinctive groups for the Michigan, Muskegon and Inland 578 
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lake systems respectively. Predictive models were optimized in function of the  between 579 

predicted and true values of held-out groups using a leave-one-group-out cross-validation 580 

scheme with the LeaveOneGroupOut() function. This results in a cross-validated  value. For 581 

the Lasso,  was determined using the lassoCV() function, with setting eps=  and 582 

n_alphas=400. The Random Forest object was optimized using a grid search where max_features 583 

was chosen in the interval  (all variables) or  (Boruta selected variables) 584 

and  min_samples_leaf in the interval , using the GridSearchCV() function. The number 585 

of decision trees (n_trees) was set to 200. All functions are part of scikit-learn ([72]; v0.19.1) 586 

 587 

Stability of the Randomized Lasso 588 

Similarity of RL scores between lake systems and functional groups was quantified using the 589 

Pearson correlation. This was done using the pearsonr() function in Scipy (v1.0.0).  590 

 591 

Patterns of HNA and LNA OTUs across ecosystems and phylogeny 592 

To visualize patterns of selected HNA and LNA OTUs across the three ecosystems, a heatmap 593 

was created with the RL scores of each OTU from the Randomized Lasso regression that were 594 

higher than specified threshold values. The heatmap was created with the heatmap.2() function 595 

(gplots R package) using the euclidean distances of the RL scores and a complete linkage 596 

hierarchical clustering algorithm (Figure 4).  597 

 598 

Correlations between taxa and productivity measurements 599 

Kendall tau ranking correlations between productivity measurements and individual abundances 600 

were calculated on the phylum and OTU level using the kendalltau() function from Scipy 601 
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(v1.0.0). P-values were corrected using Benjamini-Hochberg correction, reported as P_adj. This 602 

was done using the multitest() function from the Python module Statsmodels ([77]; v0.5.0).  603 

 604 

Phylogenetic tree construction and signal calculation  605 

We calculated the best performing maximum likelihood tree using the GTR-CAT model (-gtr -606 

fastest) model of nucleotide substitution with fasttree (version 2.1.9 No SSE3; [78]). 607 

Phylogenetic signal with both discrete (i.e. HNA, LNA, or both) and continuous traits (i.e. the 608 

RL score) using the newick tree from FastTree was then used to model phylogenetic signal using 609 

Pagel’s lambda (discrete trait: fitDiscrete() from the geiger R package [79]; continuous trait: 610 

phylosig() from the phytools R [80]), Blomberg’s K (phylosig() function from the phytools R 611 

package [80]), and Moran’s I (abouheif.moran() function from the adephylo R package [81]).  612 
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35 

Figure 1: (A) Correlation between HNA cell counts and LNA cell counts across the three 828 

freshwater lake ecosystems. (B-D) Muskegon Lake bacterial heterotrophic production and its 829 

correlation with (B) HNA cell counts, (C) LNA cell counts, and (D) total cell counts. The grey 830 

area in plots A, B, and D represents the 95% confidence intervals.  831 
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Figure 2:  in function of the number of OTUs, which were iteratively removed based on the 833 

RL score and evaluated using the Lasso at every step. The solid (HNA) and dashed (LNA) 834 

vertical lines corresponds to the threshold (i.e., number of OTUs) which resulted in a maximal 835 

. (A) Inland system ( ), HNAcc; (B) Lake Michigan ( ), 836 

HNAcc; (C) Muskegon lake, HNAcc ( ); (D) Inland system, LNAcc (837 

); (E) Lake Michigan, LNAcc ( ); (F) Muskegon lake, LNAcc (838 

).   839 
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Figure 3: Evaluation of HNAcc and LNAcc predictions using the Lasso at all taxonomic levels 841 

for the Muskegon lake system, expressed in terms of , using different subsets of taxonomic 842 

variables. Subsets were determined by iteratively eliminating the lowest-ranked taxonomic 843 

variables based on the RL score. 844 
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Figure 4: Hierarchical clustering of the RL score for the top 10 selected OTUs within each lake 846 

system and FCM functional groups with the selected OTU (rows) across HNA and LNA groups 847 

within the three lake systems (columns). 848 
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Figure 5: Phylogenetic tree with all HNA and LNA selected OTUs from each of the three lake 850 

systems with their phylum level taxonomic classification and association with HNA, LNA or to 851 

both groups based on the RL score threshold values.  852 
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Figure 6: Correlation (Kendall’s tau-b) between the relative abundances of the top three OTUs 854 

selected by the RL and the densities in the cytometric fingerprint. The fluorescence threshold 855 

used to define HNA and LNA populations is indicated by the dotted line. 856 
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Table 1: Top scored OTUs according to the RL per functional population and lake ecosystem. 858 

Selection according to the Boruta algorithm is given in addition to the RL score. Descriptive 859 

statistics by means of the Kendall rank correlation coefficient (KRCC) have been added with 860 

level of significance in function of the HNA/LNA population. Full taxonomy of the OTUs is 861 

given in Table S2.  862 

 863 

Lake 

system 

Functional 

group 

OTU RL 

score 

Boruta 

selected 

Kendall's 

tau 

(HNA) 

P-value 

(HNA) 

Kendall's 

tau 

(LNA) 

P-value 

(LNA) 

Inland HNA OTU369 0.382 yes -0.43 <0.001 -0.28 0.0012  
LNA OTU555 0.384 no 0.089 N.S. 0.22 0.011 

Michigan HNA OTU025 0.362 yes 0.46 <0.001 0.41 <0.001  
LNA OTU168 0.428 yes 0.26 0.0092 0.4 <0.001 

Muskegon HNA OTU173 0.462 yes 0.5 <0.001 0.2 0.019  
LNA OTU029 0.568 no 0.26 0.0029 0.49 <0.001 
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