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ABSTRACT 11 

Genome-wide association studies (GWAS) have proven to be a valuable approach for identifying genetic 12 

intervals associated with phenotypic variation in Medicago truncatula. These intervals can vary in size, 13 

depending on the historical local recombination near each significant interval. Typically, significant 14 

intervals span numerous gene models, limiting the ability to resolve high-confidence candidate genes 15 

underlying the trait of interest. Additional genomic data, including gene co-expression networks, can be 16 

combined with the genetic mapping information to successfully identify candidate genes. Co-expression 17 

network analysis provides information about the functional relationships of each gene through its 18 

similarity of expression patterns to other well-defined clusters of genes. In this study, we integrated 19 

data from GWAS and co-expression networks to pinpoint candidate genes that may be associated with 20 

nodule-related phenotypes in Medicago truncatula. We further investigated a subset of these genes and 21 

confirmed that several had existing evidence linking them nodulation, including MEDTR2G101090 22 

(PEN3-like), a previously validated gene associated with nodule number. 23 

INTRODUCTION 24 

The ability to convert atmospheric nitrogen into usable forms makes legumes an integral part of 25 

the plant ecosystem. Unfortunately, the expected increase in human population size over the next 26 

several decades will require a higher amount of nitrogen than current legume cropping systems can 27 

fulfill (Smil, 1999). This increase in demand requires that researchers better understand and improve 28 

nitrogen fixation in current legume species.  One species in particular, Medicago truncatula, is widely 29 

considered a model species for understanding nitrogen fixation due to its diploid nature, seed to seed 30 

generation time, small genome size, and the vast amount of genomic resources (Young and Udvardi, 31 

2009). Although previous studies have identified genes associated with nodulation (Oldroyd et al., 2001; 32 

Curtin et al., 2017; VandenBosch, 2003; Elise et al., 2005; Combier et al., 2006; Wasson, 2006) , the trait 33 
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is highly polygenic, and a large number of genes involved in nodulation remain to be discovered. One 34 

way researchers have tried to overcome this obstacle is through the use of Genome-wide association 35 

studies (GWAS).   36 

Genetic analysis performed on standing collections of diverse lines or accessions reveals the 37 

locations of historical recombination that differentiate each genotype. GWAS leverage this information 38 

to discover associations between genetic markers and a phenotype of interest that exhibits variation 39 

within the population. However, these strong associations typically implicate genomic regions that are 40 

too large to allow for the identification of the specific gene that underlies this variation (Breseghello and 41 

Coelho, 2013; Flint-Garcia et al., 2005; Visscher et al., 2012). In most cases, further investigation is 42 

required to identify genes surrounding each marker that may be associated with the phenotype.  43 

Furthermore, it is possible that numerous markers truly associated with the trait are not identified as 44 

significant in GWAS, due to stringent statistical cutoffs (Storey and Tibshirani, 2003; Johnson et al., 2010; 45 

Sham and Purcell, 2014). Conversely, lowering the statistical threshold introduces false positives that are 46 

problematic for further analysis (Korte and Farlow, 2013).  47 

Advances in next-generation sequencing technologies have allowed researchers to generate 48 

numerous reference genomes for a variety of plant species. However, many of the genes within these 49 

species remain functionally uncharacterized, limiting the amount of biological information available to 50 

interpret a candidate gene’s effect on a specific phenotype. Using technologies such as RNA-seq and 51 

microarrays, it is possible to measure quantitative levels of expression throughout the genome across 52 

multiple samples. Based on a collection of genome-wide expression profiles collected from various 53 

tissues, species, and/or environments, one can construct a co-expression network by measuring 54 

similarity between all pairs of genes’ expression profiles, where strongly connected edges indicate that 55 

two genes exhibit highly similar patterns of expression (Usadel et al., 2009; Stuart, 2003) (Aoki et al., 56 

2007). These networks provide a powerful resource for understanding gene function, particularly for 57 
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uncharacterized genes, as the data-derived relationships allow one to establish a functional context for a 58 

gene, even when formal annotations do not exist. 59 

A recent study described a new framework to integrate co-expression networks with GWAS as a 60 

means to identify candidate genes (Schaefer et al., 2018). In maize, they ran several GWAS to identify a 61 

SNPs associated with elemental accumulation in seeds. Although they were able to identify significant 62 

markers associated with regions of the genome, in most cases, they were left with hundreds of markers 63 

per trait that often implicated linked genomic regions that could not be resolved to individual candidate 64 

genes. They further built three co-expression networks, two from publicly available data and one from 65 

root tissue designed to represent the phenotype measured in the respective GWAS. Schaefer et al. 2018 66 

integrated the significant markers for each trait with the co-expression networks using their Camoco 67 

framework to identify and better prioritize candidate genes associated with elemental accumulation.  68 

Here, we apply this framework to Medicago truncatula using publicly available expression 69 

datasets, and markers from a previously published GWAS focused on nodulation traits. We demonstrate 70 

that Camoco framework, originally established in maize, indeed generalizes to other species and traits, 71 

and provides an effective means of pinpointing candidate causal genes associated with nodulation. 72 

RESULTS AND DISCUSSION 73 

Integration of nodule focused genome-wide association study with co-expression 74 

networks 75 

To identify candidate genes associated with nodulation traits, we used a previously published 76 

GWAS (Stanton-Geddes et al., 2013) as well as two publicly available RNA-seq datasets. The GWAS 77 

consisted of 226 M. truncatula accessions that were previously grown in replicate and phenotyped for 78 

five different nodulation traits as well as flowering time, trichrome density and height. By manually 79 
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inspecting their most significant 50-200 SNPs ranked by p-value, the authors discovered several genes 80 

near significant SNPs that were previously associated with nodulation traits (Stanton-Geddes et al., 81 

2013). Similar to other GWAS studies, the authors focused on genes that either contained or were 82 

directly adjacent to significant markers even though, in some cases, other genes may also be plausible 83 

candidates given their linkage to the significant markers (Branca et al., 2011). We selected a subset of 84 

these traits and markers from the study to serve as input for the GWAS/co-expression Camoco pipeline 85 

(Table S1).  86 

As a basis for our co-expression networks, we used two publicly available RNA-seq expression 87 

data sets. The data consisted of 138 samples consisting of three different genotypes, three different 88 

tissues, four different rhizobium treatments, and presence-absence of nitrogen (Table S2). We then built 89 

six different co-expression networks using Camoco (https://github.com/schae234/Camoco) (Schaefer et 90 

al., 2018). Four of the six networks were constructed from a single tissue type (Leaf, Root, Nodule, 91 

JQL_Nodule), and the other two networks (referred to as the “General” network and “JQL” network) 92 

were constructed from a combination of different tissue types (Table S3). The diversity of tissue types 93 

within each co-expression network allows for the detection of signals corresponding to different 94 

biological processes that may have remained undiscovered if all samples were combined into one large 95 

network (Schaefer et al., 2014, 2018). The total number of genes that passed the co-expression network 96 

construction phase was relatively consistent among the four networks, with each network consisting of 97 

roughly 22,000 genes (Table S3). Genes that were excluded from each network were either not 98 

expressed, or did not exhibit enough variation in expression between samples to robustly measure 99 

covariation. The smaller number of genes within the nodule-specific network was expected, as fewer 100 

genes are expressed in nodule tissue relative to others (Benedito et al., 2008).  101 

To test whether the networks were capturing biologically meaningful relationships, we 102 

measured the enrichment in each network for known biological relationships. Using sets of genes 103 
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coannotated to the same Gene Ontology (GO) term, the relative density (how highly an established set 104 

of functionally related genes are co-expressed with each other) was measured and compared to density 105 

values of randomly sampled gene sets of the same size. All six networks demonstrated functional 106 

enrichment of at least ten-fold (Figure S1), indicating that many more GO terms exhibited evidence of 107 

co-expression than expected by chance for all six networks.   108 

Using the six co-expression networks and selected GWAS markers, we applied the Camoco 109 

pipeline to prioritize candidate causal genes. Briefly, Camoco, which was originally described in Schaefer 110 

et al. 2018, evaluates candidate genes linked to significant GWAS markers on the basis of their co-111 

expression with genes linked to other significant GWAS marker based on the assumption that some 112 

causal genes should exhibit strong co-expression relationships with other genes associated with the 113 

trait. Camoco is depicted in Figure 1, and the details of this analysis are provided in the Methods section. 114 

Any genes reported by Camoco with an FDR < 0.35 were considered candidate genes and included in 115 

further analysis.  116 

The results of the Camoco framework yielded 489 high-confidence candidate genes across all 117 

GWAS trait and network combinations. We also measured the number that persisted at more stringent 118 

FDR cutoffs, and indeed we were able to discover genes across a range of FDRs (FDR < 0.2: 172 genes; 119 

FDR < 0.1: 32 genes; FDR < 0.05: 3 genes).  Analysis of the Nod_A trait (strain occupancy in the top 5 cm 120 

of roots) with the Mt_JQL_Nodule network combination, revealed a high amount of network 121 

connectivity between genes. To illustrate the basis for highly prioritized candidate genes, we highlight 122 

the observed co-expression relationships for MEDTR2G101090 (Figure 2), which was one of the top 123 

prioritized candidate genes for the Nod_A. MEDTR2G101090 is linked with a  significant GWAS marker 124 

and is highly co-expressed with genes linked to significant loci on several other chromosomes (Figure 2), 125 

suggesting that the Camoco framework is discovering meaningful relationships.   126 
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Importance of trait and tissue specificity in co-expression networks 127 

The number of high-confidence candidate genes discovered by Camoco varied significantly 128 

across different combinations of traits, networks, and parameters (Figure 3). Interestingly, the nodule 129 

based Mt_JQL_Nodule co-expression network combined with the Nod_A trait yielded the most high-130 

confidence candidate genes across all network-trait combinations, which likely reflects a strong match 131 

between the tissue in which expression covariation was measured and the biology of the phenotype of 132 

interest (in this case, both focused on nodules).  Surprisingly, the root-based network performed the 133 

worst even though we expected strong biological relevance for nodulation based traits. It was the 134 

poorest performer across all GWAS traits, only producing a few candidate genes for the Nod_B trait 135 

(strain occupancy below the top 5 cm of roots). This result could possibly be due to the timepoint at 136 

which RNA was extracted from the roots. For example, if RNA was extracted at an earlier timepoint 137 

when nodules were still early in development, there may have been more informative expression 138 

patterns, allowing for the discovery of candidate genes. 139 

The leaf network was the only network that consistently identified candidates for the height 140 

trait. While this is biologically unsurprising, this network also discovered significant genes for a few 141 

nodulation traits, suggesting that there are processes detectable in leaf tissue with relevance to 142 

nodulation. The General network, which consisted of the largest number of samples and tissue types 143 

only generated a few candidates for the Nod_B phenotype. 144 

These results suggest that the context from which the co-expression network was derived, and 145 

its relation to the GWAS phenotype, play an important role in determining whether the Camoco 146 

approach is able to prioritize high-confidence genes. Notably, our results suggest that combining many 147 

different types of tissue into one large network does not perform well as a smaller, more concise, tissue-148 

focused network, even though it is based on a larger set of expression profiles. One reason for this is 149 
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that combining expression data from very different contexts introduces more variation across each 150 

gene’s profile, but that variation likely reveals generic modules that represent large sets of genes that 151 

simply are expressed in the same subsets of tissues.  In contrast, networks derived from specific tissues 152 

capture more subtle covariation that reflects co-regulated genes functioning in processes relevant to 153 

that tissue that may otherwise be lost in larger sets of expression profiles. 154 

GWAS marker significance and proximity to genes are variable when integrating co-155 

expression analysis 156 

A common approach to interpreting GWAS studies is to manually inspect the most significant 157 

markers and look for candidates that are closest in proximity to the marker of interest. Unfortunately, 158 

the closest genes to GWAS markers may not always be the ones that are causally driving the association 159 

with the phenotype. When looking at the height trait in the leaf network, we see an increase in signal 160 

(i.e., number of Camoco-identified high-confidence candidate genes) as we increase the number of 161 

flanking genes surrounding each marker (Figure S2). When the window size is increased from 10 kb to 162 

20kb, we see that the signal drastically increases, indicating that there are genes further out from the 163 

marker that are highly co-expressed with a subset of these genes. However, when an even larger 50kb 164 

window is used, no high-confidence genes are reported. The loss of signal at the largest interval (50kb) is 165 

expected as the number of potential candidate genes per locus increases sharply (the large majority of 166 

them being false positive as one considers candidates further from the locus peak). Ultimately, this large 167 

number of false candidate genes obscures the identification of co-expression relationships among true 168 

causal genes, and the approach no longer works. This analysis suggests that several of the GWAS loci 169 

implicated for these traits are likely driven by causal genes that are not directly adjacent to the GWAS 170 

peaks. 171 
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Similarly, the constraint of only focusing on the most significant markers (e.g. derived from 172 

extremely conservative significance cutoffs on the association test) leaves other candidates that are 173 

truly associated with the phenotype neglected. The Camoco framework can provide filtering of false 174 

positives at lower significance thresholds, by integrating information from the co-expression network. 175 

For instance, if we used the common GWAS p-value cutoff of  5 × 10-8 (Fadista et al., 2016; Barsh et al., 176 

2012; Panagiotou and Ioannidis, 2012), this would result in two GWAS markers from the Nod_A 177 

phenotype, which does not provide enough context for an approach like Camoco to prioritize candidate 178 

genes. Instead, we applied a less conservative threshold (p-value < 3 x 10-5), which resulted in 292 SNPs, 179 

which was able to produce several high-confidence candidate causal genes, which would have otherwise 180 

been ignored (Table S1). In general, of course the number of markers produced at any confidence 181 

threshold will depend on the trait’s genetic architecture and the study design, but this analysis suggests 182 

that the Camoco approach can better produce candidate genes with less conservative thresholds on 183 

marker association.  184 

Identification of nodulation-related genes using co-expression and GWAS 185 

To identify a small set of the most promising high confidence candidate genes for more 186 

investigation, we further narrowed candidate genes lists for the Nod_A trait by focusing on genes that 187 

were consistently discovered across different parameter settings. Using the JQL_Nodule network, we 188 

narrowed the candidate gene lists by limiting candidate genes to those that appeared in at least three 189 

out of the nine (10kb, 20kb, 50kb genome window size by 1,2,5 flanking gene) combinations of 190 

parameter settings; this process resulted in 25 genes for further investigation (Table1). When viewing 191 

the strength of co-expression between these 25 genes within the nodule network, it was observed that 192 

the majority of the genes were connected and formed a single module (Figure 4).   193 
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Interestingly, among those 25 candidate genes from the Nod_A analysis, was PEN3-like 194 

(MEDTR2G101090; Table 1), a gene that was associated with the most significant GWAS marker for the 195 

Nod_A trait (Stanton-Geddes et al., 2013). Functional validation of PEN3-like using CRISPR and Tnt1-196 

mutated plants previously confirmed that loss-of-function of this gene resulted in decreased nodule 197 

number (Curtin et al., 2017). Another strong candidate among these 25 within the module was the hub 198 

gene (gene with the highest number of connections), MEDTR7G109130, which is annotated as a P-loop 199 

nucleoside triphosphate hydrolase superfamily protein and is known to play a role in nodulation 200 

(Jayaraman et al., 2017).  201 

Because multiple co-expression networks were able to support the discovery of strong 202 

candidate genes for Nod_B, we defined a short list of high-confidence candidates by requiring high 203 

confidence genes to be consistently prioritized as high-confidence candidates across all networks for the 204 

Nod_B trait and were discovered across 4 or more parameter settings (Table 2). One promising gene, 205 

MEDTR1G012530, appeared as a candidate for 9 out of the 20 parameter settings that resulted in at 206 

least one candidate gene discovery. This gene is annotated as a TPX2 (targeting protein for Xklp2) family 207 

protein and has been shown to be highly expressed during nodule formation (Jardinaud et al., 2016).  208 

Another promising candidate, MEDTR4G073400, which also appeared as candidate 9 times, is annotated 209 

as Synaptotagmins-1-related, which play a role in the formation of root nodules (Gavrin et al., 2017). 210 

  Overall, these results demonstrate that the integration of co-expression networks to interpret 211 

GWAS results was able to effectively prioritize genes causally associated with nodulation processes. The 212 

genes that are directly connected to PEN3-like would serve as valuable candidates for follow-up studies 213 

due to their similarity in expression profiles across tissues. Another approach to prioritizing candidates 214 

from among the set produced by the Camoco analysis is to rank based on their linked GWAS marker’s 215 

significance value. For instance, the candidate causal gene associated with the marker with the highest 216 
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significance was the PEN3-like gene while our P-loop nucleoside triphosphate hydrolase superfamily 217 

protein hub gene was ranked 270 out of 523 significant markers input into the Camoco analysis.  218 

Conclusions 219 

Using an M. truncatula GWAS focused on nodulation traits as well as expression data from 220 

different tissues, rhizobium strains, nitrogen treatments and accessions, we were able to identify a 221 

subset of genes surrounding GWAS markers that are highly co-expressed with one another. From these 222 

lists, we discovered a previously validated nodulation gene PEN3-like as well as several other genes 223 

whose annotations are associated with nodulation. Uncharacterized genes within our high-confidence 224 

lists are worthy of more in-depth follow-up studies using Tnt1 or CRISPR knockouts.   225 

Schaefer et al. 2018 developed the Camoco framework and integrated co-expression networks 226 

and GWAS in maize in order to capture variation associated with elemental uptake in seeds. Our current 227 

study used a higher-density GWAS that focused on a different phenotype, different plant species, and an 228 

expression data set that was not explicitly created for this study. One common theme between the 229 

studies is that the choice of the co-expression network matters; specifically, tissue-relevant networks 230 

derived from expression variation across diverse genotypes appear to perform the best in ranking 231 

candidate genes. This was true in maize, and we report here that this is also true in Medicago. We 232 

believe this result is likely to generalize to many other contexts, and it suggests as a community, more 233 

emphasis in the generation genotype-focused networks would be worthwhile if we hope to build 234 

resources for functional interpretation of phenotype-associated variants. It is also important to mention 235 

that we were able to generate a panel of high confidence candidate genes using two independent 236 

datasets that were not generated specifically for this study.  237 

 The majority of candidate genes discovered in this analysis would have mostly likely been 238 

neglected by traditional GWAS analyses unless they were under the most significant markers. By 239 
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combining co-expression networks with GWAS, the functional relationship between genes related to the 240 

GWAS phenotype are more likely to be discovered.  It is also important to note that based on our 241 

analysis, in many cases, the nearest gene to a marker was not the gene predicted to be causally 242 

associated with the phenotype.  243 

In general, we demonstrate that the Camoco framework for integrating co-expression networks 244 

with GWAS generalizes beyond the species for which it was originally developed and applied (maize 245 

ionomic traits), as it shows utility for prioritizing genes related to nodulation in Medicago truncatula. 246 

Based on these results, we expect that the approach will generalize to a wide variety of other species 247 

and traits as well.  248 
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 256 

MATERIAL AND METHODS 257 

Medicago experimental design and sample extraction 258 

Three accessions from the Medicago HapMap project (HM56, HM101, HM340) were grown in 259 

greenhouse conditions. Rhizobium strains S. meliloti (KH46c) and S. medicae (WSM419), as well as 260 

nitrogen, were applied to the soil shortly after planting. Tissues were harvested and frozen in liquid 261 
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nitrogen 31 days after planting. RNA was extracted using the Qiagen RNeasy Plant mini kit (Product ID: 262 

74903). Individual nodules were pooled and extracted as a single sample for each plant. 263 

Generation of expression data 264 

RNA from 138 samples were sequenced by the University of Minnesota’s Genomic Center using Illumina 265 

HiSeq2500 100bp single-end reads. One sample required resequencing (L88), which resulted in 125bp 266 

reads.  Samples were barcoded and multiplexed using Illumina TruSeq HT adapters. Fastq files were 267 

checked with Fastqc version 0.11.5 and adapters were trimmed using cutadapt version 1.8.1 with non-268 

default parameters -m 40 and -q 30 (Andrews, 2010; Martin, 2011). Reads were then aligned to Mt_4.0 269 

gene models, and reference (http://jcvi.org/medicago/) using STAR 2.5.3a (Dobin et al., 2013), then 270 

filtered based on unique mapping scores, sorted and indexed using samtools version 1.6 (Li et al., 2009). 271 

FPKM values were generated using Cufflinks version 2.2.1 using non-default  parameters of -I 20000 and 272 

--min-intron-length 5.  Raw sequencing files are publicly available on the NCBI SRA (PRJNA327225 and 273 

PRJNA449544). 274 

Co-expression network construction and genome-wide association study integration 275 

Methods used were similar to those in the previously mentioned co-expression GWAS integration study 276 

(Schaefer 2017). Briefly, Camoco takes a set of SNP’s as input and uses their location within a genome as 277 

well the number of genes flanking a marker within a given window size to extract genes lists  for testing 278 

(Figure 1). If there are multiple significant SNPs appearing within the same window, then all but the 279 

most significant SNP is discarded (Table S1). Once genes are selected for testing; each gene is then 280 

measured to see how well it is co-expressed with other genes also linked to the significant markers 281 

associated with the trait of interest. Once a network statistic (either density or locality, see Schaefer 282 

2017) is generated, Camoco will resample (1000 times) a random set of genes equal in size to the test 283 

set to establish a null distribution for estimating significance of the observed statistic. To account for the 284 
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varying amount of linkage disequilibrium across the genome, we used 10kb, 20kb and 50kb window 285 

sizes and 1, 2, and 5 flanking genes (Stanton-Geddes et al., 2013). Any gene that had an FDR < 0.35 was 286 

called “candidate” and included in further analysis. 287 

FPKM expression tables were used as input into Camoco 288 

(https://github.com/schae234/Camoco) using the Mt_4.1 reference genome. Non-default parameters 289 

used to build each network included rawtype='RNASEQ', max_gene_missing_data=0.5, 290 

max_accession_missing_data=0.5,  min_single_sample_expr=1, min_expr=0.001, quantile=False, 291 

max_val=300, sep=',’.  Network health statistics were generated using GO terms  from 292 

(http://jcvi.org/medicago) and 1000 bootstraps.  SNPs were integrated into Camoco using built-in 293 

functions, and per gene, density measurements were run with 1,000 bootstraps. Figures were created 294 

using ggplot2 (Wickham, 2006).  295 

  296 
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FIGURES 

 

  
Figure 1. GWAS and co-expression pipeline 

GWAS and co-expression pipeline using Camoco. A) Manhattan plot represents DNA markers used 
as input for Camoco, bold black circles represent a subset of markers used for illustrative 
purposes. B) Regions along a chromosome from previously selected markers are represented as 
grey bars, genes are represented as black rectangles. C) Genes from previously identified intervals 
are then selected from the co-expression network for per-gene network density measurements. 
Colored lines represent the strength of co-expression between two genes in a co-expression 
network. Wider lines, represent gene pairs that are more strongly co-expressed. The red box 
represents the current gene being measured for density. D) Per-gene density measurement of 
random sub-networks equal in size to the testing set. E) Other GWAS traits and networks used for 
analysis. 
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Figure 2. Nodule_A discoverable genes in the Mt_JQL_Nodule network 
Chromosome-centric diagram of the connectivity of discoverable genes (FDR < 0.35), focused on co-
expression neighbors of the candidate, MEDTR2G101090, within the JQL_nodule network for the Nod_A 
trait. Grey circles represent GWAS markers, colored circles represent genes, with MEDTR2G101090 in red, 
its first neighbors in orange, and other discoverable genes in purple. Grey lines represent co-expression 
between genes (minimum Z-Score of 2.5); the wider the line, the stronger the co-expression between 
genes. 
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Figure 3. Co-expression/GWAS discoverable gene summary 

Number of discoverable genes (FDR < 0.35)  obtained from co-expression/GWAS integration. Colors 
represent the window size parameters used for our analysis.  
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Figure 4. Overlap of Nod_A candidates in the Mt_JQL_Nodule network  

Candidate genes for the JQL_nodule network for the Nod_A trait. Purple circles represent genes, and 
grey lines represent co-expression between genes (minimum Z-Score of 2.5). The larger the circle, 
the more connections it has with other genes. The wider the line, the stronger the co-expression 
between genes. 
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Figure S1. Network GO term enrichment 
Distribution of p-values from density-based GO-term enrichment. A histogram of p-values for each 
density-based GO-term enrichment test based on its density, relative to the distribution of density 
values from random gene sets similar in size.  
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Figure S2. Co-expression/Height GWAS discoverable gene summary 

Flow chart of candidate gene identification in the height GWAS trait. A) Number of discoverable 
genes (FDR < 0.35) using the height GWAS with each co-expression network. Colors represent 

the window size parameter use with Camoco. B) The number of SNP ’s and genes that were 

included in each analysis. 
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TABLES 

 

Table 1: List of genes that were discoverable across all six parameters (10kb, 20kb and 1,2,5 flanking 

genes) for the Nod_A phenotype using the Mt_JQL Nodule GWAS. 

  

Gene

Number of connections (Z-

score 2.5 or higher) SNP_position GWAS -log10(p.val) Rank (out of 523) Annotation

MEDTR2G101090 8 chr2:43448968 7.591607 1 drug resistance transporter-like ABC domain protein

MEDTR8G074920 4 chr8:31665171 6.753532 11 receptor-like kinase theseus protein

MEDTR2G100280 4 chr2:43061039 6.743592 12 RNA exonuclease-like protein

MEDTR4G018770 4 chr4:5776217 6.509395 19 GDP-mannose transporter GONST3

MEDTR3G026650 6 chr3:8183997 6.177657 53 GDP-fucose protein O-fucosyltransferase

MEDTR4G059870 4 chr4:22091245 5.827601 114 C2H2 and C2HC zinc finger protein, putative

MEDTR4G019910 4 chr4:6362962 5.7494 139 SnoaL-like domain protein

MEDTR5G076270 1 chr5:32504251 5.707181 156 auxin response factor 2

MEDTR6G084440 2 chr6:31605458 5.678609 161 DUF1666 family protein

MEDTR2G090960 9 chr2:39088095 5.657328 171 TCP family transcription factor

MEDTR4G104350 2 chr4:43099392 5.512627 210 DNA polymerase III subunit gamma/tau

MEDTR7G102310 6 chr7:41285876 5.493289 220 rhodanese/cell cycle control phosphatase superfamily protein

MEDTR5G093580 5 chr5:40860194 5.415629 252 co-factor for nitrate, reductase and xanthine dehydrogenase

MEDTR3G019490 5 chr3:5482913 5.410043 257 S-locus lectin kinase family protein

MEDTR7G109130 16 chr7:44591633 5.381151 270 P-loop nucleoside triphosphate hydrolase superfamily protein

MEDTR8G027385 1 chr8:9668134 5.239786 350 Endomembrame Family Protein

MEDTR4G126160 11 chr4:52449376 5.231223 358 cytokinin oxidase/dehydrogenase-like protein

MEDTR7G076250 5 chr7:28686036 5.221541 366 zinc finger, C3HC4 type (RING finger) protein

MEDTR4G058970 10 chr4:21744831 5.102555 448 homeodomain leucine zipper protein

MEDTR7G075580 13 chr7:28296141 5.067043 470 cytochrome P450 family protein

MEDTR1G075610 5 chr1:33462984 5.06158 474 cyclin-dependent kinase

MEDTR2G096950 8 chr2:41430755 5.050944 485 kinase 1B

MEDTR1G070455 9 chr1:31235133 5.044264 491 WRKY transcription factor

MEDTR3G111650 10 chr3:52196531 5.019337 507 hypothetical protein

MEDTR1G080690 0 chr1:35874811 5.009149 517 TPX2 (targeting protein for Xklp2) family protein
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Table2: List of genes that were discoverable for at least 5 different parameters across all networks for 
the Nod_B trait 

 

  

Gene

Numer of hits across 

parameters and terms Annotation

MEDTR4G027195 10 N/A

MEDTR4G035980 10 pectinesterase/pectinesterase inhibitor

MEDTR1G012530 9 TPX2 (targeting protein for Xklp2) family protein

MEDTR4G073400 9 Synaptotagmin-1-related

MEDTR2G073540 8 cysteine-rich RLK (receptor-like kinase) protein

MEDTR1G028960 6 glycolipid transfer protein (GLTP) family protein

MEDTR1G037520 5 N/A

MEDTR1G040105 5 methylenetetrahydrofolate reductase

MEDTR2G048855 5 pentatricopeptide (PPR) repeat protein

MEDTR2G090960 5 TCP family transcription factor

MEDTR2G450720 5 SAM domain (sterile alpha motif) protein, putative

MEDTR3G088820 5 PPR containing plant-like protein

MEDTR4G087510 5 O-acetylserine (thiol) lyase

MEDTR5G053950 5 allene oxide cyclase

MEDTR5G065080 5 purine permease

MEDTR5G094290 5 tubulin folding cofactor A

MEDTR6G023600 5 short-chain dehydrogenase/reductase

MEDTR6G048290 5 PPPDE thiol peptidase family protein, putative

MEDTR7G039370 5 origin recognition complex subunit 6

MEDTR8G432620 5 methyltransferase
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Table S1. GWAS trait information and the number of SNP's used for analysis. "Collapse" refers to SNP's 

removed due to overlapping windows between sets of SNPs 

 

  

GWAS Trait Description Number of SNP's 10kb 20kb 50kb Min p-value

Height Plant height 197 139 133 127 3.00E-05

Total_Nod Total number of nodules 163 124 122 119 3.00E-05

Nod_A

Total number of nodules in 

the top 5 cm of roots 523 294 275 255 9.96E-06

Nod_B

Total number of nodules 

below the top 5 cm of roots 232 185 178 165 3.00E-05

Flowering_Date Flowering date 550 150 120 100 6.94E-06

OccupancyA

Strain occupancy in the top 

5 cm of roots 292 230 226 209 3.00E-05

OccupancyB

Strain occupancy below the 

top 5 cm of roots 27 17 17 14 9.61E-05

SNP's included after collapse (window size)
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Sample ID Tissue M. truncatula 
accession 

Sinorhizobium species 
and strain 

Nitrogen  D7 Index Barcode D5 Index Barcode 

N128 Nodule HM056 S. meliloti (KH46c) 0 D701 ATTACTCG D501 TATAGCCT 

N86 Nodule HM056 S. meliloti (KH46c) 0 D702 TCCGGAGA D501 TATAGCCT 

N73 Nodule HM056 S. medicae (WSM419) 0 D704 GAGATTCC D501 TATAGCCT 

N137 Nodule HM056 S. medicae (WSM419) 0 D705 ATTCAGAA D501 TATAGCCT 

N48 Nodule HM056 S. medicae (WSM419) 0 D706 GAATTCGT D501 TATAGCCT 

N88 Nodule HM101 Both 0 D707 CTGAAGCT D501 TATAGCCT 

N103 Nodule HM101 Both 0 D708 TAATGCGC D501 TATAGCCT 

N25 Nodule HM101 Both 0 D709 CGGCTATG D501 TATAGCCT 

N9 Nodule HM101 S. meliloti (KH46c) 0 D710 TCCGCGAA D501 TATAGCCT 

N121 Nodule HM101 S. meliloti (KH46c) 0 D711 TCTCGCGC D501 TATAGCCT 

N39 Nodule HM101 S. meliloti (KH46c) 1 D712 AGCGATA
G 

D501 TATAGCCT 

N75 Nodule HM101 S. meliloti (KH46c) 1 D701 ATTACTCG D502 ATAGAGGC 

N146 Nodule HM101 S. meliloti (KH46c) 1 D702 TCCGGAGA D502 ATAGAGGC 

N83 Nodule HM101 S. medicae (WSM419) 0 D704 GAGATTCC D502 ATAGAGGC 

N56 Nodule HM101 S. medicae (WSM419) 0 D705 ATTCAGAA D502 ATAGAGGC 

N14 Nodule HM101 S. medicae (WSM419) 0 D706 GAATTCGT D502 ATAGAGGC 

N64 Nodule HM101 S. medicae (WSM419) 0 D707 CTGAAGCT D502 ATAGAGGC 

N122 Nodule HM101 S. medicae (WSM419) 1 D708 TAATGCGC D502 ATAGAGGC 

N46 Nodule HM101 S. medicae (WSM419) 1 D709 CGGCTATG D502 ATAGAGGC 

N41 Nodule HM101 S. medicae (WSM419) 1 D710 TCCGCGAA D502 ATAGAGGC 

N107 Nodule HM101 S. medicae (WSM419) 1 D711 TCTCGCGC D502 ATAGAGGC 

N62 Nodule HM340 Both 0 D712 AGCGATA
G 

D502 ATAGAGGC 

N21 Nodule HM340 Both 0 D701 ATTACTCG D503 CCTATCCT 

N160 Nodule HM340 S. meliloti (KH46c) 0 D702 TCCGGAGA D503 CCTATCCT 

N115 Nodule HM340 S. meliloti (KH46c) 1 D704 GAGATTCC D503 CCTATCCT 

N131 Nodule HM340 S. meliloti (KH46c) 1 D705 ATTCAGAA D503 CCTATCCT 

N143 Nodule HM340 S. meliloti (KH46c) 1 D706 GAATTCGT D503 CCTATCCT 

N80 Nodule HM340 S. medicae (WSM419) 0 D707 CTGAAGCT D503 CCTATCCT 

N92 Nodule HM340 S. medicae (WSM419) 0 D708 TAATGCGC D503 CCTATCCT 

N26 Nodule HM340 S. medicae (WSM419) 0 D709 CGGCTATG D503 CCTATCCT 

N8 Nodule HM340 S. medicae (WSM419) 0 D710 TCCGCGAA D503 CCTATCCT 

N42 Nodule HM340 S. medicae (WSM419) 1 D711 TCTCGCGC D503 CCTATCCT 

N47 Nodule HM340 S. medicae (WSM419) 1 D712 AGCGATA
G 

D503 CCTATCCT 

N111 Nodule HM340 S. medicae (WSM419) 1 D701 ATTACTCG D504 GGCTCTGA 

N120 Nodule HM056 S. medicae (WSM419) 0 D704 GAGATTCC D502 ATAGAGGC 

N40 Nodule HM101 S. meliloti (KH46c) 1 D705 ATTCAGAA D502 ATAGAGGC 

N11 Nodule HM340 S. meliloti (KH46c) 0 D706 GAATTCGT D502 ATAGAGGC 

R51 Root HM101 S. meliloti (KH46c) 0 D702 TCCGGAGA D504 GGCTCTGA 
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R5 Root HM101 S. meliloti (KH46c) 0 D705 ATTCAGAA D504 GGCTCTGA 

R125 Root HM101 None 1 D706 GAATTCGT D504 GGCTCTGA 

R171 Root HM101 None 1 D707 CTGAAGCT D504 GGCTCTGA 

R142 Root HM101 None 1 D708 TAATGCGC D504 GGCTCTGA 

R83 Root HM101 S. medicae (WSM419) 0 D709 CGGCTATG D504 GGCTCTGA 

R56 Root HM101 S. medicae (WSM419) 0 D710 TCCGCGAA D504 GGCTCTGA 

R14 Root HM101 S. medicae (WSM419) 0 D711 TCTCGCGC D504 GGCTCTGA 

R64 Root HM101 S. medicae (WSM419) 0 D712 AGCGATA
G 

D504 GGCTCTGA 

R160 Root HM340 S. meliloti (KH46c) 0 D701 ATTACTCG D505 AGGCGAAG 

R11 Root HM340 S. meliloti (KH46c) 0 D702 TCCGGAGA D505 AGGCGAAG 

R44 Root HM340 None 1 D704 GAGATTCC D505 AGGCGAAG 

R13 Root HM340 None 1 D705 ATTCAGAA D505 AGGCGAAG 

R33 Root HM340 None 1 D706 GAATTCGT D505 AGGCGAAG 

R80 Root HM340 S. medicae (WSM419) 0 D707 CTGAAGCT D505 AGGCGAAG 

R92 Root HM340 S. medicae (WSM419) 0 D708 TAATGCGC D505 AGGCGAAG 

R26 Root HM340 S. medicae (WSM419) 0 D709 CGGCTATG D505 AGGCGAAG 

R8 Root HM340 S. medicae (WSM419) 0 D710 TCCGCGAA D505 AGGCGAAG 

R9 Root HM101 S. meliloti (KH46c) 0 D707 CTGAAGCT D502 ATAGAGGC 

R34 Root HM340 S. meliloti (KH46c) 0 D708 TAATGCGC D502 ATAGAGGC 

L70 Leaf HM056 S. meliloti (KH46c) 0 D712 AGCGATA
G 

D505 AGGCGAAG 

L128 Leaf HM056 S. meliloti (KH46c) 0 D701 ATTACTCG D506 TAATCTTA 

L152 Leaf HM056 S. meliloti (KH46c) 0 D702 TCCGGAGA D506 TAATCTTA 

L86 Leaf HM056 S. meliloti (KH46c) 0 D709 CGGCTATG D502 ATAGAGGC 

L20 Leaf HM056 None 1 D704 GAGATTCC D506 TAATCTTA 

L59 Leaf HM056 None 1 D705 ATTCAGAA D506 TAATCTTA 

L60 Leaf HM056 None 1 D706 GAATTCGT D506 TAATCTTA 

L61 Leaf HM056 None 1 D707 CTGAAGCT D506 TAATCTTA 

L120 Leaf HM056 S. medicae (WSM419) 0 D708 TAATGCGC D506 TAATCTTA 

L73 Leaf HM056 S. medicae (WSM419) 0 D709 CGGCTATG D506 TAATCTTA 

L137 Leaf HM056 S. medicae (WSM419) 0 D710 TCCGCGAA D506 TAATCTTA 

L48 Leaf HM056 S. medicae (WSM419) 0 D711 TCTCGCGC D506 TAATCTTA 

L88 Leaf HM101 Both 0 D712 AGCGATA
G 

D506 TAATCTTA 

L103 Leaf HM101 Both 0 D701 ATTACTCG D507 CAGGACGT 

L25 Leaf HM101 Both 0 D702 TCCGGAGA D507 CAGGACGT 

L158 Leaf HM101 Both 0 D710 TCCGCGAA D502 ATAGAGGC 

L51 Leaf HM101 S. meliloti (KH46c) 0 D704 GAGATTCC D507 CAGGACGT 

L9 Leaf HM101 S. meliloti (KH46c) 0 D705 ATTCAGAA D507 CAGGACGT 

L5 Leaf HM101 S. meliloti (KH46c) 0 D707 CTGAAGCT D507 CAGGACGT 

L39 Leaf HM101 S. meliloti (KH46c) 1 D708 TAATGCGC D507 CAGGACGT 

L75 Leaf HM101 S. meliloti (KH46c) 1 D709 CGGCTATG D507 CAGGACGT 
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L146 Leaf HM101 S. meliloti (KH46c) 1 D710 TCCGCGAA D507 CAGGACGT 

L40 Leaf HM101 S. meliloti (KH46c) 1 D711 TCTCGCGC D507 CAGGACGT 

L125 Leaf HM101 None 1 D712 AGCGATA
G 

D507 CAGGACGT 

L171 Leaf HM101 None 1 D701 ATTACTCG D508 GTACTGAC 

L142 Leaf HM101 None 1 D702 TCCGGAGA D508 GTACTGAC 

L83 Leaf HM101 S. medicae (WSM419) 0 D711 TCTCGCGC D502 ATAGAGGC 

L56 Leaf HM101 S. medicae (WSM419) 0 D704 GAGATTCC D508 GTACTGAC 

L14 Leaf HM101 S. medicae (WSM419) 0 D705 ATTCAGAA D508 GTACTGAC 

L64 Leaf HM101 S. medicae (WSM419) 0 D706 GAATTCGT D508 GTACTGAC 

L62 Leaf HM340 Both 0 D707 CTGAAGCT D508 GTACTGAC 

L21 Leaf HM340 Both 0 D708 TAATGCGC D508 GTACTGAC 

L118 Leaf HM340 Both 0 D709 CGGCTATG D508 GTACTGAC 

L49 Leaf HM340 Both 0 D710 TCCGCGAA D508 GTACTGAC 

L160 Leaf HM340 S. meliloti (KH46c) 0 D711 TCTCGCGC D508 GTACTGAC 

L11 Leaf HM340 S. meliloti (KH46c) 0 D701 ATTACTCG D501 TATAGCCT 

L34 Leaf HM340 S. meliloti (KH46c) 0 D702 TCCGGAGA D501 TATAGCCT 

L44 Leaf HM340 None 1 D711 TCTCGCGC D501 TATAGCCT 

L13 Leaf HM340 None 1 D704 GAGATTCC D501 TATAGCCT 

L33 Leaf HM340 None 1 D705 ATTCAGAA D501 TATAGCCT 

L80 Leaf HM340 S. medicae (WSM419) 0 D706 GAATTCGT D501 TATAGCCT 

L92 Leaf HM340 S. medicae (WSM419) 0 D707 CTGAAGCT D501 TATAGCCT 

L26 Leaf HM340 S. medicae (WSM419) 0 D708 TAATGCGC D501 TATAGCCT 

L8 Leaf HM340 S. medicae (WSM419) 0 D709 CGGCTATG D501 TATAGCCT 

L121 Leaf HM101 S. meliloti (KH46c) 0 D706 GAATTCGT D507 CAGGACGT 

JQL01 Nodule HM101 S. meliloti (KH46c) 0 NA NA NA NA 

JQL02 Nodule HM101 S. meliloti (KH46c) 0 NA NA NA NA 

JQL03 Nodule HM101 S. meliloti (KH46c) 0 NA NA NA NA 

JQL04 Nodule HM101 S. medicae (WSM419) 0 NA NA NA NA 

JQL05 Nodule HM101 S. medicae (WSM419) 0 NA NA NA NA 

JQL06 Nodule HM101 S. medicae (WSM419) 0 NA NA NA NA 

JQL07 Root HM101 None 0 NA NA NA NA 

JQL08 Root HM101 None 0 NA NA NA NA 

JQL09 Root HM101 None 0 NA NA NA NA 

JQL10 Nodule HM056 S. meliloti (KH46c) 0 NA NA NA NA 

JQL11 Nodule HM056 S. meliloti (KH46c) 0 NA NA NA NA 

JQL12 Nodule HM056 S. meliloti (KH46c) 0 NA NA NA NA 

JQL13 Nodule HM056 S. medicae (WSM419) 0 NA NA NA NA 

JQL14 Nodule HM056 S. medicae (WSM419) 0 NA NA NA NA 

JQL15 Nodule HM056 S. medicae (WSM419) 0 NA NA NA NA 

JQL16 Root HM056 None 0 NA NA NA NA 

JQL17 Root HM056 None 0 NA NA NA NA 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392779doi: bioRxiv preprint 

https://doi.org/10.1101/392779
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

JQL18 Root HM056 None 0 NA NA NA NA 

JQL19 Nodule HM340 S. meliloti (KH46c) 0 NA NA NA NA 

JQL20 Nodule HM340 S. meliloti (KH46c) 0 NA NA NA NA 

JQL21 Nodule HM340 S. meliloti (KH46c) 0 NA NA NA NA 

JQL22 Nodule HM340 S. medicae (WSM419) 0 NA NA NA NA 

JQL23 Nodule HM340 S. medicae (WSM419) 0 NA NA NA NA 

JQL24 Nodule HM340 S. medicae (WSM419) 0 NA NA NA NA 

JQL25 Root HM340 None 0 NA NA NA NA 

JQL26 Root HM340 None 0 NA NA NA NA 

JQL27 Root HM340 None 0 NA NA NA NA 

JQL28 Nodule HM034 S. meliloti (KH46c) 0 NA NA NA NA 

JQL29 Nodule HM034 S. meliloti (KH46c) 0 NA NA NA NA 

JQL30 Nodule HM034 S. meliloti (KH46c) 0 NA NA NA NA 

JQL31 Nodule HM034 S. medicae (WSM419) 0 NA NA NA NA 

JQL32 Nodule HM034 S. medicae (WSM419) 0 NA NA NA NA 

JQL33 Nodule HM034 S. medicae (WSM419) 0 NA NA NA NA 

JQL34 Root HM034 None 0 NA NA NA NA 

JQL35 Root HM034 None 0 NA NA NA NA 

JQL36 Root HM034 None 0 NA NA NA NA 

Table S2. Metadata regarding the 138 samples used for analysis 
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Table S3: Statistics associated with co-expression networks built from different tissue types. 

Network Name Mt_General Mt_Leaf Mt_Nodule Mt_Root Mt_JQL Mt_JQL_Nodule

Tissue type(s) Leaf, Root Nodule Leaf Nodule Root Root and Nodule Nodule

Samples 102 45 37 20 36 24

Genes included 24,067 21,822 21,054 23,773 23,131 22,123

Edges 289,598,211 238,088,931 221,624,931 282,565,878 267,510,015 244,702,503
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