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Abstract 1

Studies conducted in time series could be far more informative than those questioning 2

at a specific moment in time. However, when it comes to genomic data, time points are 3

sparse creating the need for a constant search for methods capable of extracting 4

information out of experiments of this kind. We propose a feature selection algorithm 5

embedded in a hidden Markov model applied to gene expression time course data on 6

either single or even multiple biological conditions. For the latter, in a simple 7

case-control study features or genes are selected under the assumption of no change over 8

time for the control samples, while the case group must have at least one change. The 9

proposed model reduces the feature space according to a two-state hidden Markov 10

model. The two states define change/no-change in gene expression. Features are ranked 11

in consonance with three scores: number of changes across time, magnitude of such 12

changes and quality of replicates as a measure of how much they deviate from the mean. 13

An important highlight is that this strategy overcomes the few samples limitation, 14

common in genomic experiments through a process of data transformation and 15

rearrangement. To prove this method, our strategy was applied to three publicly 16
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available data sets. Results show that feature domain is reduced to up to 90% leaving 17

only few but relevant features yet with findings consistent to those previously reported. 18

Moreover, our strategy proved to be robust, stable and working on studies where sample 19

size is an issue otherwise. Hence, even with two biological replicates and/or three time 20

points our method proves to work well. 21

Author summary 22

The variety of methods for the analysis of gene expression with longitudinal 23

measurements proposed aim to classify genes according to their expression profile over 24

time. Approaches focus on searching for genes with: large changes at any given time, 25

multiple changes across the time series, similar/opposed profile or a focal time point 26

where most changes occur among others. What differs between these methods is the 27

mathematical way they reach those goals. In all cases, we deal with noisy data, small 28

number of time points, limited replication and questionable dependencies. In this work, 29

we present a review of the state-of-the-art of such methods and propose a novel 30

algorithm that integrates a probabilistic graphical approach using Hidden Markov 31

Models (HMMs), ideal for modeling sequential data convoluted with feature selection 32

(FS) for gene classification. Its novel contribution or major innovation resides in how 33

the method handles limited data points and low replication. This innovation is relevant 34

because most genome-based studies face this same challenge, particularly longitudinal 35

designs for which, sample size is a combination of time measurements and biological 36

replicates. 37

Introduction 38

High dimensional genomic data is described by many features, however, many are either 39

redundant or irrelevant. Identifying those is key in order to claim results are trustworthy. 40

Data mining techniques, machine learning algorithms or statistic models are applied to 41

classify features but at the cost of other important problems such as model over-fitting 42

or the increase of computational resources and higher analysis cost [1] [2]. A possible 43

approach to this classification problem is to reduce data dimensionality with feature 44
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extraction (FE) or with feature selection techniques (FS) [3] [4]. 45

FS is a technique often used in domains where there are many features and 46

comparatively few samples, particularly used in microarray or RNAseq studies where 47

there are thousands of features and a small number of samples [5] [6]. FS is the process 48

of eliminating irrelevant features in the data by extracting only a subset of informative 49

ones. Its main objectives include avoid overfitting, eliminate noise in the data, reduce 50

algorithmic rate of convergence, improve model performance and, give a more accurate 51

interpretation of features in the data [7]. It is important not to be confounded with FE 52

such as principal components analysis or compression, where they use the projection of 53

the original set to a new feature space of lower dimensionality. In FE, the new feature 54

space is a linear or even non-linear combination of the original features [4]. FS on the 55

other hand, identifies relevant features without altering the original domain. 56

Due to the high dimensionality of most gene expression analyses, it is necessary to 57

select the most relevant features to get better results interpretation and a deeper insight 58

into the underlying process that generated the data. However, the noisy data and small 59

sample size pose a great challenge for many modelling problems in bioinformatics 60

making necessary to use adequate evaluation criteria or stable and robust FS models [7]. 61

In general, FS techniques can be classified into three main categories: filters, 62

wrappers, and embedded [7] [8]. Filters take as input all the features and reduce them 63

into a relevant subset independent of the model parameters. Wrappers select a subset of 64

features using a search algorithm, then estimate the model parameters for that subset 65

and perform an evaluation test for each model. Wrappers use FS for model 66

identification by selecting the model parameters that best fit the training data and has 67

the highest evaluation score. The embedded approach takes all the features at once, 68

maximizes a learning algorithm optimizing model performance and outputs both the 69

reduced feature set along with its model parameters. In this work we address the 70

classification of time series gene expression data using two embedded processes feature 71

selection and hidden Markov models. 72

A variety of FS techniques that have been proposed can be classified into 73

parametric [9] and non-parametric methods [10]. The non-parametric methods aim to 74

make a less stringent distribution assumptions, however, validation in the context of 75

small sample sizes is a challenge. Parametric methods assume there is a given 76
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distribution for the observed data. The most common parametric latent variable models 77

are the Gaussian mixture models (GMM) and hidden Markov models (HMM). The 78

mixture model is often used to model multimodal data, while the HMM is often used for 79

modeling time series data [8]. 80

In most applications of HMMs, features are pre-selected based on domain knowledge 81

and the feature selection procedure is completely omitted. Some methods have been 82

explored to reduce the feature space by using HMMs as stated in Adams and 83

Beling [11]. However, FS strategies specifically with HMM are sparse. For example, the 84

work of Zhu et al. [12] shows a wrapper FS approach to get the best model and then the 85

feature subset for a continuous HMM. The authors proposed a new set of continuous 86

variables, defined as salient features, to avoid searching the space of all feature subsets 87

and to prevent losing information about the original variable. The salient features have 88

proved their effectiveness for FS in GMM [13]. Finally, they apply a variational 89

Bayesian framework to infer the salient features, the number of hidden states and the 90

model parameters simultaneously. 91

Adams et al [11] propose a feature saliency hidden Markov model. This model also 92

uses feature saliencies variables and they represent the probability that a feature is 93

relevant by distinguishing between state-dependent and state-independent distributions. 94

If the number of hidden states is known, this approach simultaneously provides 95

maximum a posteriori estimates and select the relevant feature subset by using the 96

expectation-maximization algorithm. Finally, the most recent work is introduced in 97

Zheng et al [14]. Their strategy combines a hidden Markov model, a localized feature 98

saliency measure and two t-Student distributions to describe the relevant and 99

non-relevant features, to accurately model emission parameters for each hidden state. 100

All the parameters are estimated using a Variational Bayes framework. 101

Most of these methods use saliency parameters additionally to those required by the 102

model, therefore, when analyzing genomic data the increase of variables to be estimated 103

from data becomes a hurdle. Besides, the number of hidden states necessary to model 104

the data also affects the total parameters to estimate. Hence, a strategy that make use 105

of a minimal number of parameters to get the most relevant features from a data set is 106

indispensable to study genomic data. 107

In this article we present a novel strategy for FS capable of selecting and ranking 108
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relevant genes based on the changes between conditions and successive times, using an 109

embedded FS technique with a HMM at its core. Lack of replication is handled using a 110

novel data rearrangement that overcome the limitations of few samples in genomics 111

experiment designs. To prove its efficiency, the strategy is applied to three publicly 112

available data sets. 113

Results 114

Overview of the strategy 115

We present a strategy that selects the most relevant features (genes) from high 116

dimensional genomic experiments with longitudinal design for one or multiple 117

conditions. The approach first compares gene profiles over time on the affected samples 118

against those in the control group. Next, it scores the relevant features providing a 119

ranking that can be used to further reduce the data set. 120

The complete pipeline takes an expression matrix from either a microarray or an 121

RNAseq experiment as input and returns the list of ranked features. The main steps in 122

the process involve transforming and rearranging input data, estimate the model 123

parameters, evaluate time course expression profiles and select relevant features 124

providing a ranking score for such genes. Code for each step in the pipeline is 125

structured as a collection of single functions that allow user to customize methods, the 126

full pipeline is available as an R-library. Some plots are also included. Fig 1 shows the 127

schematic representation of the proposed strategy. Source code can be found as 128

supplementary information S1 File. 129

Fig 1. Feature Selection strategy pipeline. The expression matrix is preprocessed
to estimate the HMM parameters. With the fitted model, the features are evaluated
and compared to filter out the expression profiles with a flat behavior. Finally, the
selected features are scored and ranked to give a better interpretation and a deeper
insight into the underlying process that generated the data.

A key element of this strategy is the use of the Occam’s razor or law of parsimony in 130

the state transition model used for the HMM. The hidden state complexity is reduced 131

to a minimum with a two-node clique that is capable of fully describing system 132

dynamics by only considering a change or no change in gene expression over time. The 133
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‘change” state would model either up or down regulation. Therefore, with only two 134

states we are able to define three different behaviors. 135

Validation using real data 136

The strategy was applied to three different publicly available datasets, two from the 137

Gene Expression Omnibus [15] and one from the Japanese Toxicogenomics Project 138

(TGP) [16]. We used RNA-seq data (GSE75417) comprised of 6 time points, 2 139

conditions and 3 replicates [17]. Illumina Microarray gene expression data (GSE39549) 140

consisting of 9 time points, 2 conditions and 3 replicates [18]. Affymetrix Microarrays 141

(TGP) a variety of studies on hepatotoxic compounds made up of 3 time-points, 1 142

control, 3 conditions and 2-to-3 replicates. These datasets were uploaded as .Rdata to 143

be used with the R-package of our method at github 144

(https://github.com/robalecarova/FSHMM). 145

Ikaros induced B3 cells 146

The first example, based in the work by Ferreiros et al [19] where B3 pre-B-cell line is 147

transduced with mouse stem cell virus retroviral vectors encoding wild-type Ikaros or 148

Aiolos tagged with a hemagglutinin epitope followed by an internal ribosomal entry site 149

and GFP. B3 cells containing inducible Ikaros were treated with 4-hydroxy-tamoxifen 150

and sampled at 0, 2, 6, 12, 18 and 24 hours after Ikaros induction. The control 151

counterpart (not induced) were also sampled at the same times. Data are available at 152

GEO with accession number GSE75417. Gene expression data comprised 2 conditions, 6 153

time points per condition and 3 biological replicates per time-point leading to 36 154

RNAseq samples. 155

Results were compared to those reported in Ferreiros et al. [19] which, provided a list 156

of differentially expressed genes as well as the enriched pathways in their Excel Supp 1. 157

Only two comparisons were selected mainly because we only had access to those results. 158

Further comparison included an enrichment analysis with DAVID [20] to match the 159

approach used in what was originally reported. According to the GO terms, results 160

showed many shared pathways, although the number of genes in each differed. We 161

found that 44% of pathways are shared by the two approaches the remainder 56% 162
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involves leukocyte cell-cell adhesion, its regulation and some immune system cascades 163

such as JAK/STAT. The cut-off value used, was a natural p-value of 0.05. The list of 164

common and exclusive pathways are available as Supplementary data S1 Table. 165

We should consider though that the FSHMM strategy used all samples and all 166

time-points to train the model which, presents a better idea of the dynamics in the 167

experiment as opposed to analyzing isolated time-points. Details of genes and pathways 168

are available as Supplementary data S2 Table and S3 Table. 169

High-fat diet in mouse model 170

A second example with longitudinal design is the one published by Kwon et al. [18] and 171

available through GSE39549. It is on an in vivo mouse model with two conditions 172

high-fat and normal diet. Both with same time measurements, nine time points at 0, 2, 173

4, 6, 8, 12, 16, 20 and 24 weeks of high-fat or normal diet intake. The authors analyzed 174

differential expression between both diets. However, they focused on diet effect at each 175

time without considering the longitudinal nature of the study or a temporal dependency. 176

They reported a total of 2037 differentially expressed genes as a result of adding all 177

same-time contrasts. Using FSHMM the number of relevant genes obtained were 1922. 178

We could not report level of agreement between the two studies because the list of 179

differentially expressed genes was not released with their paper. However, a gene set 180

enrichment analysis was performed on the FSHMM results using DAVID, see 181

Supplementary data S4 Table. A caveat regarding this analysis is that search in DAVID 182

involves a variety of parameters associated to different databases, the authors did not 183

elaborate on which ones were used. Therefore, we decided to use the 184

GOTERM BP FAT considering the cellular process to which they belong. 185

Their results showed an enrichment analysis that favors pathways involved in 186

immune response, metabolic process and response to wounding. As stated before, these 187

enriched pathways only considered the treatment vs control contrasts. When we 188

compared these results with those obtained by FSHMM, common pathways are those 189

associated to immune response. Hence, either time-by-time comparisons or considering 190

the whole system the level of correlation is good. However, when proposing a time 191

course experiment we should also consider studying the system dynamics instead of 192

partitioning as if we had multiple pair-wise studies. Details of this analysis are available 193
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in S4 Table, the shared pathways are shown in yellow, comparing them with Table 2 in 194

Kwon et al [18]. In terms of genes found, the authors report Emr1, CCL2, 6 and 7, 195

Adam8, IL1rn, Itgam, CD3, 4, 9, 14 and 180, TLR1, 3, 6 and 7, Tgfb1, Irf5, Mmp12, 196

Col1a, Col2, Col3a1, Col4a5, Col8a1, Col9a3, Col16a1, Ctsa, Ctsb, Ctsk, Ctsl, Ctss and 197

Ctsz as some of the genes differentially expressed in the comparison between same-time 198

contrasts. FSHMM classified as relevant CCL2, 6 and 7, CD14 and CD180, TLR1, 6 199

and 7, Irf5, Mmp12, Col3a1 and Col1a2. Leading to over 50% of genes found in 200

common. On the other hand, the authors report that the Resistin signaling is activated 201

through the NF-κB transcription factor. In the enriched pathways found with FSHMM, 202

the I-κB kinase/NF-κB signalling was reported, an important finding that coincides 203

between the two analyses. 204

Toxicogenomics data 205

The third and final example was a dataset from a time series experimental design to 206

study hepatotoxic compounds [16]. The selected compound was Carbon Tetrachloride 207

(CCl4) as it is known to be one of the most potent hepatotoxins [21] and is usually used 208

in scientific research to investigate possible beneficial effects from hepatoprotective 209

agents [22] [23]. The study involves only three time measurements at 2, 8 and 24 hours 210

after dose administration with control and three doses: none, low and middle with two 211

replicates leading to a 18 samples. This is an in vitro experiment limited in terms of 212

observation space and it was chosen precisely because it represented the worst case 213

scenario when it comes to a longitudinal study. It represented the most challenging 214

data to evalulate FSHMM on. Interestingly enough, the number of selected features 215

yielded 1878 genes. The list of all of them is reported in S5 Table as Supplementary 216

information. Pathway analysis using DAVID led to enriched GO terms mainly related 217

to cell regulation, cell and nuclear division, adherens juntion and cell-cell signaling. This 218

correlated to the toxic behavoir of CCl4 in liver. Nevertheless, to have another 219

perspective of the results, the KEGG database [24] was used with pathways selected as 220

relevant if they had a p-value lower than 0.05. The significant pathways were also 221

consistent with DAVID and were related to cell regulation, nuclear division, adherens 222

junction and cell-cell signaling. However some of the most relevant pathways that were 223

statisticaly significant were Apoptosis, RNA degradation and the most important was 224
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the Carbon metabolism as this is directly related to CCl4. When classification 225

parameters were tighten to get more over-represented pathways using the top 200 226

features, the Nucleotide excision repair pathway was enriched. This pathway is a 227

mechanism to recognize and repair bulky DNA damage caused by xenobiotic factors as 228

compounds, environmental carcinogens, and exposure to UV-light. All of this correlates 229

to what is known about CCl4 and its toxicity [21]. Aquiring this level of knowledge with 230

so limited information made FSHMM a perfect choice even on studies this short. The 231

enriched GO terms and details are in Supp S6 Table while the KEGG pathways are in 232

Supp S7 Table. 233

In summary, for all three cases the feature space was reduced and almost 90% of the 234

variables were filtered out, Table 1. Remarkably, the limited size of replicated 235

observations and time-points were not an issue for the FSHMM to reduce the feature 236

space to a more manageable and yet informative size. The presented method makes use 237

of all time measurements of replicated gene expression values as input and is able to get 238

the most relevant genes by using a HMM as feature classifier. 239

Table 1. Number and percentage of relevant features per dataset.

Study GSE85417 GSE39549 TGP-CCl4
12,762 20,009 14,404

Relevant Features 1461 (11.4%) 1922 (09.6%) 1878 (13.0%)

Discussion and Conclusions 240

Results using the FSHMM strategy outputs a subset of relevant features which is 241

relatively low compared to the original set but yet, it proved to be informative even in 242

situations where number of replicates is as low as two and time series only involves 3 243

point measurements. The three datasets used to validate our method were chosen 244

because they covered microarray and RNAseq data. Also, because they offered 245

opportunity to compare its efficiency at a pathway level as it was the case of Ikaros 246

data, or gene-to-gene level as we did for the high-fat diet study or on common 247

knowledge after literature review on results from the toxicogenomics data. In all three 248

cases, the strategy efficiently reduced the number of relevant features, simplified the 249

analysis, maintain the time series nature of the studies and provided an insight to the 250
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system dynamics. Features were selected according to three scores. One evaluates gene 251

perturbation over time adding more value to genes that fluctuate more over time. A 252

second score evaluates the magnitude of those perturbations and the third score 253

evaluate statistical significance by means of consistency among replicates. 254

The parameters of the proposed HMM estimated from all three data sets had the 255

same mean vector in their emitted normal distributions. This happens because the 256

HMM models the magnitude of the change in expression instead of the actual expression 257

level. This fact agrees with the hypothesis that only a small set of genes change, and 258

according to our assumptions only those changing in the condition group with no 259

changes among the control set are considered. Therefore, the distributions are centered 260

around zero and this further reduces the number of parameters to estimate from data. 261

Parameters estimated from data using FSHMM strategy were compared to the 262

models presented in [8] [12] and [14], with the conclusion that saliency variables were 263

found not to be necessary, making it all more feasible for a genomic context where the 264

number of observations is low so the less parameters to estimate, the better. The 265

FSHMM used two hidden states to represent relevant features and non-relevant features 266

similar to Zheng et al, however the multivariate normal distributions proposed let the 267

user to provide all the replicates with its inherent variability to model the system 268

dynamics. 269

Also, it is essential to highlight the role of data preprocessing but even more 270

important the input data rearrangement. For our FSHMM strategy, each gene 271

represents a different observation sequence in the training matrix. Therefore, even if the 272

sample size is low, the model parameters can be estimated from data. Moreover, with 273

the feature randomization, it is less probable to overfit. We also analyzed the idea of 274

adding a third hidden state to model the up-regulation, down-regulation, and no-change. 275

Results showed it was not worth it to add complexity by increasing the dimensionality 276

of the hidden vector but instead keep it as simple as possible would allow us to handle 277

studies with minimum counts of data points. The model feeds from changes in 278

expression instead of expression levels themselves, still we can model the sign of the 279

state that emitted the observation. Thus, the two hidden state transition graph is 280

capable of modelling the desired dynamics without increasing the model complexity. 281
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Methods 282

Feature selection with a hidden Markov model 283

The Feature Selection with a hidden Markov model (FSHMM) strategy starts with an 284

already normalized gene expression matrix, a vector of time points, the biological 285

conditions, the number of replicates and if necessary a set of parameters to customize 286

the model estimation. Data is rearranged into matrices, one per each condition. Then, 287

it is necessary to remove the offset value of each feature by computing the differences in 288

gene expression between consecutive time points. Therefore, instead of using the 289

expression level of each feature for the model parameters, it will receive the change in 290

expression from two consecutive times. 291

The selected model is a HMM with two hidden states as proposed in Adams et al [8] 292

and Zheng et al [14]. However, in the proposed model the states represent a 293

non-relevant change in expression (N) and a relevant change (C). The former has the 294

function of a null-hypothesis where most of the features will reside, while the later is the 295

alternative hypothesis. The observations are assumed to be drawn from a multivariate 296

normal distribution with dimensionality equal to the number of biological replicates or a 297

univariate normal distribution if the replicates are summarized. The proposed model is 298

shown in Fig 2. Parameters are estimated using the Expectation-Maximization 299

algorithm and the path of hidden states X for each feature per condition is decoded 300

using the Viterbi algorithm. Each feature decoded path is compared to the 301

null-hypothesis that is represented by a sequence of non-relevant changes; if the feature 302

rejects it, then it is selected as relevant. Finally, each relevant feature is ranked by the 303

number of changes, the magnitude of each change and the biological replicates 304

behaviour. 305

Fig 2. Feature selection hidden Markov model. The state transition graph has
two hidden variables: N – Non-relevant expression change and C – relevant expression
change. Each state can emit an observation vector with dimensionality equal to the
number of biological replicates and it follows a multivariate normal distribution. The
model parameters depicted are the transition probabilities and the emission probability
of each state.
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Hidden Markov model 306

Hidden Markov models are stochastic processes based on Markov chains, where the 307

states X1:T and Xt ∈ x1:N are connected through a transition matrix. Each state Xt 308

can produce a measurable observation Yt. These observations only depend of the 309

system’s present state, P (Yt|Xt) [25] [26]. Unlike the Markov chains, the state variables 310

in the HMM are hidden, this means that they cannot be measured. However, it is 311

assumed that they follow a Markov chain and the transition probability matrix follows a 312

multinomial distribution. If the observations are categorical, then they also follow a 313

multinomial distribution. However, if they are continuous they are assumed to follow a 314

univariate or multivariate normal distribution. Each hidden state has its own mean 315

vector and variance/convariance matrix. 316

Decoding - Viterbi algorithm 317

The decoding function is used to get the hidden states that were traversed by the 318

Markov chain. To decode the states in a hidden Markov model the most commonly used 319

algorithms are the posterior decoding and the Viterbi algorithm [25] [27]. The Viterbi 320

algorithm is a greedy optimization approach to get the most probable path traversed by 321

the Markov chain. The algorithm computes the best set of hidden states that can 322

explain the present observation, starting from the first one. As it greedily tries to get 323

the best path, it looks for the previous hidden state that maximizes the current joint 324

probability. The algorithm continues to get the best values for each observation until 325

the full sequence has been analyzed. Once it has the most probable outcome, it retraces 326

back its path and outputs it as the most probable path that generated the observation 327

sequence. 328

Expectation-maximization algorithm 329

The Expectation-Maximization (EM) algorithm is applied when there is missing data, 330

or an optimization problem does not have an analytical solution but can be simplified 331

by assuming the existence of hidden variables. The EM algorithm objective is to 332

maximize the complete data set log-likelihood in a two-step procedure. In the first step, 333

it computes the function’s expected value to fill the missing data. And in the second 334
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step the algorithm maximizes the model parameters given the complete data set. The 335

process is iterated until the convergence criteria are met [28]. 336

Computational pipeline 337

The proposed strategy was divided in three stages as stated in Fig 1, each one fulfills a 338

specific objective and are sequentialy executed. These stages are explained below. 339

Data preprocessing 340

The first step in the pipeline is the data rearrangement and transformation. Each 341

condition is organized in a 3D matrix. Each feature g is represented as a matrix with 342

the time points as columns and replicates as rows, Eq 1. The arrangement differs from 343

the usual 2D matrices where the rows contain the features and the columns have 344

time-points and biological replicates. In this strategy an innovative arrangement is 345

proposed, where each condition is organized in a 3D matrix with time points as 346

columns, replicates as rows and as many slices as genes or features are included. With 347

this data arrangement, the few samples limitation that arise in genomic experiments is 348

overcome, given that each feature will be a different observation sequence to fit the 349

model. For a finer parameter estimation, the replicates can be treated as they are or 350

can be summarized by taking the mean or median of them per time measurement. 351

[
gi
]

=


gi(t1,r1) . . . gi(tT ,r1)

...
. . .

...

gi(t1,rR) . . . gi(tT ,rR)

 (1)

Then, each feature expression value its transformed to get the expression change by 352

substracting the two consecutive time points, Eq 2. With this transformation, the offset 353

value is removed. It is necessary to remove this value because there are features with 354

the same time profile but are shifted given its initial expression value. Thus, without 355

the offset, they can be compared and analyzed as the same profile, Fig 3. However, as 356

result from the transfomation, the observation matrix columns are reduced from size T 357

to T − 1. For the next step, as it estimates the model parameters, the order of the 358
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features may bias the estimation. Therefore, a randomization step is done to shuffle 359

them. This process is based in the preprocess of the sub-sampling cross-validation 360

approach to avoid overfitting [29]. 361

gi∆(t,t+1,r) = gi(t+1,r) − g
i
(t,r) (2)

Fig 3. Feature transformation. Different features may have the same time profile,
but their initial expression value may shift them. The offset removal makes them
comparable and more manageable when analyzing them in the next steps of the
proposed strategy.

Feature selection 362

After the data has been organized, the shuffled features are used to estimate the model 363

parameters. With the HMM fitted to the data, the Viterbi algorithm is applied to each 364

feature in each condition, Fig 4. Once each gene has its hidden path decoded, they are 365

compared. In the case of multiple conditions, if at least one condition has a change, but 366

the control is flat, the feature is considered as relevant. And in the case of only one 367

condition without a control or baseline to compare with, all the features that have a flat 368

behavior are discarded, Fig 5. 369

Fig 4. Feature selection embedded technique. The full set of shuffled features is
used as the input of the EM algorithm to estimate the HMM parameters. Then the
features from the g∆ matrix are input to the Viterbi Algorithm, and each gene is
assigned with the path hidden states traversed by each condition. By comparing he
condition’s path, a subset of relevant features is proposed.

Fig 5. Case-Control hidden state path comparison. If there is a change in
expression between consecutive times, then the Viterbi algorithm will set this ∆ value in
the Change state. When the case is compared, the feature is deemed as relevant only if
the control value is decoded as a No Change state.

Score and ranking 370

After the dataset has been filtered. Each relevant variable is evaluated with three 371

different scores: 372
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1. Number of changes across time (#Chi). Represents the number of changes that 373

occurred in the time series, in a multiple condition experiment it also considers 374

the feature in each one (Z). The greater the number of changes decoded by the 375

Viterbi algorithm (X = C), the better the score will be, Eq 3. 376

#Chi =
Z∑

z=1

T−1∑
t=1

1(Xi
zt); 1(X) =


1 ifX = C

0 otherwise

(3)

2. Magnitude of change (
∥∥∆i

∥∥). It represents how much each relevant variable 377

changes. Even if the feature has only one change in time, if it was very large, this 378

variable will have a good score, Eq 4. 379

∥∥∆i
∥∥ =

Z∑
z=1

T−1∑
t=1

R∑
r=1

∣∣∣giz∆(t,r)

∣∣∣ (4)

3. Quality of replicates (scoreRi). It represents the variability between biological 380

replicates. The greater the difference, the lower the value of this score, Eq 5. 381

scoreRi =

Z∑
z=1

T∑
t=1

R∑
r=2

∣∣giz,t,1 − giz,t,r∣∣ (5)

With these scores, variables are ordered and their place in the list represents their rank. 382

The rank serves as filter to find the most important genes within the selected ones. 383

Supporting information 384

S1 File. FSHMM R-package. A source code R-package that is ready to be 385

installed. It contains the strategy proposed in this work. 386

S1 Table. GO terms found in common with Ferreiros et al and exclusive 387

to FSHMM. Excel book with the enriched GO terms found with FSHMM. The first 388

sheet contains the GO terms in common with the Ferreiros et al work, and the second 389

sheet has those found exclusively with the FSHMM strategy. 390
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S2 Table. Relevant features found in the GSE75417 RNA-seq data. Table 391

with the gene symbol of the all relevant features found in the GSE75417 RNA-seq data 392

with the FSHMM strategy. 393

S3 Table. Enriched GO terms in the GSE75417 RNA-seq data. Table with 394

the over repressented GO terms using the relevant features found in the GSE75417 395

RNA-seq data and DAVID. The table has the GO term, its description, the p-value, 396

adjusted p-value, q-value and its relevant genes. 397

S4 Table. Enriched GO terms in the GSE39549 microarray data. Table 398

with the over repressented GO terms using the relevant features found in the GSE39549 399

microarray data and DAVID. The table has the GO term, its description, the p-value, 400

adjusted p-value, q-value and its relevant genes. The rows highlighted in yellow are 401

related to immune response. 402

S5 Table. Relevant features found in the TGP microarray data. Table with 403

the gene symbol of the all relevant features found in the TGP data with the FSHMM 404

strategy. 405

S6 Table. Enriched GO terms with in TGP microarray data. Table with the 406

over repressented GO terms using the relevant features found in the TGP CCl4 407

microarray data and DAVID. The table has the GO term, its description, the p-value, 408

adjusted p-value, q-value and its relevant genes. 409

S7 Table. Enriched KEGG pathways in the TGP microarray data. Table 410

with the over repressented KEGG pathways using the relevant features found in the 411

TGP CCl4 microarray data and KEGG. The table has the KEGG pathways, its 412

description, the p-value, adjusted p-value, q-value and its relevant genes. 413
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