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Abstract

Utilising  geo-historical  environmental  data  to  disentangle  cause  and  effect  in  complex  natural

systems is a major goal in our quest to better understand how climate change has shaped life on

Earth. Global temperature is known to drive biotic change over macro-evolutionary time-scales but

the mechanisms by which it acts are often unclear. Here, we model speciation rates for Orthoptera

within  a  phylogenetic  framework  and  use  this  to  demonstrate  that  global  cooling  is  strongly

correlated with increased speciation rates. Transfer Entropy analyses reveal the presence of one or

more  additional  processes  that  are  required  to  explain  the  information  transfer  from  global

temperature to Orthoptera speciation. We identify the rise of C4 grasslands as one such mechanism

operating from the Miocene onwards. We therefore demonstrate the value of the geological record

in increasing our understanding of climate change on macro-evolutionary and macro-ecological

processes.

Introduction

Global  environmental  change  has  played  a  major  role  through  geological  time  in  shaping  the

diversity of life on Earth we see today (Vermeij, 1978; Vrba, 1980; Benton, 2009; Kozak & Wiens,

2010), and in the face of indisputable climate change, there is increasing focus on how this past

change can inform our understanding of the ongoing biodiversity crisis. Increasingly, research is
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focussing on how we can bridge the gap between palaeontology and ecology to best utilise the

information held within the geological record (Lyons & Wagner 2009; Willis et al. 2010; Escarguel

et al. 2011; Fritz et al. 2013; Dietl et al. 2014). Palaeobiology and palaeoecology also have much to

offer the field of biodiversity informatics, which seeks to answer many of the same questions in

understanding the history of life of Earth and how it  has been shaped by environmental forces

(Peterson et al. 2010).

The geological record bears witness to many instances of climate change and subsequent biotic

change and yet remains a largely untapped resource. The Cenozoic Era (66Ma – present) alone has

experienced a dramatic shift from greenhouse to icehouse conditions. Recognisably modern fauna

and  flora  arose  during  the  Oligocene  and  Miocene  (Kraatz  &  Geisler  2010);  a  period  of

environmental transition in which previously dominating forest habitats began to fragment with the

expansion  of  modern  grassland  ecosystems  (Strömberg  2005;  Edwards  et  al.  2010;  Strömberg

2011). This period was characterised by significant global cooling after the tropical, greenhouse

conditions that dominated following the Palaeocene-Eocene Thermal Maximum (PETM) (Mudelsee

et al. 2014). This cooling trend continued with a descent into icehouse conditions after the Eocene

Optimum, culminating in the onset of Antarctic glaciation at the Eocene-Oligocene transition (Ivany

et al. 2000; Barker et al. 2007; Liu et al. 2009). This transitional period also resulted in extinctions

and  large-scale  faunal  turnover  in  marine  invertebrates  and  mammals  at  the  Eocene-Oligocene

boundary  (Sun  et al. 2014). During the Oligocene forests still dominated but C4  grasses began to

radiate  and open grassland habitats  became more  widespread (Strömberg  2005;  Edwards  et  al.

2010;  Strömberg  2011).  Fully  modern  ecosystems  originated  following  the  Middle  Miocene

Disruption  (~14  Ma);  a  period  characterised  by  further  global  cooling,  and  the  widespread

replacement of forests with open grassland (Strömberg 2005). Fully modern C4 grasslands became

established between 3-8 Ma (Edwards et al. 2010). These environmental shifts were accompanied

by major changes to the terrestrial fauna; most notably the mammalian fauna, which radiated to take
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advantage of the widespread grassland habitats (Cerling et al. 1998; Codron et al. 1998; Janis et al.

2002; Bobe & Behrensmeyer 2004). Recent research suggests that climate change and the opening

up of grassland habitats at this time may also have played a role in shaping insect evolution (e.g.,

Peña & Wahlberg 2008; Voje et al. 2009; Toussaint et al. 2012; Lo et al. 2017).

The development of modern numerical modelling techniques have now been utilised to demonstrate

a correlation between environmental change and diversification within a statistical framework (e.g.,

Figueirido et al. 2011; Martin et al. 2014; Claramunt & Cracraft 2015; Mannion et al. 2015; Davis

et  al.  2016). Showing  a  correlation,  however,  does  not  necessarily  show  causation  and  the

mechanisms by which climate change affects  biological  diversification can be more difficult  to

elucidate, though various explanations have been proposed including habitat fragmentation, new

habitat availability and adaptive radiation (e.g., Peña & Wahlberg 2008; Voje et al. 2009; Claramunt

& Cracraft 2015; Davis et al. 2016; Davis et al. 2018). Information Theory is a statistical tool that

has been successfully utilised to identify cause and effect between time series in geological and

palaeontological data sets (e.g., Dunhill et al. 2014; Liow et al. 2015). The idea of using time series

as a tool to predict relationships was first proposed in 1956 (Wiener 1956), whilst Hannisdal (2011)

was  the  first  to  introduce  the  use  of  information  theory  to  detect  directionality  between

palaeontological time series. These methods have been primarily developed for short, irregularly

spaced  data  series;  where  continuous  time  series  are  available,  such  as  those  obtained  from

environmental proxy time series and speciation rate curves, it is possible to utilise a measure that

makes fewer assumptions of the data series. Transfer Entropy (TE)  (Schreiber 2000) is a type of

Information Theory that does not assume linearity in the linking process; it is therefore a powerful

method in cases where the exact linking processes are unknown.

The  insect  order  Orthoptera  includes  grasshoppers,  locusts,  crickets,  katydids  and  wetas;  they

inhabit a diverse array of habitats from tropical rainforest to grasslands to desert. The first definitive

orthopteran fossil is the 300 million year old  Oedischia williamsoni from the Permian of France
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(Song  et  al. 2015).  Further  fossil  evidence  suggests  that  the  two  suborders  Ensifera  (crickets,

katydids, weta) and Caelifera (grasshoppers) had diverged by around 260 Ma but little is known

about how Orthoptera diversified to produce 27,000 extant species or the processes driving their

evolution. As a species-rich clade with a long geological history there are undoubtedly a variety of

factors that have shaped their extant diversity but here, we ask whether past environmental change

had an impact on orthopteran diversification. In particular, we ask whether the Miocene origin of

modern grasslands drove adaptive radiation in grassland species. We achieve this by using supertree

methods  to  build  a  new  time-calibrated  phylogenetic  hypothesis  for  Orthoptera.  We  use  this

phylogeny  to  explore  orthopteran  diversification  dynamics  through  time  then  test  for  causality

between  past  environmental  change  and  speciation  rates  using  Transfer  Entropy.  We  find  that

speciation  rates  in  Orthoptera  are  strongly  correlated  with  global  cooling  and  that  significant

increases in net diversification occurred during global cooling events and coincident with the origin

and spread of C4 grasslands. Trait-based analyses show that speciation rates recovered for species

associated with grasslands and other open-habitats are an order of magnitude higher than those of

species found in forests and other habitats. Considering just the last 17 Ma (Miocene – Recent) we

find  that  speciation  rates  are  strongly  correlated  with  both  global  cooling  and  C4 grassland

expansion. Our Transfer Entropy analyses reveal that over this period, grassland expansion is the

mechanism via which global cooling stimulated biological diversification.

Methods

Data collection and processing

The Web of Knowledge Science Citation Index (wok.mimas.org) was used to identify all papers

containing, or potentially containing, phylogenetic trees for Orthoptera. The years 1980-2015 were

searched using the search terms: phylog*, taxonom*, systematic*,  divers*, cryptic and clad* in

conjunction with all scientific and common names for Orthoptera from sub-order to family level.
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All source trees and meta-data were digitised in their published form using TreeView (Page 1996)

and the Supertree Toolkit (STK – Davis & Hill 2010; Hill & Davis 2014). Along with the tree string

in Newick format, meta-data were stored including: bibliographic information, character type, and

phylogenetic inference. No corrections were made for synonyms or any other apparent errors or

inconsistencies in the source trees at this stage. See Supporting Appendices SA1 and SA2 for source

trees and source tree references.

Data  processing  prior  to  supertree  construction  was  carried  out  in  a  consistent  and  clearly

documented manner. We followed the protocol as previously used in other supertree analyses (e.g.,

Davis & Page 2014; Davis et al. 2015) and outlined here as follows. All included phylogenies were

required to  fulfil  three  criteria  before inclusion in  the data  set:  1) be  presented  explicitly  as  a

reconstruction of evolutionary relationships; 2) be comprised of clearly identifiable species, genera

or  higher  taxa  and clearly  identifiable  characters;  3)  be  derived  from the  analysis  of  a  novel,

independent  dataset.  All  taxon  names,  including  higher  taxa,  were  standardised  following  the

Orthoptera Species File (Cigliano et al. 2018). Taxonomic overlap was set such that each source tree

was required to have a minimum of at least two taxa in common with at least one other source tree

(Sanderson et al. 1998). The data set did not satisfy the overlap requirements and after removal of

“islands” of unconnected source trees the taxa number was reduced from 2,258 to 1,748.

Supertree construction

Despite ongoing active development of new methods (Akanni et al. 2014;  Oliveira Martins et al.

2016),  Matrix  Representation  with  Parsimony (MRP – Baum & Ragan 2004)  is  still  the  most

tractable supertree method for large datasets. We therefore utilised MRP to infer a phylogenetic

supertree from a total data set of 261 source trees taken from 124 papers published between 1991

and 2015. A down-weighted (weight=0.1) taxonomy tree was included to improve performance and

data cohesion (Bininda-Emonds & Sanderson 2001). Source trees were encoded as a series of group
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inclusion characters using standard Baum and Ragan coding (Baum & Ragan 2004), and automated

within the STK software (Davis & Hill 2010; Hill & Davis 2014). All taxa subtended by a given

node in a source tree were scored as "1", taxa not subtended from that node were scored as "0", and

taxa not present in that source tree were scored as "?". Trees were rooted with a hypothetical, "all

zero" outgroup.  Large taxon numbers greatly increase computational time and reduce chances of

finding the shortest trees, therefore the data set was split into two partitions representing the two

reciprocally monophyletic suborders: Caelifera (1,377 included species) and Ensifera (789 included

species). The resulting MRP matrices were analysed using standard parsimony algorithms in TNT

(Goloboff et al. 2008). We used the "xmult=10" option, and ran 1,000 replicates for the analysis,

each using a different random starting point for the heuristic search. This improved exploratory

coverage of  the tree space,  potentially  avoiding local  minima in the solutions.  We computed a

Maximum  Agreement  Subtree  (MAST)  using  PAUP*  (Swofford  2002)  to  remove  conflicting

leaves, reducing the total number across both data partitions from 1,748 to 1,293. Although not

limited to supertree methods, one disadvantage of the MRP method is that it can lead to the creation

of spurious clades and relationships that are not present in any of the source trees (Bininda-Emonds

& Bryant 1998; Davis & Page 2014). These misplaced taxa are generally referred to as “rogue taxa”

and are usually a result of either poorly constrained or poorly represented taxa within the source

trees.  Studies  have shown that  identifying and removing rogue taxa  a priori can create  further

problems, as rogues still have the potential to phylogenetically constrain the positions of other taxa

(Trautwein et al. 2011). Hence a priori removal often creates new rogue taxa. We identified a small

number of rogue taxa (~2%) in the resulting tree. It is important that these novel clades are not

interpreted as biologically meaningful and therefore should be removed before undertaking further

analysis  (Pisani  & Wilkinson, 2002).  We provide a  list  of  removed taxa in  Appendix SA3.  To

maximise taxon coverage, an additional 226 taxa were added to the tree based on their positions in

source trees excluded at the data overlap stage (see Appendices SA4 and SA5 for source trees and

6

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

6

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2018. ; https://doi.org/10.1101/392712doi: bioRxiv preprint 

https://doi.org/10.1101/392712
http://creativecommons.org/licenses/by-nc/4.0/


references). This resulted in a final supertree comprising 1,519 taxa, as compared to the previous

largest orthopteran phylogeny that contained 274 taxa (Song et al. 2015).

Supertree time-calibration

Phylogenies derived from parsimony analyses do not have meaningful branch lengths that can be

used to infer the absolute diversification times and rates in the tree, they can only inform on the

relative times of divergence.  It  is  necessary,  therefore,  to use external reference points to time-

calibrate trees inferred using parsimony. We used a combination of fossil calibrations supplemented

by biogeographic calibrations to time-scale our tree. Forty-three nodes were calibrated using fossil

first occurrence data downloaded from Fossilworks (Data available from the Fossilworks database:

fossilworks.org). These fossils were assigned phylogenetically to either the stem or crown of clades

using the taxonomy assigned in Fossilworks. An additional seven geological calibration points were

obtained from published molecular phylogenetic analyses (see Appendix ST1 for node numbers and

calibration dates and Appendix SF1 for the tree with the calibrated nodes labelled as in the CSV

file). The R package “paleotree” (Bapst 2012) was used to scale the tree and to extrapolate dates to

the remaining nodes. To extend node calibrations to the whole tree, we used the “equal” method,

with minimum branch lengths set to 0.1 Myr. See Appendix SA6 for the time-calibrated supertree.

Environmental correlations

Correlation analyses were carried out via DCCA: detrended cross-correlation analysis, which is

designed for correlating non-stationary time series (Kristoufek 2014). Speciation rate time series

were  correlated  against  both  palaeo-temperature  and  palaeo-vegetation  to  assess  whether  a

statistically significant correlation exists.  All analyses were carried out in R 3.2.2 (R Core Team

2017).

Speciation  rate  curves  were  obtained  from  BAMM  (Bayesian  Analysis  of  Macroevolutionary

Mixtures), which implements a Metropolis Coupled Monte Carlo (MCMC) approach to calculate
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diversification rates and significant rate shifts along lineages (Rabosky 2014). Four chains were

executed for the analysis, each with a total of 30 million generations executed, with a minimum

clade size of five taxa used to aid convergence. Ten thousand of the results were stored, with 1,000

discarded as "burn-in", leaving 9,000 samples for subsequent analysis with regards to temperature

correlation. The analysis also accounted for non-complete coverage of taxa in the tree by specifying

a  clade-dependent  sampling  bias  factor  derived  from the  taxonomy in  Orthoptera  Species  File

(Cigliano et al. 2018).

The palaeo-temperature data were obtained from oxygen isotope (δ18O) records (Veizer et al. 1999;

Zachos 2001) and the δ18O curve was first smoothed to remove autocorrelation. The speciation rate

curves from BAMM consist of 9,000 individual curves (10,000 minus 10% burn in), therefore a

total of 9,000 correlations per test were carried out with each DCCA coefficient saved. The saved

DCCA coefficients were then plotted as a distribution and a Wilcoxon rank sum test was used to test

if the mean of the distribution was non-zero. Global palaeo-temperature correlations were carried

out for both the full evolutionary history of Orthoptera and also partitioned at 17 Ma to allow direct

comparison with the palaeo-vegetation time series.

Palaeo-vegetation data for the last 17 Ma were extracted from Osborne (2008). Three regions were

considered: Pakistan, the Great Plains (USA) and East Africa. The first two used palaeosol data,

whilst the latter used tooth enamel to obtain  δ13C; where higher  δ13C is a proxy for increased C4

biomass. After checking location data held in GBIF for the species in our tree we discarded the East

Africa and Pakistan data as this showed a significant geographic bias towards Europe and the USA

with very few species from East Africa and Pakistan represented (Appendix SF2). In order to obtain

a continuous time series a cubic smooth spline was used to interpolate the point data. These time

series were then correlated against the 9,000 BAMM simulations, and plotted as a distribution, in

the same manner as for the palaeo-temperature correlations.
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Temporal-diversification analyses

TreePar  (Stadler  2011) was  used  to  assess  changes  in  net  diversification  rates  across  the  tree

through time. The “bd.shifts.optim” function was used, together with a 1 million year grid, allowing

rate changes to be assessed at 1 million year intervals. The analyses were run across the whole tree

starting from the present day, back to the root node. Net diversification rates were allowed to be

negative and we set TreePar to look for up to 10 temporal changes in net diversification rate.

Trait-diversification analyses

MUSSE (MultiState Speciation and Extinction) was implemented in Diversitree (Fitzjohn 2012) to

model diversification rates based on habitat trait data. Broadly defined habitat types for as many

species as possible were collected via an exhaustive literature search (Appendix ST2). Taxa were

designated as having habitat preferences as follows: “open”, “closed”, or “mixed”; where open =

grassland, desert etc, closed = forest, woodlands etc, and mixed = found in both open and closed

habitats.  Habitat  trait  data  were  obtained  for  377  out  of  1,519  species  in  the  phylogeny,  the

remainder were coded as “NA”.

Information transfer

Transfer  entropy  (TE)  is  a  directional  information  flow  method  that  quantifies  the  coherence

between continuous variables in time (Schreiber 2000). It is an extension of the mutual information

method, but can take into account the direction of information transfer using an assumption that the

processes  can  be described by a  Markov model.  Transfer  Entropy reduces  to  a  linear  Granger

causality process, whereby a signal in one time series gives a linear response to the second time

series, when the two time series can be linked via autoregressive processes (Granger 1969; Amblard

& Michel 2012).  However, TE makes fewer assumptions on the linearity of the processes involved

and  hence  is  more  suitable  for  analysing  causality  when  the  processes  involved  are  unknown

(Lungarella et al. 2007; Ver Steeg & Galstyan 2012). Transfer Entropy is calculated using:
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T X →Y=∑ p (Y n+1 ,Y n
(k ) , Xn

(l ) ) log( p (Y n+1∨Y n
( k ) , Xn

(l ) )
p (Y n+1∨Y n

( k ) ) )
where TX→Y is the TE from time series X to time series Y, both of which have data at time n, and k

and  l  are the embedding dimensions of the two time series respectively. We used the R (R Core

Team 2017) package "TransferEntropy" (Torbati  & Lawyer 2016) which implements the above

equation using a nearest neighbour algorithm (Kraskov et al. 2003). This function returns a numeric

value where 0 indicates no information transfer, positive numbers indicate information transfer, and

negative numbers indicate misinformation transfer which indicates the presence of other processes

in operation (Bossomaier et al. 2016). The embedding dimensions of the time series were estimated

using the R package "nonlinearTseries" (Garcia & Sawitzki 2015).

We calculated TE for two time series over the full tree: speciation rate and δ18O, and for three time

series  for  the  last  17  Ma:  speciation  rate,  δ18O  and  δ13C;  where  δ18O  represents  the  palaeo-

temperature proxy and δ13C represents the palaeo-vegetation proxy. We therefore derived two TE

values for the full tree - speciation – δ18O, and vice versa; and six TE values for the truncated

Miocene data: speciation - δ18O, speciation -  δ13C and δ18O - δ13C, in both directions of transfer.

Significance was tested by creating 250 surrogate time series by randomising the "source" time

series, leaving the "target" time series unchanged. If the transfer entropy value was outside the 95%

interval of the surrogate transfer entropy values it was deemed significant (Chávez et al. 2003).

Results

Supertree construction

Our final supertree (Fig. 1) contained 1,519 taxa and is broadly consistent with recent orthopteran

phylogenies (e.g., Flook et al. 1999; Sheffield et al. 2010; Zhou et al. 2010; Song et al. 2015). All

15 superfamilies are represented and 41 out of 44 families, as defined by the Orthoptera Species

File (Cigliano et al. 2018). All superfamilies were recovered as monophyletic. Families were largely
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recovered as monophyletic with the notable exception of Romaleidae and Dericorythidae, which are

split and nested within Acrididae. This finding is, however, reflected in the source data (e.g., Li et

al. 2011; Song et al. 2015).

Environmental correlations

Using the 9,000 sets of speciation rate time series extracted from BAMM for the full tree (Rabosky

2014; Rabosky et al. 2014) we found that speciation rate was strongly correlated with global palaeo-

temperature  (Fig.  2).  For  each  set  of  extracted  speciation  rates  a  correlation  coefficient  was

calculated between -1 (speciation rate increases with cooler temperatures) and 1 (speciation rate

increases with warmer temperature). For a correlation coefficient of zero, temperature has no effect

on speciation rate. The distribution was not normally distributed, therefore we used a Wilcoxon

signed rank test to test whether the distribution of all 9,000 correlation coefficients differed from the

null hypothesis of a zero mean correlation coefficient (i.e. no temperature correlation). We found a

strong  negative  mean  correlation  of  r  =  -0.3801  (SD =  0.0161,  p  <  2.2e-16  detrended  cross-

correlation  analysis).  For  the  truncated  17  Ma  time  series  we  also  found  a  strong  negative

correlation between speciation rate and global temperature of r = -0.4220 (SD =0.0094,  p < 2.2e-16

detrended cross-correlation analysis) (Fig. 2).

The  palaeo-vegetation  correlation  analyses  using  the  US  vegetation  data  (Osborne  2008)  also

utilised the truncated speciation rate time series. For these, the correlation coefficient was calculated

between -1 (speciation rate decreases with C4 biomass) and 1 (speciation rate increases with C4

biomass). For a correlation coefficient of zero, grassland abundance has no effect on speciation rate.

Again, the distributions recovered were not normally distributed; we therefore used a Wilcoxon

signed rank test to test whether the distribution of all 9,000 correlation coefficients differed from the

null hypothesis of a zero mean correlation coefficient (i.e. no grassland abundance correlation). We
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found a very strong positive correlation of r = 0.7972 (SD = 0.0736, p < 2.2e-16 detrended cross-

correlation analysis) (Fig. 2).

Temporal-diversification analyses

Our TreePar (Stadler 2011) analyses rejected a constant  rate  diversification model.  The best fit

model, as identified by AICc and LRT (AICc=11602.76, p=0.0003),  recovered seven rate shifts

(Table 1). A model allowing eight shifts did not significantly improve the likelihood. Three of these

shifts represent increases in net diversification rate and correspond directly to the following global

cooling  events  (Fig  3);  the  Albian-Aptian  “cold  snap”  (113 Ma –  Mutterlose  et  al.  2009),  the

Eocene-Oligocene transition (34 Ma – Liu et al. 2009), and the Middle Miocene disruption (12 Ma

– Shevenell et al. 2004). The last of these also corresponds to a burst of  C4 grassland evolution

(Osborne 2008; Edwards et al. 2010), whilst the Eocene-Oligocene transition is closely coincident

with  the  origins  of  C4 grasses  (Edwards  et  al. 2010).  Finally,  we  detect a  decrease  in  net

diversification rate at the Cretaceous-Palaeogene boundary (66 Ma).

Trait-diversification analyses

Trait-based  analyses,  implemented  in  MUSSE (FitzJohn  2012)  rejected  a  null  model  whereby

speciation, extinction and net diversification rates are unrelated to habitat (Fig. 4). Our analyses

found that speciation rates in open habitats were an order of magnitude higher than those found for

closed or mixed habitats with no overlap of the confidence intervals (open: mean = 3.5065, SD =

1.541988; closed: mean = 0.3906, SD = 0.0246, mixed: mean = 0.4991, SD = 0.2657). Extinction

rates reveal a similar pattern though the 2.5% confidence interval for open habitats overlaps with

those for closed and mixed habitats  (open:  mean = 3.028975, SD = 1.618406; closed: mean =

0.3696197, SD = 0.02499524, mixed: mean = 0.308759, SD = 0.2997). Net diversification reveals

highest rates in open habitats, with an overlap of the 2.5% confidence interval with mixed habitats.
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Closed habitats  have  the  lowest  net  diversification  rates  (open:  mean = 0.4775,  SD = 0.0866;

closed: mean = 0.0210, SD = 0.0017, mixed: mean = 0.1903, SD = 0.0397).

Information transfer

The results from the TE analysis for the full tree shows a mis-information signal (negative value for

TE) from temperature to speciation rate (-0.7485), indicating the presence of one or more hidden

drivers  (Bossomaier  et  al. 2016).  There  is  no  information  transfer  from  speciation  rate  to

temperature  (-0.0028).  The  Miocene  data  set  again  shows  a  flow  of  mis-information  from

temperature to speciation rate (-0.1134) with no information flow in the reverse direction (-0.0522).

When the palaeo-vegetation data are introduced we recover information flow from temperature to

vegetation (0.1359) with a mis-information signal from vegetation to temperature (-0.1254). We

also  recover  a  signal  from vegetation  to  speciation  rate  (0.1697)  but  no  signal  in  the  reverse

direction (-0.004). All the Transfer Entropy results were significant at the 95% confidence interval

(Table 2).

Discussion

Disentangling past cause and effect in complex natural systems through geological time is a major

goal in palaeobiology. The use of the geological record to inform our understanding of the effects of

present  day  climate  change  on  biodiversity  is  an  ever-growing  field  of  research  but  if

palaeobiologists  intend to make an impact and contribution to conservation efforts,  it  is  vitally

important that we are able to describe not only the how and when, ie. the nature of the relationship

between large-scale biotic and abiotic changes through Earth’s history but also to address why these

changes arose. 

When it comes to the how and when it is widely recognised that global climate change has had an

impact on the biota over geological time scales (Vermeij 1978; Vrba 1980; Benton 2009; Kozak &

Wiens 2010).  Mean global  temperature,  in  particular,  has  been demonstrated  to  show a strong
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correlation with diversification rates in taxa as diverse as hermit crabs and squat lobsters (Davis et

al. 2016), crocodiles (Mannion et al. 2015), and birds (Claramunt & Cracraft 2015). Erwin (2009)

suggested that the positive association between biodiversity and global temperature at the spatial

scale would predict a positive relationship between biodiversity and global temperatures temporally.

While this has been supported by some studies (e.g., Figueirido et al. 2011; Mannion et al. 2015),

others  have  found  the  opposite  (Claramunt  &  Cracraft  2015);  Davis  et  al.  2016)  or  even  no

relationship (Mannion et al. 2015). Identifying the  why, ie. the underlying mechanisms by which

climate change drives biotic turnover is more difficult but the cross-field application of Information

Theory allows us to test for correlations between ecological and palaeontological time series (e.g.,

Dunhill et al. 2014; Liow et al. 2015).

In this paper we show how climate change has impacted on biological diversification in orthopteran

insects through geological time. Our analyses reveal a consistent pattern in which global cooling

through geological time contributed to shaping the evolutionary history of Orthoptera. Two different

models – clade and temporal - of diversification dynamics support this, revealing a picture in which

speciation  rates  are  correlated  with  global  cooling  and  that  significant  increases  in  net

diversification occurred during global cooling events. For the Miocene to Recent we are also able to

demonstrate  why climate change impacted upon speciation rates in Orthoptera,  by showing that

vegetation change (in  the form of  increased C4 biomass)  was one mechanism by which global

cooling drove speciation in Orthoptera. We suggest that this took place via forest fragmentation and

the expansion of open C4 grasslands providing vacant niche space into which adaptive radiation

could take place in the absence of competition. This is congruent with the presence of an increase in

net diversification rate at 12 Ma, coincident with the Middle Miocene disruption cooling event and

with palaeobotanical evidence for a burst of C4 grassland evolution (Osborne 2008; Edwards et al.

2010). Our trait analyses further support this by revealing that species living in open habitats have

significantly higher speciation rates than species living in closed or mixed habitats.
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At present,  the underlying  mechanism(s)  by which  global  cooling promotes  speciation through

deeper geological time remain unknown, though we conjecture that climate change induced habitat

change is  a  plausible  explanation.  The largest  increase  in  net  diversification  was  found at  the

Eocene-Oligocene transition (34 Ma), a period defined by the onset of Antarctic glaciation (Pound

& Salzmann 2017). Phytolith assemblages from the central Great Plains indicate that open habitat

C3 grasses first migrated into subtropical, closed forest at this time (Strömberg 2011). The trigger

for this opening up and expansion of grasslands is not well understood (Strömberg 2011) but we

suggest that global cooling driven habitat fragmentation may again be one possible mechanism. The

further back in time we look, the harder it becomes to explain the observed patterns and the earliest

evidence we have for an increase in net diversification took place during the Cretaceous. Though

widely held to have experienced a consistent greenhouse climate, evidence from sedimentology

reveals  a  brief  icehouse  interlude  in  the  mid-Cretaceous  –  the  Albian-Aptian  “cold  snap”

(Mutterlose et al. 2009), at which our first diversification increase is exactly coincident (113 Ma).

The Cretaceous was also a time of major biotic turnover and ecosystem reorganisation, known as

the Cretaceous Terrestrial Revolution (KTR) in which the previously dominant conifererous forests

were rapidly replaced by angiosperms (Lloyd  et al. 2008). This period, dating to 125-80 Ma, is

characterised by a burst of diversification in angiosperms, insects, reptiles, birds and mammals. It is

therefore possible that the signal recovered by our analysis at 113 Ma represents the impact of the

KTR on orthopteran diversification.  Though we present evidence indicating that  global cooling

driven forest fragmentation and the expansion of open grasslands may be one plausible driver of

speciation throughout their evolutionary history, it is important to note that Orthoptera are an old,

diverse  group,  and  geological  processes  such  as  plate  tectonics  and  orogenesis,  as  well  as

evolutionary processes such as sexual selection acting on acoustic signal are likely to have played a

role in their evolution.
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Understanding the mechanisms and drivers of macroecological change over geological time scales

is a major goal for palaeobiologists who aim to bridge the gap between palaeontology and ecology.

Insights may be gained by taking a multi-pronged approach and combining differing diversification

dynamics models with environmental data from the geological record. Using large data sets such as

these  also  allows  us  to  feed  into  the  “big  data”  questions  that  are  asked  by  biodiversity

informaticians.  Peterson  et  al.  (2010) identified  five  big  questions  for  biodiversity  informatics;

under the approach taken here we are able to contribute to the second of these – a “biota-wide

picture of diversification and interactions”. The effects of climate change on the biota are clearly

complex and multi-variate. Much data on past climate change and biotic interactions are held within

the geological record; and analyses such as these are the first step towards a better understanding of

how present day biota might interact and respond to further environmental change. A full global

assessment of extinction risk is yet to be carried out for Orthoptera, but the IUCN (2018) has found

that more than a quarter of European species are threatened with extinction due to habitat loss.

Insects are a vital component of ecosystems, particularly as a food source for vertebrates such as

reptiles  and  birds,  and  their  loss  would  have  cascading  ecosystem  effects.  Combining  a

macroevolutionary  approach to  macroecology with  present  day  risk  assessments  is  one  way in

which  we  might  begin  to  address  another  of  the  aforementioned  “big  questions”  -  synthetic

conservation  planning  –  where  we  can  integrate  knowledge  of  the  past  with  the  present  to

understand the broader context in which ecosystems and their constituent species evolved, and to

help guide conservation efforts.
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Figures

Figure 1: Phylogenetic supertree of Orthoptera Maximum Agreement Subtree (MAST) from MRP

analyses shown.  Superfamilies are labelled on the right hand side along with representative line

drawings (line drawings from Song et al. 2015).

Figure  2: Speciation  rates,  extracted  from  BAMM  (Rabsoky et  al.  2014)  plotted  against

environmental  correlations.  Top  panel  (A):  main  figure  –  histogram  showing  the  frequency

distribution of correlation coefficients between speciation rate and global temperature proxy for the

whole tree, showing that there is a negative correlation between speciation rates and temperature;

inset  –  speciation  rates  plotted  against  global  temperature  proxy,  showing  that  speciation  rates

increases as global temperatures decrease, blue represents cooler temperatures and red represents

warmer  temperatures.  Bottom  panel:  (B)  histogram  showing  the  frequency  distribution  of

correlation  coefficients  between speciation  rate  and global  temperature  proxy for  the  17 Ma –

Recent  partition,  showing  that  there  is  a  negative  correlation  between  speciation  rates  and

temperature; (C)  histogram showing the frequency distribution of correlation coefficients between

speciation rate and the C4 biomass proxy for the 17 Ma – Recent partition, showing that there is a

positive correlation between speciation rates and C4 biomass.

Figure 3: TreePar best fit model of rate shifts (black line) plotted against palaeo-temperature (blue

line) and palaeo-vegetation (green line) and scaled to geological time.  Geological time scale was

added using the R package “strap” (Bell & Lloyd 2015). Global events labelled as C1: Albian-

Aptian cold snap; C2 = Eocene-Oligocene transition; C3 = Middle Miocene disruption; K/Pg =

Cretaceous-Palaeogene mass extinction event.

Figure 4: Trait diversification rates. Rates modelled in MUSSE (Fitzjohn 2012) and probability

density plotted for speciation rate (top panel), extinction rate (middle panel) and net diversification
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rate (bottom panel). Blue = open habitat-associated species; yellow = closed habitats; red = mixed

habitat associations.

Tables

Model 0 
shifts

1 shift 2 
shifts

3 
shifts

4 
shifts

5 
shifts

6 
shifts

7 
shifts

8 
shifts

9 
shifts

10 
shifts

logL 5855.4
83

5820.8
09

5808.4
6

5802.3
15

5796.1
07

5792.3
56

5785.8
32

5778.0
08

5773.8
15

5770.9
54

5768.5
63

AIC 11714.
97

11651.
62

11632.
92

11626.
63

11620.
21

11618.
71

11611.
66

11602.
02

11599.
63

11599.
91

11601.
13

AICc 11714.
97

11651.
66

11633.
02

11626.
81

11620.
49

11619.
12

11612.
22

11602
.76

11600.
57

11601.
08

11602.
55

Table 1: Results from TreePar analysis. For each model the AIC and corrected AIC were calculated.

The lowest AICc was for eight rate shifts, but this was not significantly different from seven shifts

(highlighted), which we therefore consider the optimum model. All significant AICc are bold.

Time period S → T  T → S V → T T → V S → V V → S

17Ma → 0ma -0.052

(-0.039 - 

0.025)

-0.113

(-3.009 - 

-2.917)

-0.125

(-0.514 - 

-0.198)

0.136

(-0.266 - 

0.122)

-0.004 

(-0.002 - 

0.227)

0.170

(-1.609 - 

-1.245)

220Ma → 0Ma -0.003

(-0.021 – 

0.016)

-0.749

(-3.006 - 

-2.914)

Table 2: Results of the Transfer Entropy analysis. For each of the three time periods used, the TE

score is given along with the 95% confidence interval in parentheses below. Significant results in

bold. V: Vegetation proxy, S: Speciation rate, T: Temperature proxy. Arrows indication direction of

information flow.
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