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Abstract 12 

Metabolic interactions, such as cross-feeding, play a prominent role in microbial community 13 

structure. For example, they may underlie the ubiquity of uncultivated microorganisms. We 14 

investigated this phenomenon in the human oral microbiome, by analyzing microbial metabolic 15 

networks derived from sequenced genomes. Specifically, we devised a probabilistic biosynthetic 16 

network robustness metric that describes the chance that an organism could produce a given 17 

metabolite, and used it to assemble a comprehensive atlas of biosynthetic capabilities for 88 18 

metabolites across 456 human oral microbiome strains. A cluster of organisms characterized by 19 

reduced biosynthetic capabilities stood out within this atlas. This cluster included several 20 

uncultivated taxa and three recently co-cultured Saccharibacteria (TM7) phylum species. 21 

Comparison across strains also allowed us to systematically identify specific putative metabolic 22 

interdependences between organisms. Our method, which provides a new way of converting 23 

annotated genomes into metabolic predictions, is easily extendible to other microbial 24 

communities and metabolic products.  25 
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Introduction 26 

Metabolism, in addition to enabling growth and homeostasis for individual microbes, is a 27 

powerful “currency”, that contributes to the organization of microbes into complex, dynamic 28 

societies. Metabolic interactions are believed to influence microbial community structure and 29 

dynamics at multiple spatial and temporal scales1–5. For example, through cross-feeding, a 30 

compound produced by one species might benefit another, leading to a network of metabolic 31 

interdependences5–10. An extreme case of interdependence between microbes is believed to 32 

underlie what is usually known as “microbial uncultivability”11, i.e. the fact that many microbes 33 

isolated from a given environment do not grow in pure culture on standard laboratory conditions. 34 

This observation, originally proposed as “the great plate count anomaly”12, has motivated interest 35 

in understanding the possible mechanisms underlying unculturability11,13,14. One class of 36 

mechanisms is based on the concept that the growth of uncultivable microbes depends on their 37 

community context via diffusible metabolites produced by their neighbors14. These dependent 38 

microbes are often referred to as fastidious, due to their limited biosynthetic capabilities and 39 

reliance on externally supplied metabolites for growth. The prominence of fastidious microbial 40 

organisms across the tree of life and their potential importance in microbial community structure 41 

is highlighted by the recent identification of the candidate phyla radiation – a large branch of the 42 

tree of life consisting mainly of uncultivated organisms with small genomes and unique 43 

metabolic properties15–17. 44 

Some of the most promising strides in understanding metabolic interdependences between 45 

microbes have been taken in the study of the human oral microbiome. The human oral 46 

microbiome serves as an excellent model system for microbial communities research, due to its 47 

importance for human health and ease of access for researchers18,19. For example, the order of 48 

colonization of species and the spatial arrangement of microbes in dental plaque have been 49 

thoroughly characterized20,21. The human oral microbiome consists of roughly 700 different 50 

cataloged microbial species, identified by 16S rRNA microbiome sequencing18,22. Importantly, 51 

63% of species in the human oral microbiome have been sequenced, including several 52 

uncultivated and recently-cultivated strains that have implications in oral health and disease23,24. 53 

Exciting recent work has led to successful laboratory co-culture growth of three previously 54 

uncultivated organisms, the Saccharibacteria (TM7) phylum taxa: Saccharibacteria bacterium 55 
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HMT-952 strain TM7x25,26, Saccharibacteria bacterium HMT-488 strain AC001 (not yet 56 

published), and Saccharibacteria bacterium HMT-955 strain PM004 (not yet published). 57 

Saccharibacteria are prominent in the oral cavity and relevant for periodontal disease27,28. Due to 58 

their importance, they were among the first uncultivated organisms from the oral microbiome to 59 

be fully sequenced via single-cell sequencing methods29, and represent the first cultivated 60 

members of the candidate phyla radiation25. Thus, their metabolic and phenotypic properties are 61 

of great interest for oral health and microbiology in general. 62 

In parallel to achieving laboratory growth of uncultivated bacteria, a major unresolved challenge 63 

is understanding the detailed metabolic mechanisms that underlie their dependencies. Ideally, 64 

one would want to computationally predict, directly from the genome of an organism, its 65 

biosynthetic capabilities and deficiencies, so as to translate sequence information into 66 

phenotypes, mechanisms, and community-level predictions30. A number of approaches, based on 67 

computational analyses of metabolic networks, have contributed significant progress towards this 68 

goal31–33, including in the context of microbial communities4,5,33–42. At the heart of these methods 69 

are metabolic network reconstructions, formal encodings of the stoichiometry of all metabolic 70 

reactions in an organism, that are readily amenable to multiple types of in silico analyses and 71 

simulations44. Recent exciting progress has led to the automated generation of “draft” metabolic 72 

network reconstructions for any organism with a sequenced genome45, opening the door for the 73 

quantitative study of large and diverse microbial communities. Despite this promise, the most 74 

commonly used metabolic network analysis methods, such as flux balance analysis (FBA)46 or 75 

its dynamic version (dFBA)47, are not applicable to these draft metabolic networks due to gaps 76 

(missing or incorrect reactions) in the metabolic network. Methods for “gap-filling” draft 77 

reconstructions can alleviate this problem at the expense of an increased risk for false positive 78 

predictions. Additionally, gap-filling requires specific assumptions on the growth media 79 

composition – which is often difficult to obtain for diverse environmental isolates and by 80 

definition unknown for uncultivated organisms. Thus, the capacity to provide predictions based 81 

on unelaborated genome annotation, and on limited knowledge about an organism’s growth 82 

environment remains an important open challenge. Metabolic network analysis methods that are 83 

less dependent on gap-filling have been applied to the analysis of draft metabolic 84 

reconstructions, generally with a focus on metabolic network topology48–50. Some of these 85 

methods have provided valuable insight into the biosynthetic potentials of organisms and 86 
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metabolites51,52, the chance of cooperation or competition between species53–56, and the 87 

relationship between organisms and environment48,57,58 including in the human gut 88 

microbiome59. However, these methods often depend on specific assumption on environmental 89 

conditions49,50, or cannot be easily reconciled with stoichiometry-based constraints48. 90 

Here we introduce a new method, which alleviates the above limitations, and provides a novel 91 

metabolic prediction – an estimate of biosynthetic network robustness. Our method applies a 92 

probabilistic approach to define and compute a metric that provides an estimate of which 93 

metabolites, such as biomass components, are robustly synthesized by a given metabolic network 94 

and which would likely need to be supplied from the environment/community. Discrepancies in 95 

these calculated estimates between organisms can be used to generate hypotheses regarding 96 

microbial auxotrophy and metabolic exchange in microbial communities. Importantly, our metric 97 

can provide an environment-independent characterization by randomly sampling many different 98 

possible nutrient combinations, and is not dependent on a priori biosynthetic pathway definitions 99 

as it depends only on the stoichiometric constraints of the metabolic network. We applied this 100 

method to a large number of organisms from the human oral microbiome, and identified broad 101 

trends in biosynthetic capabilities. We focused in particular on uncultivated microorganisms, 102 

including three recently co-cultured Saccharibacteria (TM7) strains. In addition to highlighting 103 

their biosynthetic deficiencies, we developed specific hypotheses for their metabolic exchange 104 

with growth-supporting co-culture partners.  105 
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Analysis Method  106 

Our newly developed method quantifies a concept we call biosynthetic network robustness. 107 

Robustness, in this sense, refers to the ability of the network to produce a specified target 108 

metabolite, from variable metabolic precursors. In essence, our metric for biosynthetic network 109 

robustness provides a measure of how well a particular metabolic network can produce a 110 

particular target across a uniformly sampled set of possible environments. 111 

The inspiration for this method comes from the statistical physics concept of percolation. 112 

Percolation theory has been applied broadly with applications ranging from materials science to 113 

epidemiology, as well as to the study of cascading metabolic failure upon gene deletions in 114 

metabolism60. In percolation theory the robustness of a network can be characterized by 115 

randomly adding or removing components (nodes or edges) of a network and assessing network 116 

connectivity61. We utilized this concept to characterize the network robustness of a particular 117 

metabolic network towards a specified target metabolite by randomly adding input metabolites to 118 

the network and assessing the network’s ability to produce the specified target metabolite. 119 

To implement our method, we first introduced a probabilistic framework for analyzing metabolic 120 

networks (Figure 1 A). In this framework, every metabolite can be considered to be drawn from 121 

a Bernoulli distribution, i.e. present in the network with a given input probability (Pin). These 122 

probabilities could represent beliefs about the environment, chances of metabolites being 123 

available from a host organism, or any arbitrary prior on metabolite inputs. Throughout the 124 

implementation of our method, we have assigned Pin to be an identical value for all input 125 

metabolites. However, future implementations of this probabilistic framework could easily 126 

utilize Pin values that vary across metabolites, e.g. matching experimentally measured 127 

abundances. Following the assignment of Pin, the network structure can be used to calculate the 128 

output probability (Pout) of some specified target metabolite. In practice, random sampling of 129 

probabilistically drawn input metabolite sets is used to calculate the probability of producing the 130 

target metabolite. For each random sample, flux balance analysis46 with inequality mass balance 131 

constraints is used to assess the networks ability to produce the target metabolite (for a complete 132 

explanation of how flux balance analysis is implemented in this context, see methods section: 133 

Algorithm functions, feas). 134 
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 135 

Figure 1: Biosynthetic network robustness analysis framework 136 

A probabilistic framework was developed to calculate the biosynthetic network robustness of a given metabolic 137 
network and target metabolite. 138 

(A) Input probabilities (Pin) are assigned to each input metabolite to designate the probability of adding that 139 
metabolite to the network. For our implementation, each input metabolite is assigned an identical Pin value. Random 140 
sets of input metabolites are sampled, based on Pin, and a modified version of flux balance analysis is used to 141 
determine if the network can produce a specified target output metabolite for each random sample. Many random 142 
samples are taken to estimate the output probability (Pout) of the target output metabolite. Three examples of Pin 143 
values and the corresponding Pout values are shown for a very simple network and target output metabolite. The 144 

output probabilities here were calculated using the probabilistic equation 𝑃𝑜𝑢𝑡 = 1 − [(1 − 𝑃𝑖𝑛)2 ∗ (1 − 𝑃𝑖𝑛
2)] =145 

2𝑃𝑖𝑛 − 2𝑃𝑖𝑛
3 + 𝑃𝑖𝑛

4. For more information on this equation please refer to Supplementary Figure 1. 146 

(B) A producibility curve can be calculated which represents Pout as a function of Pin. Points along this curve can be 147 
sampled by assigning the Pin value and estimating Pout. The three examples from A are shown in red on the curve in 148 
B. The producibility metric (PM) is used to summarize the producibility curve, and quantifies biosynthetic network 149 
robustness. It is defined by the value of Pin at which Pout equals 0.5, analogous to the Km value of the Michaelis-150 
Menten curve. PM is equal to 1 minus this value, such that increasing PM correspond to increasing biosynthetic 151 
network robustness.  152 
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The probabilistic method that we introduced allows the definition of two novel concepts, the 153 

“producibility curve” and “producibility metric” (PM) (Figure 1 B). The producibility curve is a 154 

plot of Pout as a function of Pin. For a given metabolic network and metabolite target, this curve 155 

can be estimated by sampling input metabolites for different values of Pin (between 0 and 1), and 156 

calculating Pout (Figure 1 B red points). The PM is a single metric which encapsulates 157 

biosynthetic network robustness by summarizing the producibility curve. The PM is defined by 158 

the Pin value along the producibility curve at which Pout is equal to 0.5. The PM value is equal to 159 

1 minus this Pin value, by convention, such that larger PM values correspond to increased 160 

robustness. An analogy can be drawn between the mathematical representation of PM and the 161 

half maximal concentration constant Km in the Michaelis-Menten sigmoidal curve. Our method 162 

calculates PM efficiently by random sampling and a nonlinear fitting algorithm (for details, see 163 

methods section: Algorithm functions calc_PM_fit_nonlin). In addition to being quantified 164 

computationally for arbitrary metabolic networks and metabolites, the PM can also be obtained 165 

analytically by using combinatorial considerations (see Supplementary Figure 1). This analytical 166 

result clarifies the connection between our metric and the concept of minimal precursor sets62, 167 

and could serve as the basis for further theoretical work on the fundamental properties of 168 

metabolic networks. 169 

The algorithms used to implement our method are written in MATLAB and designed as a set of 170 

modular functions that interface with the COBRA toolbox – a popular metabolic modeling 171 

software compendium63,64. The methodology behind each function is further explained in the 172 

methods section. The code is freely available online at 173 

https://github.com/segrelab/biosynthetic_network_robustness.  174 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392621doi: bioRxiv preprint 

https://github.com/segrelab/biosynthetic_network_robustness
https://doi.org/10.1101/392621
http://creativecommons.org/licenses/by/4.0/


8 
 

Results 175 

Analysis of the E. coli core metabolic network 176 

Before applying our approach to the systematic study of genome-scale metabolic networks from 177 

the human oral microbiome, we used a simpler, well characterized metabolic network model to 178 

illustrate its performance and interpretation. We applied our method to the E. coli core metabolic 179 

network, a simplified representation of E. coli metabolism consisting of central carbon 180 

metabolism and lacking peripheral metabolic pathways, such as amino acid or cofactor 181 

biosynthesis65. We analyzed the biosynthetic network robustness of the E. coli core metabolic 182 

network by calculating the PM value for all intracellular metabolites in this network. The results 183 

are shown in Figure 2 A, overlaid on the metabolic network, with each node’s color indicating its 184 

PM value and node size indicating its degree. The E. coli core metabolic network is highly 185 

connected and this leads to most metabolites having high PM values (PM > 0.950), matching 186 

expectations. For example, the metabolites H+ and pyruvate are both highly connected in the 187 

metabolic network and have high biosynthetic network robustness (PM = 0.968 and 0.952 188 

respectively). However, the network also contains several metabolites that are well connected, 189 

but have low PM values. These include, for example, the cofactors AMP/ADP/ATP and 190 

NAD+/NADH, which have PM values of ~0.7 and ~0.5 respectively, because they can be 191 

recycled from each other, but not biosynthesized in this network. The network also includes 192 

several examples of the opposite situation, i.e. metabolites that are poorly connected but have 193 

high PM values. One example is D-lactate, which is produced via Lactate Dehydrogenase (LDH) 194 

from the high PM metabolites Pyruvate and H+ (Figure 2 B). This reaction also consumes NADH 195 

and produces NAD+, but because these cofactors can be easily recycled from each other by a 196 

large number of different reactions they have minimal influence on the PM value of D-lactate 197 

(Figure 2 B). This example demonstrates the fact that our metric captures metabolites which are 198 

easily produced because their precursors are easily produced, and that the utilization of recycled 199 

cofactors has minimal influence on the PM. Overall, there is no significant correlation between 200 

the PM values and the node degree of a metabolite in the network (Supplementary Figure 2), 201 

indicating that our metric describes a unique property of a metabolite in a metabolic network that 202 

is not captured simply by node degree.  203 
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 204 

Figure 2: Biosynthetic network robustness of the E. coli core metabolic network 205 

We calculated the producibility metric (PM) for all intracellular metabolites in the E. coli core metabolic network to 206 
demonstrate the implementation of our method on a simple network. 207 

(A) The network is represented as a bipartite graph with metabolites shown as circles and reactions shown as 208 
squares. Reactions shown with a green border are reversible in the model. All intracellular metabolites are colored 209 
based on their PM value (low – blue, high – red). Reactions and metabolite nodes are sized based on their total node 210 
degree. Several key metabolites of interest are highlighted with their corresponding PM values shown. Central 211 
metabolites such as H+ and Pyruvate have high degree and high PM. Cofactors such as AMP/ADP/ATP and 212 
NAD+/NADH have high degree but low PM, as they cannot be biosynthesized in this network. Oxygen is an 213 
example of a PM 0 metabolite that cannot be produced from any other metabolites in this network. D-lactate is an 214 
example of a metabolite with low degree and high PM i.e. it is easily produced but not well-connected. 215 

(B) Reactions related to the cofactors NAD+ and NADH are shown in a separate panel. The top reaction, Lactate 216 
Dehydrogenase (LDH), is shown with all substrates while all other reactions are shown without additional 217 
substrates. The metabolite D-lactate has high PM despite being poorly connected in the metabolic network because 218 
it can be produced from the high PM metabolites pyruvate and H+ via LDH. This reaction also consumes NADH and 219 
produces NAD+, however these cofactors have minimal impact on the PM because they are easily recycled in the 220 
network by a large number of different reactions.  221 
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Reconstruction of human oral microbiome metabolic networks 222 

We next applied our method to the human oral microbiome, aiming at a mechanistic 223 

characterization of the biochemical capabilities of different microbes based on metabolic 224 

networks reconstructed directly from their genomes. As a first step, we reconstructed metabolic 225 

networks for 456 different microbial strains representing a diverse set of human oral microbes, 226 

whose annotated genomes were available from the Human Oral Microbiome Database (see 227 

methods section for details). These organisms represent 371 different species, 124 genera, 64 228 

families, 35 orders, 22 classes, and 12 phyla. Metadata related to the selected organisms can be 229 

found in Supplementary Table 1. Notably, the database includes several sequenced yet 230 

uncultivated or recently co-cultured organisms. This fact, together with the unique flexibility of 231 

our analysis, allowed us to obtain insight into these microbes. In particular, the following 232 

sequenced yet uncultivated, or recently co-cultured, strains were included in our analysis: 233 

Saccharibacteria (TM7) bacterium HMT-952 strain TM7x25, Saccharibacteria (TM7) bacterium 234 

HMT-955 strain PM004, Saccharibacteria (TM7) bacterium HMT-488 strain AC001, 235 

Tannerella HMT-286 strain W1166766, Anaerolineae (Chloroflexi phylum) bacterium HMT-439 236 

strain Chl267, Absconditabacteria (SR1) bacterium HMT-874 strain MGEHA68, and 237 

Desulfobulbus HMT-041 strains Dsb2 and Dsb369. All of the selected genomes were used to 238 

reconstruct sequence-specific draft metabolic networks using the Department of Energy Systems 239 

Biology Knowledgebase (KBase) and the build metabolic model app45,70,71. The networks were 240 

reconstructed without any gap-filling to increase the specificity of the resulting predictions. A 241 

KBase narrative containing the genomes and draft metabolic network reconstructions can be 242 

found at: https://narrative.kbase.us/narrative/ws.27853.obj.935. The complete collection of all 243 

network models is also available for download in MATLAB (.mat) format at 244 

https://github.com/segrelab/biosynthetic_network_robustness. 245 

Large-scale analysis of biosynthetic capabilities across the human oral microbiome 246 

We analyzed the biosynthetic network robustness for 88 different biomass metabolites across the 247 

aforementioned 456 metabolic networks from the human oral microbiome. The 88 biomass 248 

metabolites included all biomass building blocks considered to be essential for either Gram-249 

negative or Gram-positive biomass, as listed in the KBase build metabolic models app45,70,71 250 

(listed in Supplementary Table 2). Through this analysis we calculated 40,128 PM values which 251 
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represent an atlas of biosynthetic capabilities across these human oral microbiome organisms. 252 

The ensuing atlas is represented as hierarchically bi-clustered PM values for all 456 organisms 253 

and 88 metabolites in Figure 3. The same data is available in Supplementary Figure 3 (clustered 254 

by taxonomy), and in Supplementary Table 3. 255 

The hierarchically clustered heat map (Figure 3) shows extensive variability in the PM values of 256 

different organisms and metabolites across the oral microbiome. There are three main large 257 

clusters of metabolites: one cluster with consistently high PM (top), one cluster with low PM 258 

values (middle), and one cluster with variable PM (bottom). Different classes of metabolites 259 

cluster quite differently across this landscape. In addition to simple ubiquitous metabolites, such 260 

as H2O or glycine (Figure 3 I), all nucleotides have high PM across the oral microbiome 261 

organisms. Amino acids generally have high PM as well, with the notable exception of L-262 

tryptophan (Figure 3 II). Interestingly, L-tryptophan is known to be a particularly difficult amino 263 

acid to synthesize72. Metal ions generally had PM value of 0 across all organisms, serving as an 264 

expected negative control. Some exceptions, such as Mg2+, Co2+, Cl-, Fe3+, and Fe2+, can be 265 

explained based on their presence in larger compounds, such as porphyrins. For example, Co2+ 266 

has increased PM values in a pattern that closely follows the PM values of the cobalt containing 267 

vitamin cobamamide (Figure 3 III).  268 
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 269 

Figure 3: Human oral microbiome organisms biosynthetic network robustness matrix 270 

The producibility metric (PM) was calculated for 456 different oral microbiome organisms (columns) and 88 271 
different essential biomass metabolites (rows). The resulting matrix is hierarchically bi-clustered based on average 272 
distances between organisms and metabolites PM values. Organism Gram-stain and phylum/class are indicated by 273 
several annotation columns at the top of the matrix. The biomass metabolites analyzed consisted of several different 274 
types of metabolites indicated with different colors. Several metabolites that showed interesting patterns across oral 275 
microbiome organisms are highlighted with roman numerals. The most distinct cluster of organisms is highlighted 276 
and annotated (top left), which consisted of fastidious reduced-genome organisms (Mycoplasma, Treponema) and 277 
uncultivated or recently cultivated organisms (SR1, TM7, Desulfobulbus, Anaerolineae).  278 
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Before analyzing in detail the patterns identifiable in the PM atlas of Figure 3, we showed that 279 

such patterns cannot be trivially attributed to simple broad properties, such as genome size, even 280 

if genome size is known to be an important predictor of the overall biosynthetic capabilities of an 281 

organism73. Fastidious or parasitic organisms tend to have reduced genomes and consequently 282 

reduced metabolic capabilities. In our data, the overall average PM value for each organism can 283 

be partially predicted by genome size. A linear regression model and quadratic regression model 284 

which used the log of genome size to predict the average PM value across all metabolites for 285 

each organism had R2 values of 0.498 and 0.551 respectively (Supplementary Figure 4A). 286 

However, by using Akaike information criterion (AIC) and Bayesian information criterion (BIC) 287 

statistical analyses74 (Supplementary Figure. 4B, C), we found that adding taxonomic parameters 288 

to these regression models significantly improved model performance. This indicates that our 289 

data contains additional structure beyond simply genome size. In particular, both the AIC and 290 

BIC improve up to at least the order level indicating that there is additional structure up to this 291 

taxonomic level. 292 

We further investigated, quantitatively, the associations between different taxonomic groups and 293 

the PM values of various metabolites by calculating the log likelihood ratio between a quadratic 294 

regression model predicting the PM values for a particular metabolite based solely on genome 295 

size against one that incorporates a specific taxonomic parameter of interest (Supplementary 296 

Figure 5, methods). This allowed us to highlight metabolites with highly significant increased or 297 

decreased PM values in certain taxonomic groups, and to confirm patterns that we observed by 298 

eye in Figure 3 and Supplementary Figure 3. These patterns and observations are elaborated in 299 

the following section. 300 

Capturing specific biosynthetic patterns across human oral microbiome organisms 301 

Numerous patterns and details of the atlas of biosynthetic capabilities captured by the PM values 302 

(Figure 3) could be relevant for addressing specific biological questions or model refinement 303 

challenges. Here we focus in detail on two specific classes of compounds: (i) cell-wall and 304 

membrane components, which tend to vary broadly across organisms, and are important for 305 

antimicrobial susceptibility and immune system recognition; and (ii) amino acids and essential 306 

factors (e.g. vitamins), which could be relevant for understanding metabolic exchange among 307 

bacteria and with the host. 308 
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A first striking pattern in the atlas of biosynthetic capabilities captured by the PM values (Figure 309 

3) is the complexity of cell-wall and membrane components of different taxa. Some aspects of 310 

this pattern are consistent with standard attribution of metabolites associated with the Gram 311 

staining categories (estimated using the KBase build metabolic model app45,70,71). However, we 312 

also observed interesting deviations, which could be partially attributed to known finer resolution 313 

in the specific membrane components across taxa. Compared to other metabolites, cell-wall 314 

components generally tend to have variable or low PM values across the oral microbiome 315 

organisms. We analyzed in detail fifteen different teichoic acids, a class of metabolites expected 316 

to be found in the cell wall of Gram-positive organisms that play an important role in microbial 317 

physiology and interactions with the host75. Of these, nine were found to have higher PM values 318 

in Gram-positive organisms, as expected (Figure 3 IV). In particular, the D-alanine substituted 319 

lipoteichoic acids had high PM values in the phylum Firmicutes and specifically the class 320 

Bacilli. However, there was another set of 6 teichoic acids that had intermediate PM values 321 

across a large number of organisms and didn’t follow Gram-staining trends (Figure 3 V). These 322 

consisted of three N-acetyl-D-glucosamine linked and three unsubstituted teichoic acids. As 323 

detailed in Supplementary Text 1, the increased PM for this teichoic acid in many Gram-negative 324 

species can be attributed to the presence of a specific gene76–78 that may merit closer inspection 325 

in the network reconstruction process. 326 

We further observed clear trends associated with several lipids which are expected to be found in 327 

the cell membrane of both Gram-positive and Gram-negative organisms. In particular, we found 328 

a strong increase in the PM value for three phosphatidylethanolamine lipids in Gram-negative 329 

organisms (Figure 3 VI). Interestingly, these lipids have been previously observed to be more 330 

commonly produced in Gram-negative organisms, and have implications for antimicrobial 331 

susceptibility79,80. We also identified trends associated with three cardiolipin and three 332 

phosphatidylglycerol lipids that display generally similar PM patterns across different species 333 

(Figure 3 VII). One class of organisms that stands out with respect to lipid biosynthesis are the 334 

Negativicutes. These organisms have relatively high PM values for phosphatidylethanolamine 335 

but PM values of 0 for cardiolipin and phosphatidylglycerol lipids. Consistent with this result, it 336 

has been previously observed that the Negativicutes organism Selenomonas ruminantium lacks 337 

cardiolipin and phosphatidylglycerol lipids in its inner and outer cell membranes, but does have 338 

phosphatidylethanolamine81. It has been hypothesized that the membrane stabilizing role of these 339 
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two missing lipids could be partially fulfilled by peptidoglycan bound polyamines, including 340 

spermidine, in Selenomonadales organisms81,82. Concordantly, we see an increased PM value for 341 

the polyamine spermidine across Negativicutes in our data (Figure 3 VIII). 342 

Aside from lipids and cell-wall components, there are a number of interesting trends related to 343 

several amino acids and other essential factors in our data. A number of metabolites had notably 344 

increased PM in the phylum Proteobacteria and decreased PM values in the phylum 345 

Bacteroidetes. A notable example is heme, which can be seen to follow this trend (Figure 3 IX). 346 

Heme plays an important role in microbe host interactions, as bacterial pathogens often acquire it 347 

from their human host83. In the context of the human oral microbiome, the oral pathogen 348 

Porphyropmonas gingivalis (belonging to the class Bacteroidetes) is known to scavenge heme84, 349 

compatible with the above pattern. Other metabolites that displayed the same trend include: L-350 

arginine, L-cysteine, L-methionine, L-tryptophan, and glutathione. L-arginine can be catabolized 351 

via the arginine deiminase pathway to regenerate ATP and is thus an interesting exchange 352 

metabolite beyond its use as a protein building block85,86. L-tryptophan is one of the highest cost 353 

amino acids to biosynthesize72, and thus is an intriguing exchange candidate. L-methionine and 354 

L-cysteine are the only two sulfur containing standard amino acids, and glutathione is 355 

synthesized from L-cysteine. It’s possible that the discrepancies between PM values observed 356 

here are indicative of broad amino acid and vitamin exchange between the classes 357 

Proteobacteria and Bacteroidetes in the human oral microbiome. 358 

Uncovering biosynthetic deficiencies in fastidious human oral microbiome organisms 359 

In addition to dissecting the patterns associated with specific metabolites, one can analyze the 360 

PM landscape of Figure 3 from the perspective of the organisms and their agglomeration into 361 

clusters. Given their importance in disease and the unresolved challenges related to their reduced 362 

metabolic capabilities, we focused specifically on fastidious human oral microbiome organisms. 363 

Strikingly, in our large clustered PM matrix, the most distinct hierarchical cluster of organisms 364 

consisted of a number of fastidious organisms (Figure 3 top left). This cluster included all of the 365 

Mycoplasma genomes that we analyzed, and one Treponema genome. Mycoplasma and 366 

Treponema are genera that are known to be parasitic and have evolved to have reduced genomes 367 

and metabolic capabilities87–91. The remaining members of this cluster included nearly all of the 368 

sequenced yet uncultivated, or recently co-cultured, organisms in our study. The organisms 369 
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included were from the phyla: Absconditabacteria (SR1), Saccharibacteria (TM7), 370 

Proteobacteria (genus Desulfobulbus), and Chloroflexi (class Anaerolineae). Only one of the 371 

previously uncultivated organism we analyzed was found outside of this fastidious cluster, 372 

namely Tannerella HMT-286. Interestingly, this bacterium is hypothesized to rely on externally 373 

supplied siderophores to support its growth66. This type of protein dependency is not captured by 374 

our metabolic analysis and highlights the fact that, while uncultivability can be driven by many 375 

different mechanisms, our method captures the prominent effect of reduced metabolic capacity. 376 

The other uncultivated organisms that we identified in this cluster have been hypothesized to 377 

have reduced genomes and limited metabolic capabilities underlying their fastidious nature, 378 

much like Mycoplasma. 379 

We sought to gain clearer insight into the metabolic properties of these co-clustered fastidious 380 

organisms by re-clustering their PM submatrix (Figure 4 A). By comparing the PM values in this 381 

fastidious cluster to those in the average oral microbiome organisms, it is clear that the fastidious 382 

organisms had reduced PM values for a large number of metabolites including cell-wall 383 

components, lipids, amino acids, and other essential factors. When ranking metabolites by their 384 

difference in average PM between all oral microbiome organisms and the fastidious cluster a 385 

number of amino acids and vitamins stand out as being the most depleted in the fastidious 386 

cluster. The top metabolites where: pyridoxal phosphate, L-valine, putrescine, L-isoleucine, 387 

bactoprenyl diphosphate, thiamin diphosphate, 5-methyltetrahydrofolate, L-lysine, 388 

deoxyguanosine triphosphate, L-tryptophan, and guanosine-triphosphate. These metabolites may 389 

be particularly relevant with regards to exchange between fastidious organisms and their oral 390 

microbiome community partners. Amino acids, in particular, have been hypothesized to be 391 

involved in metabolic exchange between microbial organisms in communities1, 7, 37,92. Notably, 392 

amino acids with reduced PM in the fastidious cluster (i.e. amino acids more readily produced by 393 

other organisms) tend to be among the more costly ones72, as indicated by a Spearman 394 

correlation analysis (ρ = 0.4595, P-value = 0.0415). An exception to this trend, potentially 395 

interesting for follow up studies, is the case of the branched chain amino acids L-valine, and L-396 

isoleucine, which are the two amino acids with most reduced PM in fastidious organisms, but are 397 

not among the costliest. Notably, branched chain amino acid supplementation has been shown to 398 

alter the metabolic structure of the gut microbiome of mice93.  399 
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400 
Figure 4: Biosynthetic network robustness sub-matrices for fastidious/uncultivated and TM7/host organisms 401 

Sub-matrices of the larger biosynthetic network robustness matrix were re-clustered to highlight variations within 402 
specific groups of fastidious and uncultivated organisms. 403 

(A) The fastidious/uncultivated organisms that were identified as the most unique cluster in the larger matrix from 404 
Figure 3 were re-clustered hierarchically based on average distance between organisms and metabolites 405 
producibility metric (PM). The average PM value across all oral microbiome organisms analyzed in this study is 406 
shown in the far left column. Differences between the fastidious Mycoplasma genus and the previously uncultivated 407 
TM7 species are highlighted. 408 

(B) The PM values for the previously uncultivated TM7 species and their co-culture growth-supporting hosts 409 
bacteria were extracted and re-clustered hierarchically based on average distance between organisms and 410 
metabolites PM values. Differences between the TM7 species and their bacterial hosts are highlighted.  411 
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To gain more specific insight into a specific class of recently-cultivated fastidious organisms, 412 

Saccharibacteria (TM7), we further focused our analysis on identifying discrepancies between 413 

Mycoplasma and TM7. Our analysis included eight Mycoplasma genomes and three TM7 414 

genomes. Mycoplasma are a relatively well characterized genus of intracellular parasites with 415 

reduced metabolic capabilities, and TM7 are a recently co-cultured phylum of the candidate 416 

phyla radiation that display reduced metabolic capabilities and a parasitic lifestyle. Comparing 417 

these two groups of organisms gives deeper insight into the unique metabolic capabilities of 418 

each. There are several cell-wall components for which TM7 has relatively high PM values and 419 

Mycoplasma has PM values of zero (Figure 4 I). These include nine different teichoic acids, 420 

bactoprenyl diphosphate, and peptidoglycan. This highlights extensive cell-wall/peptidoglycan 421 

metabolism in TM7 organisms and the known lack of a cell-wall in Mycoplasma91. Furthermore, 422 

a set of three nucleotides: dGTP, GTP, and TTP, have high PM values for TM7 and PM values 423 

of zero for Mycoplasma organisms (Figure 4 II). This pattern of nucleotide biosynthesis 424 

deficiency in Mycoplasma is consistent with the observation that some strains have been shown 425 

to be dependent on supplementation of thymidine and guanosine but not adenine or cytosine 426 

nucleobases for growth94. Finally, the cofactors acyl carrier protein (ACP) and flavin adenine 427 

dinucleotide (FAD) had high PM values in Mycoplasma and PM values of zero in TM7 428 

organisms (Figure 4 III). The lack of these cofactors in TM7 seems surprising, but is indeed 429 

matched by a complete lack of any metabolic reactions annotated to utilize FAD and ACP as 430 

cofactors in the draft reconstruction of the TM7 metabolic networks. 431 

In addition to investigating the metabolic deficiencies of fastidious organisms, the PM landscape 432 

gave us the opportunity to compare these gaps with possible complementary capabilities in 433 

organisms known to support their growth. The three TM7 strains that we analyzed were recently 434 

co-cultured with host bacteria from the human oral microbiome. TM7x was shown to be a 435 

parasitic epibiont of Actinomyces odontolyticus XH00125,26,95. TM7 AC001 and PM004 were 436 

recently both co-cultured successfully with either of the host strains Pseudopropionibacterium 437 

propionicum F0230a or F0700 (not yet published). We sought to further investigate these newly 438 

discovered relationships to gain insight into possible metabolic exchange (Figure 4 B). 439 

Interestingly, TM7 organisms had higher PM values than their host strains for several cell-wall 440 

components: three glucose-substituted teichoic acids, and glucose-substituted and unsubstituted 441 

glycerol teichoic acid (Figure 4 IV), suggesting that TM7 is capable of producing several cell-442 
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wall components that its host cannot. Conversely, as expected, a large number of metabolites had 443 

increased PM values in the host strains compared to the TM7 strains. These metabolites are 444 

hypothesized to be easily synthesized by the host and not TM7 and are thus interesting 445 

candidates for growth supporting exchange in co-culture. Fourteen different metabolites had 446 

average PM values in the hosts greater than 0.60 higher than in the TM7 organisms (Figure 4 V). 447 

The ranked list includes: L-isoleucine, L-valine, acyl carrier protein, 5-methyltetrahydrofolate, 448 

pyridoxal phosphate, flavin adenine dinucleotide, thiamin diphopsphate, putrescine, L-449 

tryptophan, Fe2+, heme, Fe3+, L-lysine, and menaquinone-8. Interestingly, the branched chain 450 

amino acids L-isoleucine and L-valine are again at the top of the list. The correlation of amino 451 

acid biosynthesis cost72 with the difference in PM values between host and TM7 is even higher 452 

than what we observed across all fastidious organisms (Spearman correlation ρ = 0.6011, P-value 453 

= 0.0051). 454 

Our results provide context and putative mechanistic details related to observed gene expression 455 

and metabolic changes in TM7-host co-culture. In particular, the first and currently only 456 

published work on co-culture involving TM7 is the one on TM7x with the host Actinomyces 457 

odontolyticus XH00125,26,95. Transcriptomic data for the co-culture of TM7x and A. odontolyticus 458 

XH001 showed that a number of genes associated with N-acetyl-D-glucosamine were up 459 

regulated in A. odontolyticus in this interaction. Our results show that, although TM7 does have 460 

extensive cell wall metabolism, A. odontolyticus has higher PM for N-acetyl-D-glucosamine 461 

substituted components (Figure 4 VI). This suggests that the host is responsible for the 462 

biosynthesis of these cell-wall components, which may be overexpressed in co-culture. 463 

Metabolomics experiments from this co-culture have identified the cyclic peptide cyclo(L-Pro-L-464 

Val) as a potential signaling molecule in this relationship. Our PM analysis suggests that this 465 

molecule would be synthesized by the host as it has increased PM values for both of the amino 466 

acids included (Figure 4 VII). In fact, L-valine has one of the highest discrepancies in PM for 467 

host and TM7. Finally, another potentially exchanged amino acid of interest is L-arginine. All 468 

three TM7 draft metabolic network reconstructions that we analyzed were annotated to possess 469 

either all or all but one of the reactions in the arginine deiminase pathway (TM7 PM004 is 470 

missing the arginine iminohydrolase reaction) (See also supplementary figure 6 and interactive 471 

Cytoscape96 file for a representation of the full metabolic network for each TM7 strain including 472 

PM calculations for all intracellular metabolites and subnetworks of the arginine deiminase 473 
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pathway, Supplementary Files 1-3). This catabolic pathway can be used to degrade L-arginine to 474 

regenerate ATP, and has been implicated in syntrophic microbial interactions85,86. In our PM 475 

analysis L-arginine had consistently higher PM in host than TM7 (Figure 4 VIII). Thus, L-476 

arginine exchange and metabolism via the arginine deiminase pathway could contribute to the 477 

dependence of TM7 on its hosts (Figure 5).  478 
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 479 

Figure 5: Hypothesized metabolic exchange between TM7 and their bacterial hosts 480 

(A) Hypotheses were generated regarding the exchange of metabolites between TM7 species and their bacterial 481 
hosts by comparing their producibility metric (PM) across essential biomass metabolites. Many metabolites of 482 
different types were observed to have higher PM values in one set of organisms when compared to the other (arrows 483 
point from high to low). 484 

(B) The cell-wall components containing glucose-substituted teichoic acids were among the only metabolites with 485 
PM higher in TM7 than in hosts. N-acetyl-D-glucosamine-substituted teichoic acids had increased PM in the host 486 
relative to TM7, and previous gene expression data from the co-culture of TM7x and A. odontolyticus shows several 487 
genes related to N-acetyl-D-glucosamine that are overexpressed in A. odontolyticus during co-culture25. 488 

(C) Several vitamins/cofactors/other essential factors had significantly decreased PM in TM7 compared to the hosts. 489 
The cofactors acyl carrier protein and flavin adenine dinucleotide had decreased PM in TM7, and were also not 490 
found to be utilized in the TM7 draft metabolic network reconstructions. 491 

(D) Several amino acids had significantly decreased PM in TM7 compared to the hosts. L-valine and L-proline were 492 
both decreased in TM7 relative to the host, and previous metabolomics data from the co-culture of TM7x and A. 493 
odontolyticus identified the cyclic dipeptide cyclo(L-Pro-L-Val) as a potential signaling molecule25. L-arginine had 494 
decreased PM in TM7 relative to the host and could potentially be exchanged and catabolized by TM7 via the 495 
arginine deiminase pathway.  496 
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Discussion 497 

We have developed a novel method for analyzing the biosynthetic capabilities of microbial 498 

organisms based on draft metabolic networks reconstructed directly from genomic information. 499 

Our method provides a preliminary assessment of the biosynthetic capabilities of a metabolic 500 

network model, without the need for gap-filling, that can be used to gain biological insight and 501 

evaluate initial model performance. The concept we define, biosynthetic network robustness, 502 

provides an environment-independent evaluation and utilizes all available stoichiometric 503 

constraints. Environmental independence is achieved by randomly sampling many possible 504 

nutrient combinations in a probabilistic manner and computing a metric inspired by percolation 505 

theory. This measure defines the robustness with which an organism can produce a given 506 

metabolite from any random set of precursors and thus avoids the issue of metabolite 507 

producibility being inherently dependent on environment49,50. In this work we have chosen to 508 

calculate the metabolic properties of organisms without assuming a particular environment; 509 

however, future implementations could utilize environmental information in a probabilistic 510 

manner when appropriate. Additionally, we have analyzed the production of individual target 511 

metabolites, but our method could easily be extended to sets of metabolites such as the 512 

simultaneous production of all biomass components. Our method utilizes all available 513 

stoichiometric constraints of the metabolic network as opposed to an adjacency matrix used by 514 

alternative approaches48. Stoichiometric constraints are implemented with a modified version of 515 

flux balance analysis (See methods section algorithm functions: feas), as opposed to the 516 

alternative network expansion algorithm to avoid the dependence on cofactors as bootstrapping 517 

metabolites97. 518 

It is important to highlight that several assumptions are made in the representation of enzymatic 519 

reactions as a network that generally limit metabolic network analysis methods. The primary 520 

limitation is in enzyme annotation. Aside from missing or incorrect annotations, subtle processes 521 

such as enzyme promiscuity and spontaneous reactions may have unquantified effects on 522 

metabolic network function. Reaction direction/reversibility is also difficult to predict as it 523 

requires detailed knowledge of reaction thermodynamics and metabolite concentrations. In 524 

particular, inaccurate or missing information about reaction direction/reversibility could lead to 525 

uncertainty about whether a high PM from our method should be interpreted as reflecting 526 
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biosynthetic or degradative capabilities (or both). Throughout our analysis we have utilized 527 

default reversibility constraints provided by the KBase build metabolic models app45,70,71, but 528 

more stringent constraints on directionality could possibly improve our results. Additionally, as 529 

our method analyzes local properties of the metabolic network (the PM value for a specific 530 

metabolite) unidentified gaps in biosynthetic pathways that occur in close proximity to the target 531 

metabolite of interest could lead to incorrect predictions regarding microbial auxotrophy. In 532 

general, all metabolic network analysis methods face similar limitations. Even as newly 533 

developed experimental methods gradually improve metabolic reaction annotation98–101, it is 534 

likely that we will have to continue dealing with incomplete knowledge. Thus, approaches such 535 

as ours are valuable for initial assessment of metabolic capabilities with minimal arbitrary 536 

assumptions, and unexpected modeling results can help to pinpoint specific areas in need of 537 

refinement. 538 

In applying our method to the human oral microbiome, we computed an atlas of biosynthetic 539 

capabilities across organisms that can be mined for relevant biological insight. Overall, many of 540 

our predictions were consistent with known patterns such as the reduction in biosynthetic 541 

capabilities in the genus Mycoplasma or the distribution of lipids and cell-wall components in 542 

Gram-positive and negative organisms. Additionally, unexpected predictions served as 543 

opportunities to highlight novel biological patterns or emphasize areas of the metabolic network 544 

that merit additional attention in the network reconstruction process. Our focus was on fastidious 545 

and uncultivated organisms in particular, and using our method we highlighted a unique cluster 546 

of such organisms with reduced biosynthetic capabilities. This cluster included three previously 547 

uncultivated Saccharibacteria (TM7) phylum organisms that were recently successfully co-548 

cultured with growth supporting bacterial host organisms. Our method singled out specific 549 

biosynthetic capabilities of these organisms, and was used to develop hypotheses regarding 550 

metabolic exchange between TM7 and host bacteria that give context to existing co-culture data 551 

and should be further testable in future experiments. These three TM7 species are the first 552 

successfully cultured organisms from the candidate phyla radiation and therefore are of general 553 

interest beyond their role in human oral health. In fact, the recent identification of the candidate 554 

phyla radiation demonstrates the broad prevalence across the tree of life of reduced-genome 555 

organisms that potentially rely on their community context for metabolic supplementation15–17. 556 
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Further analysis of these organisms with our method could continue to provide insight into their 557 

unique metabolic properties.  558 

By quickly translating genotype into phenotype with minimal assumptions, our approach has the 559 

potential to serve as a baseline estimate of metabolic mechanisms in different microbial 560 

communities and allows us to more easily decipher microbial community structure and function. 561 

Our method can be easily applied other human-associated or environmentally relevant microbial 562 

communities, providing valuable putative insight into inter-microbial metabolic dependencies, 563 

that could be used to interpret existing data or design future experiments. In particular, we 564 

envisage that this type of metabolic insight could help bridge the gap between correlation studies 565 

and a mechanistic understanding of microbial community metabolism and dynamics.  566 
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Methods 567 

Method implementation 568 

The framework for implementing our method was developed as several different modular 569 

functions that interact in a nested manner to run our analysis. The structure of these functions 570 

and their associated variables is described in Supplementary Figure 7 via a code diagram. The 571 

functions are written in MATLAB and interface with the COBRA toolbox63,64. The code is built 572 

around the COBRA toolbox commands changeObjective and optimizeCbModel. Thus, running 573 

our code requires installation of the COBRA toolbox. Additionally, the nonlinear fitting function 574 

utilizes the MATLAB function lsqnonlin for nonlinear least squared fitting. Additional functions 575 

were developed to implement our probabilistic framework and run our analysis method. Any of 576 

these functions could be replaced with alternative modules that improve or expand upon the 577 

algorithm in the future. We describe here each modular function, providing details on the 578 

computations performed. The full code for implementing our method is available online at 579 

https://github.com/segrelab/biosynthetic_network_robustness. 580 

Algorithm functions 581 

feas – This function determines if the production of a given target metabolite set is feasible given 582 

the metabolic network model with specified constraints. Flux balance analysis was used to 583 

determine the feasibility of production46. Flux balance analysis was chosen over the alternative 584 

network expansion algorithm due to its treatment of cofactor metabolites97. In network 585 

expansion, cofactors must be added to the network to “bootstrap” metabolism, whereas in flux 586 

balance analysis any reaction utilizing a cofactor can proceed given that the cofactor can be 587 

recycled by a different reaction, which is a less restrictive constraint on the metabolic network 588 

flux. Furthermore, our implementation allows for inequality or equality mass balance constraints. 589 

Traditional flux balance imposes an equality mass balance which is often referred to as a steady 590 

state constraint. This constraint restricts the rate of change of all metabolite concentrations to be 591 

equal to 0. We provide the option of implementing inequality mass balance, which constrains the 592 

rate of change of metabolite concentrations to be greater than or equal to 0. In practice, 593 

inequality mass balance is implemented by adding unbounded exporting exchange reactions and 594 

calculating steady state solutions. We have implemented inequality mass balance for all of our 595 

calculations due to the fact that we are analyzing local properties of the metabolic network (the 596 
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production of a single metabolite) and do not want the network to be constrained by the global 597 

requirement to achieve steady state. During the production of a particular metabolite, the 598 

metabolic network is thus free to produce byproducts that are used elsewhere or secreted. To 599 

determine production feasibility, the export of a particular target metabolite is set to the objective 600 

function and maximized. If the maximal flux is greater than a hard-coded threshold (>0.001), 601 

then the target metabolite is considered to be feasibly produced. This function uses the COBRA 602 

commands changeObjective and optimizeCbModel to set and maximize the appropriate objective 603 

function. Mathematically, flux balance analysis is implemented as a linear programming problem 604 

with the following definition: 605 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆: 𝐶𝑇𝑣 606 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 𝑆𝑣 = 0 (𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑚𝑎𝑠𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒); 𝑜𝑟 𝑆𝑣 ≥ 0 (𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑚𝑎𝑠𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒) 607 

𝒂𝒏𝒅 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 𝑙𝑏 ≤ 𝑣 ≤ 𝑢𝑏 608 

Where: 𝐶𝑇 is the transpose of a column vector indicating which reactions are to be maximized. 609 

In this case, this specifies the exporting exchange reactions corresponding to the target 610 

metabolites. 𝑣 is a column vector of metabolic reaction fluxes. 𝑆 is the stoichiometric matrix 611 

describing the reactions present in the metabolic network. This is a metabolites by reactions size 612 

matrix. Each element in the matrix is the stoichiometry of a particular metabolite associated with 613 

a particular reaction. Negative values indicate that a metabolite is a reactant of that reaction 614 

being consumed, while positive values indicate that a metabolite is a product of that reaction 615 

being produced. 𝑙𝑏 and 𝑢𝑏 are the lower and upper bounds of all reactions, which define reaction 616 

reversibility or are set to -1000 and 1000 respectively when unbounded. Additional information 617 

on flux balance analysis can be found in this publication describing its implementation in 618 

detail46. 619 

rand_add – This function is designed to give a random sample of input metabolites to be added 620 

based on the Bernoulli parameter for each input metabolite. This function uses the MATLAB 621 

rand function to choose a random number between 0 and 1 for each input metabolite. If this 622 

number is less than the Bernoulli parameter for that input metabolite, then the metabolite is 623 

added. 624 
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prob – This function utilizes rand_add and feas to determine the probability of producing the 625 

target metabolite given the input metabolite Bernoulli parameters, the metabolic network 626 

structure, and the specified constraints. A chosen number of random samples of input 627 

metabolites are generated by repeatedly running the rand_add function. The probability of 628 

producing the target metabolite is determined as the number of feasible trials divided by the total 629 

number of samples. The default number of samples used for the bulk of the analysis in this work 630 

was 50. 631 

calc_PM_fit_nonlin – This function calculates the PM for a specified metabolic network model 632 

and metabolite using an efficient nonlinear fitting technique. The nonlinear fitting algorithm 633 

estimates the PM by randomly sampling points on the PC that fall near PM. The algorithm starts 634 

by sampling a point in the middle of the PC and then using the MATLAB function lsqnonlin to 635 

fit a sigmoidal curve to the sampled points of the PC. The fit sigmoidal curve is used to estimate 636 

the PM. Next, a new sample point is obtained which is offset from the estimated PM value with 637 

some noise introduced with the specified noise parameter. In this way the algorithm converges 638 

on the PM value and samples points around PM, thus increasing the accuracy of its estimate with 639 

each iteration. The estimate converges when a specified n estimates of the PM value are all 640 

within a specified threshold. The code allows for a figure to be displayed which shows the 641 

sampled data points and fit sigmoidal functions, which is useful for debugging the algorithm and 642 

finding suitable parameters. The default parameters, associated with this function, used for the 643 

bulk of our analysis were: noise = 0.3, n = 7, thresh = 0.01. The parameters chosen were selected 644 

by hand to provide good performance. 645 

prep_mod – This function is used to prepare the metabolic network model for analysis with our 646 

method. The input for this function is a COBRA model, which is saved as a MATLAB structure 647 

variable. This code has been developed and optimized to work with KBase generated metabolic 648 

networks and is not guaranteed to work with networks from other sources that have different 649 

naming conventions. The first modification to the networks is to find and turn off all exchange 650 

and maintenance reactions to standardize the network models. Second, the extracellular and 651 

intracellular metabolites are identified based on naming conventions and output from the 652 

function. Third, exchange reactions are added for each metabolite (producing 1 unit of that 653 

metabolite), and a vector indicating the mapping from metabolites to these exchange reactions is 654 
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output from the function. This vector is used by our method to control the presence and absence 655 

of input metabolites in the network model as well as to adjust the inequality mass balance 656 

constraints. The final output is a new network model which has been standardized for our 657 

method and in which the presence and absence of metabolites can be easily manipulated. 658 

find_PM_mods_mets – This function is designed to facilitate the parallelization of the PM 659 

calculation. The function takes as inputs a directory of metabolic network models, a directory to 660 

store results, a list of target metabolite names, the index of the current network model and 661 

metabolite being analyzed and all of the specifications necessary for running 662 

calc_PM_fit_nonlin. The metabolite and model being analyzed can be changed dynamically to 663 

allow for parallelization. In addition to these inputs, this function has several inputs that allow 664 

for standard modifications to the PM calculation procedure. It allows for certain metabolites to 665 

be fixed on or off. It allows for several choices of metabolites to be added during the PM 666 

calculation process, including adding all intracellular or extracellular metabolites and including 667 

the target metabolite or not. It also allows for specification of the inequality mass balance 668 

constraint as either all metabolites set to inequality mass balance or all metabolites set to equality 669 

mass balance. Furthermore, it has a parameter for the number of runs to calculate the PM to 670 

obtain statistics regarding the variability of calc_PM_fit_nonlin. For the analysis done in this 671 

work: calculation of PM for single metabolites was done by adding all intracellular metabolites 672 

(excluding targets). The mass balance constraint was set to use inequality constraints for all 673 

metabolites. The number of runs was set to 10. 674 

Parallelization 675 

We used the Boston University shared computing cluster to run our analysis for a large number 676 

of metabolic networks and metabolites. The calculation of the PM for each individual network 677 

model and metabolite can be run in parallel, vastly increasing the number of possible 678 

computations. The average runtime for computing the PM for an individual network and 679 

metabolite for 10 repeated runs was ~9 minutes and the maximum run time was ~45 minutes, 680 

given the default parameters used in this study: a = 0, s = 1, samp = 50, noise = 0.3, n = 7, thresh 681 

= 0.01, runs = 10. 682 

Analysis of the E. coli core metabolic network 683 
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Our analysis method was initially demonstrated on the E. coli core metabolic network. We used 684 

the network provided by the BiGG database102. We calculated the PM value for each intracellular 685 

metabolite. The input metabolites for our PM calculations were assigned as all intracellular 686 

metabolites. This was the most naïve assumption we could use for assigning input metabolites. 687 

Additionally, using intracellular metabolites as input metabolites avoids errors that could arise 688 

from poorly annotated transporters in draft metabolic network reconstructions. Calculations were 689 

performed using the Boston University shared computing cluster to parallelize runs across 690 

networks and metabolites and improve computation time. The results of our simulation were 691 

visualized using the Cytoscape network visualization software96. The entire E. coli core 692 

metabolic network is shown, excluding the biomass reaction for clarity. 693 

Reconstruction of human oral microbiome metabolic networks 694 

A set of 456 draft metabolic networks were reconstructed for oral microbiome strains. Strains 695 

were chosen to match the sequences chosen for dynamic annotation on HOMD which cover at 696 

least one strain for each sequenced species and repeated strains for sequences of particular 697 

interest for the human oral microbiome. Several strains were additionally selected due to our 698 

interest in fastidious and uncultivated organisms. These included 8 uncultivated or recently co-699 

cultured strains. When considering the taxa TM7 and Tannerella sp. oral taxon 286, we chose to 700 

include the most recent genome sequences from oral microbiome co-culture experiments, 701 

although there are several additional single-cell and metagenome assembled sequences also 702 

available for Tannerella sp. oral taxon 286 and TM7 in particular15, 29,103–105. The host strains 703 

Actinomyces odontolyticus XH001, Pseudopropionibacterium propionicum F0700, and 704 

Pseudopropionibacterium propionicum F0230a were included due to their support of TM7 705 

organisms in co-culture. All genomes were either found in the KBase central data repository or 706 

manually annotated with RAST and uploaded to KBase70,71,106,107. Strains that were dynamically 707 

annotated on HOMD but could not be found on KBase, were not of interest due to 708 

uncultivability, and already had a representative strain from their matching species were not 709 

included in our set of strains. Several naming discrepancies existed between KBase and HOMD, 710 

which are highlighted in the KBase download notes column of Supplementary Table 1. All 711 

metabolic networks were reconstructed using a KBase narrative containing all of the genomes 712 

and metabolic networks from this work, which is available to be copied, viewed, edited, or 713 
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shared at https://narrative.kbase.us/narrative/ws.27853.obj.935. Metabolic networks were 714 

reconstructed for each strain with automatic assignment of Gram-stain, and without gap-filling. 715 

Metabolic network reconstructions were then downloaded from KBase as SBML files and 716 

converted to COBRA .mat files using the COBRA command readCbModel. Metadata related to 717 

all organisms and metabolic networks are available in Supplementary Table 1. 718 

Large-scale analysis of biosynthetic capabilities across the human oral microbiome 719 

We investigated the large-scale biosynthetic properties of the human oral microbiome by 720 

analyzing reconstructed metabolic networks for 456 different oral microbiome strains. For each 721 

metabolic network we calculated the PM value for 88 individual biomass components (40,128 722 

total PM calculations). The biomass components were chosen to be the union of the set of default 723 

KBase Gram-positive and Gram-negative biomass compositions (see Supplementary Table 2 for 724 

details). The metabolites sulfate and phosphate were not included, while the metabolite H2O was 725 

included as a positive control. The calculations were parallelized across metabolic networks and 726 

metabolites using the Boston University shared computing cluster to improve computation time. 727 

The PM values were stored as a matrix of organisms by metabolites PM values. This matrix was 728 

analyzed using hierarchical bi-clustering based on average differences between groups. The 729 

matrix was clustered and visualized using the R package pheatmap. 730 

For the comparison of average PM values and genome size, genome size was taken from KBase 731 

and added to Supplementary Table 1. We used regression modeling to identify the broad 732 

relationship between genome size, taxonomy, and the average PM value. We fit PM values to 733 

linear and quadratic models of log genome size: 734 

Linear: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑀) = 𝑐1 + 𝑐2 ∗ log(𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒) 735 

Quadratic: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑀) = 𝑐1 + 𝑐2 ∗ log(𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒) + 𝑐3 ∗ log (𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒)2 736 

Nominal taxonomic parameters were added to these models to determine if they could improve 737 

the models prediction of PM values. Gram-stain was assigned based on KBase default 738 

assignments. Phylum, and Class were assigned based on human oral microbiome database 739 

taxonomy annotations. Regression models were developed using the MATLAB command fitlm. 740 

The AIC and BIC were calculated to assess model improvement upon subsequent addition of 741 

taxonomic parameters by determining if the likelihood of the model was improved while 742 
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including a penalty term for each additional independent variable. Independent variables were 743 

added for each additional nominal parameter added (for example: adding the predictor of phyla 744 

meant adding 12 independent variables, one for each different phylum). The AIC and BIC were 745 

calculated using the MATLAB command aicbic. 746 

Capturing specific biosynthetic patterns across human oral microbiome organisms 747 

We investigated specific trends in metabolite PM values related to taxonomy by analyzing the 748 

clustered matrix of PM values. Additionally, a similar regression model was used to provide 749 

quantitative insight. The base model was a quadratic model using the log of genome size as the 750 

predictor of the specific PM value for a certain metabolite across all organisms: 751 

𝑃𝑀(𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒) = 𝑐1 + 𝑐2 ∗ log(𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒) + 𝑐3 ∗ log (𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒)2 752 

Nominal taxonomic parameters were added one at a time. Taxonomic parameters of Gram-stain 753 

(+ or -), phylum (belonging to 1 of 12 phyla or not) and class (belonging to 1 of 22 classes or 754 

not) were used. We calculated the log likelihood ratio by taking difference between the log 755 

likelihood of the base quadratic model of genome size and the model including a specific 756 

taxonomic parameter. We identified highly significant relationships using an alpha value of 10-6 757 

and Bonferroni correction for multiple hypothesis testing. 758 

Uncovering biosynthetic deficiencies in fastidious human oral microbiome organisms 759 

A subset of fastidious organisms identified from the larger clustered matrix of all oral 760 

microbiome organisms PM values were re-clustered and analyzed further. The clustering method 761 

used was the same as for the larger Figure 3. Additionally, three previously uncultivated TM7 762 

organisms (TM7x, AC001, and PM004) and several host strains for the uncultivated TM7 763 

(Actinomyces odontolyticus XH001, Pseudopropionibacterium propionicum F0700, and 764 

Pseudopropionibacterium propionicum F0230a) were re-clustered and analyzed. Metabolites 765 

were ranked and analyzed based on the difference between the average PM value of separate 766 

groups. Three different ranking were used throughout this analysis 1) average fastidious cluster 767 

organisms PM subtracted from average oral microbiome organisms PM 2) average Mycoplasma 768 

PM subtracted from average TM7 PM 3) average TM7 host PM subtracted from TM7 PM. 769 

Correlations between amino acid biosynthetic cost72 and difference in PM were calculated using 770 

Spearman’s rank correlation and the MATLAB command corr. 771 
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